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ABSTRACT 

Plasma confined in the Tormac configuration can be made to rotate 

about the minor axis so that guiding-center drifts do not carry the 

particles to the boundary layer even in a purely toroidal field B(R). 

In this way the anisotropy in velocity space caused by losses at the 

cusps will not be rapidly communicated to the interior. Rotation can 

be enhanced and controlled, in principle, by neutral injection with 

angular momentum about the minor axis. ,The properties and stability 

characteristics of such a state are theoretically investigated in the 

present paper. The conditions for a stationary state are shown to 

require that the number of particles on a flux tube remains, constant, 

yielding the relation n(R)R/B(R) ~ constant. The equilibrium properties 

of the plasma are observed with the use of two different models: 

(1) The plasma is treated as consisting of two fluids with negligible 

centrifugal effects and intersPecies interactions, where electrons are 

considered as isotropic with the equation of state d/dt(P n-r ) = 0, 
e 

while the ions are anisotropic and obey the CGL equations. (2) The 

plasma is treated as a single fluid with negligible centrifugal effects 

and scalar pressure, i.e., obeys d/dt(Pn-r ) = 0. In each case the 

equilibrium solutions n(R) are found to be marginally interchange-stable. 
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I. INTRODUCTION 

Levine and coworkers have described the confinement of high-beta 

plasma in the Tormac device. 1- 3 In this configuration the bulk of the 

plasma is contained within a toroidal volume of closed magnetic flux 

tubes (see Fig. 1). A thin boundary layer separates thi.s space from 

an outer region, the so-called outer "sheath," which is characterized 

by strong poloidal field components produced by external coils in an 

annular cusp arrangement. Particles with guiding centers in the outer 

sheath are only mirror confined on the open field lines. The boundary 

layer can not measure more than a mean ion-cyclotron-orbit in thick-

ness, because it is the region in which many ions with guiding centers 

on both open and closed flux surfaces coexist. While the structure 

and detailed properties of such a boundary layer and outer sheath have 

not yet been fully analyzed, it is certain that the major pressure 

gradients have to ge concentrated there. In the following we shall 

assume that such thin layers exist and are stable. 

II. GUIDING-CENTER CIRCULATION 

In the basic Tormac concept, the internal field lines are con-

centric circles, i.e., no toroidal current is present so that there 

is no magnetic rotational transform. It follows that, unless internal 

electric fields modify the motion, guiding-center drifts parallel to 

the torus major axis carry all particles to the plasma edge where they 

have to be deflected and recirculated promptly along the boundary if 

toroidal equilibrium is to be maintained. Obviously, this require-

ment must be incorporated in the prescription for the cusp confinement 
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\ 
V 



\j-

I \,J -

0 0 0 0 Ii ") 0 ',' () i'-H 9 ali. . ,;; :> 

-3-

of plasma in Tormac. Unfortunately, the losses through the cusps pro-

duce an anisotropy in the velocity distribution of the ions in a part 

of the boundary layer which then is propagated throughout the interior 

by the particle circulation mentioned above. .This leads to the un-

avoidable conclusion that eit,her a magnetic rotational transform or a 

net mass rotation is requi:r;ed in Tormacif the confinement is to be 

better than that expected in a minimum-B stabilized mirror configura~ 

tion. The function of the rotation here is simply to force most 

particle guiding centers to circulate well inside the boundary and 

thereby to reduce drastically the communication as regards the velocity 

distribution between the interior and the sheath region. Assuming 

such rotation is maintained, interior particles with velocity vectors 

in the cusp loss-cones can reach the open field lines only by cross-

field diffusion, so that the expected confinement time is much improved 

, over that of ordinary open-ended magnetic configurations.
2 

.Although the 

sheath may r~move angular momentum from the internal region, it should 

be possible, as described below, to control and maintain the internal 

rotation. 

Some internal rotation around the minor. torus axis by E x B drifts 

may be expected to arise spontaneously because of initial preferential 

loss of particles of one sign or the other. Ordinary open systems 

acquire a positive potential because of the shorter electron collision 

time. In fact, most electrons are confined mainly by the electrostatic 

potential created by the magnetically trapped ions in such devices. 

In the Tormac arrangement, on the other hand, excess positive charge 

in the interior would give rise to electric fields along the minor 
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radius, which here, instead of forcing ions out along field lines, 

would enhance confinement by causing internal circulation of guiding 

centers. If such spontaneous motion is insufficient for our purpose, 

rotation about the minor axis can also be driven by application of a 

torque from the outside, such as for instance by neutral-beam injec-

tion wiih net angular momentum about the minor axis. In fact, if 

neutral-beam injection is used to feed or heat a Tormac-confined plasma, 

it may be difficult to avoid adding any angular momentum. In short, 

we conclude that the plasma in Tormac is likely to be in a state of 

rotation, and the description of the equilibrium'must take this mass 

motion into account, i.e., we are dealing with a dynamic rather than 

a static equilibrium. 

III. CONDITION FOR THE STATIONARY STATE 

In the basic Tormac the internal plasma is assumed to be uniform 

in temperature and density so that the internal magnetic field would 

have to be force-free. The simplest case is the orie with ~ x B = 0 

so that the field lines are circle~, as mentioned above, and 

BR = const, if R denotes the distance from the major axis. This would 

be the state of magnetostatic equilibrium with minimal free energy. 

However, such an ideal uniform-pressure condition cannot be maintained 

in the presence of even the slightest guiding-center rotation around 

the minor axis because this would lead to a finite divergence in the 

mass flow. The condition that must be satisfied in the presence of 

any rotation is readily derived using a purely macroscopic two-fluid 

description. 

In the stationary state we must have ~·nu =0 for both ions and 
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electrons, as well as 9x E = O. In this paper we restrict ourselves 

to the simple case without toroidal current, i.e., with purely cir-

cular field lines: 

"-
~ = B(R,z)e, 

so that the parallel flow, nUll' does not enter the problem. The mean 

perpendicular flow velocities, ~l' in the steady state follow from the 

equation of motion for each species (particle mass m, charge Ze, and 

stress tensor E) and can be written in the form
4 

where 

E x B 

~ - c-:;-

c (9·E) x B 
u -

B2 -c Zen 

mc (~.9)~ x B 
u --In B2 

, 
Ze 

c F x B 

~=-
Ze B2 

The last term, ~, represents cross-field diffusion, which is caused 

either by the pressure and temperature gradients in the presence of 

electron-ion friction!, or by anomalous dissipation. The term'~ is 

assumed negligible here as compared to the first two, and u , be
-c 

cause we are mostly concerned with the conditions in the collisionless 

limit, and gradients in the interior are too small to drive turbulent 
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transport. The inertial drift, uI ' is primarily caused by centrifugal -n 

effects and is also negligible as long as the bulk rotation frequency 

is small compared to the ion gyrofrequency. The diamagnetic flow (or 

"net gyration"), nu , may of course be large, but by its nature it is 
-c 

always free of divergence under conditions of bydramagnetic equilibrium. 

We, therefore, are only concerned with the E x B guiding-center drift 

~. The requirement V·n~ = 0 and V x E = 0 leads to 

E x B B 
• V In n = -V • -.",....- = ~.V x -2 ' 

B2 B 

which is satisfied for all E if 

(3.4 ) 

If the field B is purely toroidal, i.e., if (3.1) holds, Eq. (3.4) 

can be solved immediately: The R component of Eq. (3.4) yields 

n(R,z)/B(R,z) =f(R), 

while the z component of (3.4) has the solution 

n(R,z)R • 
= g(z), 

B(R,z) 

so that we must haveg(z) = const, and feR) = const/R. The condition 

for stationary flow can thus be expressed simply as 

nR B 
--= , (3.6) 

, . 

. ( 

I 

.1 
i 
I 

"'/: 



\) . 

I 
'\, -, 

0 0 0 0 4i :2 0 'f, 
IJ 0 6 i 

-7-

where nO = n(RO'zO) and BO = B(RO'zO) at an arbitrary point (RO'zo) 

inside the plasma. Relation (3.6) merely states formally the obvious 

fact that the number of particles in a flux tube must remain constant 

during the motion under our conditions when cross-field diffusion is 

negligible. ,This means, of course, that n(R,z) = const is not an 

acceptable solution if ~ x ~ I 0 anywhere in this torus. To find the 

specific required dependence of n (or B) on R "and z we must use the 

equations for the dy~amic equilibrium to obtain a second and inde-

pendent relation between these variables. 

IV. DYNAMIC EQUILIBRTIJM 

Further progress towards determining the equilibrium requires 

adoption of a model. In any physically reasonable model, which must 

be valid for times < T .. (the ion";ion'collision time), the electrons 
'" J.J. ' 

are isotropic due to their fast collision rate and the collisionless 

whistler instability.5 The latter takes place on aqvery fast time 

scale, i.e., T ~ (/3 1/2)-1/2/m rl. The ions are subject to a simi-
e e' ce . 

lar instability, theelectramagnetic ion-cyclotron instability,6 which 

is capable of rendering the ions isotropic within a few time constants, 

T .• For this instability the time constant T. mayor may not be small 
J. J. 

compared to T ..• Two limiting cases are treated here: 
J.J. 

(1) A two-fluid plasma with isotropic electrons obeying 

d/dt (p n~r) = 0 and anisotropic ions obeying the CGL equations;7 
e . 

(2) A single-fluid plasma with a scalar pressure obeying 

0, where P = P + P .• e J. 

We shall first treat the two fluids since the one-fluid result 

will then follow as a special case. The equilibrium equations for the 
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rotating plasma are (neglecting interspecies collisions): 

u'9(P. 1/nB) = 0, 
- 2 

P. = 
=2 

P. 
,2 

(4.1) 

Quasi-neutrality has also been assumed (n = n = n). Under 
i e 

conditions of slow (very subsonic) rotation, nmil~·~/ « /vp/, the 

inertial term may be dropped. The dynamic character of the equili-

brium ios, of course, still preserved by the additional constraints 

o '" 

Using the conditions ~ = B(R,z)e and nR/B = const, 

the above set reduces to all quantities being functions of R only (z-

independeOnt), and: 

(4.2) 

, 
- L· .. : 
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2 
Defining ~i1 = 8rrPi1/B , etc., we find 

dB2 d B2 
2 

(1 + ~ 0 1 + ~ ) - + B - (~01 + ~ ) = - (~oll· - ~ 0 1 - 2), ( 4.3) 
1. e dR . dR 1. e R 1.. 1. 

and hence 

.. . dB 2'[ l' 
(1+~01+~)2B-+B --'~ 

1. e dR R e 

~dB 1 
+ (1' - 2) ~ - I 

B dRJ 

B2 

Hence, in equilibrium, B satisfies 

d In B ~ill/2 - 1 + ~e1'/2 ___ = ---J~ ____ _ 

(4.4) 

(4.5) 

The equilibrium relation between density and radius may be ob-

tained explicitly. Letting b = B/Bo' T) == nino' and r = R/RO' Eq. (4.3) 

becomes I 

. l' db b (~ l' \ 
(1 + ~01 + - ~ )- = - 1. + 1 + - ~. I .. 

. 1. . 2 e dr r 2 2 e J 

From Eq. (4.2), 

~i01 
~i1 = -- , 

. r 

~ ~ill ~ \ ' 
T)r 

1'-2 
~eO 

~e = 2 
T)r 

b = T)r, 

(4.6) 
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and hence (4.6) becomes 

dT} ! 
I -11 

dr \ 
~ 

y-2\ I 
, t3i01 Y T}, T}, t3iO/I 
+ -- + - 13 eO ~ I = - I ----zj: 
r2 r i r \ 2T}r 

t3i01 \) 
- ---- - 2, 

r I 

(4.8) 

, 2 
Multiplying through by r yields a perfect diffe~ntial, L,e., Eq. 

(4.8) is equivalent to 

+ t3ig /l] = 0, 
4r 

and hence we obtain: 

(

' ,y-l (R \2 n \ n 

1) ~eO no) . + nO RO i 2(y -

(4.10) 

The B field corresponding to this n is plotted for several cases, 

including high 13, in Fig. 2. The fact that, for high 13, B is mono-

tonically increasing should make Tormac confinement easier in that the 

curvature and gradient-B drifts of the particle guiding centers tend 

to cancel rather than add (as is the case in current-free fields). 

In the opposite limit t3eO ' t3i01 ' t3iO /l « 1, Eq. (4.10) gives n ex: 1/R
2

, 

or B ex: l/R as expected for the current-free case. 

Proceeding to the one-fluid MHD approach, we see that the equa-

tions follow from the two-fluid equations if we let ~i ~ 0, and 

Pe ~ Pe + Pi = Pj i.e., 

-- '.; 

- . ) 
\' , 
~ I 
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(4.n) 

, 
Making the same approximations of slow rotation and quasi-

neutrality,but dropping the ,assumption of negligible interspecies 

interactions,we arrive a,t Eq. (4.10) with t3i01 = t3iO // ~ 0, t3eO -+ t3
0

: 

2(r -
------- t3 + 1-
2(r- 1) 0 

Of special'interest is the high-t3 Situation, when t30 » 

(4.12) 

2 2 2 2(r - l)R IrRo ' so that the term inR . in Eq. (4.12) can also be 

neglected as a first approximation. In that case we see that n ~ nO 

eve'rywhere, which means that, because of (3.6), 

(4.13) 

In other words, in the high-t31imit, the field is modified so that the 

volume of a toroidal flux tube remains constant as it changes its 

major radius R. It should be noted, also, that n ~ const does not 

mean that the plasma is current-free. On the contrary, the equili-

brium here requires a uniform internal current density large enough 

to balance the finite residual pressure gradient that is consistent 

with the continuity requirement, Eq. (3.6). Again we see that the 

curvature and grad-B drifts are in opposition, due to the linearly in-

creasing nature of the field. Also, ast3 -+0, we again find that 

B ex: l/R. 

'. 
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The applicability of each model depends on the degree of iso-

tropization of the ion pressure over the time-scales of interest (1. e., 

for 6t ~ IR - Rol/u1). On time scales shorter than the ion-ion colli

sion time, the primary agent for achieving isotropy is the previously 

mentioned ion-cyclotron instability. 

The growth rate for the instability increases rapidly with mag

nitude of t3i1 and t3i1/t3i l/. 6 Typical values are given in Table I. For 

judicious choice of t3i01' 131011' t3eO ' and H/RO such that [(t311/t3i l/) - 1] 

is fairly small throughout the inner Tormac region, it is possible that 

the time constant for the instability, Ti , is of the same order as Tii 

and much longer than IR - ROI/u1 so that the two-fluid theory is valid. 

For large initial perpendicular and parallel pressure differences 

t3i1/t3i l/ »1, the instability will, in linear approximation, start to, 

isotropize the ions on a fast time scale r. t» 1m .1. Presumably . ~ns c~ 

once this process is initiated it will continue to completion and the 

MEn theory will be appropriate. Of course, there is an intermediate 

region where neither theory is valid. 

V. HYDROMAGNETIC STABILITY 

To investigate the hydromagnetic stability of the system, we use 

8 a method developed by Newcomb. We consider a single flux tube dis-

placed radially by an amount ~; the change inperpendicular pressure 
2 ' " 

in the tube, 6(P il + P e + B /8rr), must balance the. change in the am-

2 
bient value of the perpendicular pressure, ~d/dR(P.l + P + B /8rr). 

~ e 

The adiabatic and double adiabatic equations of state, as well as 

n(R)R/B(R) = const, link 6P , 6P. 1 , 6P." to ~ and fill. The equilibrium , , e ~ ~ 

equation (4.2) yields d/dR(Pi1 + Pe + B
2/8rr). Equating the change in 

perpendi9ular pressure in the tube to the change in the ambient per-

\ ' . 

-t! 
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pendicular pressure we find, eliminating &i1' &il/'&e: 

till _ ~ (Pill + 'YPe - B
2
/4rr) 

- 2' 
B R (2P' 1 + 'YP + B /4rr) 

~ e 

Next we consider the effective tension along the field lines, 

2 
whichi s given by ( -Pi 1/ - P e + B /8rr). If the change in tension of a 

flux tube exceeds the change in tension of the ambient medium, the 

tube will experience a net re storing force , i. e., the plasma will be 

stable. If the change in tension of the tube is less than that of 

the surrounding medium, the tube will continue to expand or contract 

radially resulting in instability. To obtain the marginally stable 

case we equate .6(-Pi l/ - Pe +B
2

/8rr) to ~d/dR(-Pill ,.;. P + B
2
/8rr). This} 

in combination with the equations of state and Eq. (5.1)} yields 

d In B = t3 i l//2 - 1 + t3e'Y/2 

d In R t3i1 + 1 + t3e'Y/2 

for marginal stability. Note that the marginal stability condition 

(5.2) is just the expression earlier obtained as the equilibrium con~ 

dition for (d In B)/(d In R). The result is not surprising in view 

of the fact that,the slow rotation about the minor axis} which we have 

proscribed for our hydromagnetic equilibrium state} is simply a pure 

interchange process. 

The centrifugal effects} which we n~glected in going from Eq. 

(4.1) to·Eq. (4.2) must then be expected to render the system unstable. 

However, any dissipative process} e.g.} as caused by heat flow, vis-

cosity} or electrical resistivity, will undoubtedly have a stabilizing 
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effect. We conclude that slow mass rotation about the minor axis is 

probably permissible in Tormac without causing difficulties. 

Fortunately, not much rotation is needed to dominate the guiding-

center d:i:'ifts when the particles' mean gyroradius r
L 

is small compared 

to R. The conditions that the mass velocity u must satisfy for this 

purpose, and at the same time must introduce only negligible centrifu-

gal effects, ar~ 

1/2 r u (r ) -1! « _«....£ . 
R vth R 

Here vth is the mean thermal speed, and rc denotes the radius of curva

ture of the rotating flow, i.e., r is of the order the plasma minor 
c 

radius, so that the centrifugal acceleration i~ I (u.V')ul "'" u2/r. For 
- - c 

conditions appropriate for a thermonuclear reactor this requirement 

should be easily accommodated. If we wish to restrict the displace-

ment of a drift orbit to the order of a few gyroradii, the left in

equality in (5.3) m~st be more specific, i.e., it must be replaced by 

(5.4 ) 

In other words, as is easily understood, the problems associated with 

the toroidal geometry are more readily dealt with when the aspect 

ratio R/r is large. c 
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FIGURE CAPTIONS 

Fig. 1. The Tormac configuration, showing a typical ion-guiding 

center drift in_the interior. 

Fig. 2. Normalized B [Bo = B(RO)] for two-fluid and one-fluid equi

libria and various ~'s. In both cases r = 5/3. 

Fig. 3. Normalized pressures, Pil/PiOl' Pill/Pioll' Pe/PeO for the case 

Y =,5/3 and ~iOl = ~ioll = ~eO = 1/2. 
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Table I. Growth rates for the electromagnetic ion"':cyclotron instability. 
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