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ABSTRACT 

The incompressible lattice-gas model by ten Brinlee and Karasz is adopted to 

introduce the effect of specific interactions into a recently-presented, Monte-Carlo based 

lattice expression for the Helmholtz energy of nonrandom mixing. While the lattice 

remains incompressible, intennolecular forces consist of two types: London dispersion 

and specific (chemical) forces. The specific interactions between similar components as 

well as those between dissimilar components are incorporated in a systematic manner. 

Closed-loop temperature-composition phase diagrams are successfully reproduced. The 

theory is compared with experimental data for several binary systems, including polymer 

solutions, which exhibit closed-loop coexistence curves. Theoretical and experimental 

results are in good agreement. 

(Keywords: lattice model; lower critical solution temperature; phase equilibria; 

polymer solution) 

Correspondence concerning this paper should be addressed to 1M. Prausnitz. 



INTRODUCTION 

Some binary systems exhibit a closed miscibility loop with both an upper critical 

solution temperature (UCST) and a lower critical solution temperature (LCST) in the 

temperature-composition phase diagram such that the UCST lies above the LCST. 

Classical examples are aqueous solutions of nicotine (Hudson, 1904) and poly(ethylene 

glycol) (Saeki et al., 1976). A realistic qualitative explanation for this phenomenon was 

given many years ago by Hirschfelder et ale (1937); closed-loop behavior follows from 

competition among three contributions to the Helmholtz energy of mixing (~mixA): 
dispersion forces, combinatorial entropy of mixing, and highly oriented specific 

interactions (e.g .• hydrogen bonding). While the dispersion forces energetically favor 

phase separation. the coobinatorial entropy of mixing- favors mutual miscibility. The 

specific interactions are energetically favorable but entropically unfavorable because of 

their highly directional-specific character. Therefore. in the presence of specific 

interactions between dissimilar components. the ,mixture could form a single 

homogeneous phase at low temperatures where the specific interactions are stable. At 

moderate temperatures. where neither specific interactions and combinatorial entropy of 

mixing dominates, the ef:ect of dispersion forces become significant and the mixture 

exhibits phase separation. At higher temperatures.-the combinatorial entropy of mixing 

becomes dominant and a single homogeneous phase reappears. 

Within the framework of a lattice model (Guggenheim, 1952), several attempts 

have been made to develcp molecular-thermodynamic models for representing a closed 

miscibility loop. The esse!lce of these earlier atte~pts is the extension of conventional 

lattice models which are suitable only for representing an UCST. However. a molecular

thermodynamic model fo: a closed miscibility loop must frrst accurately represent the 

phase behavior of a simpler system where no specific interactions are present 

Using the quasich~mical approximation (Guggenheim, 1952), Barker and Fock 

(1953) were the flI'St to give a qualitative description of closed-loop coexistence curve for 
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a binary system of equal-sized molecules. In their model, one or more of the contact 

points of each molecule are allowed to have an interaction energy different from that of 

the others. This quasi-chemical method was extended to polymer solutions by Prange et 

al. (1989). Although the quasichemical approximation accounts forsome deviation from 

random mixing, it is well-known that the calculated coexistence curve is too narrow 

compared to experiment. In addition, in the quasi-chemical method, the derivation of 

critical coordinates is extremely tedious. 

More rigorous models are the decorated lattice models by Wheeler (1975) and 

Anderson and Wheeler (1978a, b). The decorated lattice model can be mapped onto a 

three-dimensional Ising model for which reliable solutions are available (Scesney, 1970). 

Wheeler et al. obtained qualitative agreement between calculated and experimental 

coexistence curves for several binary low-molecular-weight systems. Wheeler's theory 

was later incorporated into the UNIQUAC equation (Abrams and Prausnitz. 1975) by 

Kim and Kim (1988). The decorated lattice model, however, is very complicated and it is 

difficult to apply to polym'!r solutions and multicomponent systems. 

Mathematically simple models have also been proposed. Some examples are the 

solvation model by Matsuyama and Tanaka (1990) and the lattice-gas model by Vause 

and Walker (1980; Goldstein and Walker, 1983; Goldstein, 1985). The latter model was 

originally developed as a compressible model for mixtures of low~molecular-weight 

species and was later applied to polymer blends through an incompressible model by ten 

Brinke and Karasz (1984). Sanchez and Balazs (1989) also adopted a similar approach 

using the lattice-fluid model which is able to account for the free-volume effect. 

Unfonunately, these models are based on the original random-mixing Flory-Huggins 

theory (Flory, 1953) which is often not accurate to describe the behavior of real mixtures 

even in the absence of specific forces. 

Recently. Hu et al. (1991a, b) developed a secondary lattice model applicable to 

polymer solutions. In the absence of specific interactions, they frrst proposed a new 
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expression for ~mixA for binary polymer solutions based on Freed's lattice-field theory 

(Freed, 1985; Bawendi et al., 1987; Bawendi and Freed, 1988), which is formally an 

exact mathematical solution of the Flory-Huggins lattice. The effect of specific 

interactions were then incorporated through a secondary lattice whose essential role was 

to assign a temperature dependence to the interaction energy parameter. Although Huts 

model requires several adjustable parameters and the expression for the Helmholtz energy 

of mixing for a secondary lattice is somewhat arbitrary, the calculated coexistence curves 

were found to be in good agreement with experiment. The success of the secondary

lattice and aforementioned decorated-lattice models follows because these models are 

close to the accurate solutions of a lattice model. 

The purpose of this work is to develop a simple molecular-thermodynamic model 

for closed-loop liquid-liquid equilibria based on a theoretically sound expression for 

IlmixA. In this paper we use the recently-presented new expression for IlmixA for 

incompressible monomer/r-mer mixture obtained by correlating the Monte Carlo 
. 

simulation results reponed by Lamben et al. (1992). In that work, computer simulations 

were carried out by taking into account dispersiori forces only. For systems exhibiting 

UeST, the coexistence curves calculated by this model were found to agree with the 

experimental data much better than those obtained by existing lattice models, including 

the Flory-Huggins theory (Flory, 1953) and Guggenheim's quasichemical approximation 

(Guggenheim, 1952). The effect of specific interactions are here introduced by 

superimposing on Lamben's work the incompressible lattice-gas model by ten Brinlee and 

Karasz (1984). When we consider the specific interactions between dissimilar 

components only, our model requires two additional parameters. As shown later, 

however, one of them can be assigned a constant value. The remaining parameter is 

determined from the (experimental) ratio of ueST to LeST. The resulting model is 

conceptually and mathem2.tica1ly simple. 
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THEORY 

1. Internal and Helmholtz Energies of Mixing. Consider a binary mixture of 

components 1 and 2 which can form specific interactions between similar components as 

well as between dissimilar components. Each contact point of a molecule is assumed to 

interact either in a specific manner with the interaction energy of Eij + OEU or in a non

specific manner with interaction energy Eij where i=l or 2 and j=l or 2. Both Eij and OEij 

are negative and independent of temperature. We assume that a fraction, fij' of the i-j 

interactions are specific and 1 - lij are non-specific. We also assume that fii in the 

mixture is identical to that in the pure substance containing molecules of component i. 

Under these assumptions the internal energy of mixing (~U ) i~ given by 

(1) 

where NI2 is the total number of 1-2 pair-wise contacts and CJ) is defined by 

(2) 

where E is the interchange energy 

(3) 

The derivation ofEq. (1) i!; shown in the Appendix. 

We assume that f;j is given by the Boltzmmn distribution law 

(4) 
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where k is the Bolmnann constant, T is the absolute temperature, and 9 ij is the ratio of 

the degeneracy of non-specific i-j interactions to that of specific i-j interactions; fjj is 

therefore given by 

(5) 

The Helmholtz energy of mixing C1.mixA} is obtained by integrating the Gibbs

Helmholtz equation using the Guggenheim's athermal entropy of mixing as the boundary 

condition: 

(6) 

(7) 

where Nr is the total number of lattice sites and T is the dimensionless temperature 

defmed as 

(8) 

Here rio «Pi, and 8i are the number of segments-per molecule,. volume fraction, and surface 

fraction of component i, respectively. «Pi and 8i are defined by 

(9) 

(10) 

5 



where Ni and qi are the number of molecules and the surface area parameter of 

component i, respectively; qi is related to the number of surface contacts per molecule, 

zqi, defined as 

(11) 

where z is the lattice coordination number. In this study, including computer simulations, 

a simple cubic lattice (z=6) is used. When numerical integration with respect to the 

inverse of reduced temperature (liT) is necessary in Eq. (6), Simpson's rule is used at 101 

equally spaced points along the axis of 1;[. 

Our main task is the estimation of NI2 which, in tum, determines ~mixU by Eq. 

(1). In the next section we briefly review two new expressions for NI2 obtained by 

correlating the Monte Carlo simulation results. 

2. Total Number of 1·2 Pair-Wise Contacts. Based on Monte-Carlo calculations, 

Lambert et al. (1992) recently proposed the following expression for NI2 for monomer/r

mer mixture in the absence of specific interactions: 

(12) 

where 

(13) 

ao( ) -6 0.9864{r2 - I) 
r2 - - ~-=-=-=~-~ 

1 + 0.8272(r2 - 1 ) 
(14) 

aI(r2) = -1.2374 _ O.09616{r2 -1) 
1 + 0.14585[2 - 1) 

(15) 
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B'(r)= 0.8186(r2-1) 
2 1 + 0.76494(r2 - 1) 

(16) 

(17) 

The numerical coefficients in Eqs. (14) to (17) follow from Monte-Carlo calculations. In 

the reminder of this paper the above model is Model 1. In this model rl must be always 

unity. The temperature dependence of NI2 is expressed in terms of the dimensionless 

temperature T defined by Eq. (8). In the presence of specific interactions, £ is replaced by 

C1) in Eq. (1). Therefore, as a fmt approximation it seems reasonable to replace £ by C1) in T 

in Eqs. (13) and (17) to obtain the expression for NI2 in the presence of specific 

interactions. The resulting equations are as follows: 

(18) 

where 

(19) 

(20) 

In Model I, Amix U is given by 

(21) 
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For comparison, we also consider Model II which is close to Guggenheim's 

quasichemical approximation (Guggenheim, 1952). In Model TI, in the absence of 

specific interactions, Nl2 is given by 

(22) 

where N~2 is the number of 1-2 pair-wise interactions for a random mixture and r l2 is 

the nonrandomness factor defmed as 

(23) 

Eq. (23) is a generalization of a result derived for a mixture of equal-sized molecules 

(rl=r2=1) by correlating Monte Carlo simulation results for a cubic Ising lattice. 

Extension to polymer systems was made by simply replacing the mole fraction by the 

surface fraction. For a monomer/r-mer mixture, the coexistence curves calculated from 

Model IT were found to be very close to those calculated from the Guggenheim's 

quasichemical approximation. For example, for a rl=l; f2=100 system. the critical 

composition (4)c) and reduced temperature ffc) predicted by this model are 0.875 and 

3.681, respectively, while Guggenheim's quasichemical approximation gives 4>c = 0.882 

and ~ = 3.706. In the presence of specific interactions. the nonrandomness factor is 

assumed to be given by 

(24) 

In this model. rl can assume any positive number. Model II is assumed to be applicable to 

polymer blends. 
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These models are compared to the original model by ten Brinke and Karasz 

(1984) (Model Ill) defined by 

(25) 

where X is the Flory interaction parameter 

(26) 
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CALCULATION PROCEDURE 

For phase-equilibrium calculations. we require expressions for the critical 

coordinate and for the chemical potential. In a binary system. the critical condition is 

given by 

(27) 

where the differentiation is at constant temperature m and volume (V) of the system. 

These equations are solved for cl>c and Tc. 
The coexistence curve is found from the conditions 

(28) 

, " 
~~=~~ (29) 

where ~J.1.i is the change ir. chemical potential upon isothermally transferring component i 

from the pure state to.the mixture. Superscripts' and " denote the coexisting phases. ~J.1.1 

and aJ.1.2 are related to ~mixA by 

(30) 

(31) 
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RESULTS AND DISCUSSION 

1. Effect of 9 12- In all calculations performed here, the number of segments per 

molecule for the smaller molecule (rtl is set to 1. For mixtures containing low-molecular

weight species, to determine r2, we use the ratio of UNIQUAC size parameters (Abrams 

and Prausnitz, 1975; Sorensen and ArIt, 1979), which are proportional to the van der 

Waals molecular volumes (Bondi, 1968). For aqueous solutions of poly(propylene 

glycol) (pPG) and poly(ethylene glycol) (pEG) for which UNIQUAC size parameters are 

not available. r2 is set to the ratio of molar volumes at room temperature. The densities of 

PPG and PEG are assumed to be 1.01 and 1.20 g/cm3• respectively. Size parameter r2 is 

therefore not an adjustable parameter but a pre-set physical parameter. 

To include specific interactions between dissimilar components. two additional 

parameters, degeneracy parameter gI2 and energy parameter ~£12' are required. For a 

given gJ2, the ratio of ~£12 to interchange energy £ is determined from the experimental 

ratio ofVCST to LCST, while £ is·calculated from T; at VCST or LCST. Figures 1 (a) and 

1(b) compare the theoretical coexistence curves by Model I at different values of gI2 with 

experimental data for the systems glycerollm-toluidine (TUCSTlfLCsr-1.407) (Sorensen 

and ArIt, 1979) and PEG (M1'I=2290)/water (TUCSTlfLCST=1.165) (Saeki et al., 1976), 

respectively. Here. M1'I stands for the average molecular weight of polymer determined 

from viscosity measurements; TUCST and TLCST denote the upper critical solution 

temperature and lower critical solution temperature in degrees Kelvin, respectively. Table 

I gives interaction energy parameters £ and ~£12. Figures l(a) and 1(b) show that the 

width of the coexistence curves becomes narrower when the value of g12 declines. 

In the subsequent calculations. gIl is set to 5000. Although such a high value of 

gI2 implies a strongly directional interaction, Figures 1(a) and l(b) indicate that this 

value gives good fits for both small and large T2. In addition. the magnitudes of £ and ~£12 

for the above systems are physically reasonable. The strength of hydrogen bonding lies 
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between 1 and 10 kcallmole (Prausnitz et al., 1986) and the ratio of specific force to 

dispersion force ranges from 5 to 50 (Coleman et al., 1991). 

2. Comparison with experiment. Figures 2, 3, and 4 compare theoretical coexistence 

curves by Models I and III with experimental data for the systems 

glycerol/benzylethylamine (TUcSTrftCSr-1.715), water/nicotine (TUCSTrrLCS'F1.513), 

and water!l-propoxy-propane-2-ol (TUCSTrrLCSr-1.446) (Sorensen and Arlt, 1979), 

respectively. These calculations include specific interactions between dissimilar 

components. In Figure 4 the theoretical curve by Model n is also shown. Agreement 

between the theoretical curves by Model I with experimental data is good. Table n gives 

parameters for these calculations. 

Figures 5 and 6 show theoretical coexistence curves by Models I and ill along 

with experimental data for the systems water/tetrahydrofuran (TUCSTrrLCST=1.189) and 

glyceroVguaiacol (TUCSTrrLCS'F1.140) (Sorensen and Arlt, 1979), respectively. In these 

systems, those calculated coexistence curves which include only specific interactions 

between dissimilar components are narrow compared to the experimental data. Also 

plotted are the theoretical curves including specific interactions between similar 

components as well as these between dissimilar components. To simplify the problem, in 

the latter calculation it is assumed that only one component is able to form specific 

interactions with itself; co is therefore given by 

(32) 

and gn is assumed to be equal to g12. The above simplification may not be serious 

because in Eq. (2) both the term associated with the specific interactions between 

molecules of type 1 and that between molecules Qf type 2 have the same (negative) sign. 

In this calculation, OEll {or OE12} can be arbitrarily chosen and OE12 {or OEll} is 
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determined from the ratio of VCST to LCST. It was found that inclusion of specific 

interactions between similar components results in wider coexistence curves. Table III 

gives interaction energy parameters for these calculations. 

Figure 7 compares theoretical coexistence curves by Models I and m with 

experimental data for the PPG/water system (TUCST!I't.csr-1.763) (MUlier, 1991). The 

number-average molecular weight of polymer (Mn) is 421. Figures 8(a), 8(b), and 8(c) 

show theoretical coexistence curves and experimental data for the systems PEG/water of 

MTI=2180 {TUCST!l't.csr=I.091} [2], Mn=3350 (TUCSTrrLCsr-1.212) (Bae et al., 1991), 

and Mn=8000 (TUCSTrrLCS'F1.397) (Bae et al., 1991), respectively. Table IV gives 

parameters for these calculations. The polydispersity factor, which is the ratio of weight

average molecular weight to number-average molecular weight, of Mn=3350 and 

Mn=8000 samples is about 1.6. In Figure 8(c) the theoretical curve by Model n is also 

shown. Although our model cannot account for the effect of polydispersity, the 

theoretical curves by Model I for polydisperse samples shown in Figures 8(b) and 8(c) 

compare favorably with the experimental data. In addition, improvement of the 

theoretical curve by Model lover those by Models n and III is significant. As shown in 

Table IV, for PEG/water systems, the energy parameters £ and OE12 are slightly 

molecular-weight dependent. 

Finally, we note some inherent limitations in the current model. For specific 

interactions between similar components, the present model cannot distinguish betvieen 

intramolecular specific interactions and intermolecular interactions. In addition, the 

specific interactions are assumed to be formed at any contact points of a molecule with 

equal probability. This assumption is not correct if specific interactions can be formed 

only at particular parts of a molecule. Such a restriction, however, might be taken into 

consideration by viewing a molecule as a copolymer consisting of several chemically 

different units. 
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Interpretation of the degeneracy parameter gij also remains ambiguous. It is not 

clear how much physical significance can be attached to this ad hoc parameter. However, 

since it appears that gij can be assigned a ~onstant value, this ambiguity should impose 

little restriction on the use of our model for phase equilibrium calculations. 

Because of the simplified expression for ~mixA, our model could be used for the 

prediction of phase behavior of ternary solvent/solvent/polymer systems, which include 

specific interactions, from binary information only. The use of Model II for polymer 

blends including random-copolymers seems promising. 

CONCLUSIONS 

A simple Monte-Carlo-based lattice model has been developed for closed-loop 

phase equilibrium calculations based on the incompressible lattice-gas model by ten 

Brinke and Karasz. A new expression is used for the Helmholtz energy of mixing for 

monomer/r-mer mixture obtained by correlating Monte Carlo simulation results. 

Calculated coexistence curves agree well with experimental data over a range of 

r2 = 1 - 370. 
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Notation 

a = coefficient in Eqs. (13) and (19) 

A = Helmholtz energy 

A' = coefficient in Eq. (12) 

A" = coefficient in Eq. (18) 

B' = coefficient in Eqs. (12) and (18) 

C' = coefficient in Eq. (12) 

e" = coefficient in Eq. (18) 

f;j = fraction of i-j interactions which are specific 

gij = degeneracy parameter for i-j contact 

k = Boltzmann constant 

Ni = number of molecules of component i 

N12 = number of 1-2 contacts 
• number of 1-2 contacts for a random mixture Nl2 = 

Nr = total number of lattice sites 

qi = surface parameter for component i 

ri = size parameter for component i· 

T = temperature 

T = reduced temperature -Tc: = reduced critical temperature 

U = internal energy 

V = volume 

z = lattice coordination number. a constant here set equal to 6 

G reek letters 

r 12 = nonrandomness factor for 1-2 contact 
O£ij = difference between specific interaction energy and non-specific interaction 

energy of i-j contact 
£ = interchange energy excluding specific interactions 

Eij = interaction energy of i-j contact 

8i = surface fraction of component i 

J.Li = chemical potential of component i 

<l>c: = critical volume fraction 

<l>i = volume fraction of component i 

X = Flory interaction parameter 

co = interchange energy including specific interactions 
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APPENDIX: Internal Energy of Mixing Including Specific Interactions 

Consider a binary mixture of Nl molecules of component 1 and N2 molecules of 

component 2. The internal energy of mixing (Amix U) is defmed as 

(A.I) 

where Umixture and Upure i are the internal energy of the mixture and that of the pure 

substance containing Ni molecules of component i. If we assume that a fraction fij of the 

i-j interactions (ij = 1.2) is specific. having interaction energy of £ij + BEij and that 1 - /;j 

is the fraction of non-specific interactions having interaction energy of fijI Umixture is 

given by 

Umixrure = (1 - fJl )N11£11 + fJlN ll (£11 + &11 ) + (1 -122 )Nn£n + f22Nn (£n + B£n) 

(A.2) 

where Nij is the number of i-j pair-wise contacts. NI2 and Nii are related to the total 

number of contacts of component i (zqiNi) through the conservation equation given by 

(A.3) 

In terms of Ni and N 12. the internal energy of mixi~g is expressed as 

(A.4) 

Assuming that fii in the mixture is identical to that in the pure substance containing 

molecules of component i. Upure i is given by 

18 



(A.5) 

Thus, substitution of Eqs. (A.4) and (A.5) into Eq. (A. I ) gives Eq. (1). 
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Figure Captions 

Figure 1. Temperature-composition coexistence curves for the systems (a) glyceroVm

toluidine and (b) polyethylene glycol (MT}=2290)/water. Points represent 
, 

experimental data. Curves ke calculated using different g12. Specific 

interactions between dissimilar components only are included. 

Figure 2. Temperature-composition coexistence curve for the system 

glycero1/benzylethylamine. Points represent experimental data. Solid (-) 

and broken ( •••••• ) curves are calculated by Models I and m. respectively. 

Specific interactions between dissimilar components only are included. 

Figure 3. Temperature-composition coexistence curve for the system water/nicotine. 

Points represent experimental data. Solid (-) and broken ( •••••• ) curves 

are calculated by Models I and m. respectively. Specific interactions between 

dissimilar components only are included. 

Figure 4. Temperature-composition coexistence curve for the system water/l-propoxy

propane-2-ol. Points represent experimental data. Solid (-) and broken 

( ••.•••• ) curves are calculated by Models I and m. respectively. The theoretical 

curve by Modei IT (_.- .- ) is also shown. Specific interactions between 

dissimilar components only are included. 

20 



Figure 5. Temperature-composition coexistence curve for the system 

water/tetrahydrofuran. Points represent experimental data. Solid (-) and 

broken ( •••••• ) curves are calculated by Models I and m. respectively. 

including specific interactions between dissimilar molecules only. The 

theoretical curve by Model 1(-._.-) includes specific interactions between 

similar components as well as those between dissimilar components. 

Figure 6. Temperature-composition coexistence curve for the system glycerol/guaiacol. 

Points represen~ experimental data. Solid (-) and broken ( •••••• ) curves 

are calculated by Models I and m. respectively. including specific interactions 

between dissimilar components only. The theoretical curve by Model I 

(_._._) includes specific interactions betwe~n simUar components as well as 

those between dissimilar components. 

Figure 7. Temperature-composition coexistence curve for the system poly(propylene 

glycol)/water (Mn=421 ~ Points represent experimental data. Solid (-) and 

broken ( •••••• ) curves are calculated by Models I and m. respectively. 

Specific interactions between dissimllar components only are included. 

Figure 8. Temperature-composition coexistence curves for the system poly(ethylene 

glycol)/water; (a) M,,=2190; (b) Mn=3350; (c) Mn=8000. Points represent 

experimental data. Solid (-) and broken ( •••••• ) curves are calculated by 

Models I and ITI. respectively. Figure (c) shows the theoretical curve by 

Model IT (_._.- ). Specific interactions between dissimilar components only 

are included. 
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TABLE L Parameters for (1a) GlyceroIlm-Toluidine and (lb) PEG 
(M'I1=2290 ywater Systems 

(la) r2=1.241 (lb) r2=105.9 

g12 £ (kcal/mol) &:12 (kcal/mol) £ (kcal/mol) &:12 (kcal/mol) 

5 1.253 -1.153 0.953 -1.161 

40 0.826 -1.656 0.579 -1.859 

200 0.712 -2.289 0.470 -2.726 

1000 0.663 -3.028 0.416 -3.773 

5000 0.641 -3.823 0.388 -4.931 
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TABLE ll. Parameters for (2) GlyceroVBenzylethylamine, (3) WaterlNicotine, and 

(4) a) Water/l-Propoxy-Propane-2-o1 Systems 

Modell Modellli 

System and r2 £ (kcaVmol) &12(kcal/mol) £ (kcaVmol) 8£12(kcal/mol) 

(2) r2=1.619 0.801 -4.595 0.612 -4.537 

(3) r2=7.054 0.480 -4.329 0.342 -4.161 

(4) r2=5.485 0.449 -3.956 0.326 -3.808 

a) Parameters £ and &12 for Model n are 0.419 and -3.950 kcal/mol. respectively. 
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TABLE llL Parameters (kcallmol) for (5) Waterffetrahydrofuran and (6) 

Glycerol/Guaiacol Systems 

Modell Model I Model ill 

System and T2 F ae1' F &11 &1' F &1' 

(5) T2=3.197 0.497 -4.231 0.475 -6.180 -5.632 0.377 -4.065 

(6) T2= l.264 0.600 -3.957 0.573 -5.733 -5.207 0.484 -3.838 
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TABLE IV. Parameters for (7) Poly(propylene glycol)lWater and (8) a) 

Poly(ethylene glycoJ)lWater Systems 

Model I ModelID 

System and r2 E (kcal/mol) OEi2 (kcal/mol) E (kcal/mol) OEn (kcaVmol) 

(7) r2=23.15 0.419 -4.074 0.275 -3.829 

(8a) r2=100.8 0.385 -4.933 0.237 -4.547 

(8b) r2=154.9 0.386 -4.928 0.233 -4.526 

(8c) r2=370.0 0.389 -4.903 0.227 -4.407 

a) For system 8(c), parameters E and OEl2 for Model n are 0.308 and -4.672 kcallmol, 

respectively. 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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