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PARAMETRIC INSTABILITIES IN PLASMA WITH 

* SINUSOIDAL DENSITY MODULATION 

Dwight R. Nicholsont 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

'June 20, 1975 

ABSTRACT 

LBL-3270 

Parametric instabilities in the presence of sinusoidal 

plasma density modulation are considered analytically and by 

numerical integration of the coupled mode equations. The 

density modulation tends to reduce temporal and spatial 

growth rates; If there is a linear density gradient in 

addition to the density mOdulation, the usual convective 

saturation exists for small modulation; however, above 

a certain threshold modulation, the convective saturation 

is replaced by absolute growth. This result is in qualitative 

agreement with earlier workl on plasma with linear density 

gradient plus turbulence. 

I. INTRODUCTION 

Parametric u1stabilities in spatially inhomogeneous plasma 

nave been extensively studied; see Ref. 1 and citations therein. Much 

of the work has dealt with monotonic inhomogeneities, while a few 

papers l - 4 have treated the important problem of nonmonotonic, turbulent­

like inIlomogeneities. Many of the effects of norLmonotonic inhomogeneity 

depend on amplitude and scale length, rather than detailed spatial 

profile. We therefore consider here the tractable problem of a 
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sinusoidal density modulation, in the presence and in the absence of 

a linear density gradient. 

Let us briefly review related work. The problem of three-wave 

interactions in the presence of random stationary background fluctua­

tions was first considered by Tamoikin and Fainshtein.4 The coupled 

mode equations for all three waves we~e treated, assuming small rela­

tive density fluctuations, and it was found that the relaxation 

oscillations are suppressed by the turbulence. Wilhelmsson5 also 

treated all three waves, studying the related problem of the temporal 

evolution of small initial phase uncertainties. 

The closely related problem where one.wave, the pump, has 

fixed amplitude but random phase Variations (finite bandwidth), has 

6 been treated by many authors, including Thomson, Pellat, Pesme, and 

78· Laval, and Rosenbluth and Williams (see Ref. 1 for earlier refer-

ences). An important effect is usually found when the bandwidth is 

of the same order as the zero-bandwidth instability growth rate. 

When all inhomogeneities (assumed one-dimensional) have a ~lch 

longer scale length than the wavelengths of the three coupled modes, 

and when the amplitude of one wave (the pump) can be considered 

essentially constant in space and time, the following equations apply 

for the slowly varying amplitudes a l (x, t ), a2( x, t) of the other two 

9-11 coupled modes, the decay waves: 

Equation (1) continued next page 
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Equation (1) continued 

(1) 

Here vl ,v2 are the linear damping rates; Vi,V2 are the x-components 

of the group velocities, having either sign; YO is a positive constant, 

proportional to the amplitude of the pump wave, and is the temporal 

growth rate of the ins tab ili ty in the absence of damping, plasma. 

inhomogeneity, and spatial variation of the amplitudes; while K(X) 

is the wave number mismatch between the three waves, whose frequencies 

rna tch exactly; the origin x = 0 is chosen as a point. where the 

spatially dependent wavenumbers match exactly; i.e., K(X = 0) O. 

These equations are characterized by the basic length 

LO = IVlv2,t/Yo' which is the steady state, homogeneous medium spatial 
. 2 

Kaw et al. have considered 

the case VI V2 > 0, assuming a steady state in time, with the mismatch 

K(X) caused by spatial plasma turbulence and characterized by rms 

amplitude fJ.and correlation length L.r« ru, and with damping 

neglected. In the absence of a linear density gradient, assuming 

fJ.2LTlo » I » LT/lo' they found that the growth length 

absence of turbulence) was increased by the large factor 

(LO in the 

2 
fJ. LTLO' 

In the presence of a linear density gradient, the usual convective 

. 9-11 
saturat~on was found, but with increased growth length before 

spatial saturation. 

i1icholson and Kaufmanl have considered the case. VI V2 < 0, 

and thus the possibility of absolute growth, with K(X) again 
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a turbulent function and no damping. The ratio LT/1o was arbitrary. 

For very small rms mismatch the usual convective saturationlO,11 was 

found. However, for rms mismatch greater than an LT-dependent thresh­

old, the convective saturation disappeared, absolute growth occurring 

instead. For LT = La, this threshold was so small that the spatial 

derivative of the total wavenumber mismatch, representing linear den-

sity gradient plus turbulent part, vanished nowhere in the system. 

An analytic approach to this problem has been given by Spatschek, 

Shukla, and Yu. 3 

In this paper, we take a mismatch of the form 

~x) = K'X + K sin(x/L ), representing a density gradient plus a m m 

sinusoidal modulation of density. In Sec. II, we allow for only the 

modulation (K' = 0), obtaining an analytic solution for the spatial 

growth rate, when VI V2 > 0; and for the temporal growth rate, when 

V1V
2 

< O. In Sec. III, we include the gradient (K';' 0), with 

VI V2 < 0, and by numerical integration of equations (1) we find that 

for Km greater than an Lm-dependent threshold, absolute growth 

replaces convective saturation. This result is in qualitative agree­

ment with the result discussed abov~;l namely, that turbulent modula-

tion in the presence of a.linear density gradient can destabilize the 

convective saturation. In-Sec. IV, we apply our results to Raman 

backscattering in a laser fusion geomet-ry. Section V presents our 

conclusions. 

II. PLASMA WITH SINUSOIDAL DENSITY MODULATION 

In this section, we consider analytically an otherwise homo-

geneous plasma with s1.nusoidal density modulation, obtaining spatial 

growth rates for VIV~ > 0, and temporal growth rates for VI V2 < O. 
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A sinusoidal density modulation is ~ turbulence in having amplitude 

and scale length, while it is ~ turbulence in not being random. 

Thus we expect important similarities as well as important differences 

in the results obtained here, as compared to turbulent results. 

Eliminating a2 from Eqs. (1) and looking for normal modes 

al(x,t) = alex) exp(-iwt), we have 

o 

With "'{x) K sin(x/L ), this equation is of the form m m 

where 

[a/ + (-\ + A2 sin x/Lm)ax + (A3 + A4 sin X/Lm)] alex) = 0 

(3) 

-iK 
m 

-K (w + i\) )/V 
m 1 1 

When w = \)1 = \)2 = 0, Eq. (3) is equivalent to the well-known Ince's 

equation;12,13 a simple transformation could then remove the middle 
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term, producing a Hill equationl2 ,13 of the form 

~x2 alex) + [cI + c2 cos(x/Lm) + c
3 

COS(2x/rm)]al(x) = O. Only the 

cos(2x/L ) term makes this equation different than the Matheiu 
m 

equation. For our purposes, the present form Eq. (3) is more 

convenient. 

The coefficients of Eq. (3) are periodic in x (with period 

21TLm). Floquet 's theorem then st~tes that there exists a solution of 

the form alex) = exp(ikx)~(x) with ~(x) periodic in x (with 

period 21TL) and k complex in general. Such a solution can be m ' 

very instructive, as we shall see below. Expressing this function 

~(x) as a Fourier series' c exp( inx/L ), we obtain the recursion' n m 

relation 

for the set of Fourier coefficients {cn}, where 

Y~ - L 2 A + 11 A~ (kL + n) 
m 3 m~"1. m 

+ (A
2

L /2)( kL + n ± I) m m 
_ iL 2 A /2 

.m 4 

The set of Eqs. (5) is solved as follows. Defining 

,I 
u n v n -

Eqs. (5) become on dividing by c 
n 

o 

Dividing by c l' Eqs. (5) become n-

( -co' < n < (0) 

( 5) 

(6) 

(7) 

(8) 
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+ 
Y (v /u ) n n n o 

Solving (8) for un and inserting ~ in (9), we find 

o 

Solve (10) for vn_l and shift the index up by one; then 

which is, in continued fraction form, 

v 
n 

(9) 

(10) 

(11 ) 

( 12) 

where each plus sign in the denominator acts on everything to the ri~t 

of it. In similar fashion, we divide (5) by c 1 instead of c 1 
n+ n-

to obtain 

+ - + - + 
Y , Y Y Y Y 
n-~ n-l n-2 n-2n-3 

1"+ 1+ 1+ (13) 

The solution alex) = exp(ikx)~(x) is now completely determined. The 

value of k is obtained by choosing a value for n, n = 0 let us say, 

in Eq. (8), whi ch ,becomes the dispersion relation 

(-+ - + - + \ 
) YOY- l Y-I Y-2 Y-2Y- 3 ... \ 
\ 1+ 1+ 1+ j + 1 + {'Y;Y~ Y~Y2 Y;Y3 ... \ 

1+ 1+ 1+ I 
I 

o (14) 

for k as a function of w, Km' and. Lm' The cn are obtained'by 

choosing a value for cO' and noting that from the definition (7), we 
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have cn = vOvl···vn_2vn_lcO for n > 0 and 

c n uOu_l",u_n+2u_n+lcO for n < O. Thus we have constructed the 

complete solution aside from an arbitrary constant cO' In this 

report we shall not evaluate {c }, but rather obtain as much informa­n 

tion as possible from the parameter k. 

A. Spatial Growth Rate for Parallel Group Velocities 

With parallel group velocities, V1V2 > 0, there is no 

possibili ty of absolute instability, and we consider the spatial 

response to a constant source alex =0) = 1, steady state in time. 15 

We do this by setting the temporal growth rate w = 0 in the definition 

above Eq. (2), and consider Eq.(14} as a dispersion relation for the 

spatial growth rate k. For zero modulation, K = 0, we know that m 

the response is ~ exp(x!LO); for finite modulation, K t 0, we expect m 

the spatial growth rate to be reduced. From Eqs. (4) we have for 

Then from Eqs. (6) 

o 

-iK m 

° 

+ 
Y~ 

(kL + n ± 1) 
(iK L /2) . m -

m m (L /L )2 + (kL + n)2 
m 0, m 

(15) 

(16 ) 
( 
-,/ 
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For small LmKm' keeping only lowest order terms, the dispersion rela­

tion (14) is 

o (17) 

which for vanishing K is only satisfied if one of the denominators m 
in (16) vanishes, yielding the usual homogeneous spatial growth rate 

ik (18) 

For small LmKm' we expand Eq. (17) about ik -1 LO ,obtaining 

ik (19 ) 

We see from (19) that for fixed K the decrease in growth rate is . m 

most pronounced for large modulation wavelength Lm > LO' 

For arbitrary L K , we solve (14) numerically, keeping as mm 

many terms as necessary in the continued fractions. The results are 

shown in Fig. 1 for LmILo·: 1, and in Fig. 2 for LmILO'= 0.5. The 

spatial growth rate decreases with increasing modulation K until a m 

. c.ertain point, where it reaches zero and bounces up again. For 

completeness, we have shown the positive and negative roots, both of 

which are purely real. 

B. Temporal Growth Rate for Antiparallel Group Velocities 

. If V 1 V 2 < 0, it is no longer appropriate tQ consider a steady 

state in time, so we consider a different, pI~sically relevant 

problem. We ask the question: What is the temporal response of the 

system to the uniform initial conditions al(x,t = 0) = constant, 

a2( x, t = 0) = O? We expect to find a temporal growth rate 1m( w) 
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which in the limit K ~ 0 reduces to the usual homogeneous result 
III 

Im(u.\) = YO' The basie equation (J) is periodic, and the initial 

conditions are periodic; we may thus look for a periodic solution, 

which means setting k = O. Then Eq. (14) becomes a dispersion rela-

tion for w. 

In this case, taking VI - V2 0, Vl > 0, V2 < 0, we have 

from (4) 

-iK 
m 

(20 ) 

A4 -WK IV m 1 

Then (6) becomes 

+ 
Y~ 

(21 ) 

For KmLm small, we can again use the simplifed dispersion relation 

(17), Which in the limit K L ~ 0 yields W = iYO as expected. For mm 

small but finite K L , Eq. (17) predicts, for .the special case mm 

w = K L m m 
« 1 (22 ) 
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ine decrease in temporal growth rate is proportional to the square 

of the modulation, arid is most pronounced for large modulation 

waveleng1ih• 

In addition to the root discussed in the previous paragraph, 

there are an infinite number of other roots of the full dispersion 

relation (14). For KmLm + 0, V2 = -VI' the roots occur at 

O~n<oo (23) 

This infinite set of roots is reminiscent of the theory of wave 

propagation in periodic media, where there are an infinite number of 

roots w(k = 0), one root per Brillouin zone. 16 We are also reminded 

of the infinite set of e1genfrequencies found> in the theory of 

parametric instabilities in finite media. 15 ,17-2l 

For finite K, we expect one branch of the graph W VB Km m 

associated with each root (23). In Fig. 3 are shown the roots 

W vs Km for LmILO = 0.25, V2 = -VI' VI = v2 = O. For these 

* parameters, if W is a root of (14), so is -wand so is -Ill 

From Eq. (23); we have W(Km+ 0) = ±i, ± 1Ii5, .... Over the range of 

h Re( w) is almost constant for each branch; we display only Km s own, 

Im(W) in Fig. 3. For increasing K, the unstable root (at m 
K + 0) m 

decreases; reaching zero eventually. Before it reaches zero, however, 

the imaginary part of the stable root (at Km + 0) overtakes it and 

becomes the most unstable root. It appears that this behavior will 

continue indefinitely, roots ~f higher n obtaining sUbstantiaY 

imaginary parts with increasing Km; furthermore, the roots of lower 

n show a bouncing behavior as a function of Km. Thus, the envelope of 
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most unstable Im(w) appears as in Fig. 4, for LmILO = 1, 

V2 = -VI' \)1 = V2 = O. The envelope Im(w) never becomes exactly 

zero for finite Km' rather asymptoting to zero for K + Co. 
m For 

modulation amplitude LoKm slightly above zero, the growth rate 

Im(w) fallS off much more rapidly for Lm/LO = 1 (Fig. 4) than for 

LmILO = 0.25 (Fig. 3), as predicted by Eq. (22). However, the 

envelope of Im( w) for large LO"m '" 10 about the same magnitude in 

both cases. 

For ~ + 0, the growth rate Im(w) = YO calculated here is 

also the growth rate of the peak of the pulse response to the initial 

conditions ~(x,t = 0) = o(x), a2(x,t = 0) = 0, i.e., the Green's 

function prob1em. 22 We ask the question: For Km > 0, does -the 

fastest growing root of the dispersion relation (14) still correspond 

to the growth rate of the Green's function pulse, as measured by an 

observer' moving with the pulse? The answer is yes. In Fig. 3, the 

points are the pulse growth rates as obtained by direct numerical 

integration of Eqs. (1) for finite Km. We see that they agree with 

the fastest growing root of the dispersion relation (14), within the 

accuracy of the numerical integration. Note that this agreement can not 

be predicted by Bers-Briggs analysis,23 since we are dealing>with an 

inherently inhomogeneous system. 

What have we learned from this model of a homogeneous plasma 

wi th a superimposed density modulation? We have learned· that the 

modulation tends to reduce growth rates, both spatial and temporal. 

The reduction is greatest for large modulation wavelengths; inhomo-

geneities of size >L have the greatest effect on the coupled mode o 
equations (1). We may expect that these results apply also to the 
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case of turbulent inhomogeneities. Furthermore, the regular nature 

of the sinusoidal modulation leads to features in the behavior of 

growth rate as a function of modulation amplitude, such as the bouncing 

phenomena in Figs~ 1-4, which we would not necessarily expect to find 

in the case of turbulent inhomogeneities. 

In the next section, we consider the simple model of a 

sinusoidal modulation superimposed on a linear density ramp. Once 

. again; important similarities to the turbulent case are found. 

III. LINEAR DENSITY GRADIENT WITH SINUSOIDAL DENSITY MODULATION 

We consider next a sinusoidal density modulation in the 

presence of a linear density gradient. We restrict ourselves to anti­

parallel group velocities, and take the wave number mismatch to be 

For small Km' we expect to recover the usual convective saturation. 

For larger Km' we might expect to destabilize the convective satura­

tion, just as turbulence did in Ref. 1. 

We numerically integrate the basic equations (1 ), with the 

form (24) for K(X) and with Green's function initial conditions. We 

indeed find convective saturation for small Km' and we indeed find 

absolute instability for Km greater than an Lm-dependent threshold .. 

In Fig. 5 we show the absolute growth rate, obtained with 

V2 = -VI' L02K' = 1, VI = v2 = 0, Lm/LO = 0.8. Above threshold, 

the growth rate rises rapidly to nearly the homogeneous medium growth 

rate. 
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In the example shown in Fig. 5, the threshold value of K m 

occurs at LOKm ~ 0.1. As in the turbulent case of Ref. 1, this value 

of LOKm is far below that required for the vanishing of the derivative 

of the wave number mismatch K(X); Le., 

dK(X)/dx = K' + (Km/Lm) cos(x/Lm) = 0 implies (with L02K' = 1 and 

Ln/LO = 0.8) that L({m = 0.8, a much higher value of LOKm than the 

observed threshold LOKm ~ 0.1 • 

We next consider a shorter wavelength modulation, LmILO = 0.18, 

in Fig. 6. Here we see a much less violent instability, the maximum 

growth rate being only Im(w)/yo .. 0.2. Furthermore, the threshold 

value of Km is LOKm::: 1.0, much higher than would be predicted by 

setting dK(X)/dx =: 0, yielding here LOKm = 0.18. 

Our conclusion from the last two paragraphs is that the modula­

tio~ wavelength is the relevant parameter in determining the tendency 

of the system toward absolute instability,rather than considerations 

of the vanishing of the derivative of the wave number mismatch K( x). 

This conclusion is emphasized in Fig. 7, where we hold the modulation 

L 2K• = 1) and vary o 
the modulation wavelength. We find that the absolute growth rate is 

substantial for Lm ~ LO' falling off rapidly for Lm« LO and for 

Lm » LO' 

In Fig. 8, we display the results of Figs. 5, 6, and 7 as a 

three dimensional plot of absolute growth rate y vs Km and Lm' The 

dashed curve is schematic, showing the inferrred threshold for 

absolute instability in the K -L plane. For large K, the threshold m m m 

value of Lm approaches zero. For both large ~ small Lm' the 
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threshold value of Km is large, demonstrating once again that the 

most effective inhomogeneities are those with scale length -La. 

We interpret these results in terms of the concept of mathe-

matical reflections. When the inhomogeneities are of a size near the 

all important length La, constructive interferences between solutions 

of our second order system Eqs. (1) lead to instability. When the 

inhomogeneities are of a size much smaller or greater than La, the 

system feels only the monotonic part of K(X), given by K'X, and 

exhibits the usual convective saturation. This saturation we interpret 

as a destructive interference between solutions of our second order 

set Eqs. (1). 

The detailed space-time response of the system, to the initial 

conditions al(x,t = 0) = o(x), a2(x,t = 0) = 0, is of interest in 

its own right. For the parameters of Fig. 7 (LOKm = 2, V2 = -VI' . 
1) we choose a value for the modulation wavelength, 

0.16, which is just barely above the threshold for absolute 

L~stability. Figure 9 shows the space-time behavior of a2(x,t) at 

four different times, Yot = 7,13,16,20. At Yot = 7, the usual 

convective saturation has set in. At the substantially later time 

Yot = 13, the saturated behavior persists, but with many more 

fluctuations. The hint of things to come is shown by the enhanced 

fluctuation at x = 0, in the middle of the figure. At t = 16, this 

enhanced fluctuation ha~.grown rapidly to tower over the rest of the 

pulse shape. After a period of rapid growth, the enhancea fluctuation 

at x = 0 itself saturates. This saturated state, shown at Yot = 20, 

has its own enhanced fluctuations at the very center which foretell 

the outburst of yet a third period of rapid growtht, and so on ~ 

infinitum. 
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To conclude, we have seen that the behaVior of the system of 

Eqs. (1) with the wavenumber mismatch K(X) = K'x + Km sin(xILm) 

is qualitatively similar to the turbulent case of Ref. 1. Absolute 

instability results for wavelengths Lm - La, and for modulation 

amplitudes one order of magnitude smaller than that required to make 

dK(x)/dx = O. The instability growth rate is very sensitive to 

modulation wavelength ~, falling off rapidly for Lm ~~ La. 

IV. RAMAN BACKSCATTERING EXAMPLE 

Let us apply our results to the physical example of Raman 

backscattering,24,25 where an electromagnetic wave decays into another 

electromagnetic wave plus a Langmuir wave, in laser fusion geometry. 

Consider.a homogeneous plasma of electron temperature Te = 1 KeV, and 

15 -1 plasma frequency Wp = wO/3, where Wo = 2 x10 s 1s the frequency 

of a Nd : glass laser of intensity 10 = 1015 W/cm2• Working to lOS 

accuracy, the group velocities of the two waves are VI; c and 

V2 = 3 ve~2/w2 ; -0.3 c. The pump parameter is YO = (vo/c)(wowp)i -

4 x 10135-1, where Vo is the maximum oscillation velocity of an 

electron in the field of the laser. Thus we find La =( /Vl V2 / )i/yo 

1.3 um. This value of La is only somewhat greater tl).an the free 

space wavelength AO = 1.06 um, which means that we ·are pushing to 

the limits of validity of Eqs. (1); their derivation requires all 

spatial quantities to be much larger than the three basic wavelengths. 

. The wave number mismatch is related to density perturbations 

through the dispersion relations of the three basic modes; to 10% 

accuracy we need only consider the electrostatic mode. The dimension­

less w~ve n~~er mismatch LOKm is then related to the relative pl~sma 

density fluctuation fln by 

! " ) v 
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36 6. n (25 ) 

wherek2 is the electrostatic wavenumber and AD is the Debye 

length. 

The temporal growth rate for small Km' obtained by generalizing 

Eq. (22) to arbitrary V2/Vl' is in physical units 

(L K /2)2 
1 _ __ ________ ~m~m~ __ ~------~ 

(L,fLol2(!~i _!f,!i} 1 + 

L K «1 mm 

(26 ) 

In the present example IV21V11 = 0.03; then for Lm> LO we can 

neglect the first term in the denominator, and using (25) we obtain 

(27 ) 

Equation (27) predicts roughly a 10% decrease in Raman instability 

growth rate for It 10% density nuctuation. This insensitivity of 

growth rate to relative density fluctuation tends to support the, 

conjecture of Kaw et al.,2 that very short wavelength turbulence, 

which can not be studied in the context of our WKBJ equations (1), 

will be m?re e~fective in suppressing Raman instability than the long 

wavelength turbulence studied here. 

While we have not considered the example of this ,section in , 
,1 the presence of a linear density gradient, we have performeq the. 

related calculation26 with a turbulent wave number mismatch, of 

correlation length Lr/Lo = 1.3, in the presence of a linear density 

gradient of scale length 100 urn. It is found that a relative density 
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fluctuation 6. '; 10-3 is sufficient to destabilize the convec,tive 
n 

saturation; the absolute growth rate ·rises rapidly with increasing 

relative density fluctuation, to greater than one half its uniform 

medium value. 

V. CONCLUSIONS 

Sinusoidal density modulation of an otherwise homogeneous 

plasma tends to reduce spatial and temporal parametric instability 

growth rates. For the Raman backscatter example considered, substantial 

growth rate reduction requires fairly large density modulation. 

In the presence of a linear .densi ty gradient, ~ amounts of 

sinusoidal density modulation can destabilize the convective saturation, 

allowing absolute growth. The qualitative agreement of this result 

with previous resultsl for a turbulent density gradient lead us to 

conclude that the amplitude and scale length of the density perturb a-

tion, rather than the detailed spatial profile, is important. 
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FIGUHE CAPTIONS 

Spatial growth rate vs modulation amplitude.· (V
2
/Vl 

vI = v
2 

= 0). The roots shown are purely imaginary. 

K( x) = K sine x/L ). m m 

1, 

Fig. 2. Spati~l growth rate vs modulation amplitude.· (V2/Vl = 1, 

VI = v
2 

= 0). The roots shown are purely imaginary. 

K( x) = Km sine xfLut). 

Eig. 3. Temporal growth rate vs modulation amplitude. (V2/Vl = -1, 

VI = v
2 

= 0). The dots are growth rates of the pulse response 

to the initial conditions al(x,t = 0) = cS(x), a2(x,t = 0) = 0, 

obtained by numerical integration of Eqs. (1). 

K(X) = K sin(x/L ). m m 

Fig. 4. Temporal growth rate vs modulation amplitude: (V2/Vl = -1, 

VI = v2 = 0). K(X) = Km sin(xfLut). 

Fig. 5. Temporal growth rate vs modulation amplitude. (V2/Vl -1, 

VI = v2 = 0, L 2K' 
0 = 1). K(X) = K'X + K sin(x/L ). m m 

Fig. 6. Temporal growth rate vs modulation amplitude. (V2/Vl -1, 

VI = V 2 = 0, L 2K' = 1). K(X) = K'X + K sin(x/L). 0 m m 

Fig. 7. Temporal growth rate vs modulation wavelength. (V2/Vl -1, 

VI = ')2 = 0, L 2K' 
0 = 1). K(X) = K'X+ K sin(x/L ). m m 

.Fig. 8. Temporal growth rate vs modulation amplitude and modulation 

wavelength. (V2/Vl = -1, VI = v
2 

= 0, L02K' = 1). 

K(X) ~ K'X + Km sin(x/Lm)' Includes data of Figs. 5, 6, and % 

Fig. 9. Space-time response to the initial conditions 

aI(x,t = 0) = cS(x), a2(x,t = 0) = o. 

K(X) = K'X + Km sin~x/Lm)' (V2/Vl = -1, VI v2 0, 

L02K' = 1, LOKm = 2, Lm/LO = 0.16). 
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