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ABSTRACT
Parametric instabilities in the presence of sinusoidal

bplasma density modulation are considered analytically and by
numerical integration of the coupled mode equations. The
density modulation tends to reduce temporal and spatial
growth rates; If there is a linear density gradient in
addition to the density modulation, the usual convective
saturation exists for small modulation; however,:above

" a certain threshold modulation, the convective saturation
is replaced by absolute growth. This result is in qualitative
agreement with earlier workl‘on plasma with linear density

. gradient plus turbulence.

I. INTRODUCTION
Parametricviﬁstabilities in spatially inhomogeneous plasma

nave been extensively studied; see Ref. 1 and citations therein.' Much

‘of the work has dealt with monotonic inhomogeneities, while a few
papersl_4 have treated the important problem of nonmonotonic, turbulent-

like inhomogeneities. Many of the effects of nonmonotonic iﬁhomogéneity

depend on amplitude and scale length, rather than detailed spatial

profile. We therefore consider here the tractable problem of a

By coupled modes, the decay waves:

-2~

sinusoidal density modulation, in the presence . and in the absence of
a linear density.gradient.

Let us briefly review related work. <The problem of three-wave
interactions in the presence of random statlonary background fluctua-
tiéns was first considered by Tamolkin and Fainshtein.4 The coupled

mode equations for all three waves were treated, aSsuming small rela-

tive density fluctuétions, and it was found that the relaxation

5

oscillations are suppressed by the turbulence. Wilhelmsson’ also

treated all three waves, sfudying the rélated problem of thé temporal
evolution of small initial phase uncertainties. -

The closely related problem where one.wave, the pump, has
fixed amplitude but random phase variations (finite bandwidth), has -
been treated by many authors, including Thomson,6 Pellgt, Pesme, and
Laval,7 and Rosenbluth and Williams® (sée Ref. 1 for earlier refer—j
ences ). Aﬁ important effect is usually'found when the bandwidth iz
of the same order as the zero-bandwidth instability growth rate.

When all inhomogeneities (assumed one-dimensional) have a mch
longer secale length than the wavelengths of the three coupled modes,
and when the amplitude of one wave (the:pump) Qah be cdnsideréd,
essentially constaﬁt in’space and time,‘the following eduations apply

for the slowly varying amplitudes Val(x,t), a2(x,t) of the other two
9-11

(3t vyt vlax) al(x,t). = Yo,a2(X,t) exp|i k(x! )dx!

Equation (1) continued next page



Fquation (1) continued

X
Yb al(x;t) exp | -1 w(x!)dx' .
0

('c),C v, t Vzax) az(x,t)

(1)

Here vl;vz are the linear damping rates; V-l,V2 are the x-components
of the group Vélocities; having either‘sign; Yo is a positive c&nstant,
.proportioné; to the amplitude 6f the pump wave, and is the temporal
growth rate of the instability in the absence of damping, plasma
inhomogeneity, and spatial variation of the amplitudes; while «(x)

is the wave number mismatch between the three waves, whose frequencies
match exactly; the origin x = 0 is clr;osen as apoint. where the
spatially dependent wavenumbers match exactly; i.e., «{x = 0) = 0.

These equations are characterized by the basic length

Lb = iVIVZ]é/yo, which is the steady state, homogeneous medium spatiél
growth rate when ViV2 >0, vl = vé =0, Kaw ef al.2 have considered
the case V1V2 > 0, assuming a steady state in time, with the mismatch
«(x) caused by spatial plasma turbulence and characterized by rms
'amplituée A -and‘correlation length Iﬁ‘<<10’ and with demping
neglected. In the absence of a‘linear’density gradiént, assuming

2 .
\ LTHD >> 1 >% LT/LO’ they found that the growth length (LD in the

absence of turbulence) was increased by the large factor AzLTLb'
In the presence of a linear density gradient, the usual convective
saturation’ 11 was found, but with increased growth length before

spatial saturation.
ilicholson and Kaufmanl have considered the case. V1V2 < Q,

and thus the possibility of absolute growth, with «(x) again

_4_
a turbulent function and no damping. The ratio LT/Ib was arbitrary.

For very small rms mismatch the usual convective saturationlo’ll w

as
found. However, for rms mismatch greéter than an LT-dependent'thresh-
old, the convective éaturation disappéared, absolute growth occurring
instead. For LT = Lb, this threshold was so small that the spatial
derivative of the total wavenumber mismatch, pepresenting linear den-
sity grgdient plus turbulent part, vanished noﬁhere in the system:
An anslytic approach to this problem has been given by Spatschék, N
Shukla, and Yu.3

In this paper, we take a mismatch o% the form
kK(x) =x'x + K sin(x/Lm), representing a density gradient plus a
sinusoidal modulation of density. In Sec. II, we allow for only the
modwlation (x' = O), obtaining an analytic solution for the spatial
growth rate, when VlV2 5 0; and for the temporal growth rate, when -
VlV2 < 0. In See. III, we include tbe gradient (K' # 0),.with
V1V2 < 0, and by numerical integration of equations (1) we find that
for Kn greater than an Lm-dependent threshold, absolute'growth
replaces convectivé saturation. This result is in qualitative agree-
ment with the result discussed above;> namely, ‘that turbulent modula-
tion in the preseﬁce of a linear density:gr;dient cén destabilize the
convective saturatioh. In Sec. IV, wé apply our results to Raman
backscattering in a laser fuéion gedmetry. Section V presents our

conclusions.

II. PLASMA WITH SINUSOIDAL DENSITY MODULATION

In this section, we consider analyticaily an otherwise homo-

geneous plasma.with sinusbidal density modulation, cbtaining spatial
growth rates for ViV? > 0, and temporal érowth rates for V.

lV2 < Q0.
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A sinusoidal density modulation is like turbulence in having amplifude
and scale length, while it is unlike turbulence in not being random.
Thus we expect important similarities as well as important differences
in the results obtained here, as compared to turbulent results.
Fliminating &5 from Eqs. (1) and looking for normal modes.

al(x,t) = al(x) exp(~-iwt), we have

{ “ip + v, -dg v
a2 1 2 .
£3.° + + - ik(x)} 3
{ b'd V. v b'e
1 2
e vlCiwwz (x) VTY"z bay(x) = (2)
+ ~ik(x)) - a.(x) = 0 . (2
V1 V5 ' 12 f 1

s

with «(x) = Kn sin(x/Lm), this equation is of the form

[sz + (A1 + A2 sin x/Lm)ax + (A3 + A, sin x/Lm)] al(x) = 0

yA
(3)
where
w+ iv w + iv
. 1 2
i = +
A T
A, = —iKm (4)
v 2% (0 v e+ 1v.) (4)
L = _1o 1 2
3 VIVE
A4 = -Km(w + ivl)/V1

Wher w = v, = v, =0, Eq. (3) is equivalent to the well-known Ince's

équation;lz’13 a simple transformation could then remove the middle

L2 i
§x al(x) + [cl e, cou(x/Lm) + ¢

-6

12,13

term, producing a Hill equation of the form

3 COS(ZX/%m)]al(X) = 0. Only the

cos(2x/Lm) term makes this equation different than the Matheiu

-equation. For our purposes, the present form Eq. (3) is more

convenient. _

The coefficients of Eq. (3) are periodic in x (with period
2an). -Floquet's theorem then states that there.exists-a solution of
the form al(k) = exp(ikx)¢(xj with "¢(x) periodic in x (with‘
period 2an) and k complex in general. Such a solution can bev
very instructive, as we shall see below. Expressing thié function
#(x) as a Fourier series’ S: e exp(inx/Lm), we obtain the recursion

: -00 ‘

relation

- +
[d

L R R P 0 (== <n<w) (5)

for the set of Fourier coefficients '{cn}, where

2
(AL /2)(KL *+n*1) - iL < 4,/2

I+

Yo = 2 2 R (&)
Lm A3 + leAl(kLm +»n) - (kLm +n)
The set of Eqs. (5) is solved as follows. Defining
c : _ c )
w = Lo v oz 222 (7)
, n c n c
. n n
Eqs. (5) become on dividing by cy
- + . .
Yp%h tl-Y,vy =0 (=<n<e) . (€)

Dividing by ¢, 1> Eas. (5) become



- + ) - :
Yn * Va1 T Yn(vn/un) =0 . (9)

Solving (8) for u, ~and inserting u ‘in (9), we find

Yn

Y-+V_"’V —— = 0 . (10)
n n-1 n 1 - Y+V
nn

'_Solve (10) for v _; @nd shift the index up by one; then

y
_ n+l
v, = - - (11)

1= Ypa¥pn

which is, in continued fraction form,

- I S
v = - Y1 TneaVneo Yne2"ne3 (12)
n 1+ 1+ 1+

where each plus sign in the denominator acts on everything to the right

of it. In similar fashion, we divide (5) by Che1 instead of 1

to obtain

Y oYY LYY
- _n=1 n-1n-2 n-2'n-3
U T+ 1+ v e - _ (132)

The solution al(x) = exp{ikx)¢(x) is now completely determined. The
value of k is obtained by choosing a value for n, n =0 1let us say,
in Eq. (8), which becomes the dispersion relation
( -+ -+ -+ S S
}YOY-l Y-lY—2 Y_2Y_3 ) v 14 YOYl Yle Y2Y3 - 0 (1 )
\ IRt s T YT T 4
. A /

for k as a function of Wy Kpo and. Lm. The c, are obtained-by

choosing a value for co, and noting that from the definition (7), we

.

- possibility of absolute instability, and we consider the spatial -

-8

have e = Vo¥1Vh2Vn-1% for n >0 and

R R B T for ‘n < 0, Thus we have constructed the
complete solution aside from an arbltrary constant e In this
report we shall not evaluate {cn}, but rather obtaln as much informa-
tion as possible from the parameter k.

A. Spatial Growth Rate for Parallel Group Veloeities

) With parallel group velocities, V1V2 > 0, there is no

v
response to a constant source al(x ='0) = 1, steady state in time.lé
We do this by setting the temporal growth rate w = 0 in the definition
above Eq. (2), and consider Eq.(14) as a dispersion relation for the
spatial growth rate k. For zero modulation, Kp = 0, we know that
the response is « exp(x/LO); for finite modulation, Km'# 0, we expect
the spétial growth rate to be reduced. From Egqs. (4) we have for
W=V TV, = 0
o =0
by = -1
' (15)-
_ -2 - , .
A3 = L0
A, = 0 .
T4
Then from Eqs. (6) -
(kL +n ¢ 1) {
E _ 'm T S
Y, (1KmLm/2) (16)

2 2 :
(L/Lg) + (ki + 0P
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For small Lme, keeping only lowest order terms, the dispersion rela-

tion (14) is
-+ + - :
Yo¥op * Yo *1 = O (a7

which for vanishing Km is only satisfied if one of the denominators

in (16) vanishes, yilelding the usual homogeneous spatlal growth rate

= -1 )
ik = Ly . (18)
For small Lk , We expand Eq. (17) about ik = Lo-l, obtaining
2
- (x L)
ik = Lo1 1- mm . (19)

M1+ 4L 20)
We see from {19) that for fixed Kn the decrease in growth rate is
most pronounced for large modulation wavelength Lm > LO'
For arbitrary Lme’ we solve (14) numerically, keeping as
many terms as nécessary in the continued fractions. The results are
shown in Fig. 1 for L /L =1, and in Fig. 2 for L /L;.= 0.5. The

spatial growth rate decreases with increasing modulation <n until a

‘certain point, where it reaches zero and bounces up again. For

completeness, we have shown the positive and negative roots, both of
which are purely real. )
B. Temporal Growth Rate for Antiparallel Group Velocities
VIf V1V2 < 0, it is no longer appropriate to consider a steady
state in time, so we consider a different, fmysically relevant
problem. We ask the question: What is the temporal response of the

system to the uniform initial conditions al(x,t = Q) = constant,

az(x,t = 0) = 02 We expect to find a temporal growth rate Im{w)

~10~

which in the limit K, " 0 reduces to the usual homogeneous result
Im(w) = Yo The basic equation (3) is periodic, and the initial
conditions are periodic; we may thus look for a periodic solution;
which means setting k = 0. Then Eq. (14) becomes a dispersion rela-

tion for w.

In this case, taking V, =V, = 0, v, >0, V, <0, we have '

1 2 2
from (4)
1 .1

= =l e
A (vl VZ)
A2 = ik

(20)

_ -2, 2, 2
A3 = -LO‘ (w /YO + 1)
A4 = —me/Vl

Then (6) becomes

3)
L \-v _
(-tx L /2 nil-(mX£ ( 2)
oo To. YO'/ A

v, o\, ‘

(21)

oo+

(/L)W rg? + 1) + n(1 /1 )(_w/vo)(

For KmLm small, we can again use the simplifed dispersion relation
(17), which in the limit KmLm + 0 ylelds w = iYO as expected. For-
small but finite KmLm’ Eq. (17) predicts, for the special case

V, = -V

2 1’

2.2 .
. KmLm
w = iy \1 - —7— ; k Ly << 1. (22)
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The decrease in temporal growth rate is proporfional to the square
of the modulation, and is most pronounced for large modulation
wavelength. .

In addition to the root discussed in the previous paragraph,
there are an infinite number of other roots of the full dispersion
relation (14). For KmLm + 0, V2 = -V, the roots occur at
0.s.n < @ .

- .2_2 2,3
%-ti(l-nLo/Lm) (23)

This infinite set of roots is reminiscent of the theory of wave
propagation in periodic media, where there are an infinite number of

roots w(k = 0), one root per Brillouin zone.16 We are also reminded

of the infinite set of elgenfrequencies found- in the theory of
parametric instabilities in finite media.l®»17-21

For finite « , We expect one branch of the greph ve Kn
associated with each root (23). In Fig. 3 are shown the roots
w vsikm for Lm/LO =‘O.25; V2 = -Vl, V) =V, = 0. For these
parameters, if w is a root of (14), so is -w and so is -w*.
From Eq. (23); we have m(Km-* 0) = #1, # \/I;,--o . . Over the range of
' Km" shown, - ﬁe(w)' is almost constant for each bran@h; we dispiay only
Im{w) in Fig. 3. For increasing Ky the unstable root (at Ky * 0)
decreases; reaching zero eventually. Before it reaches zero,‘however,
the imaginary part of the stable root (at Kp ™ 0) overtakes it and
- becomes the most unstable root. It appears that this behavicr will
continue indefinitely, roots of higher n obtaining substantial
imaginary parts with increasing Kl furthermore, the roots of lower

n. show a bouncing behavior as a function of Km* Thus, the envelope of .

-12-

most unstable Im(w) appears as in Fig. 4, for Lm/LO =1,

V., = -V v, =V

5 12 N 5 = 0. The envelope Im{Ww) never becomes exactly

zero for finite Km? rather asymptoting to zero for Kp ™ @, For
modulation amplitude LOKm slightly above zero, the growth rate>

Im{w) falls off much more rapidly for Lm/LO =1 (Fig. 4) than fof
Lm/Lo = 0.25 (Fig. 3), as predicted by Eq. (22). However, the _
envelope of Im(w) for large Lykp = 10 about the same magnitude in._.

both cases.

For «, >0, the growth rate Im(w) = Yo calculated here is
also the growth rate of the peak of the pulse response“to the initial
conditions al(x,t =0) = §(x), a2(x,t =0) =0, i.e., the Green's
function problem.22 We ask the question: For Ky > 0, does ‘the
fastest growing root of the dispersion relation (14) still corrésppnd
to the growth rate of the Green's function.pulse, as measured 5y an
observefimoving with the pulse? The answer is yes. In Flg. 3, ﬁhe
points are the pulse growth rates as obtained by direct.numerical
integration of Egs. (1) for finite km. We see thét they agree with

the fastest growing root of the dispersion relation (14), within the

accuracy of the numefical'integration. Note that this agreement can not

be predicted by Bers-Briggs analys;ts,23 since we are dealing with an
inherently inhomogeneous system. ‘
‘What have we learned from this model of a homogeneous plasma -

with a superimposed density modulation? We have learned that the .

‘modulation tends to reduce grbwth rates, both spatial and temporai.

The reduction is greatest for large modulation wavelengths; inhomo-
geneities of size ;LO have the greatest effect on the coupled mode

equations (1). We may expect that these results apply also to the

P
oy
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. case of turbulent inhomogeneities. Furthermore, the regular nature

of the sinusoidal modulation leads to features in the behavior of
growth rate as a function of modilatiocn amplitude, such as the bouncing
phenomena in Figs. 1-4, which we would not neéessarily expect‘fo find
in the.case of turbulent-inhohogeneities.

In.the next section, we considér the simple model of a

sinusoidal modulation superimposed on a linear density ramp. Once

‘sgain, important similarities to the turbulent case are found.

III. LINEAR DENSITY GRADIENT WITH SINUSOIDAL DENSITY MODULATION
We consider next a sinusoidal density modulation in the
presenéé of a linear density gradient. We restrict ourselves to anti-

parallél group velocities, and take the wave number mismatch to be
(x) = k'x + Kmbsin(x/Lm) . ' (24)

For small K W expect to recover the usual convective saturation.
For larger Kpe We might expect to destablilize the convective satura-
tion, just as turbulence did in Ref. 1.

We numerically integrate the basic equations (1 ), with the

form (24) for «x(x) and with Green's function initial conditions. We

indeed find convective saturation for small Koy and we indeed find
absoclute inétability for K, greater than an Lm-dependent threshold.

In Fig. 5 we show the absolute growth rate, obtained with

_ 2, _ - - -
Vé = —Vl, LO k' =1, v TV, 0, Lm/LO = 0.8.

the growth rate rises rapidly to nearly the homogeneous medium growth

Above threshold,

rate.

-14-

- In the’éxample shown in Fig. 5, the threshold value of Kn

occurs at L = 0.1. As in the turbulent case of Ref. 1, this value

OKm
of LOKm is far below that required for the vanishing of the derivative

of the wave number mismateh «(x); i.e.,

ak(x)/ax = k' + (k /L) cos(x/L_) = 0 implies (with Lozl(' =1 and

Lm/I.o = 0.,8) that ngm = 0.8, a chh hig@gr value of -LOKm than the‘

observed threshold L = 0.1..

. 0m | - |
We next consider a shorter wavelength modulation, Lm/LO = 0.18,

in Fig. 6. Here we see a much less violent instability, the maximum

growth rate being only Im(w)/Yo = 0.2. Furthermore; the threshold
value of K is Lokp = 1.0, much higher than would be predicted by
setting de(x)/dx = O, yielding here Lok, = 0.18.

Our conclusion from the last two paragraphs is that the modula-
tion wavelength is fhe relevant parametefvip determining the tendency
of the system toward absolute instability,'réther than considerations
of the vanishing of the derivative of the wave number mismatch «(x).
This conclusion is emphasizeﬁ in Fig. 7, where we hold the modulation
amplitude fixed at a value Lokp = 2 (V2 = -V, LozK',é 1) and vary
the modulation waveiength. >We-find that the absoiute growth rate is

substantial for Lm ~ L,

o falling off rapidly for L, << L, and for

>
Lm > LQ. ' » _ »
In Fig. 8, we display the results of Figs. 5, 6, and 7 as a
three dimensicnal plot of absclute growth rate 'y vs Kn and Lm. The |
dashed curve is schematic, showing the inferrred threshold for

absolute instability in the Km—Lm plane. For large k&, the threshold

value of Lm approaches zerc. For both large and small Lﬁ, the
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threshold value of Kn is large, demonstrating once again that the
most effective inhomogeneities are those with scale length ~LO.
We interpret these results in terms of the concept of mathe-
matical reflections. When the inhomogeneities are of a size near the
all imertant length LO’ constructive interferencés between solutions
of our second order system Egs. (l) lead to instability. When the

inhomogeneitieé are of a size much smaller or greater than L., the

0
~system feels only the monotonic part of  ((;),_given by «k'x, and
.exhibits the usual convective saturation. This saturation we interpret
as a destructive interfereﬁce between solutions of our second order
set Egs. (1).

The detailed space-time response of the system, to the initial
conditions al(x,t = Q) = 8(x), a2(x,t =0)=0, is of interest inb
its own righti For tﬁe parameters of Fig. 7 (LOKm =2, V, =V

2
LOZK' = 1) we choose a value for the modulation wavelength,

l}

Lm/Lo = 0.16, which is Just,barely_above the threshold for absolute
instab'ility. Figure 9 shows the space-time behavior of a2( x,t) at
four different times, Yot = 7,13,16,20. At Yot = 7, the usual
convective saturation has set in. At the substantially later time
.th = 13, the saturated behavior persists, buf with many more
fluctuations. The hint of things to come is shown by the enhanced
fluctuation at x = 0, in the middle of the figﬁre. At t = 16, this
enhanqed fluctuation has_grown rapidly to tower over the rest of the
pulse shape. After a period of rapid growth, the enhancea fluctuation
at x = 0 1itself saturates. This saturated state, shown at Yot = 20,
hés its own enhanced fluctuations at the very center which foretell
the outburst of yet a third period of-rapid growth;, and so on ad

infinitum.

‘of a Nd:glass 1aser’of intensity I

~16~

To conclude, we have seen that the behavior of fhe‘system of
Egs. (1) with the wavenumber mismateh k(x) = k'x + Ko sin(x/Lm)
is qualitatively similar to the turbulent case of Ref.’l. Absolute
instability results for wavelengths Lm ~ LO’ and for modulation
amplitudes one order of magnitude smﬁller than that required to make
dr(x)/dx = 0, The instability growth rate is very sensitive to

modulation wavelength Ly, falling off rapldly for L 133 Ly

IV. RAMAN BACKSCATTERING EXAMPLE

Let us.apply our results to the physical example of Raman

24,25

backscattering, where an electromagnetic wave decays into another

electromagnetic wave plus a Langmuir wave, in laser fusion geometry.

Consider a homogeneous plasma of electron temperature Te.; 1 KeV, and

plasma frequency w, = wO/B, where wy = 2 xlolss_'l is the ffequency

. 10%% W/em®. Working to 108

acéuracy, the group velocities of the two waves are Vl ¢ and

ne

ne

= z ' - 3
v, =3 vezkz/w2 = -0.3 c. The pump parameter is Y, = (vo/c)(wowp)

4 x 10135'1’ where v, is the maximum oscillation velocity of an

electron in the field of the laser. Thus we find L, ='(|V1V2|)Q/Yo_
1.3 um. This value of L, isionly Somewbat.gréater than the free
space wavelength AO = 1.06 um,'which means that we are pushing to
the limits of validity of Egs. (1); their derivation requires all
spatial quantities to be much larger than the three basic wavelengths.
“The wave number mismatch is relzted to density perturbations

through the dispersion relations of the three basic modes; to IOZ

accuracy we need only consider the electrostatic mode. The dimension- °

less wave number mismatch LOKm is then related to the relative plasma

density fluctuation An by
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. (kzLo)'
LOKm = _—_2'An = 36 An (25)
6(kxAp)

where ,k2 is the electrostatic wavenumber and AD

length.

The temporal growth rate for small Km, obtained by generalizing

is the Debye

Eq. (22) to arbitrary Vé/V , 1s in physical units

‘ (L /2)2
M=.1,.‘ nm 5 Lk <<1 .,
Yo 3 3 2 mm
2 Vi Vé
1Oyl - v

In the present example [VZ/VII = 0.03; then for Lm‘; LO we can

neglect the first term in the denominator, and using (25) we obtain

2
(Loey) 2

Im{w) 1 - —— - 1-11 An . (27)

Yo

Equation (27) predicts roughly a 10% decrease in Raman instebility

growth rate for a 10% density fluctuation. This insensitivity of

_g*owth rate to relative den51ty fluctuatlon tends to support the,

2 that very short wavelength turbulence,
which can not be studied in the context of our WKBJ equations (l),
will be mQre effective in>suppressing Ramén instability than thellong
wavelength turbulence studied here.

While we have not considered the example of this section iﬁ

the presence of a linear density gradient, we have performed the.

- related calculation26 with a turbulent wave number mismatch, of

correlation length LT/LO = 1.3, in the presence of a linear density

gradient of scale length 100 um. It is found that a relative density

-18-

fluctuation An E 10‘3 ieg sufficient to destabilize the convective
saturation; the absolute growth rate rises rapidly wifh increasing
relative density fluctuatiqn, to greater than one half its uniform
gedium value. .
V. CONCLUSIONS

'Sinusoidal density modulation of an otherwise homogeneous
plasma tends to reduce spatial and temporal parametric 1nstab111ty
growthlfates.' For the Raman backscatter example considered, substantialy
growth rate reduction requires fair;y large density mpdulation.

In the presence of a 1inear‘dehsity‘gradient, small amounts of
sinusoidal density modulation can destabilize the convective saturationm,
allowing absolute growth. The qualitative agreement of this result
with previous resulis1 for a turbdlent density gradient lead us to
éonclude that‘the amplitude and scale length of the density perturba-

tion, rather.than the detailed spatial profile, is important.
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Spatial growth rate vs modulaticn amplitudé.' (V2/Vl =1,
v =V, = 0). The roots shown are purely imaginary.
K(x) = Ko sin(x/Lm).v
Spatial growth rate vs modulation amplitude. (V2/Vl =1,
v, =V, = 0). The roots shown are purely imaginary.
K(x) =K sin(x/Lm). » A
Temporal growth rate vs modulation amplitude. (V2/Vl = -],
vl = v2 = 0). The dots are growth rates of the pulse response
to the initial conditions al(x,t =0) = &=x), az(x,t =0) =0,
obtained by numerical integration of Egs. (1). 7
k(x) = Ko s1n(x/Lm).
Temporal growth rate vs modulation amplitude. (V’2/V1 = -1,
V] =V, = 0). k(x) = n sin(x/Lm).
Temporal growth rate vs modulation amplitude. (V2/V1 = -1,

=y, = 20 = = !
V) =V, =0, Ly 1). k(x) = k'x + k sin(x/L ).
Temporal growth rate vs modulation amplitude. (V2/Vl = -1,

2

v, = v, =0, Lb Kf =1). «k(x) = K'x + € gin(x/Lm).

1

. Temporal growth rate vs modulation wavelength. (V2/V1 = -1,

= = 2 [ 1 = Ty 3
v =V, 0, LO K 1), x(x) =x'x '+ K s1n(x/Lm).
Temporal growth rate vs modulation amplitude and modulation

= 2’:
v, =0, Ly« 1).

k(x) = k'x + K sin(x/Lm). Includes data of Figs. 5, 6, and 7

wavelength. (V2/V1 = -1, vy =

Space-time response to the initial conditions
al(x,t =0) = 8(x), az(x,t =0)=0.
k(x) = k'x + K $1n$x/Lm). -(V2/Vl =<1, v, =v, =0,

L' =1, Loky = 2 Lm/LO = 0.16).
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