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ABSTRACT: 

Within the nuclear Boltzmann-Uhling-Uhlenbeck model, we investi
gate the dynamical evolution of spherical calcium and gold nuclei that 
have been agitated into unbound configurations by either compression 
or heating. Using a modified pseudo-particle method that preserves the 
spherical symmetry, we find that the conversion of the compressional en
ergy into radial motion is only weakly dissipative and, remarkably, for a 
range of initial compressions between density doubling and tripling the 
nucleus expands to a quasi-stationary unstable bubble-like configuration. 
The same processes are also studied with the standard method of solu
tion in which perfect symmetry is absent and it is shown that while the 
bubbles then clusterize into bound fragments, the qualitative character of 
the outcome is different and sensitive to the employed number of pseudo
particles per nucleon, a purely numerical parameter. Our studies suggest 
that for suitable initial compressions there exists a specific nuclear mul
tifragmentation process in which the decompression leads to an unstable 
hollow configuration that subsequently clusterizes into massive fragments. 

*This work was supported by the Director, Office of Energy Research, Office of High Energy 
and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy under 
Contract No. DE-AC03-76SF00098. 
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1 Introduction 

In recent years, extensive experimental efforts have been devoted to the collection and 
analysis of multifragment data in heavy-ion collisions at intermediate energies. A ma
jor goal is to probe the properties of nuclear matter at high density and temperature. 
However, the degree to which this can be attained depends on our ability to model 
the reaction dynamics adequately. Motivated by these efforts, we have considered the 
dynamical evolution of highly excited spherical nuclei within the general framework 
of the nuclear Boltzmann-Uhling-Uhlenbeck model, the presently best founded and 
most successful microscopic model of nuclear dynamics at medium energies [1]. 

The BUU model propagates the reduced one-body phase-space distribution f(r,p) 
in the self-consistent effective one-body field, while allowing the individual nucleons 
to experience two-body collisions subject to Pauli blocking. Our primary aims are 
to clarify how a highly agitated spherical nucleus actually develops according to the 
BUU model and to illustrate how the qualitative character of the outcome depends 
sensitively on the specific numerical method employed, a clearly unsatisfactory state 
of affairs. We are especially interested in starting from a compressed nucleus, since 
one of the main goals in the field is to learn about high-density matter, and investigate 
to which extent there are observable traces left over from the particular manner in 
which the system was initialized. This question is of obvious importance for our ability 
to use multifragmentation data to learn about matter under extreme conditions of 
compression or temperature. 

A number of other studies, with differing aims, have been made by a variety of 
groups concerning the dynamical evolution and disassembly of excited nuclei. For 
example, De Paula et al. [2] used molecular dynamics to study the evolution of 197 Au 
after it had been excited by either compression, heating, rotation, or drilling; their 
results show that, for a given degree of excitation, compression is the most effec
tive means of producing multifragmentation. As another example, several years ago 
Nemeth et al. [3] used fluid dynamics to study the evolution of hot and compressed 
spherical nuclei and also found that the compression is the most effective in caus
ing breakup. They emphasized that the fluid-dynamical assumption of a vanishing 
mean free path is extreme and urged that complementary calculations be done with 
Hartree-Fock-like models (which have infinite mean free path), because the physical 
scenario lies in between these two extremes. 

Such studies were made by Vinet et al. [4] with both the collisionless Vlasov model 
and with the BUU model that incorporates the average effect of the collisions. In 
these calculations no special effort was made to preserve the initial spherical symmetry 
and so the expansion into the unstable regime would always lead to the formation of 
fragments. Although this is also expected to happen in reality, the time scale and 
detailed development of the calculated fragment formation is sensitive to the value 
of the numerical parameter ./V, the number of pseudo-particles per nucleon, and thus 
unreliable. 

We also perform our studies within the framework of the nuclear BUU model, 
which is the appropriate model for this intermediate physical scenario. In particular, 
it includes the Fermi motion of the nucleons (absent in molecular dynamics) and 
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their finite mean free path (absent in fluid dynamics). The BUU model yields a 
mean-trajectory description and as such it preserves the initial spherical symmetry 
of the system. However, in most existing numerical implementations exact sphericity 
cannot be achieved or maintained because of irregularities associated with the adopted 
method of solution. When instabilities occur this feature can be a serious drawback, 
as we shall illustrate explicitly. We have therefore developed a modified method 
of solution that preserves the initial spherical symmetry and thus provides a more 
reliable approximation to the true solution when the dynamics is unstable.! 

As it turns out, under suitable conditions the nucleus will expand into a hollow 
configuration that evolves so slowly that the instabilities have time to develop. We 
illustrate this important feature by the employing also the standard method of solu
tion in which no measures are taken to avoid catastrophic symmetry breakings. The 
fact that such calculations are physically ill-based (because the fluctuations are of 
purely numerical origin) serves to emphasize the need for extending the BUU model 
to incorporate correctly the dynamical fluctuations. 

The issues under consideration in the present study have gained further actuality 
by a number of recent BUU studies of nuclear multifragmentation dynamics: Moretto 
et al. [5] recently reported that the head-on collision of two Mo nuclei at typically 60 
MeV per nucleon would lead to relatively thin oblate disks (so thin that the nuclear 
force can reach through width of the disk) which would then cluster as a result of 
Rayleigh-type instabilities. This remarkable result was soon followed by similar stud
ies by other groups who found conflicting results. First, Gross et al. [6] considered 
the central collision of two Nb nuclei at 55 MeV per nucleon and found that the 
condensation into fragments occurs throughout the entire spherical volume, once the 
system has expanded sufficiently. Subsequently, Bauer et al. [7] considered Nb+Nb at 
60 MeV per nucleon and observed the development of a transient bubble-like config
uration that subsequently converts into a ring-like structure, before breaking up into 
fragments; they suggested that an observable consequence of this specific multifrag
mentation process may be an enhanced production of intermediate-mass fragments 
exhibiting a reduced Coulomb barrier. There is thus at the moment significant quali
tative divergence with regard to understanding how the multifragmentation processes 
actually develop. Our present study, which is carried out for a more idealized scenario 
and thus is easier to analyze and discuss, may help to provide useful insight into the 
relevant physics. 

2 The model 

In the nuclear Boltzmann-Uhling-Uhlenbeck model, the temporal evolution of the 
one-particle phase-space density distribution, f(r,p; t), is governed by the following 

IOf course, because of the presence of instabilities, the actual physical system will exhibit a 
spontaneously symmetry breaking and a subsequent catastrophic divergence, and so the mean
trajectory BUU solution is of little practical utility. 

2 



'. 

transport equation [1], 

(1) 

The left-hand side is the Vlasov part representing the collisionless propagation of 
the distribution in the self-consistent effective field U(r, t), while the right-hand side 
represents the average effect of the two-body collisions, 

-] 1 J n' dU12 (f- j- f'f' f f f-'f-') I[fl = (27r)3 dp2d 12 V12 dn~2 1 2 1 2 - 1 2 1 2 , (2) 

where fi = f(r,Pi; t), and! = 1 - f denotes the blocking factor expressing the 
availability of a phase-space cell near the specified phase-space location. 

A variety of different methods exist for solving the BUU equation (1). We shall 
employ the method of parallel systems, in which the phase-space distribution f( r, p, t) 
is generated by averaging over N systems of A pseudo-nucleons, all evolving in the 
same field U(r, t). Thus the phase-sp~ce distribution associated with one of the 
parallel systems, n, is formally represented as 

A 

f(n)(r,p;t) = h3 2: h(r - r~n)(t)) h(p _ p~n)(t)) . (3) 
i=1 

The phase-space density distribution f(r,p,t) entering in (1) is then obtained as the 
average of fen) over the N parallel systems, 

1 
f(r,p; t) = N 2: f(n)(r,p; t). 

n 

(4) 

This distribution is a solution of the homogeneous BUU equation (the Vlasov 
equation) provided that the pseudo-particles satisfy the corresponding Hamiltonian 
equations of motion [8], 

d (n) 
Pi ~ U( (n) ) ~=-Vr ri ,t , 

d (n) (n) 
ri Pi 
~= mi 

(5) 

This system of N A coupled non-linear equations of motion can be integrated by 
employing a suitable time step ht. 

The collision integral, eq. (2), is simulated numerically by allowing the pseudo
nucleons within a given system to collide with each other. When a collision happens 
the momenta of the pseudo-nucleons change from PI and P2 to p~ and p~. The 
probability for the occurrence of a given collision is determined by the differential cross 
section dUI2/dn~2' and by the availability of the phase-space through the blocking 
factors f. Specific details about the simulation of the collision integral can be found 
in refs. [1, 9]. 

The essential physical input is contained in the effective field, U( r, t), and in the 
differential cross section, du / dn. Although both quantities can be consistently derived 
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within the framework of time-dependent G-matrix theory [10], for practical purposes 
it is necessary to express them in terms of some convenient parametrizations. Here, 
we adopt the parametrization proposed in [9] given by 

U(r) 3 7 4/3 J' exp( -plr - r'l) (') 1/" 
- -top(r)+.-t3P(r) +Va dr I 'I pr +Vcoul, 4 8 pr-r 

(6) 

[ 
mVa ]2 

p( q2 + p2) , 
da 
dn(q) - (7) 

where q = (p - p') sin () /2 denotes the momentum transfer in the collision. The values 
of the parameters are to = -1124 MeV fm3

, t3 = 2037 MeV fm\ Va = -378 MeV 
and p = 2.175 fm- 1 which, for infinite nuclear matter, gives saturation at p = 0.17 
fm-3 , a binding energy per nucleon of 16 MeV, and a nuclear compressibility modulus 
of J{ = 238 MeV. The known dependence of the nucleon-nucleon interactions on the 
momentum is sometimes taken into account in non-relativistic transport theories by 
adding an extra term to the mean field. However, in the present study we will neglect 
momentum-dependent forces and consider the effective field U (r) as a functional of 
the spatial density p( r) only. . 

2.1 Initialization 

Ordinarily, when studying heavy-ion collisions, the initial positions and momenta 
of the pseudo-particles are picked so as to reproduce, approximately, a nucleus in its 
ground state (boosted appropriately). In coordinate space, this is realized by assigning 
to each pseudo-particle i a random position rj picked from a specified Saxon-Woods 
density distribution. A good reproduction of the binding energies as well as the 
spatial and momentum distributions for nuclei with A > 12 is obtained by using 
Ro = 1.124A1/3 fm for the radius and a = 0.024Al/3 + 0.29 for the surface diffuseness 
[9]. The momenta are subsequently sampled from a uniform spherical distribution 
of radius PF(ri), the local Fermi momentum calculated on the basis of the Thomas
Fermi approximation. 

However, for the present study we wish to start the simulation from a phase-space 
density distribution different from the one corresponding to the ground state. Typ
ically, we wish to start from a compressed cold nucleus. Such a configuration can 
readily be obtained from the ground state by performing the simple scale transfor
mation, 

(8) 

Thus the central density in the compressed nucleus is given by p( r = 0) = >"Po, where 
po is the central density of the ordinary nucleus. 

Alternatively we occasionally wish to start from a thermally excited system. This 
can be achieved by picking the momenta from a finite-temperature Fermi-Dirac dis
tribution with the specified temperature T; the local chemical potential is determined 
from the density p( r). 
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2.2 Spherical symmetry 

The structure of the BUU equation (1) is such that certain symmetries will be pre
served if they are initially present, such as isotropy and uniformity. In particular, 
when the one-body phase-space density distribution is initially invariant under rota
tions in coordinate space, it is straightforward to verify that only central forces occur 
and so the spherical symmetry is preserved throughout the dynamical evolution. The 
one-body phase-space density can then be written as f(r,Pr,Pt; t), where r = Irl is the 
radial distance, pr = i-. p is the radial momentum, and Pt = Ii- x pi is the magnitude 
of the transverse momentum. 

The numerical method employed to solve the BUU problem may be briefly de
scribed as follows: Between the times t and t + ht the N systems follow independent 
trajectories in the 6A-dimensional phase-space, according to the equations of motion 
(5); the one-body phase-space density distribution f(r,p,t + ht) is then obtained by 
averaging over these N systems (see eq. (4)). In this way, after each time interval ht, 
the fluctuations occurring from one system to another are suppressed by taking the 
ensemble average. The essential feature of the method is that the average phase-space 
density f is used as input to evaluate the effective field U( r) which in turn determines 
the further evolution of the pseudo-particle distributions f(n). 

Thus, the fluctuations inherent in the pseudo-particle representation are reduced 
but not eliminated in this method. Particularly, the numerical method is unable to 
render distributions that are exactly spherical. This shortcoming is of little import for 
processes in which the dynamical trajectory is stable against symmetry breaking, and 
arbitrarily good accuracy can then be obtained by choosing N large enough. However, 
in certain situations the equations are unstable against symmetry breaking and in such 
cases the method is clearly dubious, since the degree to which the instabilities will 
develop depends on the numerical parameter N (the larger the value of N the longer 
it will take before the initial irregularities in f(r,p) will manifest themselves). We 
shall return to this important point in Sect. 3.2. 

We should emphasize that when the fluctuations are suppressed by increasing 
N, then the amplitude reached in a given time by a given density instability is also 
suppressed, and by the same factor2. This feature follows from the fact that the 
magnitude of a certain mode a evolves approximately according to [11] 

(9) 

where Do. is the source term arising from the fluctuations associated with the indi
vidual collision processes, and to. is the characteristic growth time of the mode, as 
obtained from the dispersion relation for the system. The dynamical evolution of 
small density irregularities in nuclei has also recently been studied by Papp et al. [12] 

2This point has not been generally appreciated - it is often argued that any noise will be am
plified, so it does not matter what .N is, but this is somewhat misleading: when the fragmenting 
source is expanding, the clusterization process is effectively terminated prematurely, with observable 
consequences as will be shown below. Only in a static scenario, with unlimited time available, will 
the final fragment distribution be independent of the initial irregularities. 
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within a hydrodynamical model. They found that at densities about 35-40 per cent of 
normal even the smallest fluctuations will grow, which is consistent with the results 
of the present study. 

For now we wish to note that it is possible to modify the standard method so 
that the initial spherical symmetry is preserved throughout the evolution, to an arbi
trary degree of accuracy. This can' be accomplished by simply performing an angular 
averaging of f( r, Pi t) after each time step. The effective field then remains strictly 
spherical, thus limiting the degree to which each individual ensemble member f(n) 

can stray away from sphericity. Since we shall employ this modified method for our 
present studies, we describe it in somewhat more detail below. 

Given the irregular matter density p( r) at some time t, a spherically symmetric 
one, p(r), can be obtained by averaging over the directions, 

p(r) =..!.. f p(r) dr. 
411" 147r (10) 

In the actual simulations, this average is calculated by binning the pseudo-particles 
according to their distance to the origin, r. We have employed a bin size 8r = 1 fm 
and performed a Gaussian smearing procedure in order to obtain a smooth density 
distribution. The effective field, eq. (6), is then calculated on the basis of the averaged 
density p(r). The procedure removes the deviations of the field from the spherical 
shape that may eventually lead to further distortions in the phase-space distribution. 
In addition, the Fermi momentum in the initialization of the momentum distribution 
is also evaluated by using p(r), instead of p(r). 

Since the effective field now depends only on r, the calculation of VU can be done 
more accurately. The numerical procedure consists in calculating the radial derivative 
at discrete points fk = (rk+l - rk)/2, by using a simple two-point formula dU/drl rk ~ 
(U(rk+d - U(rk))/8r. Taking advantage of the fact that we have effectively only one 
dimension, the magnitude of the force exerted on a pseudo-particle located at r is 
calculated by interpolating a spline through the points (dU / dr )r=f'k which satisfies 
the boundary condition (dU / dr )r=O = o. This method considerably improves the 
numerical accuracy. By contrast, in the standard BVV simulation VU is calculated 
in a three-dimensional rectangular grid by just applying the two-point formula on each 
spatial direction. The force is thereby assumed to be the same for all pseudo-particles 
in a given cell. This usual prescription, although simple and fast, may become a very 
poor approximation at those points where sudden variations of the field occur (as, for 
example, near the nuclear surface). 

The deviations from spherical symmetry originating from the stochastic simulation 
of the collision integral cannot be as easily eliminated. However, it is possible to 
suppress them' considerably by imposing spherical symmetry on the Pauli blocking 
factors f. The formal procedure is conceptually similar to what we discussed above 
in connection to the density, namely, to average the blocking factors over the spatial 
orientations. Numerically, however, the average is more efficiently evaluated by means 
of a Monte-Carlo technique. Specifically, for a collision taking place at the position 
r, the effective blocking factor is calculated by averaging over random orientations 
of r. This constitutes a rather simple prescription and, in addition, does not require 
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much additional computing time; reasonable values for the effective blocking factors 
are already obtained by employing only five random directions. 

3 Results and discussion 

We now turn to the application of the BUU model to the dynamics of spherical 
nuclei that have been highly excited by either compression or heating. Throughout, 
we have considered both 40Ca and 197 Au, as representative examples of medium- or 
large-sized nuclei, respectively. Our primary motivation has been to examine how a 
nucleus responds dynamically to an initial compression. This issue is of interest in 
connection with current attempts to explore nuclear matter at high density by means 
of energetic heavy-ion collisions, in which significant density enhancements occur. 

In order to have a relatively simple scenario, we have considered the BUU evolution 
of spherical nuclei that have initially been compressed by a specified factor A. As an 
alternative initialization, we have instead endowed the nuclei with a corresponding 
amount of thermal excitation. The temperature T is then adjusted so as to ensure that 
the total energy of the hot nucleus equals that of the compressed nucleus with which 
comparison is being made. In other words, T is determined by the relation E(A, T = 
0) = E(A = 1, T). The calculated relationship between T and the compression factor 
A = pi po is shown is fig. 1. It is seen that the temperature T and the compression 
factor A are roughly proportional, which reflects that the excitation energy depends 
quadratically on both T and A, to a first approximation. Obviously, the factor of 
proportionality depends on the size of the nucleus considered. 

With the nuclei prepared as described above, the subsequent time evolution has 
been obtained by solving the BUU equations described in the preceeding section, using 
the modified method that retains approximate spherical symmetry by averaging after 
each time step ht = 0.5 fm/c. Typically, we have used N = 100 parallel systems in 
each such simulation. This relatively small value of N is sufficient to achieve good 
numerical accuracy because of the continual angular averaging. 

For the discussion of the results it is useful to consider the following quantities: 
Extension. The spatial size of the system is conveniently characterized by the 

root-mean-square radius R given by 

R2 =..!.. ~ ~ ~r(n). r(n) 
NL..JAL..Jt t' 

n=1 i=1 

(11) 

where r~n) denotes the position of the ith pseudo-nucleon in the system n. 
Radial flow. The rate of expansion can be described by the radial velocity v as 

the average radial velocity of the pseudo-nucleons, 

v =..!.. t~ tv!n) .;.!n). 
N n=1 A i=1 

(12) 

In addition, it is instructive to consider the time evolution of the central density, 
in units of the normal density, Pel po. This quantity is initially equal to the specified 
value of A (besides the fluctuations). 
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3.1 Spherical nuclei 

The above three quantities are displayed in figs. 2 and 3 for Ca and Au, respectively. 
The solid curves result from the compressed initialization, using>. = 2, 2.5, and 3. 
When judging the degree of agitation brought about by such compressions it is helpful 
to note that a density doubling increases the volume energy by 8 MeV per nucleon 
(using K = 238 MeV), enough to overcome the entire binding energy of the nuclei. 
The systems we consider are thus all above the disassembly threshold where it is 
possible to disperse the system entirely into free nucleons. However, as we shall see, 
such a total disintegration happens only at considerably higher excitations. 

At relatively moderate initial compressions (>. = 2), corresponding to the left 
column, the nucleus exhibits an oscillatory motion, while slowly radiating its excess 
excitation away by emission of individual pseudo-particles. The oscillatory character 
of the motion is clearly reflected in the periodic fall and rise of the central density, as 
well as in the periodic behavior of the radial velocity. The anharmonic appearance 
of the radial velocity is a consequence of the fact that the effective force acting on 
this quantity changes more abruptly when the system is dense than when it is dilute. 
Consequently, the system spends a relatively long time in the dilute configuration 
while the expansion slowly turns into a recontract ion , whereas the system bounces 
back more quickly from the compression. This feature is also discernible in the plot 
of the central density: the system spends more time near the minima than near the 
maxima. The oscillatory behavior is less evident in the RMS radius R, since the 
emitted particles produce a significant and steadily growing contribution to R. This 
obscuring effect could be reduced considerably by suitable subtraction, or simply by 
imposing an upper bound on the domain considered when calculating R (as done in 
fig. 15). The continual loss of energy carried off by the emitted particles appears to 
be the main source of the damping of the collective radial motion. 

We observe that the period depends on the size of the system. Furthermore, as 
the initial compression is increased, the period of the oscillations grows longer and the 
rate of particle emission increases. At some point, the initial compression exceeds a 
critical value and the systems keeps expanding monotonically. This qualitative change 
in behavior happens for >. ~ 2.5 - 3 for Ca and for >. ~ 2 - 2.5 for Au. The central 
density then quickly drops to zero and, after its first maximum, the radial velocity 
falls steadily towards a constant value characterizing the outwards flow of the totally 
dispersed pseudo-particles; this value depends directly on the initial compression via 
energy conservation. The RMS size attains the same asymptotic behavior and we 
have R = v. [We note that total disintegration into free nucleons can only take place 
when E > 0; for smaller excitations the disassembly must involve bound clusters.] 

In figs. 2 and 3 we have included the result of the respective alternative scenarios 
when the same degree of excitation has been achieved by thermal excitation instead.3 

It is evident from the plots that the thermal initialization is much less effective in 
generating collective radial motion, as one might perhaps have suspected. The hot 
nucleus principally exhibits an evaporation-like behavior, radiating pseudo-particles 

3In fact, these hot configurations are slightly compressed relative to the equilibrium configurations 
at the specified temperature, since nuclei expand as they heat up, like most physical systems. 
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while gradually shrinking and cooling. The question of how much mass is lost by this 
type of deexcitation process has been studied in ref. [2]. It should be noted, though, 
that in the case of the relatively large gold nucleus the thermal pressure is in fact able 
to produce some collective motion, especially for excitations near the critical one, as 
is borne out by the behavior of the central density for T = 13.4 MeV (>. = 2.5). 

The collision rate per nucleon occurring in the simulations is remarkably small, 
with typical values of order 10-2 (fm/ct1. For the case of the compressed initial
ization, it shows a rapid increase at the beginning of the expansion (it is initially 
zero due to the Pauli blocking) but, as the nucleus continues expanding, it reaches a 
maximum and then decreases becoming negligible when the system attains its dilute 
stage. On the other hand, when the nucleus has been thermally agitated the collision 
rate stays rather constant during the entire time evolution. 

A more detailed picture of the evolution is provided by the radial density profile 
p(r, t), which is easy to display because of the spherical symmetry (and which can 
be extracted with good numerical accuracy for the same reason). In fig. 4, we dis
play the density profile obtained for 40Ca. In the cases corresponding to the thermal 
initialization (dashed curves) the shape of the density profile is little affected, con
sistent with the approximate characterization of the process as evaporation from a 
hot compound nucleus. By contrast, the density profile becomes drastically distorted 
when compressed initializations are employed. For>. = 2.5, close to the critical value, 
the calculations indicate that the matter moves out from the central region to form 
a bubble-like configuration: the central density is more dilute than its surroundings. 
After spending a considerable length of time in such a state, the nucleus recontracts 
in response to the cohesive action of the mean field and the oscillatory situation is 
established. However, if the initial compression is further increased the mean field 
is no longer able to reverse the outwards motion and the nucleus disperses into its 
constituents, as is shown by the results for>. = 3. 

The corresponding results for 197 Au are shown in fig. 5. They show that the 
development of a bubble configuration is more pronounced for the heavier system. 
Furthermore, the compressed initialization leads to the formation of a bubble already 
for>. = 2. In contrast with the lighter system, for sufficiently high temperatures the 
thermal initialization also generates a bubble-like appearance of the density, although 
much less developed than for the corresponding compressional initialization. 

We note in passing that our results are rather similar to what has been obtained 
with the TDHF model [13]' (which also preserves the spherical.symmetry), as might 
be expected because the effect of the nucleon-nucleon collisions is relatively small in 
the present BUU simulations. 

In summary, when solved properly (i. e. preserving the initial spherical symmetry) 
the BUU model predicts that an initially compressed nucleus will rapidly expand 
and then, depending on the degree of the initial compression, either recontract and 
oscillate (subject to mass loss by particle emission) or undergo a complete disintegra
tion into a dilute gas. Moreover, the conversion of the initial excitation energy into 
collective radial motion is very sensitive to the way in which that energy is stored 
in the system during the initialization, as evidenced by our comparisons between 
compression and heating. 
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3.1.1 Effect of the Coulomb force 

It is interesting to examine the role played by the Coulomb force in the dynamics. 
For this purpose, we have calculated the expansion of "uncharged" 197 Au initially 
compressed at A = 2.5, by setting to zero the last term in eq. (6). The comparison 
with the results obtained by using the full mean field is displayed in fig. 6 by the 
solid lines, while the dashed lines denote the calculated values without the Coulomb 
force. As expected, the uncharged nucleus is more cohesive, as is clearly manifested 
in the recontraction. However, it still leads to the formation of a bubble. The results 
suggest that the uncharged system behaves in a fashion very similar to the charged 
one provided it is compressed correspondingly more so as to contain the same po
tential energy. A simple estimate for A = 197 shows that the same compressional 
energy obtained for the uncharged system using A = 2.5 results when compressing the 
charged system using the somewhat smaller value A = 2.3. It can be readily verified 
that this is consistent with the results displayed in fig. 3. 

Our calculations thus indicate that the Coulomb force is not a major factor in 
the formation of a hollow configuration nor for its longevity (it stays for about 100 
fmlc also when the Coulomb force is absent). Rather, the dynamical behaviour 
appears to be mainly determined by the total compressional energy of the system, 
both nuclear and Coulomb, with only a minor dependence on temperature. In a 
nuclear collision the amount of compressional energy stored early on, for a given 
bombarding energy, depends on the degree of dissipation which in turn is a sensitive 
function of the nucleon-nucleon collisions. It would therefore be of interest to devise 
means of directly ascertaining the degree of compression achieved. 

3.2 Symmetry breaking 

The above results suggest that, under special initial conditions, the system approaches 
a situation where the cohesive pull by the mean field largely cancels the outwards 
motion and, as a result, the system spends a considerable time as a bubble. In this 
config\uation the maximum density in the system is less than OApo. Such conditions 
of density and temperature lie well within the region of mechanical instability of the 
nuclear phase diagram. Furthermore, the time spent under these unstable conditions 
might be as large as 100 fml c, which is longer than the growth times for density 
nonuniformities [14]. One must therefore expect that t~e bubble will undergo a 
spontaneous transformation, leading to condensation into a number of fragments and 
an associated loss of spherical symmetry. The description of such a process lies outside 
the scope of the standard BUU model which addresses only the mean trajectory and 
therefore is inadequate for unstable evolutions. 

There are currently several efforts underway to include the fluctuating part of 
the BUU collision integral into the description of nuclear dynamics, leading to the 
nuclear Boltzmann-Langevin model [15, 16]. However, although significant progress 
has already been made in this regard, no numerical implementation is yet available 
that is both tractable and accurate. 

We have therefore undertaken to make a preliminary qualitative investigation of 
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the expected clusterization process. For this purpose we have considered the same 
dynamical problems as discussed above using the standard BUU treatment without 
any enforcement of spherical symmetry. The fact that we consider a finite number of 
parallel systems, N, implies that the extracted density distribution, and associated 
quantities such as the effective field, will possess irregular deviations from spherical 
symmetry at the outset. These fluctuations may then act as seeds for the catas
trophic amplification process mentioned above, and the system may undergo actual 
clusterization, provided that the dynamics takes it into the unstable regime. 

We saw above that when spherical symmetry is enforced the critical compression 
(i.e. that initial compression for which the nuclear cohesion exactly halts the outwards 
motion) appears to lie in the range 2.5 < >'c < 3 for 40Ca and 2 < >'c < 2.5 for 197 Au. 
We expect that a standard BUU calculation (i.e. without strict symmetry) will yield 
a lower value of >'c, since the amplification of the inherent fluctuations makes the 
system more fragile. Therefore, we have studied the cases corresponding to the lower 
end of these intervals, namely>. = 2.5 for 40Ca and>' = 2 for 197 Au. 

The results are illustrated in figs. 7 and 8. For reference the symmetric results 
discussed above are included on the right. The other curves are extracted from five 
independent BUU runs, each using N parallel systems of pseudo-particles, and the 
shaded areas indicate the associated standard deviation. The five runs differ only in 
the initial random population of the phase space. Furthermore, in order to study the 
dependence on the magnitude of the inherent statistical fluctuations, we have made 
the calculations using two different values of N for each system. 

Let us first consider the results for 40Ca (fig. 7). As already discussed above, 
when spherical symmetry is maintained, the system first expands to a bubble and 
then recontracts at about t = 100 fm/c. When the standard BUU simulation is 
employed the results depend drastically on the value of N. For N = 200, which is 
a typical value employed in heavy-ion studies, the recontract ion does not take place; 
instead the system respon~s to the dilution by binding into clusters so that the overall 
expansion can be continued. On the other hand, for sufficiently large values of N the 
results will follow closely the symmetric ones (up to a certain time that increases with 
N). This feature is illustrated by the results for N = 800 (for which the magnitude 
of the initial fluctuations are halved) which show a much closer correspondence with 
the symmetric ones. Nevertheless, the recontraction occurs at a significantly later 
time and the central density peaks at a smaller value. 

In the case of 197 Au (fig. 8) the results obtained with the standard BUU simulation 
are significantly different from those obtained by enforcing the spherical symmetry: . 
for the two cases shown (N = 100 and 300) there is no oscillatory motion. It is 
important to note that even though the dynamical evolutions of the various quantities 
that characterize the radial motion differ from the corresponding spherical situation, 
the results obtained in the five independent runs are rather similar to one another, 
as reflected in the relatively small standard deviation. This feature suggests that, 
for a given value of N, the overall evolution is rather independent of the particular 
noise pattern in the initial density (although of course, the detailed evolutions differ 
markedly from case to case with respect to the sizes and locations of the clusters that 
are formed). As the above results illustrate, it must be expected that the number of 
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parallel systems needed to achieve a reasonable degree of accuracy in the simulation 
depends crucially on the time spent in the unstable regime. 

The qualitative difference between the symmetric evolution and the irregular ones 
is well illustrated in figs. 9 and 10 which display the time evolution of the density 
profile. For the standard BUU calculations the effective density profiles p(r) have 
been obtained by averaging each actual irregular density p( 1') over the direction r 
(see eq. (10)); the error bars indicate the standard deviation obtained with the five 
independent runs. The solid line shows the symmetric result. 

The result for 40Ca (fig. 9) shows approximately the same density profile and small 
fluctuations up to about 60 fm/c. At that time, the system reaches its most dilute 
configuration, with densities of about 0.15-0.20po. From there on, the radial profile of 
the density distribution obtained with the standard simulation deviates qualitatively 
from the one that corresponds to the spherically symmetric case, and the fluctuations 
grow larger. 

For the heavier nucleus 197 Au (fig. 10) the differences between the symmetric 
and the standard simulation appear at earlier times. Both density profiles show a 
bubble-like configuration. As we shall see below, in the irregular case the actual 
density distribution is clustered. As a consequence, the restoring force acting of R is 
considerably smaller and the matter is situated farther out (and is somewhat more 
dispersed radially). Remarkably, the system remains almost stationary for times up 
to at least 100 fm/ c. 

In summary, at the early stage the standard simulation method yields dynamical 
evolutions that agree well with those for which the initial symmetry has been enforced. 
However, once that the system reaches the dilute unstable configuration, the results 
obtained with the standard BUU method deviate qualitatively from the symmetric 
ones. We emphasize that the symmetry breaking is merely the result of numerical 
noise due to the finite value of N. Those irregularities induce the system to follow 
divergent dynamical trajectories, all of which differ qualitatively from the proper 
solution of the BUU equation. 

3.2.1 Angular pattern 

The above analysis was based on dynamical quantities that have been averaged over 
the spatial direction. However, our particular example indicates that the initial de
viations from spherical symmetry give rise to fluctuations in the effective field that 
are subsequently amplified affecting the further evolution. More insight into this key 
phenomenon can be gained by studying the angular distribution of the matter. 

A very direct illustration of the clusterization taking place is given in fig. 11 which 
shows a contour map of the density distribution projected onto the unit sphere, 

p(r, t) = ~ J dr r2p(1', t) . (13) 

Such a display is similar to a map of the world, with the azimuthal angle <p playing 
the role of the longitude and the polar angle () replacing the latitude. 

The growth of instabilities in the standard B UU simulation is immediately ap
preciated from the results shown in fig. 11. The figure displays the time evolution 
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the projected density distribution p(f, t), for 19
7Au initially compressed to double 

density (A = 2), as a function of the polar angle () and the azimuthal angle <p. The 
density profile discussed in the preceeding section shows that the system develops 
into a configuration where the matter is confined within a rather well-delineated shell 
(a bubble). Therefore it is reasonable to make the radial projection (13). The result 
shown corresponds to one particular simulation, employing N = 300 parallel systems. 
The radial projection is normalized so that it is unity for a distribution having spher
ical symmetry, thus facilitating the recognition of irregularities. The contour levels 
corresponding to that value are indicated by the dashed line, while the solid lines 
indicate the contours associated with densities that are 2, 3, and 4 times larger. 

As expected, early on the system displays an approximately isotropic angular 
pattern, exhibiting only small statistical fluctuations. Between 75 and 90 fm/ c some 
regions having twice the initial density appear. A comparison with the time evolution 
of the corresponding radial distributions shown in fig. 10 reveals that the system has 
already spent about 40 fm/c in a situation where its density is less that 0.3po. As 
time progresses, the irregularities continue to develop and the system exhibits a more 
defined angular structure. At 150 fm/c, it displays a clear clusterization pattern. 
We wish to emphasize that the dynamical processes has not yet been completed at 
150 fm/c and therefore the system may undergo further changes in its structure. We 
return to this important point later in this section. 

3.2.2 Multipolarity coefficients 

The displays in fig. 10 has an obvious intuitive appeal and shows qualitatively how 
the instabilities grow in the system. A more quantitative description is made below. 

We have seen that the excited nucleus tends to expand into a fairly hollow matter 
distribution, after which the inherent instabilities begin to manifest themselves as 
the density undergoes a rapid clusterization. The macroscopic characteristics of this 
process can be conveniently described by the ~ollowing multipole coefficients, 

(14) 

where lim is the usual spherical harmonic. In the last relation we have used the rep
resentation (10) of the density distribution in terms of the positions of the individual 
pseudo-particles, r!n). The utility of the coefficients Qlm is enhanced by the fact that 
the distribution considered has a hollow appearance, so that the matter is concen
trated in a relatively thin shell. For more general profiles, a suitable modulation of 
the radial distribution may be required. 

Since there is no preferred direction for the scenarios considered here, it is natural 
to define the quantity 

_ ~ ~ 2 __ 1 ~ ...!... ~ (nn') 
al - 21 1 L..J IQlml - N2 L..J A2 4- PI ( cos ()ij ). 

+ m=-I nn' 'J 

(15) 
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This directional average is conveniently normalized so that ao is unity. The second 
relation exploits the representation of the Legendre polynomial PI in terms of spher
ical harmonics, and the double sum over pseudo-particles includes the diagonal term 
having n' = nand i = j. The argument in the Legendre polynomial is determined 
from the relation r~n) . r(nl) = r(n)r(nl) cos (i,,!,n

l
) 

1 J 1 J 1J' 

In fig. 12 we show the values of the pattern coefficients al as extracted from a 
sample of five dynamical evolutions for the 197 Au initially compressed at ..\ = 2 (and 
using.AI = 300). At the beginning, the coefficients corresponding to 1 > 0 vanish, 
consistent with a spherical distribution. At about t = 70 fm/c, the effect of the 
symmetry breaking becomes noticeable in the growth of the pattern coefficients. At 
that time the system has already become dilute (see fig. 10) and the instabilities are 
able to develop (see fig. 11). From there on, the results further deviate from the 
spherical shape. The coefficients corresponding to 1 =3, 4 and 5 attain the largest 
values. However, in contrast to the quantities associated to the radial motion (see 
fig. 8) they fluctuate more from one run to the other, as is evident from the indicated 
standard deviation. 

There are several advantages to considering the multi pole coefficients in the dis
cussion of multifragmentation processes. Firstly, the coefficients Qlm provide a general 
and systematic description of the angular pattern. Secondly, the multi pole coefficients 
can be readily extracted from microscopic transport models, even when these models 
do not yield a good description of the actual cluster formation, since only the matter 
density p( r) is required. [For example, in fluid dynamics only the structureless matter 
distribution in known, and the same is true in the BUU model, while molecular dy
namics yields the positions of the individual nucleons but is unable to reliably predict 
how these will ultimately cluster.] 

Thirdly, the quantities al can relatively easily be extracted from data on multi
fragment events, provided that the kinematical coverage is reasonably complete. It 
may therefore constitute a powerful tool in the comparison of data with theoreti
cal predictions, avoiding the tedious task of determining the cluster structure of the 
matter distribution. 

It would appear that this kind of multifragment analysis is particularly suited for 
emulsion data, since these have essentially complete dynamical coverage (for charged 
fragments) and, moreover, the relative paucity of analyzed events (typically only of 
the order of several hundreds), which is the inherent weakness of emulsion data, 
should be no serious problem in the present context, since such event numbers should 
suffice to achieve useful determinations of the pattern coefficients al (recall that the 
results in fig. 12 have been obtained on the basis of only five events). We therefore 
suggest that such analysis be made for existing emulsion data. By utilizing the above 
expression (15) it would be quite straightforward to calculate the values of al event by 
event. It should be emphasized that it would probably be important to consider only 
the most central events, to avoid mixing of different flow patterns. This can probably 
easily he achieved by focussing on the most fragment-rich events (these are anyway 
those to which most analysis effort has been devoted). The multipole coefficients Qlm 
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defined in eq. (14) can be extracted from a given multifragment event as 

1 N 1 N 

aim = A L AnYlm(Pn) ~ Z L ZnYlm(Pn) . 
n=1 n=1 

(16) 

Here the N observed fragments have the momenta {Pn} and the mass numbers {An}, 
with A = L:n An. Often only the fragment charge Zn is measured and should then 
be used in place of the mass number An, as indicated in the last expression above. 
This lack of completeness in the data should not introduce significant distortions of 
the extracted coefficients, because the global angular distributions of neutrons and 
protons tend to be similar. 

We wish to stress that the present study considers the evolution of sources that 
have been carefully prepared to have spherical symmetry. This initialization is con
venient for our present purposes. However, in a collision experiment there is hardly 
spherical symmetry at any point during the evolution. Instead, there is approximate 
axial symmetry, for sufficiently central events. Therefore the above directional av
erage leading to al should be modified and one should instead consider the pattern 
coefficients aim = ~(lalmI2 + lal_mI2). 

3.2.3 Dependence on the number of pseudo-particles 

We saw in Sect. 3.2 that the evolution of the collective flow and the radial distribution 
of the system is strongly dependent on N, the number of pseudo-particles per nucleon 
used in the simulation. In addition, the symmetry breaking produced by these nu
merical fluctuations causes significant alterations of the structure of the system when 
it enters into the unstable regime. Of course, the two effects are closely related since 
the development of the irregular structure reduces the overall cohesion of the system, 
thus inhibiting its ability to counteract the expansion. 

The magnitude of the fluctuations producing the catastrophic changes in the struc
ture is directly related to the numerical parameter N. Recent simulations of actual 
nucleus-nucleus collisions have yielded contradictory results depending on what value 
of N was employed [5, 6, 7]. Thus, it is essential to determine the qualitative (and, 
if possible, also the quantitative) implications that the use of a different number of 
parallel systems will have on the dynamical features obtained from simulations based 
on transport theories. 

In order to shed some light on this essential question, we have computed two sin
gle BUU dynamical histories up to 285 fm/c, using N = 100 and 300, respectively. 
The qualitative differences are clearly brought out by the results of fig. 13, which 
displays the projected density distribution as a function of the polar angle () and the 
azimuthal angle </>, in the same fashion as in fig. 11, for 197 Au compressed at dou
ble density (A = 2). The simulations differ only in the number of parallel systems 
utilized, N = 100 or 300, respectively (the run with N = 300 has a different initial 
seed than the one displayed in fig. 11, thus showing how the random random initial
ization lead to different angular patterns). At 75 fm/c, shortly after the system has 
entered into the unstable regime, the simulation with N = 100 (left) has developed 
significant irregularities. By contrast, when 300 pseudo-particles are used (right) the 
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irregularities are not yet apparent. This clearly illustrates that when the initial fluc
tuations are reduced (by a factor 0.58 in this particular case) the amplitude reached 
at a given time by a specific density instability is reduced accordingly (see eq. (9)). 
At 150 fm/c both systems exhibit a cluster structure. However, the irregularities that 
have developed in the simulation having N = 100 are more clearly delineated and 
have reached larger amplitudes than those of the counterpart obtained with N = 300. 
At later times the differences grow even larger and at the end of the calculation the 
two simulations show little resemblance with one another: the one performed with 
N = 100 has produced eight separated fragments of comparable mass, whereas the 
irregularities that appeared in the one with N = 300 have reunited into a single very 
distorted object, which will presumably develop into a compound nucleus rather than 
undergo multifragmentation. 

In a more quantitative fashion, fig. 14 shows the time evolution of the correspond
ing pattern coefficients at, as extracted from those simulations. When the dynamics 
is simulated with N = 100 the angular pattern is characterized by a mixture of multi
polarities. It is noteworthy that the largest values of al occur for 1 = 3 and 4, which is 
probably related to the multiplicity of fragments. For N = 300, the coefficients with 
1=4 and 5 become initially dominant but they decrease considerably at later times, 
and at the end the angular pattern is determined by a combination of a quadrupole 
and a octupole deformation. This behavior is a reflection of the fact that the system is 
then in the process of recombining into a compound nucleus. The connection between 
the multi polarity and the cluster multiplicity is again manifested in the fact that as 
begins to decrease earlier than a4. Moreover, the results at the end of the simulation 
indicate that a3 saturates (and perhaps even decreases at later times), while al and 
a2 show an increasing trend. 

A closer inspection of the respective radial patterns may both complement and 
elucidate the previous discussion. Therefore, in fig. 15 we show the corresponding 
radial velocity as well as the radial profile of the density distribution, for the respective 
simulations. In this case, the radial velocity reflects the average collective flow of those 
particles located within a sphere of radius 20 fm, thus eliminating the flow component 
associated with the fastest nucleons (about 18% and 15% of the total mass for N 
= 100 and 300, respectively). The slow increase in the radial flow is due to the 
Coulomb repulsion. It should be noted that the radial velocity is very small for the 
simulation corresponding to N = 300 once that the system enters the unstable region. 
Moreover, it becomes negative between 115 and 200 fm/c. This is also reflected in the 
radial shape of the density distribution, which shows that the system experiences a 
recontraction after 150 fm/ c. On the contrary, when the dynamics is simulated with 
only N =100 pseudo-particles the system posses and maintains a sufficient amount of 
outwards motion to allow multifragmentation to occur. 

In summary, we have shown that depending on the number of pseudo-particles 
employed to simulate the dynamical evolution one may obtain radically different 
results under otherwise similar circumstances. By increasing the numerical parameter 
N one reduces the magnitude of the fluctuations which delays the development of the 
instabilities. At the same time, there is less radial motion available since the system 
remains more symmetric and, consequently, more cohesive. 
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3.3 Nuclear multifragmentation dynamics 

The multifragmentation scenario can then be understood as the result of a delicate 
interplay between the magnitude of the fluctuations, the characteristic time for the 
growth of the instabilities, and the amount of radial motion of the system. Provided 
that the dynamical problem is correctly solved and that the initial conditions drive the 
system into the unstable regime, the fluctuations are responsible for the spontaneous 
breaking of the symmetry that allows triggering and development of the instabilities. 
When the radial flow is large, as it will be when the initial compression is well abov.e 
the critical value, then the outwards motion will persist and there will be insufficient 
time for the irregularit,ies to grow into intermediate-mass clusters; the system will 
then disassemble into many light fragments. On the other hand, when the radial flow 
is below critical the system will tend to recontract so that the prefragments that may 
have developed will fuse with one another and a compound-like system will result. 
Clearly, in order to avoid conflicting results, it is important to treat the fluctuations 
properly, since their character and magnitude affect the radial motion significantly 
and thus determine the critical compression. 

As a consequence, the degree to which the outwards flow (which becomes the 
fragment kinetic energy) can be used to probe the initial compression in a realistic 
collision scenario is hampered by a strong dependence on the numerical parameter 
N. However, the density compression reached in the collision is determined by the 
dynamics during the early stage of its evolution, when the BUU transport model still 
provides a reliable description. Therefore, if the magnitude of the initial compression 
can be established by such means, the observed radial flow could be exploited as a 
sensitive indicator of the fragmentation dynamics, particularly about the size of the 
fluctuations and the time scale of the clusterization process. 

4 Concluding remarks 

We have studied the dynamical evolution of a nucleus that has been prepared in 
an excited but spherically symmetric configuration, generated either by compressing 
the ground state by a specified factor>' or by heating its local Fermi-Dirac momen
tum distribution correspondingly. The systems considered all lie above the disassem
bly threshold and so it is energetically possible to disperse the system into its nu
cleon constituents. The dynamical evolutions have been calculated within the general 
framework of the Boltzmann-Uhling-Uhlenbeck model, using a commonly employed 
method of solution that propagates N (~ 100) A-body systems in the same effective 
one-body field. We have modified an existing code so as to ensure that the initial 
spherical symmetry is preserved, even when the system is situated in a mechanically 
unstable region of the phase diagram. 

The imposition of spherical symmetry initially is an idealization that is not likely 
to be achieved in a real collision. Nevertheless, it illustrates well the important role 
played by irregularities of numerical origin. The proper solution of the BUU equation 
in a collision geometry will still yield a regular (though not perfectly symmetric) 
distribution whose further evolution may differ qualitatively from the evolution of 
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the distribution endowed with numerical irregularities. 
Because the standard BUU model describes the mean trajectory, the initial spher

ical symmetry is preserved throughout (if the equation is solved correctly) and so only 
monopole modes can occur. For moderate compressions the nucleus exhibits a weakly 
damped monopole oscillation, whereas for large initial compressions the radial motion 
induced by the release of the compressional energy is sufficient to cause the system 
to disperse into a dilute nucleon gas. For a range of intermediate values of the initial 
compression factor). the expanded system lingers for a relatively long time in a hollow 
bubble-like configuration while continually radiating nucleons. 

During this bubble stage the system is unstable against clusterization into frag
ments. of more favorable density. We have illustrated this tendency towards spon
taneous symmetry breaking by studying these situations with the standard B UU 
method which allows such catastrophic evolutions. Because only a finite number of 
parallel systems N are treated, this standard method is endowed with considerable 
inherent irregularities and thus the unstable modes may be readily triggered. This is 
indeed what happens and by projecting the hollow density distribution onto a sphere 
(which may be subsequently projected onto a planar representation) the clusterization 
can easily be observed visually. 

As a quantitative characterization of the clusterization phenomenon, we have in
troduced the pattern coefficients al based on the standard multi pole moments of the 
matter density distribution. On the basis of a small test sample of BUU histories, we 
have found that certain of these pattern coefficients attain appreciable values, while 
the others are less significant. Since the evolution of the clusterization depends on the 
characteristic dynamical properties of the nuclear matter, especially the dispersion 
relation which governs the amplification rates, this kind of information is useful as it 
may help constrain the parameters in our nuclear models. We are suggesting that the 
extraction of pattern coefficients may be an especially suitable method of analysis for 
emulsion data for high-multiplicity events. Of course, such an analysis may also be 
applied to multifragment data obtained with electronic detector arrays, provided the 
angular coverage is sufficiently complete. 

We have seen that an initially compressed nuclear sphere tends to expand into 
a bubble-like configuration. Similar evolutions have been obtained earlier with both 
molecular dynamics [2] and fluid dynamics [12]. Moreover, the recent BUU calcula
tions by Bauer et ai. [7] indicate that an approximately spherical compressed source 
may actually be formed in nuclear collisions and subsequently expand to a bubble or 
ring configuration.4 The appearance of a hollow spatial density distribution is thus 
probably a rather general feature of the explosive expansion following high compres
SIOn. 

Nevertheless, it appears that the formation of a hollow matter distribution has not 
been generally anticipated in the formulation of statistical models for multifragmen
tation which typically employ sources with uniform interiors [17, 18, 19]. If indeed 

4Jt should be noted, though, that other BUU studies [5, 6] have given conflicting results. These 
three groups [5, 6, 7] have employed different values of the numerical parameter N, the number of 
pseudo-particles per nucleon (namely, N = 40, 150 (or 300), and 1000, respectively) and it would 
be informative to compare their results for the same values of N. 
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the source is hollow, these models should be modified accordingly. Both the Coulomb 
energy and the relation between the source radius and the effective freeze-out volume 
are significantly altered, and the overall radial motion should also be incorporated. 
(The reduction of the Coulomb barrier was already discussed by Bauer et al.[7].) Fur
thermore, it should be expected that source sizes extracted by interferometry methods 
can be large without the source being correspondingly dilute. Indeed, it may be pre
dicted that Hanbury-Brown/Twiss analysis of sources leading to multifragmentation 
will yield relatively large sizes consistent with a hollow breakup configuration. 

In general, the largest fragments ought to form at the lowest possible compression 
that does not turn back into a compound system. When this limit is approached the 
overall outwards motion is fairly small. It can be then expected that the complex 
fragment multiplicity increases steadily from one below critical through two, three, 
... just above critical, to an ever larger number of ever lighter fragments as the 
compression is increased. Thus there should be a correlation between the fragment 
sizes of an event and the overall outwards motion (or kinetic energy). 

In heavy-ion collisions at intermediate energies, where large multiplicities of mas
sive fragments occur, the density compression hardly gets above doubling, and so 
the conditions for a total vaporization are not present. Therefore, the disassembly 
can only occur via breakup into bound fragments and thus the outcome of a dy
namical calculation is expected to be delicately dependent on the treatment of the 
fluctuations. The present study thus serves to draw attention to the importance of 
developing physically sound dynamical models that include the occurrence of fluctua
tions. Although such efforts are already well underway [15, 16], the extended models 
are still too computer demanding to be of direct practical utility and there is a need 
for developing more tractable approximate methods. 

Perhaps most importantly, our present studies suggest the existence of a specific 
nuclear multifragmentation process by which an initially compressed nuclear system 
disassembles into several massive fragments. The characteristic feature is a decom
pression leading to an unstable hollow structl.!re whose global evolution is sufficiently 
slow to allow the instabilities to manifest themselves, resulting in a clusterization of 
the structure into disjoint prefragments. Although our study has been carried out for 
an idealized spherical geometry, recent calculations indicate that such a scenario may 
be approximately reached in actual central heavy-ion collisions at intermediate ener
gies [7]. This novel process displays an intricate interplay between the time scale for 
the global expansion dynamics and those for the triggering and amplification of the 
various unstable modes. The qualitative identification and quantitative exploration 
of this process would provide important new experimental information on nuclear 
dynamics. 
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Figure 1: Heating versus compression. 
For either 40Ca or 197 Au, the plot shows that value of the nuclear temperature T 
which produces the same total energy E as obtained by instead compressing the cold 
nucleus by the factor'\ = plpo (so that E(T = O,p = '\Po) = E(T,p)). 

Figure 2: Collective flow for 40Ca with spherical BUU . 
The degree of compression in the central cell Pel Po (upper row), the average radial 
velocity v (middle row), and the root-mean-square radius R (lower row) as functions 
of time, for 40Ca, calculated by imposing spherical symmetry in the B UU code. The 
results corresponding to different initial values of the compression parameter ,\ and 
the temperature T are indicated by the solid and dashed curves, respectively. 

Figure 3: Collective flow for 197 Au with spherical BUU. 
In a display similar to fig. 2 is shown Pel po, v, and R for 197 Au. 

Figure 4: Density profile for 40Ca with spherical BUU. 
Time evolution of the nuclear density profile for 40Ca. The three sets of figures display 
results obtained from different compressed (solid curves) and thermal (dashed curves) 
initializations, corresponding to pairs of values of the temperature T and compression 
parameter ,\ that yield the same excitation energy (see fig. 1). The results have been 
obtained by imposing spherical symmetry in the BUU code. 

Figure 5: Density profile for 197 Au with spherical BUU. 
Time evolution of the nuclear density profile for 197 Au; similar to fig. 4. 

Figure 6: Effect of the Coulomb field 
The degree of compression in the central cell Pel Po (upper left), the average radial 
velocity v (upper right), the root-mean-square radius R (lower left) as functions of 
time, and the density profile at 105 fmlc (lower right), for 197 Au compressed to 
,\ = 2.5. The dashed lines indicate the results calculated without the Coulomb force, 
while the solid lines denote the results obtained by employing the full mean field (6). 

Figure 7: Collective flow for 40Ca with standard BUU. 
The degree of compression in the central cell Pel Po (upper row), the averaged radial 
velocity (middle row), and the root-mean-squar radius R (lower row) as functions of 
time, for 40Ca initially compressed at ,\ = 2.5. The left and center columns correspond 
to standard BUU calculations with N = 200 and 800, respectively. These curves 
are based on five independent simulation runs and the shaded area indicates the 
corresponding mean standard deviation. For reference the right column shows the 
BUU results obtained by imposing spherical symmetry. 

Figure 8: Collective flow for 197 Au with standard BUU. 
Results for 197 Au in a display similar to fig. 7. 
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Figure 9: Density distribution for 40Ca with standard BUU. 
Time evolution of the effective radial density profile p(r) for 40Ca with A = 2.5. The 
solid lines denote the calculation obtained by imposing spherical symmetry, while the 
dashed lines represent the average profile based on five independent standard BUU 
simulation runs, with N =800 pseudo-particles per nucleon. The error bars indicate 
the corresponding standard deviation. 

Figure 10: Density distribution for 40 Au with standard BUU. 
Results for 197 Au, in a display similar to fig. 9 (also based on five independent runs), 
using A = 2 and N = 300. 

Figure 11: Angular pattern.· 
Time evolution of the density distribution projected onto the unit sphere, p(r, t), 
as a function of the polar angle () and the azimuthal angle </>, for 197 Au initially 
compressed to double density A = 2. The dashed contour lines correspond to the unity 
(corresponding to a spherically symmetric distribution), while the solid contours lines 
limit delineate the areas having values 2, 3, 4 and so on. The results were obtained 
with a standard BUU simulation using N =300. 

Figure 12: Pattern coefficients. 
The time evolution of the pattern coefficients ai, defined in eq. (15), for an ensemble 
of five different BUU histories, (each using N =300), starting from 197 Au compressed 
to double density (A = 2). The curves are drawn through the ensemble-averaged 
values, while the error bars indicate the associated dispersions. 

Figure 13: N dependence of the angular pattern. 
The density distribution projected onto the unit sphere, p( r, t), at different stages of 
the evolution, for 197 Au initially compressed to double density (A = 2), as obtained 
from one typical standard BUU simulation using either N = 100 (left) or N = 300 
(right). The display is as in fig. 11. 

Figure 14: N dependence of the pattern coefficients. 
The time evolution of the pattern coefficients al for individual events obtained by 
using N = 100 (upper figure) and N = 300 (lower figure), for the same BUU histories 
shown in fig. 13. 

Figure 15: N dependence of the radial flow and density profile. 
Time evolution of the radial velocity v for the region that corresponds to r < 20 
fm, obtained by a simulation with N = 100 (dashed line) and N = 300 (solid line), 
for the single BUU histories displayed in fig. 13. The corresponding effective density 
profiles p(r) are displayed in the upper-right corner at selected times. 
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