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1 
Abstract 

The quasi-potential transformation, which is based on the 

Kirchhoff transformation, reduces the equations governing mass­

transfer in a steady-state, nonconvective electrolytic system into 

two independent parts. The geometry-specific part involves the solu­

tion of Laplace's equation subject to the relevant boundary condi-

tions. The system-specific part involves the s·olution of a set of 

coupled first-order, nonlinear, ordinary differential equations. 

We develop a theoretical basis for the quasi-potential trans for-

mation using potential theory. The maj or assumption on which the 

quasi-potential transformation is based is that the concentrations 

can be written as single-valued functions of the electrostatic poten­

tial. We discuss the consistency of this assumption. In so doing we 

see how the system-specific part of the calculation is developed. The 

boundary conditions used in this work are outlined, and the 

geometry-specific calculations for the disk and hemisphere electrodes 

are developed. We combine the system-specific calculations for the 

binary and acidic copper sulfate solutions with these geometry­

specific calculations to obtain complete concentration profiles, 

potential distributions, and current density distributions for these 

systems. 

currents. 

We also investigate the effect of migration on limiting 
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1 
1.0 Introduction 

Determination of concentrations, potential, and current distri­

bution is of maj or interest in the study of electrochemical systems. 

In their study of steady-state transport processes at stationary 

electrodes, Baker, Verbrugge, and Newman [1] introduced a powerful 

mathematical technique, based on the Kirchhoff transformation, which 

separates the set of coupled, nonlinear, second-order partial dif­

ferential equations governing mass transfer into Laplace's equation 

and a set of coupled, initial-value, first-order, ordinary differen­

tial equations. They defined a new dependent variable which they 

called the quasi-potential. 

It is the purpose of this work to develop a theoretical basis 

for this quasi-potential. We expand the previous work of these 

authors to show that potential theory applies rigorously in systems 

where the rate of mass transfer due to convection is negligible. We 

show that the gradient of the quasi-potential is a physically signi­

ficant quantity, rather than a mathematical invention, in that it can 

be defined as the same vector quantity as the current density. We 

also apply the quasi-potential transformation to two specific sys­

tems, allowing us to demonstrate the versatility of the technique. 

While our work here is based on dilute-solution theory, we feel that 

this technique might very well be applicable in situations where 

concentrated-solution theory is necessary. 

There are a few limitations in the application of this tech': 

nique. As stated previously, it can be applied only to systems in 
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which convective contributions to the mass transport are negligible. 

All systems must be at steady-state or quasi-steady-state. We have 

not, as yet, been able to use the quasi-potential transformation to 

solve a problem in which multiple independent heterogeneous reactions 

occur within the system. While the technique handles mUltiple homo­

geneous reactions easily, it is necessary that these reactions all be 

equilibrated. 

With these limitations in mind, there are a few systems we iden­

tify here in which the quasi-potential transformation is applicable 

and useful. 

In systems where both the electrode and the solution are sta­

tionary, there are no convective contributions to the mass transfer 

if natural convection and other effects, such as bulk convection due 

to large mass fluxes, are ignored. Any solutions derived for such 

electrode systems will be directly relevant to certain nonstationary 

microelectrode configurations, in which the velo~ities are moderate 

and the microelectrode is much smaller than the overall system 

comprising both the insulating plane and the electrode. We assume 

that all of the concentration variations take place in a region very 

close to the electrode surface, somewhat similar to a diffusion 

layer, and we refer to it as such. Since the microelectrode is on 

the order of micrometers and the overall system is on the order of 

centimeters, this diffusion layer is much smaller than the momentum 

boundary layer; hence the velocities in this diffusion layer are 

small relative to the velocities present in the bulk. In these 
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microelectrode systems, the Peclet number in the diffusion layer is 

small enough that contributions to the mass transfer by convection 

can be ignored. This may be interpreted as a similar argument to the 

one used by Nernst in order to model mass transfer at the interface 

between a solid surface and a fluid. He postulated the existence of 

a stagnant diffusion layer adj acent to the surface. The argument 

used to reject this is based on the reasoning that for finite-sized 

electrodes the sizes of the diffusion and momentum boundary layers 

are not sufficiently different that the velocities become negligibly 

small within the diffusion layer (see as an example Levich [2]). 

Wightman and Wipf's review [3] provides an introduction to the field 

of microelectrodes. 

Another system in which the quasi-potential is relevant is the 

corroding pit. Pitting corrosion has been observed to be particularly 

insidious in stagnant systems. Modeling of these pits has been of .~ 

interest to electrochemical researchers for SQme. time, but the 

resulting models have been complex or subject to a number of approxi-

mations. Sharland [4] has reviewed the modeling of pitting corro-

sion. Using the quasi-potential transformation, where applicable, one 

would be able to model pits simply, without resorting to many of the 

' ... assumptions commonly used. Some common assumptions are the neglect 

of the effects of concentration gradients, the reduction of two-

dimensional problems to a single dimension, the omission of migration 

as a mechanism of mass transfer, and the use of constant physical 
c 

properties. Many of the assumptions used are untenable. 
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Other systems of possible interest are microscale etching 

processes (in the semiconductor industry), electropolishing, porous 

electrodes, 'cathodic protection of underground structures, and even 

pore-diffusion in nonelectrochemical systems. 

In this work, we apply the quasi-potential transformation to two 

different stationary electrode geometries (these analyses would, of 

course, be relevant to some microelectrode systems as well). The 

disk and hemisphere electrodes embedded in infinite insulating planes 

are both popular configurations for analytic and kinetic investiga-

tions. We solve these systems for the deposition of copper on a 

copper electrode from both binary and acidic aqueous CUS0
4 

solutions, 

subj ect to a few simple boundary conditions. We choose the binary 

Cuso
4 

solution because it is a well-studied, relatively simple sys­

tem. The large amount of experimental physical data available for 

this system allows us to consider the effects of variable physical 

properties on transport rates in the system. We ,examine the acidic 

CUS0
4 

system since it is a sys'tem of some interest in plating and 

electrorefining. In treating the effect of the incomplete dissocia­

tion of bisulfate ions, we can show more fully how the quasi­

potential transformation handles homogeneous reactions. We do not 

consider the effects of variable physical properties in the acidic 

system as this would add a great deal of complexity to the problem, 

since there is no simple way to correlate the physical properties in 

terms of concentration. This is not a problem in a binary electro­

lyte system where there is just one independent concentration. 
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2.0 Theoretical Development 

The quasi-potential transformation divides the problem of mass 

transfer in nonconvective electrolytic (or nonelectrolytic) solutions 

into two parts. 

The first part of the transformed problem depends only on the 

electrolytic species, the homogeneous reactions, and the heterogene­

ous reaction taking place in the system: It is independent of the 

geometry of the system. It involves manipulation of the material bal­

ance equations, the equation of electroneutrality, and those equili-

brium relationships that are applicable. This part involves the 

solution of a set of coupled, initial-value, first-order, ordinary 

differential equations. From this part we determine the quasi-

potential and the species concentrations as functions of electro­

static potential, or the concentrations and electrostatic potential 

as functions of the' quasi-potential. The results of these calcula­

tions may be used for all electrolytic systems of similar constitu-

tion and bulk composition, regardless of the geometry. In the work 

that follows we refer to this part of the calculation as the system­

specific part. 

The second part of the problem involves solving Laplace's equa­

tion for the quasi-potential subject to the relevant boundary condi­

tions, and hence accounts for the geometry. From this part we deter­

mine the quasi-potential as a function of the spatial variables. 

This part of the calculation is referred to as the geometry- specific 
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part. 

In this section we present the general equations governing mass 

transfer and current flow in the system. We outline the maj or 

assumption underlying the quasi-potential transformation. After 

using this assumption to show that the fluxes and current density are 

the gradients of potentials, we discuss its consistency. 

The fundamental equations governing mass transfer in a continuum 

are given by Newman [5]: 

Material balance: 

E1ectroneutra1ity: 

Current density: 

ac. 
~ 

at -V·N. + R. 

l: z.e. 
~ ~ 

i 

~ ~ 

= 0 

1 = Fl: z.N .. 
i ~ ~ 

(1) 

(2) 

(3) 

These equations apply regardless of whether di1ute- or 

concentrated-solution theory is 

species i. Newman also shows that 

used to define N., 
~ 

V·l = 0, 

the flux of 

(4) 

which is a statement of the principle of conservation of charge. 



7 

According to dilute-solution theory, the molar flux of species i 

is given by 

N. - -z.u.Fe.V~ - D.Ve., 
~ ~ ~ ~ ~ ~ 

(5) 

where the convective contribution to the flux has been neglected. 

The critical assumption underlying the quasi-potential transfor-

mation is that e.(x) can be written as a single-valued function of ~; 
, ~ 

in other words, e.(x) is the composite function defined by 
~ 

e. (x) = g. (~(x» . 
~ ~ 

We find it convenient to refer to the function g. (~) as e. (~) since 
~ ~ 

it is clear that c.(~) has a different functional form from that of 
~ 

\ 

e.(x). We treat the physical properties in a similar manner. 
~ 

We use this assumption that the concentration can be written as 

a single-valued function of the electrostatic potential on the basis 

that it gives a consistent solution to the governing equations. We 

cannot say unequivocally that this is the solution fo the problem as 

we have not shown that it is a unique solution. A similar problem 

arises in the usage of many numerical techniques, where the solution 

that arises is consistent, but is very seldom proved to be unique. 

In that vein, we accept the solution generated by the quasi-potential 

transformation as our solution to the stated problem since it is a 

physically realistic solution. 

We cannot use the assumption in systems where convection is 

important, since the presence of a velocity term (which is a function 

of the spatial variables) makes the resulting solution inconsistent 
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with the governing equations. After we prove that the current (and 

the fluxes) is the gradient of a potential field, we shall show that 

the generated solution is consistent by showing that the concentra-

tions that arise are returned as functions of the electrostatic 

potential only. 

Applying the assumption that c. = c.(~), we get 
~ ~ 

where 

N. = f. (~) V~ , 
~ ~ 

dc. 
~ 

f.(~) = -z.u.Fc. - D;d~ 
~ ~ ~ ~ .... '*' 

(6) 

(7) 

To get this equation for f.(~) we have made use of the chain-rule of 
~ 

differentiation. Many similar operations will be performed in later 

derivations. 

The concentrations 

electrostatic potential 

c. and their 
~ 

dc. 
~ 

d~ and the 

derivatives with respect to the 

transport properties--the trans-

port coefficients D. and the ionic mobilities u .--are all scalar. 
~ ~ 

This implies that the function f.(~) is a scalar function, and hence 
~ 

df. 
its derivative with respect to the electrostatic potential d~~ is a 

scalar quantity. 

Following the Kirchhoff transformation [6], as used by Baker, 

Verbrugge, and Newman [1], we define a new dependent variable as 

~ 

q. = If. (~) d~ . 
~ 0 ~ 

This allows us to write simply 
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N. = f.(lP)VlP=-Vq., 
~ ~ ~ 

or using the equation for the current density (equation 3) and the 

property of the differential operator V that it operates linearly on 

sums 

where 

i = f(lP)VlP ~ -VQ, 

f(lP) ~ FL z.f.(lP) . . ~ ~ 
~ 

The negative sign has been included to meet with convention in the 

mass- (and heat-) transfer field that the flux density should be in 

the direction of the negative of the gradient of potential. 

Interestingly, this equation for the current density has a similar 

form to Ohm's law, wit~ the analogous "conductivity" having an expli-

cit dependence on the electrostatic potential. 

The Kirchhoff transformation gives, very simply, our desired 

result. We have developed a more conventional proof, which is based 

on similar reasoning to the development of potential theory in fluid 

flow. This is a slightly more complicated proof, but we include it 

here since it raises a few important points about the quasi-potential 

transformation, which are not directly evident from using the Kirch-

hoff transformation. 

If a is any scalar and v is any vector, then 

V X av = a(V X v) + (Va) X v, 

which is a general vector relationship. 



Now, 

and 

v x i ~ V x (FL z.N.) . ~ ~ 
~ 

FL z. (V x N.) 
i ~ ~ 

V x N. = V x (f.V~) = f.(V x V~) + (Vf.) x V~ 
~ ~ ~ ~ 

The curl of the gradient of a scalar is zero; therefore 

The cross-product of two parallel vectors is zero; therefore 

and it follows that 

V x N. - 0 , 
~ 

V x i - 0 

10 

(8) 

Batchelor [7] (p. 100) shows that for an irrotationa1, 

incompressible fluid the velocity is the gradient of a potential. 

Since the situation here is analogous, that proof can be used to show 

that the current density is the gradient of a potential. We repro-

duce that proof here as the use of Stokes's theorem has important 

consequences in the application of the quasi-potential theory. 

Stokes's theorem states that 

f F·dx = II n'V x FdS, 
S 

where F(x) is a vector function possessing continuous first partial 

derivatives and n is the unit vector normal to S, which is the por-

tion of a regular surface bounded by the reducible, closed curve C. 

.. ' 
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The term "reducible" is introduced by Batchelor (p. 92). He 

defines it as follows: a closed curve is reducible if it can be 

reduced to a point by a process of continuous deformation, without 

passing outside the region it is drawn in. Thus, if a reducible 

closed curve is drawn in some region, it is always possible to find 

an open surface which is bounded by the curve and which lies entirely 

within this region (for example, the surface being that traced out by 

the closed curve during its continuous reduction to a point). Gibbs 

[8] defines a region in which all closed curves are reducible as acy-

clic. All closed curves drawn within a simply-connected region are 

reducible. The systems we consider in this work consist only of 

simply-connected regions. In multiply-connected regions some closed 

curves drawn in a single region are irreducible. Cons ider , as an 

. example, a curve drawn around the surface of an infinitely long 

cylinder in an infinite fluid expanse. Stokes's theorem is inappli­

cable in such a situation, and we cannot assume that simple potential 

theory applies in such systems. It is probable that in multiply-

connected regions a number of potentials mus~ be defined (this number 

being equal to the number of discontinuous regions). We believe this 

to be an important consideration in the application of the theory 

derived here. 

Since V x 1 - 0 everywhere in the fluid, it follows from 

Stokes's theorem that 

§ l·dx = O. 

If 0 and P are two different points in the fluid and C
l 

and C
2 

are 
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two different paths joining 0 to P, then, since C
l 

and C
2 

together 

constitute a closed, reducible curve passing through 0 and P, 

f i·dx 
C

1 

It follows that the line integral of i over any curve joining 0 to P, 

lying entirely within the fluid, is the same for all members of a set 

of paths joining 0 to P, and depends only on the position vectors of 

o and P, xo and x respectively. It is therefore possible to define a 

function Q(x), which is a scalar function since the integral returns 

a scalar value, such that 

P 
-Q(x) - -Q(xO) + f i·dx, 

o 
in which the integral is taken over anyone of the paths in the set 

mentioned. Hence we find that 

i(x) - -VQ(x) , (9) 

which defines the quasi-potential. 

The second important consideration for our work stems from the 

fact that the choice of Xo (and the choice of the value of Q at this 

point) is arbitrary, since the difference between the values of Q 

corresponding to two different choices of Xo is independent of x (and 

the corresponding choice of Q(x
O
». 

Consider starting points, 0 and 0', with position vectors, Xo 

and xO'. which are chosen arbitrarily (as are the values of Q at 

these points). Then it follows that 
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poP 
Q'(x) ~Q(x') o I i·dx = Q(xo') + Q(xo) - Q(xo) - I i·dx - I i·dx, 

0' 0' 0 

hence 

o 
Q' (x) - Q(X) - Q(xo') - Q(xo) - I i·dx, 

0' 

where the prime on the Q is used to indicate that Q'(x) is evaluated 

using the starting point 0'. Since the right side of this equation 

is independent of x, we see that 

VQ' (x) - VQ(x). 

We can arbitrarily choose the value of the quasi-potential at anyone 

point in such a way as to obtain amenable boundary conditions. This 

will only add a constant to the value of the quasi-potential. It 

will not affect its gradient which, as the negative of the current 

density, is of physical significance. We often choose to set the 

quasi-potential to zero infinitely far from the electrode surface. 

Since the divergence of the current density is zero and the 

current density is the gradient of the quasi-potential, 

(10) 

The quasi-potential obeys Laplace's equation in the fluid. 

To relate the quasi-potential to the electrostatic potential, we 

see from the equation of current density (equation 3) and the derived 

equations 6, 7, and 9 that 

where 

i = FI z.N. = f(~)V~ = -VQ, 
i ~ ~ 



f(Cb) = FL z.f. (Cb) . . ~ ~ 
~ 
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This is the same result that we obtain using the Kirchhoff transfor-

mation. It follows also that 

We may write 

N. = f. (Cb)'VCb = -'Vq .. 
~ ~ ~ 

£Qdd~ - -FL z.f.(Cb) - -f(Cb), 
"*' • ~~ 

~ 

which defines a first-order ordinary differential equation in Cb for 

Q. 

In all of the work that follows, we assume that the Stokes-

Einstein equation 

D. = RIu. 
~ ~ 

holds. We write a nondimensional electrostatic potential as 

The equation for the flux becomes 

N. = -z.D.c.'V¢ - D.'Vc., 
~ ~ ~ ~ ~ ~ 

(11) 

or in terms of the electrostatic potential 

N. = f.(¢)'V¢, 
~ ~ 

(12) 

where 

(13) 

Also, 

f 



.. 

.". 

-FL z.f. (t/» 
• 1. 1. 

1. 

-f(t/» . 

15 

(14) 

We now show that the assumption we have used, that the concen-

tration is a single-valued function of the electrostatic potential, 

results in a consistent solution by determining the concentrations 

that result from the system-specific calculation. This section is 

important also because the methods we develop here are used in all 

system-specific calculations. These methods are an essential part of 

the quasi-potential transformation. 

Central to the system-specific calculation is a theorem 

presented by Gibbs [8] (page 39, Theorem 81): 

If throughout a certain space (which need not be continuous 
and which may extend to infinity) 

V·Vu - 0, 

and in all the bounding surfaces the normal component of Vu 
vanishes, and at infinite distances within the space (if such 

there are) r2~~ - 0, where r denotes the distance from a 

fixed origin, then throughout the space 

Vu .., 0, 

and in each continuous portion of the same 

u '"" constant. 

We have shown that each species flux may be written as the gra-

dient of a potential. Since the gradient is a linear operator, it 

follows that any linear combination of fluxes may be written as the 

gradient of some single potential. If the species does not partici-

pate in a homogeneous reaction, or if the fluxes in the linear combi-

nation are combined in such a manner that the same linear combination 
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of the species material balances results in the generation terms 

being eliminated from the resultant "combined" material balance, then 

the species flux, or the resultant flux formed by the linear combina-

tion, is solenoidal. For brevity, in the discussion that follows, we 

shall refer only to the flux of a single species, in the understand-

ing that the conclusions drawn will be equally applicable to the 

resultant flux formed by the linear combination. 

On all insulating surfaces the normal component of the species 

flux must be zero. If the electrode is not a source of this species, 

that is, the species does not participate in the heterogeneous reac-

tion, then on the electrode surface the normal component of the 

species flux is also zero. This satisfies the condition in the 

theorem as regards [finite] bounding surfaces. The condition 

required at infinite distances is slightly more subtle. Consider 

that in any system, as one progresses farther and farther from the 

electrode, the electrode looks more and more like a. point source. 

Choose a finite distance R, very far from the electrode but short of 

infinity. To an observer beyond R the field generated by the elec-

trode will look approximately similar to that generated by a hemi-

sphere centered on the electrode, passing through R. Solving 

Laplace's equation V·Vu for a spherical source one finds that 

2du 
r dr = constant. If the electrode is not a source, that is the nor-

mal component of Vu is zero on the electrode, and if it is zero on 

all other boundaries at a finite distance from the electrode as well, 

then it also zero at the spherical surface, so that the spherical 
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2du 
surface is not a source and one finds that r -­dr 

o. This approxima-

tion becomes exact as R tends to infinity, and we see that the condi­

tion that r 2du 
= 0 at infinity is satisfied if there is in fact no 

dr 

"source," that is, the normal component of Vu is zero on all boun-

daries at a finite distance, and there are no external fields present 

in the system which may cause Laplace's equation for the potential 

(as defined above) to be inapplicable. 

We have not shown conclusively that the existence of an external 

field precludes the applicability of the theorem of Gibbs; rather we 

have shown that the theorem holds in the absence of external fields. 

In all the work that follows, we assume that the only field present 

is due to the potential difference between the electrode and the 

counterelectrode at infinity and that there are no external fields 

- h h d- - h 2du 0 present l.n t e system -- t e con l.tl.on t at r dr - at infinity 

holds, since u will always be defined such that the normal component 

of Vu is zero on all finite boundaries_ Note that if the condition 

on the electrode (and naturally on the insulating plane) is that the 

normal component of Vu is zero, and if Vu represents a flux, then at 

a counterelectrode at finite distances the normal component of Vu 

must be zero, to preserve the steady-state in the system. 

Ionic species that do not participate in any of the homogeneous 

reactions (if such there are) or in the heterogeneous reaction we 

call stagnant, in that their fluxes are zero at all points in the 

system. For any species that does not participate in homogeneous 

reactions, the material balance equation reduces to 



V·N = 0 
i ' 

or writing this in terms of a potential 

V·Vq. -= O. 
~ 
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If this species does not participate in the heterogeneous reaction, 

then the normal component of its flux is zero at all finite surfaces, 

and if the counterelectrode is at infinity, the condition that 

2du r dr - 0 holds by.the reasoning above. Therefore, whether the system 

is finite or infinite, the theorem of Gibbs holds, and it follows 

that 

everywhere. Hence, 

For stagnant ions then 

c. 
~ 

N. = 0, 
~ 

-z.~ 
co ~ 

c.e 
~ 

(15) 

where the integration constant has been evaluated using the condition 

co 
that when ~ = 0, c. -= c. (at infinity). We see that the concentra-

~ ~ 

tion of any stagnant species satisfies a Boltzmann distribution. 

If there are no homogeneous reactions, then the only nonstagnant 

ions are those that participate in the heterogeneous reaction. We 

choose arbitrarily one of the ions to be the principal reactant and 

relate the concentrations of the other nonstagnant species to the 

concentration of the principal reactant. Let the heterogeneous reac-

tion be 



.. 

s.A. = ne 
J J 
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where the arbitrarily chosen principal reactant is designated by the 

subscript R, and the other ions that participate in the heterogeneous 

reaction are designated by the subscript j; we want to write all the 

C
j 

as functions of c
R

' and cR as a function of ¢ which will give us 

all the species concentrations as functions of the electrostatic 

potential. For each ion j we may write a flux defined as 

The normal component of this flux must be zero at the electrode sur-

face to satisfy the stoichiometry of the heterogeneous reaction. It 

must also be zero at all insulating surfaces, and, if the coun-

tere1ectrode is a finite distance from the working electrode, the 

above stoichiometry must be true there as well, so as to preserve the 

steady-state in the system. The normal component of this flux is 

then zero at all finite surfaces. Since NR and N. are both individu­
J' , 

ally gradients of a potential, it follows that a linear combination 

of these two fluxes must also be the gradient of some potential. The 

theorem of Gibbs then tells us that 

s. 
J 

N.--N =0 
J sR R 

everywhere. From this result and equation 12 

and from equation 13 
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-DJ[ZjCj + ::~ + ;; DR[ZRCR + ~j'] -o. 

dc. 
Solving for ~, we have 

dc. s. DR[ dCRj 
~ - -z jC j + ~ D j Z RC R + dtP • 

Upon combining each of these equations with the Boltzmann distribu-

tion for any stagnant ions present in the system, with the equation 

of e1ectroneutra1ity, and with a differentiated equation of e1ec-

troneutra1ity 

dc. 

~ Z i dtP~ = 0, 
~ 

we obtain a set of coupled initial-value, first-order, ordinary dif-

ferentia1 equations which may be solved by simple numerical tech-

niques, to obtain a set of species concentrations as single-valued 

functions of electrostatic potential, consistent with our original 

assumption. Equation 14, the differential equation for Q as a func-

tion of tP may be added to this set and solved simultaneously, to 

obtain the quasi-potential. The initial values of concentration to 

be used to solve this set of equations are those at infinity, where 

the electrostatic and quasi-potentials are zero. 

The arithmetic becomes much more involved when homogeneous reac-

tions occur in the system; however, the method remains essentially 

the same. The material-balance equations are combined linearly to 

eliminate the generation terms. Those particular material-balance 

equations eliminated in this procedure are replaced by the applicable 

equilibrium relationships. If any of the species present in the 
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combined material balance participate in the heterogeneous reaction, 

then the same techniques as used above are applicable; however, the 

solenoidal flux vector is defined by the combined material balance of 

both the ion in question and that of the principal reactant. This 

can be involved, particularly if the principal reactant participates 

in the homogeneous reactions. If none of the ions present in the 

combined material balance participates in the heterogeneous reaction, 

then the solenoidal vector defined by the combined material balance 

is zero everywhere. 

We have shown the consistency of using the assumption that the 

concentrations are single-valued functions of the electrostatic 

potential. We could also show, in exactly the same manner, that the 

electrostatic potential and species concentrations may be written as 

single-valued functions of the concentration of a single, arbitrarily 

chosen ionic species. This may be useful in two situations - in 

nonelectrochemical systems where the electrostatic potential is con­

stant, or not defined, throughout the system and hence irrelevant to 

the mass transfer, and in systems of binary electrolytes where, at 

limiting-current conditions, the electrostatic potential is infinite 

at the disk surface. 

The methods of determining the species concentrations as func­

tions of the electrostatic potential, essential to the system­

specific part of the calculation, are written rather generally, and 

may appear vague. We hope that these ideas will be clear when they 

are applied to specific systems later in this work. The generality 

., 
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of these methods suggests that a general algorithm may be written to 

deal with the system-specific part of the calculation, for any system 

consisting of an arbitrary number of ions and homogeneous reactions. 

As of yet such an algorithm has not been written; it is set aside as 

future work. We now derive general equations for a binary electro-

lyte system having one stagnant ion. 

Binary Systems: There can be no homogeneous reaction taking 

place in a binary system, without the creation of another phase, 

since this would necessitate the presence of more than two species in 

solution. Often, only one ion will participate in the heterogeneous 

reaction; therefore the other ion must be stagnant. We designate the 

stagnant ion to be species 2, and the ion that participates in the 

heterogeneous reaction we designate to be species 1. 

ion obeys a Boltzmann distribution 

co -z2tP 
c 2 "" c 2e 

The condition of electroneutrality demands that 

and hence 

-z tP 
co 2 

c l - cle 

hence 

tP c= - 1 [e1
] -In- . 

z2 co c
l 

Since we are using a species concentration as the 

The stagnant 

(16) 

(17) 

(18) 

independent 
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variable, we write the flux as 

N . .., h.(c.)'Vc., 
~ ~ ~ ~ 

and from equation (11) 

h.(c.) - -D.[Z.C. ddf/J + 1]. 
~ ~ ~ ~ ~ c. 

~ 

In this particular case 

therefore 

From the definition of the transference number, 

t. 
~ 

2 z.u.c. 
~ ~ ~ 

2 I z.u.c. 
j J J J 
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and the definition of the diffusion coefficient of the salt t in a 

binary electrolyte system 

we find an expression for the diffusion coefficient of the ionic 

species 1, in terms of these tabulated properties 

t This salt diffusion coefficient dates back to Nernst, and is 
defined by Newman [5]. It is an observed diffusion coefficient that 
is a compromise between the individual diffusion coefficients of the 
anion and the cation, and is the diffusion coefficient that is 
normally reported in the literature on experimental investigations of 
diffusion in binary electrolytes. 
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Z2 D 
(z2 - zl) (1 - t 1 )· 

substituting we obtain 

(19) 

If the transport properties are considered to be constant, then we 

can integrate this equation analytically to obtain 

after applying the boundary condition that Q is 0 when ¢ is 0 (at 

infinity). If we wish to account for the variations in the transport 

properties, then we need to integrate this differential equation 

numerically, using the boundary condition given, and substituting the 

tabulated values for the transport properties as functions of concen-

tration. Since the equation governing the concentration of an ionic 

species in a binary electrolyte derived from dilute-solution theory 

is very similar to that derived from concentrated-solution theory 

(see Newman [5], page 269), the solution found here is similar to 

that that would be found using concentrated-solution theory. 

We close this section by checking that the number of equations 

used matches the number of unknowns; namely, that our problem is 

properly specified. We start out with n+2 equations, where n is the 

number of species present in the system, excluding the solvent. 

These n+2 equations are the n equations of material balance (equa-

tions 1), the equation of e1ectroneutrality (equation 2), and the 

vector equation defining the vector current density (equation 3). 
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The number of unknowns is n+2 -- the n concentrations, the electro­

static potential, and the vector current density. To this set we add 

an unknown -- the quasi-potential. In so doing, we add one more 

equation since we define the quasi-potential by setting its gradient 

to be the negative of the vector current density (equation 9). Thus, 

we have n+3 equations in n+3 unknowns. 

We used all the equations above to show that the divergence and 

the curl of the current density are zero, and that, therefore, the 

quasi-potential satisfies Laplace's equation. We include Laplace's 

equation for the quasi-potential in our set to bring the number of 

equations to n+4, of which only n+3 are independent. As we see in 

the system-specific part of the calculation, we do not use the 

material balance for the principal reactant directly, hence we elim­

inate this equation, in favor of Laplace's equation which it was used 

to derive. The vector equations defining the vector current density 

in terms of the fluxes and the quasi-potential are combined to find 

the quasi-potential as a function of electrostatic potential. Since 

only 2 of the resulting 3 equations are independent, we can eliminate 

one of the vector equations defining the vector current density. 

We thus have n+3 equations (n-l material balances, electroneu­

trality, Laplace's equation for the quasi-potential, a vector equa­

tion defining the vector current density, and an equation relating 

the quasi-potential to the electrostatic potential) in n+3 unknowns 

(n species concentrations, the quasi-potential, the electrostatic 

potential, and the vector current density). Laplace's equation (when 
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solved with the relevant boundary conditions, some of which may come 

from the system-specific part of the calculation) constitutes the 

geometry-specific part of the problem. All the other equations con-

stitute the system-specific part of the calculation. 

3.0 Boundary Conditions 

In the problems pursued here, we ignore any effect of the coun-

terelectrode by assuming it to be a hemisphere located infinitely far 

from the working electrode. This is not necessary to the treatment, 

but is convenient as it simplifies the situation considerably. It is 

normally reasonable to ignore the presence of the counterelectrode, 

as most of the variations of concentration and potential take place 

in regions close to the working electrode. We set the electrostatic 

potential infinitely far from the electrode surface to zero. At 

infinity, the concentration of the individual species are set to 

their bulk values, and we set the value of the quasi-potential to be 

zero. 

The rest of the necessary boundary conditions allow us to solve 

Laplace's equation for the quasi-potential. On all insulating sur-

faces, the current normal to the surface is zero. Since i = -VQ, 

i =-QQ=O 
n an ' 

where QQ is the component of the gradient normal to the surface. an 

The boundary conditions at the electrode surface depend on the 

physical situation in the system. We outline here the boundary 
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conditions used in this work, and the values that the quasi-potential 

or its derivative assume at the surface for each condition. For a 

more comprehensive treatment of these types of boundary conditions 

see Newman [5]. West and Newman [9] have written a helpful review on 

solving for current distributions governed by Laplace's equation. 

They discuss the boundary conditions as well as means of solving 

Laplace's equation subject to these boundary conditions. This paper 

(and the references it provides) is particularly .valuable to this 

work, as many of the methods outlined there are directly applicable. 

1) Limiting-Current Distribution: The limiting-current distribu­

tion occurs when the concentration of the principal reactant partici­

pating in the electrode reaction becomes zero adjacent to the elec-

trode. The current 1s limited by the transport of reactant to the 

surface, hence the name, mass-transfer-limited current or simply, 

limiting-current. It is significant in that it is the maximum possi­

ble current that can be transferred in the system, if no other 

heterogeneous reactions take place. Since lines of constant electro­

static potential are also lines of constant concentration and con­

stant quasi-potential, the quasi-potential becomes constant at the 

surface. This boundary condition, stated mathematically, is 

Qo - constant, 

where QO is the value of the quasi-potential at the electrode surface 

(just outside the electric double-layer). The indicated constant is 

to be determined from the first part of the solution, namely the 

system-specific part which generates the quasi-potential and 



concentrations as functions of the electrostatic potential. 

constant is independent of the geometry of the system. 
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This 

2) Uniform-Potential Distribution: When the surface overpoten­

tial is negligible, the potential adj acent to an electrode may be 

taken as uniform. Use of this boundary condition generates the max­

imum variation in current density across the surface of the elec­

trode. The problem generated by this boundary condition, when the 

quasi-potential transformation is used, is virtually identical to 

that when the current distribution is mass-transfer limited since an 

equi-electrostatic potential surface is also an equi-quasi-potential 

surface. Again, we find that 

Qo - constant, 

where the constant is obtained as in the limiting-current case. The 

limiting-current distribution case might be thought of as a specific 

case of the more general uniform-potential distribution case. 

3) Uniform-Current-Density Distribution: The opposite extreme of 

the constant-potential distribution case is the case when there is a 

uniform-current-density distribution across the surface of the disk. 

This case corresponds, usually, to very slow electrode kinetics, and 

when there is a constant concentration in the solution it can be 

shown that this condition is met for very small exchange-current den­

sities. While we have not shown that this condition is met generally 

for systems exhibiting concentration gradients, we investigate it 

nonetheless, since it is of some importance. This situation occurs 

obviously when the electrode surface is uniformly accessible to mass 
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transfer (consider a hemisphere embedded in an infinite insulating 

plane). The situation of a uniform-current-density boundary condi-

tion corresponds to the situation where the variation of electro-

static potential across the surface of the electrode is at a maximum. 

We state this mathematically as 

£Q an == constant, 

where the constant is the negative of the value of the current den-

sity at the electrode surface (usually specified). 

4.0 Geometry-Specific Calculations 

In this section we discuss the solutions of Laplace's equation 

subject to the boundary conditions listed in section 3.0. The solu-

tions discussed here are for a disk electrode and a hemisphere elec-

trode, both embedded in infinite insulating planes. For both systems 

the counterelectrode is considered to be a hemisphere located infin-

itely far from the electrode surface. As discussed briefly in sec-

tion 3.0, the boundary conditions on the electrode for the limiting-

current distribution and constant-potential distribution are very 

similar. In fact, the limiting-current distribution condition may be 

considered a special case of the constant-potential distribution con-

dition. It follows that the same method of solution of Laplace's 

equation is applicable to both cases. Since all solutions for the 

hemisphere will satisfy the condition of uniform-current-density dis-

tribution due to its spherical symmetry, no special solution is 



30 

required for the boundary condition of uniform-current-density dis­

tribution. It is evident that we have only three different methods 

of solution of Laplace's equation to consider the disk with 

uniform-potential distribution, the disk with uniform-current-density 

distribution, and the hemisphere at uniform-potential distribution. 

One of the important features of the quasi-potential transforma-

tion is highlighted here. We see that the methods of solving 

Laplace's equation are relevant to all electrode systems of the same 

geometry and boundary conditions, regardless of the specific electro­

lyte and solvent that are used in the system. Later in this work, we 

will use similar solutions of Laplace's equation to complete the con­

centration and potential distributions for both the acidic and binary 

copper sulfate systems. 

The other important feature we would like to point out is that 

solutions of Laplace's equation with electrochemical-type boundary 

conditions, such as those listed in section 3.0' and more complex 

polarization conditions (for example, the Butler-Volmer type boundary 

condition), have been extensively studied for decades. If one 

ignores the concentration gradients in a system, then the electro­

static potential in that system is governed by Laplace's equation. 

These solutions are not rigorously correct, but there exist many sys­

tems (example, well-stirred systems) where the actual behavior is 

closely approximated by these solutions, and for exceedingly complex 

systems, these solutions give an indication of the system behavior. 

While recognizing the shortcomings of their solutions, many authors 
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have solved Laplace's equation for the electrostatic potential, 

because the rigorous solution was too difficult or impossible to 

obtain. These solutions--primary-current distributions, secondary-

current distributions, and certain limiting-current distributions-­

are directly usable together with the quasi-potential transformation 

to obtain rigorous solutions for nonconvective systems. In this 

work, the methods of solution we use for the disk come directly from 

such previous work. It is beyond the scope of this thesis to provide 

a complete review of this previous work, because there are many hun­

dreds of papers detailing such work in the literature. We have found 

that the review of West and Newman [9], which we have previously 

cited, to be of use. Extremely useful was the work of Newman [10], 

which is a review of mathematical methods in electrochemical 

engineering. 

The Disk Electrode: For the disk we discuss the solutions of 

Laplace's equation for the constant-potential di,st~ibution and for 

the uniform-current-density distribution. 

Constant-Potential 

Laplace's equation V2~ 

Distribution: Newman [11] 

o for the disk electrode 

has solved 

in an infinite 

insulating plane with the countere1ectrode being a hemisphere infin­

itely far from the electrode sur'face, using rotational elliptic coor­

dinates 
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J 2 2 
r = a (1 + e )(1 - ~ ), 

where a is the radius of the disk. In this coordinate system, for an 

axially symmetric system, Laplace's equation takes the form 

aae[(l + e2)~~J + aa~[(l - ~2)~:J = 0, 
and the boundary conditions used by Newman take the form 

~ = ~o at e o (on the disk electrode) 

a~ = 0 at ~ = 0 (on the insulating annulus) 
a~ 

~ = 0 at e ~ (far from the disk) 

~ well behaved at ~ = 1 (on the axis of the disk). 

The method of separation of variables results in solutions in terms 

of Legendre functions. Since the equation and the boundary conditions 

are exactly the same for our system, the same solution applies 

Q/Qo -= 1 - (~) tan-Ie. (21) 

Newman [10] discusses the entire solution in more detail. 

We need to determine the value of QO' the value of the quasi­

potential at the disk surface. To do this we use the system-specific 

calculations. If the disk is at limiting-current conditions, the 

value of QO is found by evaluating Q when the concentration of the 

principal reactant is set to zero. For a uniform-potential-

distribution condition, the value of the electrostatic potential at 

the disk surface is given; Q
O 

is the value that Q assumes when the 

electrostatic potential assumes this value. 
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Of interest here is the determination of the radial current dis-

tribution on the disk surface. We find that 

i 
n (22) 

Integrating this equation over the disk surface and dividing by the 

area, we obtain for the average current 

i avg 
(23) 

It could also be shown that lines of constant '7 are what are 

termed current lines, in that they are similar to streamlines in 

fluid flow -- there is no flow of current across them. Furthermore, 

the values of '7 corresponding to a particular current line indicates 

the fraction of total current flowing through the electrolyte between 

the current line and the plane z - o. 

Constant Current Density Distribution: Nanis and Kesselman [12] 

have obtained solutions to Laplace's equation for the same disk 

geometry for a few different boundary conditions. A similar solution 

is discussed in detail by Wylie and Barrett [13] (example 7, page 

620), and our solution follows theirs closely. 

For an axially symmetric system, Laplace's equation in cy1indri-

cal coordinates is 



The boundary conditions in cylindrical coordinates have the form 

£Q -i for all r < a, Z - 0 (on the disk electrode) 
8z n 

£Q - 0 for all r > a, Z - 0 (on the insulating annulus) 
8z 

Q ~ 0 as r2 + z2 ~ 00 (far from the disk) 

Q well behaved at r - 0, all Z ~ 0 (on the axis of the disk). 
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After separating and applying the two radial boundary condi-

tions, we obtain 

where A is a constant resulting from the integration. Integrating 

over all possible values of ~ to obtain the most general form of the 

solution, in order to satisfy the boundary condition on the elec-

trode, 

co 

f -~Z 
Q(r,z) - A(~)JO(~r)e d~. 

o 
We want to satisfy the boundary condition 

where 

co 

£Q f 8z(r,0) - F(r) - - A(~)~JO(~r)d~, 
o 

if r < a 

if r > a 

The integral above may be recognized as one member of the Hankel 

transform pair for Bessel functions of order v - 0, therefore 

". 



which reduces to 

CXl 

A(A) = -f rF(r)JO(Ar)dr, 
o 

The complete solution for the quasi-potential is then 

Q(r,z) - ai n 
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(24) 

The Weber-Schafheitlin formula (see Abramowitz and Stegun [14]) 

allows one to find the potential distribution on the disk surface and 

on the insulating plane (see Nanis and Kesselman). These results are 

,O<r<a 

Q(r,O) - (25) 

,a<r<CXl 

where K(m) is the complete elliptic integral of the first kind and 

E(m) is the complete elliptic integral of the second' kind as defined 

by Abromowitz and Stegun 

and 

1 
K(m) = f [(1 - ~2)(1 - m~2)]-~d~ 

o 

To obtain the concentrations, potential, and current distribu-

tions in the entire region of electrolyte, the integral needs to be 

evaluated in the form given. We expect that the integral is 
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convergent since each of the terms within the integrand tends to 0 as 

A tends to~. The integral may be evaluated as Q(~) when Q(A) is the 

solution of 

subject to the initial condition 

Q = 0 at A = O. 

This may be solved relatively simply, using the Runge-Kutta method. 

We find 

lim f(>') = 

A-O 

2. 
a ~ 

n 
2 

by using l'Hopital's rule. This value is necessary when the Runge-

Kutta technique is used. 

The Hemisphere Electrode: The solution for the hemisphere elec-

trode is simple. Laplace's equation in spherical coordinates, where 

the system is spherically symmetric, assumes the form 

The boundary conditions are 

Q = QO at r a (on the electrode surface) 

Q - 0 as r - ~ (far from the electrode), 

where a is the radius of the hemisphere. The solution is 

a 
r' (26) 



and the current density on the electrode surface is 

i 
n a' 

which is also the average current density. 

5.0 Binary Copper Sulfate 
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(27) 

The mechanism of the copper deposition reaction is given by 

Mattsson and Bockris [15] and has been confirmed by numerous authors 

including Bertocci [16] and Brown and Thirsk [17] 

Cu2+ + e ~ Cu+ (slow) 

Cu+ + e C (f ) ~ u ast. 

All of these authors investigated the. mechanism in dilute sulfuric 

acid solutions. We are unaware of a study of the deposition reaction 

in nonacidic solutions, but since there is no obvious reason to 

suspect that there should be any difference in the mechanism in the 

absence of acid, we accept this as being the mechanism of the deposi-

tion reaction in the binary aqueous copper sulfate system, as well as 

in the acidic aqueous copper sulfate system. 

As previously indicated, we are unable to use the quasi-

potential transformation to solve a system which has two independent 

heterogeneous reactions taking place at the same time. We assume 

therefore, that the reaction of the cuprous ions to form metallic 

copper occurs rapidly, and that there is no diffusion of cuprous ions 

away from the electrode surface. We are assuming that the cuprous 
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ions do not exist as an independent ionic species in the solution. 

Using this assumption, we write the deposition reaction as 

Since the second reaction in the sequence has been measured as being 

much faster than the first reaction, it is a fairly good assumption 

to write the deposition reaction in this form, and we shall use this 

form in the two systems we study here. 

The first system we discuss is the binary copper sulfate solu-

tion, with the copper depos i ting on a copper electrode. We assume 

that the copper sulfate salt is completely dissociated into cupric 

and sulfate ions; there are no cuprous ions present in the solution. 

The equations we derived for binary electrolytes in section 2.0 are 

directly applicable here. From equation 19 

where we have adopted the convention of that section'by designating 

the cupric ions as species 1 and the sulfate ions as species 2. 

If we assume that the transport properties do not vary over the 

range of concentrations from that in the bulk to that adjacent to the 

surface, then equation 20 applies 

otherwise we need to insert correlations for the transport properties 

as functions of concentration into the differential equation before 

integrating. 
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There is a large amount of data on the diffusion coefficient of 

the copper sulfate salt and the transference number of the cupric ion 

available in the literature. The paper by Miller et al. [18] pro-

vides a critical review of the diffusion-coefficient data then avail-

able. Since there is not a large amount of data that have been 

reported since then, and the data that have been reported since are 

not necessarily of greater accuracy, we choose to use the values of 

the diffusion coefficients reported in that paper. They used cubics 

and quadratics in the square root of concentration to fit the data 

over 3 separate data ranges. These correlations are 

105D - 0.858 - 4.74668cl / 2 + 54.1829c - 351.636c3/ 2 

+ 1113.06c2 - 1348.34c5/ 2 (0 ~ c ~ 0.007), 

105D = 0.76408 - 1.l6200cl / 2 + 2.59446c - 2.90l68c3/ 2 

(0.007 < c ~ 0.07), 

and 

105D = 0.70490 - 0.50229cl / 2 + 0.17844c (0.07 < c < 1.28), 

h D •• 2/ d .. 1 dm- 3 were 1S 1n cm s an c 1S 1n mo. . In all of the work done 

here we have set the maximum bulk concentration of CuS0
4 

to be 1.40 

-3 
mol.dm t which allows us to observe the maximum variations in con-

centration and potentials, subj ect to the concentration of CuSO 4 

-3 staying below the limit of solubility (l.4083 mol.dm ). We feel 

confident in using the diffusion-coefficient correlation above the 

indicated range of applicability because Miller et al. indicate that 
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the estimated error in the values of the diffusion coefficient 

obtained from these correlations above a CUS04 concentration of 1.28 

mo1.dm- 3 is less than 0.3%; a value we have confirmed. 

The transference-number data are taken from Pika1 and Miller 

[19] and are correlated as a quadratic in the square root of concen-

tration 

~ t1 ~ 0.4069 - 0.1557c + 0.02551c, 

-3 
where, again, c is in mo1.dm . 

The values of these properties, when averaged between CuS04 con­

-3 
centrations of zero and 1.40 mo1.dm (the value of CUS0

4 
concentra-

tion in the bulk) are 

-5 2 
D == 0.436 x 10 cm Is 

avg 

and 

t1 == 0.302. ,avg 

It is believed that it is more realistic to use these average values 

in the constant-physica1-properties model, rather than those at 

infinite dilution. The quasi-potential evaluated with constant phy-

sica1 properties is given by 

Q - 0.12054c1 - 0.16876 (Aim), 

-3 where c
1 

is in mo1.dm . When the variation of the physical proper-

ties is accounted for, the equation must be solved numerically. We 

use a fourth-order Runge-Kutta algorithm to evaluate the quasi-

potential. The pertinent computer programs are listed in Appendix A. 
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Figure 1 shows the concentration and electrostatic potential as 

functions of the quasi-potential for both the variable- and 

constant-physical-property cases. For the limiting-current and 

uniform-potential distributions, we are interested in the maximum 

current that can be passed. Figure 2 shows the variation of the 

value of the quasi-potential on the disk surface with changes in the 

bulk concentration of CuS0
4

. The value of the average current den­

sity is directly related to the value of the quasi-potential on the 

surface by equations 23 and 27. Note that the value of the average 

current density depends only on the system-specific part of the cal­

culation through Q
O 

(independent of the geometry), and depends on the 

geometry through the coefficient of Q
O 

in equations 23 and 27. 

The results of the system-specific part of the calculation shown 

in figure 1 are combined with the results of the geometry-specific 

calculations ---- the solutions of Laplace's equation for the disk and 

the hemisphere at constant-potential distribution~ equations 21 and 

26 ---- to give the concentration and electrostatic potential as func­

tions of the spatial variables. These results are displayed in fig­

ure 3 and figure 4. We have used these results to generate the 

values of the concentration and electrostatic potential as functions 

of the cylindrical coordinates rand z, which has enabled us to gen­

erate the two-dimensional pictures of the concentration and current 

distributions over the disk and the hemisphere, shown in figures 5 

and 6. The values given on these figures are the actual values of 

concentration generated by the solution of the equations. 
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Figure 2. Quasi-potential at the surface of the electrode as a function of the concentration 

of CuS04 in the bulk of the solution, in binary CuS04 solution at limiting-current 

conditions. iavg = 4QoI7ra for the disk, and iavg = QoIa for the hemisphere, where a 

denotes the radius of the electrode. 
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For uniform-current-density distributions, one of the properties 

we are interested in is the variation of the electrostatic potential, 

adjacent to the electrode, just outside the double-layer. This is 

shown in figure 7 with the value of the current normal to the elec-

trode set to various fractions of the average limiting-current den-

sity. 

6.0 Acidic Copper Sulfate 

We study this system to illustrate better the means of treating 

homogeneous reactions with the quasi-potential transformation. It 

also gives us an opportunity to see the effect of supporting electro-

lyte on the potential drop in the system. The deposition reaction 

has been discussed in section 5.0. The homogeneous reaction that 

must be considered here is the incomplete dissociation of bisulfate 

ions HSO~ 

- + 2-
HS04 ~ H + S04 ' 

and we assume that this reaction is at equilibrium. 

Young et a1. [20] used Raman spectroscopy to measure the equili-

bria present in, among others, aqueous solutions of H2 SO 4. From 

their measurements, it would appear safe to assume that for solutions 

more dilute than 10 M, all of the H
2

S0
4 

is completely dissociated 

+ - 2-
into H , HS04 , and S04 ions, and that there is no H

2
S0

4 
present in 

the system in molecular form. t In keeping with the assumptions 

t These authors could not measure the presence of any molecular 
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implicit in dilute-solution theory, we ignore the interactions 

between the ions in the solution and assume that the behavior of the 

H
2

S0
4 

is the same when CUS0
4 

is present. 

The mass transfer in this system has been investigated previ-

ously for the rotating disk and diffusion cell configurations by 

Hsueh and Newman [21]. They used the following relationship between 

the apparent dissociation constant 

c C 
H+ S02-

4 K' ... ----'--

and the thermodynamic dissociation constant 

f f 
H+ S02-

K _ K' ___ 4-,--
f 

In(K'/K) 

HS04 

5.29 I~ 
r 

1 + 0.56 I~' 
r 

where K = 0.0104 mol.dm-3 and I is the true ionic strength, 
r 

I 
r 

2 z .c .. 
~ ~ 

(28) 

Hsueh and Newman assumed that K' remained constant with respect to 

ionic strength, and hence with respect to position, and assigned to 

it its value at infinity. In this work, we allow K' to vary with 

H
2

S0
4 

at concentrations less than 14 M. The~ldo point out that this 

may be due to the overshadowing of the 910 cm line, and that H
2

S0
4 

may exist in molecular form in systems as dilute as 12 M, or even 10 
M. This is not of particular concern, since the systems we work with 
are around 2 M. 
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ionic strength, which varies with position; or more specifically, 

with electrostatic potential. In some of the results presented here 

we shall show the effect of assuming K' to be constant with respect 

to position. 

In this system we ignore the effects of variations in the trans­

port properties. As is evident, there are two concentrations that 

can be independently altered within the limits of CUS04 solubility, 

these being the concentration of H
2

S0
4 

and CUS0
4 

in the bulk solu­

tion. There are four ionic species present, and the diffusion coef­

ficient of each species depends on the interaction of that species 

with the other three and the solvent. One could speculate on using a 

method similar to that used to correlate the dissociation constant; 

by accounting for the effect on the activity of each ion due to the 

presence of the other ions by a correlation based on the ionic 

strength. However, the viscosity also plays an important role in 

determining the value of the diffusion coeffici~nt~ The level of 

complexity that would be introduced by accounting for the viscosity 

as well as the activity changes would defeat the purpose of using 

dilute-solution theory instead of concentrated-solution theory. This 

case illustrates the ambiguities inherent in using dilute-solution 

theory with any solution other than a binary solution, which is a 

special case in that the equation governing mass transfer derived 

from dilute-solution theory is similar in form to that derived using 

concentrated-solution theory (see Newman [5]). As mentioned previ­

ously, it is believed that the quasi-potential transformation can be 
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used with concentrated-solution theory, and that has been left to 

future work. 

The diffusion coefficients to be used in this work are taken 

from Newman [5], and are those at infinite dilution 

D. (10-5 2 
i species cm Is) 

~ 

1 Cu2+ 0.7188 

2 S02-
- 4 

1.065 

3 H+ 9.312 

4 HSO: 1.331 

The one further physical consideration is that the solubility of 

CUS04 decreases with increasing H
2

S0
4 

concentration. The solubility 

data of Goodwin and Horsch [22] indicates that the solubility of 

CUS0
4 

is at least 0.9 mo1.dm- 3 
at a H

2
S0

4 
concentration of 1. 50 

-3 mol.dm- 3 d an goes up to 1.4083 mol.dm at zero H
2

S0
4 

concentration 

centration 

-3 
mol.dm . 

In this work, the results we show are for a CUS0
4 

bulk 

-3 
of 0.50 mol. dm and a H

2
S0

4 
bulk concentration of 

The material balance equation for species 2, 3, and 4 are 

-V·N + R -= 0 
2 ' 

-V·N + R = 0 
3 ' 

and 

con-

1.50 
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-V.N4 - R = O. 

Adding and combining, we get 

V· (N + N ) = 0 
2 4 

and 

and by the theorem of Gibbs, since the normal components of N2 , N3 , 

and N4 are 0 at all finite boundaries, 

and 

everywhere. Substituting equations 12 and 13 we find 

and 

The equilibrium relationship is equation 28 

K' 

These three equations, together with the equation of electroneutral-

ity and equation 14 (after substituting equation 13) constitute a set 

of five first-order, ordinary differential equations for the five 

unknowns (c
l

' c
2

' c
3

, c4 ' and Q) in the electrostatic potential ¢. 

The initial values required to solve for the unknowns are their 
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values at infinity, where ¢ is zero. These values are obtained from a 

root-finding procedure, utilizing Newton's method, from which we find 

K' and all the concentrations at infinity. This set of equations has 

been solved by finding the first derivatives (we need to differen­

tiate the equation of electroneutrality) and using the fourth order 

Runge-Kutta algorithm. The computer program used to solve this prob­

lem is shown in Appendix A. 

Figure 8 shows the values of the concentrations and the electro­

static potential as functions of the quasi-potential. Figure 9 shows 

the value of the quasi-potential at the surface of the electrode as a 

function of the bulk concentration of CuS0
4

, for various values of 

bulk concentration of H
2

S0
4

, Since we chose the electrostatic poten­

tial to be the independent variable in the system-specific calcula­

tions, it became difficult to evaluate the quasi-potential at the 

surface for a bulk H
2

S0
4 

concentration of zero, as the electrostatic 

potential at the surface is infinite in a binary .electrolyte at 

limiting-current conditions. As with figure 2, these values can be 

used to obtain the values of the average limiting current. 

Figure 10 and figure 11 show the results of the combination of 

the system-specific calculations shown in figure 8 with the results 

of the geometry-specific calculations (equations 21 and 26) for the 

limiting-current distributions. They show the various concentrations 

and electrostatic potential as functions of the spatial variables. 

Shown also are the consequences of holding the dissociation constant 

constant with respect to position. We have not shown plots of these 
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concentrations and the current lines as functions of the cylindrical 

coordinates as we did in figures 5 and 6, since we expect them to 

look exactly the same as those figures with changes in the values of 

concentration or potential at the equi-potential lines. 

Figure 12 shows the variation of the electrostatic potential 

adjacent to the disk electrode at uniform-current-density conditions, 

for various fractions of the average limiting-current density. Except 

for the change of scale, this figure is virtually identical to figure 

7 for the binary CUS04 system. The curve that represents the case of 

the normal component of the current density being set to 0.785 of the 

average limiting-current density represents also the maximum current 

density that can be passed at uniform-current-density conditions. 

7.0 Effect of Migration on Limiting Currents 

Newman [5] has discussed in detail the effect of taking into 

account the contribution to the mass transfer by migration. A simple 

measure of the effect of migration is the ratio of the limiting 

current calculated with consideration of migration to the diffusion-

limiting current, which is the limiting current evaluated with diffu­

sion considered to be the only mechanism of mass transfer. t 

As we have seen for both the disk and hemisphere electrodes, the 

limiting current density normal to the electrode, for any system in 

tWe ignore the 
conditions necessary 
applicable. 

convective contribution 
for the quasi-potential 

in keeping with the 
transformation to be 
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Figure 12. Variation of electrostatic potential adjacent to the surface of a disk electrode of 

radius 10 J..l.m, in acidic CUS04 solution at uniform-current-density conditions. The limiting 

current density is -0.98462 Ncm2
• The bulk concentration of CUS04 is 0.50 moVdm3

, and 

that of H2S04 is 1.50 moVdm3
• 

• 
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which the quasi-potential transformation is applicable, takes the 

form 

where g(x) is a function of the geometry of the system and is 

obtained from the geometry-specific calculation. The subscript L 

indicates that the property is evaluated at limiting-current condi-

tions. We see, obviously, that 

where the subscript D indicates that the property is evaluated with 

diffusion considered to be the only mechanism of mass transfer. This 

function g(x) , appearing in the expression for the diffusion-limiting 

current, is identical to that appearing in the expression for the 

limiting current, since it is independent of the system-specific part 

of the calculation. It follows that 

for all systems in which the quasi-potential transformation is appli-

cable. Since the value of the quasi-potential on the surface of the 

electrode is a result of the system-specific calculation only, the 

effect of migration on the limiting current, written in this form, is 

independent of the geometry of the system . 

• 
In deriving the expression above for the diffusion-limiting 

current, we have defined the quasi-potential for the diffusion-only 

case in the same manner as we did for the case in which diffusion and 
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migration are considered: 

For the diffusion-only case, the equation for the flux of the princi-

pal reactant (equation 5) reduces to 

Faraday's law states that 

SR 
N ... - - i 

Rn nF n' 

at the electrode surface. We know that 

V·i -= 0, 

and from the material balance for species R, if R does not partici-

pate in any homogeneous reaction, 

Since each vector is individually solenoidal, we write that 

From the theorem of Gibbs and Faraday's Law, it follows that 

everywhere. Substituting for NRD and iD gives 

• 
Therefore we find that 
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For binary electrolyte systems we can replace the equation for 

DR by the expression involving the salt diffusion coefficient and the 

transference number of the principal reactant, given in section 2. 

Upon substituting, integrating, applying the boundary condition at 

infinity, and setting the concentration of the principal reactant to 

zero, its concentration at the electrode surface, we find for binary 

electrolyte systems 

where the subscript 2 refers to the counterion. From equation 19, 

for binary electrolyte systems 

It follows that 

for binary electrolyte systems. For the binary CUS0
4 

solution, 

specifically, 

For systems in which there are mUltiple electrolyte species 

present, we can obtain a general expression for the diffusion-

limiting current if the transport properties are considered to be 
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constant. Integrating the differential equation for QD' applying the 

boundary condition at infinity, and setting the concentration of the 

principal reactant to zero, we find 

It follows that for the acidic CUS0
4 

system, specifically, 

where c
R 

is the concentration of cupric ions. In section 6.0 we dis­

cussed the method used in determining Q
O

• We have two independent 

parameters in the system the bulk concentrations of sulfuric acid 

and copper sulfate. The parameter r used by Newman, 

<Xl <Xl 

cCuS0
4 

+ cH SO 
2 4 

gives an indication of how well a solution is supported. In figure 

13 we show the effect of migration as a function of the square root 

of r, for various values of CUS0
4 

concentration. It is desirable to 

use the square root of r since the effect of adding a little support-

ing electrolyte is very large. 

Newman presents results (figure 19.2, page 402) showing the 

effect of migration on limiting currents in the Nernst stagnant dif-

fusion layer, for the acidic KCl system. Since the Nernst stagnant 

diffusion layer is one of the geometries in which the quasi-potential 

transformation is applicable, this curve could easily be derived 

• 
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using similar methods to those used for the acidic CUS04 system. 

Newman also presents results (figure 19.13, page 415) for the acidic 

CUS0
4 

system for various values of the ratio of the bulk ionic 

strength at complete bisulfate dissociation, to the dissociation con­

stant evaluated at bulk conditions. Since the dissociation constant 

is not held constant in our system, this parameter is not really 

relevant, and it is difficult to make a direct comparison of the 

results. For all of the curves shown in figure 13, this parameter 

assumes values between 2.72 and 4.72; this gives an indication of 

where our system lies in the parameter space of Newman's figure 

19.13. 

Newman also shows the change of concentration of the supporting 

electrolyte between the bulk and the surface. In terms of the 

quasi-potential transformation, this can be interpreted as a result 

of the system-specific part of the problem and independent of the 

geometry. Thus, for all geometries satisfying the results of the 

quasi-potential transformation, Newman's results for the Nernst stag­

nant diffusion layer apply here and are different from those for two 

other classes of systems--the systems of the Lighthill transformation 

exemplified by the rotating-disk results and the transient systems 

(of the penetration model) exemplified by the results for a growing­

mercury drop and for transient transport in a semi-infinite stagnant 

diffusion layer. 

• 
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Summary 

The quasi-potential transformation transforms the set of coupled 

second-order, nonlinear partial differential equations governing mass 

transfer in an electrolytic system into Laplace's equation for the 

quasi-potential and a set of coupled first-order, nonlinear ordinary 

differential equations. The first part, namely Laplace's equation, 

is referred to as the geometry-specific part since it accounts for 

the geometry and is independent of the specific chemical (or electro­

chemical) system used. The latter part is independent of the 

geometry and is referred to as the system-specific part. The advan­

tagein using this transformation is that the resulting set of ordi-

nary differential equations is relatively easy to solve. Further-

more, there is a vast body of literature detailing solutions to 

Laplace's equation subject to electrochemical-type boundary condi­

tions. Conversely, the original set of governing equations can be 

difficult or impossible to solve without the introduction of restric­

tive conditions such as the neglect of migration as a mechanism of 

mass transfer. Another advantage is that the geometry-specific and 

system-specific parts are independent and can thus be readily com­

bined to make the solutions for many geometries and systems easily 

accessible. 

Certain conditions apply to the use of the quasi-potential 

transformation. The convective contribution to the mass transfer 

must be negligible. We have not been able to solve systems in which 

multiple heterogeneous reactions take place. In the problems we have 
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solved, it has been found necessary that all homogeneous reactions be 

equilibrated. The transformation applies only to steady-state or 

quasi-steady-state systems. 

We have expanded the work of Baker, Verbrugge, and Newman [1], 

by developing a theoretical framework for the quasi-potential 

transformation. Our basis is the assumption that the concentrations 

can be written as single-valued functions of the electrostatic poten­

tial (or the concentration of an arbitrarily chosen species). From 

this assumption we have shown that the stagnant species satisfy 

Boltzmann distributions in the solution, using a theorem given by 

Gibbs [8]. Baker, Verbrugge, and Newman start with the assumption 

that the stagnant species satisfy Boltzmann distributions in the 

solution, and use this to show that the concentrations can be written 

as single-valued functions of the electrostatic potential. While 

both approaches give the same result, the basis we have used is the 

more general in nature. 

These authors have also restricted the use of the transformation 

to systems in which only one ion participates in the electrode reac­

tion. We have discussed how the transformation may be used for an 

electrode reaction in which mUltiple ions participate. The examples 

they have treated are for arbitrary ionic species with no homogeneous 

reactions taking place, and the transport properties are considered 

constant. We have modeled the binary and acidic copper sulfate sys­

tems. For the binary system we have studied the effect of consider­

ing the transport properties to be variable and for the acidic system 

" 
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we have considered the incomplete dissociation of bisulfate ions. In 

so doing we have shown how the quasi-potential transformation may be 

used to treat homogeneous reactions and have examined the effect of 

considering the dissociation constant to be constant with respect to 

local ionic strength. We have also developed a geometry-independent 

expression that allows us to quantify the effect of migration on lim­

iting currents in systems to which the quasi-potential transformation 

is applicable. 
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Appendix A 

Computer Programs 

The programming language used here is SVS Pascal (Silicon Valley 

Software). The source code shown here uses only two constructs that 

are not part of the 1980 ISO standard. The variable type double is a 

double-precision real-type variable. The rewrite command, that 

enables the CPU to identify the data file, is a nonstandard con-

struct. The programs were compiled and run on a DUAL Systems Cor-

poration system 83/80, which has a Motorola 68451 CPU chip. 

The programs listed below are those programs that were used to 

obtain the values displayed in the various figures in this work. In 

order to avoid unnecessary duplication, all the variations on these 

programs have been omitted. 

PROGRAM CULM 

The program will return the values of the quantities of interest 

in the binary CUS04 solution, at constant potential distribution on 

the electrode, using the fourth-order Runge-Kutta algorithm. In the 

form shown, this program was used to obtain values for the limiting-

current case. It was altered slightly to generate values of the 

quasi-potential adjacent to the surface as a function of the bulk 

concentration of CUS04 (Figure 2). 

program culm (input, output, outdata, cu1mQO); 

const 
maxsize <= 150; 
pi <= 3.141592653589793; 



type 
glarray = array [l .. maxsize] of double; 

var 
cst, cO, Qst, temp: double; 
n, I : integer; 
c, Q, psi, phi, r : glarray; 
outdata, cu1mQO : text; 

procedure rk4 (xst, xfi, yst : double; 
n : integer; 
var x, y : glarray); 

var 
k1, k2, k3, k4, h double; 
I : integer; 

function f(x, y : double) 

var 
D, tl, rootc double; 

begin {f} 
rootc :- sqrt(abs(x)); 
if x <= 0.00702 then 

double; 
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D :- (0.858+rootc*«-4.74668)+rootc*(54.1829+rootc*«-351.636) 
+rootc*(1113.06+rootc*(-1348.34))))))*ld-5 

else if x <- 0.07002 then 
D :- (0.76408+rootc*«-1.16200)+rootc*(2.59446+rootc* 

(-2.90168))))*ld-5 
else 

D :- (0.70490+rootc*«-0.50229)+rootc*0.17884))*ld-5; 
tl := 0.4069+rootc*«-0.1557)+rootc*0.02551); 
f :- 2*96487/10*D/(1-t1) 

end; {f} 

begin {rk4} 
x[l] :- xst; 
y[l] := yst; 
h := (xfi-xst)/n; 
for I := 2 to (n+1) do 

begin 
k1 :- h * f(x[I-1], y[I-1]); 
k2 :- h * f(x[I-1]+h/2, y[I-1]+k1/2); 
k3 := h * f(x[I-1]+h/2, y[I-1]+k2/2); 
k4 := h * f(x[I-1]+h, y[I-1]+k3); 
y[l] := y[I-1]+k1/6+k2/3+k3/3+k4/6; 
x [ I ] : = x [ I -1 ] +h 

end {for} 
end; {rk4} 



begin {culm} 
rewrite (outdata, 'culm.dat'); 
rewrite (culmQO, 'culmQO.dat'); 

cst :~ 0.00; 
cO :- 0.00; 
Qst :~ 0.00; 
n :-= 140; 

while cst <= 1.40002 do 
begin 

rk4 (cst, cO, Qst, n, c, Q); 
writeln (culmQO, cst,' Q[n+l]); 
cst :- cst + 0.1 

end; {while} 

cst :- 1. 40; 

for I :- 1 to (n+l) do 
begin 

phi[I] :- 0.5*0.02569*ln(c[I]/cst); 
temp :- pi/2*(1-Q[I]/Q[n+l]); 
psi[I] :- sin(temp)/cos(temp); 
r[I] :- (1.Od-5*Q[n+l]/Q[I))/ld-6; 
writeln (outdata, c[I],' " phi[I], ' 

end {for} 
end. {culm} 

PROGRAM ACID 

psi[I],' " r[I]) 
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Q[I], , 

This program uses the fourth-order Runge-Kutta algorithm to 

solve for the quantities of interest in the acidic CUS04 solution, at 

constant potential distribution. As shown it evaluates these proper-

ties at the limiting-current distribution. As with program culm, 

this program had to be slightly modified to obtain the values of the 

quasi-potential on the surface as a function of bulk concentration of 

CuS04 , as shown in figure 9. 

program acid (input, output, outdata); 



const 
eps = 1. Od-12 ; 
pi = 3.141592653589793; 
maxsize = 10000; 
Faraday = 96487; 
Debug = True; 

type 
glarray - array [1 .. maxsize] of double; 
runge array = array [1 .. 4] of double; 

var 
cainf, cbinf, a, b, c, Kprime, Kprimeprev, Ir, h, 
rootlr, psi, r, val, derv, Dl, D2, D3, D4, temp, 
QO : double; 
cl, c2, c3, c4, phi, Q glarray; 
clk, c2k, c3k, c4k, Qk rungearray; 
n, I : integer; 
outdata : text; 

function dc2dphi (cl, c2, c3, c4, D2, D3, D4 double) 
: double; 

var 
Kint, Irint, rootlrint, M double; 

begin {dc2dphi} 
Irint := 0.5*(4*c1+4*c2+c3+c4); 
rootlrint := sqrt(Irint); 
Kint :~ 0.0104*exp(5.29*rootlrint/(1+0.56*rootlrint)); 
M :- Kint/2*c4*(2.645/(1+0.56*rootlrint)/rootlrint-

1.48l2/(1+0.56*rootlrint)/(1+0.56*rootlrint»); 
dc2dphi :- «c2/2/M+0.5)*(2*D2/D3*c2+c3)+(Kint/2/M+l.5) 

*(2*D2/D4*c2+c4))/(c3/2/M-4+(c2/2/M+0.5)*D2/D3 
+(Kint/2/M+l.5)*D2/D4) 

end; {dc2dphi} 

function dc3dphi (c2, c3, D2, D3, dervc2 

begin {dc3dphi} 
dc3dphi := -2*D2/D3*c2+D2/D3*dervc2-c3 

end; { dc3dphi } 

function dc4dphi (c2, c4, D2, D4, dervc2 
: double; 

begin {dc4dphi} 
dc4dphi := -D2/D4*dervc2+2*D2/D4*c2+c4 

end; { dc4dphi } 

double) double; 

double) 

function dcldphi (cl, c2, c3, c4, dervc2, dervc3, dervc4 
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'e-' 

double) double; 

var 
Kint, Irint, rootlrint, M double; 

begin {dcldphi} 
Irint :- 0.5*(4*cl+4*c2+c3+c4); 
rootlrint :- sqrt(Irint); 
Kint :- 0.0104*exp(5.29*rootlrint/(1+0.56*rootlrint»; 
M :- Kint/2*c4*(2.645/(1+0.56*rootlrint)/rootlrint-

1.4812/(1+0.56*rootlrint)/(1+0.56*rootlrint»; 
dcldphi := dervc2*(c3/4/M-1)+dervc3*(c2/4/M-0.25) 

-dervc4*(Kint/4/M+0.25) 
end; {dc1dphi} 

function dQdphi (c1, c2, c3, c4, dervc1, dervc2, dervc3, 
dervc4, 01, 02, 03, 04 : double) : double; 

begin {dQdphi} 
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dQdphi :- Faraday/10*(2*01*(2*cl+dervc1)-2*02*«-2)*c2+dervc2) 
+03*(c3+dervc3)-04*«-c4)+dervc4» 

end; { dQdphi } 

begin {acid} 
rewrite (outdata, 'acid.dat'); 

{set diffusion coefficients} 
01 :- 0.7188d-5; 
02 :-= 1. 065d-5; 
03 :- 9.312d-5; 
04 :- 1. 331d-5; 

{free copper sulfate and sulfuric acid concentrations} 
cainf := 0.50; 
cbinf := 1.50; 

{solve for Kprime and concentrations at infinity} 
n :- 1; 
a :- 1.0; 
c :- 2*cbinf*(cainf+cbinf); 
c1 [n] :- cainf; 
Kprime :- 0.002; {guess value} 
Kprimeprev :- 5.0; 
{Newton's method} 
while (abs(Kprime-Kprimeprev»eps) do 

begin 
Kprimeprev :- Kprime; 
b :- -Kprimeprev-cainf-3*cbinf; 
c4[n] :- 0.5*(-b-sqrt(b*b-4*a*c»; 
c2[n] :- cainf+cbinf-c4[n]; 
c3[n) :- 2*cbinf-c4[n); 



Ir :- 0.5*(4*c1[n]+4*c2[n]+c3[n]+c4[n]); 
rootlr :~ sqrt(Ir); 
val := In(Kprimeprev/0.0104)-(5.29*rootlr)/ 

(1+0.56*rootlr); 
derv := 1/Kprimeprev+(2.645/(1+0.56*rootlr)/rootlr 

- 1.48l2/(1+0.56*rootlr)/(1+0.56*rootlr»* 
(1+b/sqrt(b*b-4*a*c»; 

Kprime := Kprimeprev-val/derv; 
if debug then 

writeln (Kprime) 
end; (while) 

(use Runge-Kutta to solve for concs. and Q) 
Q[n] :- 0.0; 
phi[n] :- 0.0; 
h :~ -0.001; 
while cl[n]>eps do 

begin 
c2k[1] :- h*dc2dphi(c1[n], c2[n], c3[n], c4[n], D2, D3, 

D4) ; 
c3k[1] :-= h*dc3dphi(c2[n], c3[n], D2, D3, c2k[1]/h); 
c4k[1] :- h*dc4dphi(c2[n], c4[n], D2, D4, c2k[1]/h); 
clk[l] := h*dc1dphi(c1[n], c2[n], c3[n], c4[n], 

c2k[1]/h, c3k[1]/h, c4k[1]/h); 
Qk[l] :- h*dQdphi(c1[n], c2[n], c3[n], c4[n], 

c1k[1]/h, c2k[1]/h, c3k[1]/h, c4k[1]/h, 
D1, D2, D3, 04); 

for I :- 2 to 3 do 
begin 

c2k[IJ :- h*dc2dphi(c1[n]+c1k[I-1J/2, 
c2[nJ+c2k[I-1]/2, c3[nJ+c3k[I-IJ/2, 
c4[nJ+c4k[I-1]/2, 02, 03, 04); 
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c3k[IJ :- h*dc3dphi(c2[n]+c2k[I-1]/2, c3[n]+c3k[I-l]/2, 
D2, 03, c2k[I]/h); 

c4k[I] :- h*dc4dphi(c2[n]+c2k[I-1]/2, c4[nJ+c4k[I-l]/2, 
02, 04, c2k[I]/h); 

clk[I] :- h*dcldphi(c1[n]+c1k[I-1]/2, 
c2[n]+c2k[I-1]/2, c3[n]+c3k[I-l]/2, 
c4[n]+c4k[I-1]/2, c2k[I]/h, c3k[I]/h, 
c4k[I]/h); 

Qk[IJ :- h*dQdphi(c1[n]+c1k[I-1]/2, c2[n]+c2k[I-1]/2, 
c3[n]+c3k[I-1J/2, c4[nJ+c4k[I-l]/2, 
c1k[I]/h, c2k[I]/h, c3k[I]/h, c4k[I]/h, 
01, 02, 03, 04) 

end; (for) 

c2k[4] :-= h*dc2dphi(c1[n]+c1k[3], c2[n]+c2k[3], 
c3[n]+c3k[3], c4[n]+c4k[3], 02, 03, 04); 

c3k[4] := h*dc3dphi(c2[n]+c2k[3], c3[n]+c3k[3], 02, 03, 
c2k[4]/h); 
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c4k[4] :~ h*dc4dphi(c2[n]+c2k[3], c4[n]+c4k[3], 02, 04, 
c2k[4]/h); 

c1k[4] :- h*dc1dphi(c1[n]+c1k[3], c2[n]+c2k[3], 
c3[n]+c3k[3], c4[n]+c4k[3], c2k[4]/h, 
c3k[4]/h, c4k[4]/h); 

Qk[4] := h*dQdphi(c1[n]+c1k[3], c2[n]+c2k[3], 
c3[n]+c3k[3], c4[n]+c4k[3], c1k[4]/h, c2k[4]/h, 
c3k[4]/h, c4k[4]/h, 01, 02, 03, 04); 

c1[n+1] :- c1[n]+c1k[l]/6+c1k[2]/3+c1k[3]/3+c1k[4]/6; 
c2[n+1] :- c2[n]+c2k[l]/6+c2k[2]/3+c2k[3]/3+c2k[4]/6; 
c3[n+1] :- c3[n]+c3k[l]/6+c3k[2]/3+c3k[3]/3+c3k[4]/6; 
c4[n+1] :- c4[n]+c4k[1]/6+c4k[2]/3+c4k[3]/3+c4k[4]/6; 
Q[n+1] := Q[n]+Qk[l]/6+Qk[2]/3+Qk[3]/3+Qk[4]/6; 

phi[n+1] :- phi[n]+h; 
n :-= n+l; 

if debug then 
writeln (n, phi[n], cl[n], Q[n]) 

end; {while} 

{use linear interpolation to find QO} 
QO :- Q[n-l]+(Q[n]-Q[n-l])/(cl[n]-cl[n-l])*(-cl[n-l]); 

{combine with geometry-specific calc. and write results} 
for I :- 1 to n do· 

begin 
temp :- pi/2*(1-Q[I]/QO); 
psi :- sin(temp)/cos(temp); 
r :- 1.Od-5*QO/Q[I]; 
writeln (outdata, phi[I], , 

end {for} 

end. {acid} 

PROGRAM CUUCOOSK 

'. c3 [I]. ' 
psi,' '. r) 

• cl[I], ,. ~. c2[I]. 
c4 [ I],' ',Q [ I]. ' 
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This program uses Newton's method and an implementation of the 

fourth-order Runge-Kutta algorithm, that is almost identical to that 

used in the program culm, to obtain the variation of electrostatic 

potential adjacent to a disk electrode, in binary CUS04 solution, as 

shown in figure 7. A variation of this program, using the 
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implementation of the fourth-order Runge-Kutta algorithm from the 

program acid, is used to obtain the analogous result for acidic CUS04 

solution, as shown in figure 12. 

program cuucddsk (input, output, outdata); 

const 
pi = 3.141592653589793; 
eps = 1. Od-6; 

var 
c, cold, phi, Q, a, ilim, frac, cinf, Qinf, inorm, 
r, rstep, g, Qdes : double; 
it, m, n, I : integer; 
outdata : text; 

function ellint (n : integer; x double) 

var 
xl : double; 

begin (ellint) 
xl :- I-x; 
if n -= I then 

double; 

ellint :- (1.38629436112+xl*(0.09666344259+xl*(0.03590092383 
+xl*(0.03742563713+xl*0.01451196212»»+(0.5+xl*( 
0.12498593597+xl*(0.06880248576+xl*(0.03328355346 
+xl*0.00441787012»»*ln(l/xl) 

else if n = 2 then 
ellint :- (1+xl*(0.44325141463+xl*(0.06260601220+xl*( 

0.04757383546+xl*0.01736506451»»+ 
(xl*(0.24998368310+xl*(0.09200180037+xl*( 
0.04069697526+xl*0.00526449639»»*ln(l/xl) 

end; {ellint} 

function dgdc(x double) double; 

var 
D, tl, rootc double; 

begin {dgdc} 
rootc :- sqrt(x); 
if x <- 0.00702 then 

D := (0.858+rootc*«-4.74668)+rootc*(54.1829+rootc*«-351.636) 
+rootc*(1113.06+rootc*(-1348.34»»»*ld-5 

else if x <= 0.07002 then 
D := (0.76408+rootc*«-1.16200)+rootc*(2.59446+rootc* 

.. 



(-2.90168»»*ld-5 
else 

D :- (0.70490+rootc*«-0.50229)+rootc*0.17884»*ld-5; 
tl :- 0.4069+rootc*«-0.1557)+rootc*0.02551); 
dgdc :~ 2*96487/10*D/(1-t1) 

end; (dgdc) 

procedure rk (xst, xfi, yst : double; 
n : integer; 
var y : double); 

var 
x, k1, k2, k3, k4, h : double; 
I : integer; 

function f(x, y double) double; 

var 
D, t1, rootc double; 

begin (f) 
rootc :- sqrt(x); 
if x <- 0.00702 then 
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D :- (0.858+rootc*«-4.74668)+rootc*(54.l829+rootc*«-35l.636) 
+rootc*(lll3.06+rootc*(-l348.34»»»*ld-5 

else if x <- 0.07002 then 
D :- (0.76408+rootc*«-l.l6200)+rootc*(2.59446+rootc* 

(-2.90168»»*ld-5 
else 

D :- (0.70490+rootc*«-0.50229)+rootc*0.l7884»*ld-5; 
tl :- 0.4069+rootc*«-0.l557)+rootc*0.0255l); 
f :- 2*96487/l0*D/(l-tl) . 

end; (f) 

begin (rk) 
x :- xst; 
y :- yst; 
h :- (xfi-xst)/n; 
for I := 1 to n do 

begin 
kl := h * f(x, y); 
k2 := h * f(x+h/2, y+kl/2); 
k3 :- h * f(x+h/2, y+k2/2); 
k4 := h * f(x+h, y+k3); 
y := y+kl/6+k2/3+k3/3+k4/6; 
x :- x+h 

end (for) 
end; (rk) 

begin (cuucddsk) 
rewrite (outdata, 'cuucdmax.dat'); 



frac :~ 0.785; 

m := 20; 
n := 100; 
a :~ 1.0d-5; 
i1im :~ -2.16295d4; 
inorm := frac*ilim; 
cinf :- 1. 40; 
Qinf :-= 0.00; 
rstep :- aim; 
r :~ 0; 
for I := 1 to (m+l) do 

begin 
if r < 0.99d-5 then 

Qdes :- 2*a*inorm/pi*e1lint(2, r*r/a/a) 
else 

Qdes :-= 2*a*inorm/pi; 
c :- 0.50; 
cold :-= 0.0; 
it := 0; 
(use Newton's method to find c) 
while (abs(c-cold» > eps do 

begin 
cold :- c; 
rk (cinf, cold, Qinf, n, Q); 
g :- Q-Qdes; 
c :- cold-g/dgdc(cold); 
it :~ it+l 

end; 
phi :- (In(c/cinf))/2*0.02569; 
writeln (outdata, r,' " phi); 
writeln (it,' " r,' " phi); 
r :- r+rstep 

end (for I) 
end. (cuucddsk) 
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