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Abstract 

Chain-like integrals in matrix spaces play an important part in high 
energy and solid state physics and in general random matrix theory. 
In the special case of ordinary and graded 2 x 2 Hermitean matrices, a 
method is proposed to integrate out all angular variables. The essence 
of this method is a Fourier-Bessel analysis in these matrix spaces which 
is formulated in this paper. Close formal similarities are found between 
the ordinary and the graded case. The main differences arise from the 
fact that the ordinary case can be reduced to the study of a vector 
space whereas no analogous feature is present in the graded case. 

*This work was supported by the Director, Office of Energy Research, Office of High 
Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Departement of 
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1 Introduction 

In various fields of mathematical physics where integrations over matrix 
spaces are required, some relevant integrals have a chain-like structure. More 
precisely, if one has to integrate over M matrices H m , m = 1, ... ,M of di
mension N x N with the Cartesian volume elements d[Hm] that is the product 
of all independent variables of Hm we call chain-like a multiple integral of 
the form 

M M-l J II d[Hm] fm{Hm) II exp (vm(m+1)tr Hm Hm+1) 
m=l m=l 

(1) 

In the exponential term, the matrices with neighbouring indices are coupled 
with, all together M - 1, strength parameters vm(m+1)' The matrices Hm 
usually have internal symmetries, i.e. they are for example real symmetric, 
Hermitean or quaternion self adjoint. In that case, the functions fm{Hm) 
can often be thought of as invariant under the corresponding group trans
formations, implying fm{Hm) = fm{xm) where Xm is the diagonal matrix of 
the eigenvalues of Hm. An important physical example for such a chain-like 
model appears in the theory of the so called planar approximation in high 
energy physics as discussed by Itzykson and Zuber [1]. In the case of M = 2 
Hermitean matrices these authors derived a powerful formula, the Itzykson
Zuber integral, to integrate over the angular degrees of freedom, i.e. over 
the two diagonalizing unitary matrices. Using the Itzykson-Zuber integral, 
Mehta and Pandey [2] performed a complete and analytical discussion of the 
time reversal invariance breaking in random matrix theory. However, except 
for trivial functions f m (xm ), the evaluation of the integral (I) for arbitrary 
M is still an unsolved problem, even within a saddle-point approximation. 
The main difficulty is apparently connected to the fact that the dimension 
N of the matrices is a large number. 

Nevertheless, there are also chain-like models involving integrations over 
graded matrices with relatively small dimensions 2k. Graded or super
matrices contain commuting and anticommuting variables, they were intro
duced by Berezin [3] and first used in solid state physics by Efetov [4]. The 
structure of the relevant integrals remains formally unchanged if the ordinary 
N x N matrices Hm in the expression (1) are replaced by graded 2k x 2k 
matrices U m and the traces tr by graded traces trg. Similar to the ordinary 
case, the most interesting internal symmetries are graded real symmetric, 
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Hermitean and quaternion self adjoint. In the case of M = 2 graded Her
mitean matrices, the analogy of the Itzykson-Zuber integral was evaluated 
and used, in the framework of random matrix theory, to construct a kind of 
irreducible representation for the correlation functions of the Gaussian Uni
tary Ensemble (GUE) [5]. Moreover, employing the graded Itzykson-Zuber 
integral, the breaking of a quantum number, for example isospin, was dis
cussed in a complete analytical calculation for the GUE [6]. For larger and 
arbitrary values of M, graded chain-like models are used in precompound 
nuclear scattering [7] and in the theory of mesoscopic fluctuations [8] and 
localization. In this context, a saddle-point approximation that removes the 
degrees of freedom related to the level densities can be performed and is often 
highly advantageous. Recently it was shown that the chain-like model in the 
remaining coset degrees of freedom has a direct and very useful connection to 
the theory of Fourier transforms and convolutions in curved spaces [9]. There 
are, however, situations where this kind of saddle-point approximation is not 
the best choice, an example is the already mentioned symmetry breaking [6]. 
Furthermore, in the framework of this saddle-point method, the extremely 
helpful determinantal structure [10] of all fluctuation functions of random 
matrix theory does not become obvious for higher correlation. Hence we feel 
that there is still a need to discuss chain-like models starting from the Carte
sian formulation (1) and aiming at a method that allows the integration of all 
angular degrees of freedom leaving an integral that involves only the eigen
values. Although this is highly ambitious in the general case for arbitrary M 
and arbitrary dimension N or 2k, respectively, it is, to begin with, certainly 
worth to study the much simpler problem for arbitrary M and 2 x 2 matrices. 
The main idea is to consider the M -1 expressions exp (vm(m+1)tr HmHm+1) 

or exp (vm(m+1)trg O'mO'm+1) , respectively, as something like a plane wave in 
which the trace of the product of the two matrices plays formally the same 
part as the scalarproduct in a vector model. These plane waves are expanded 
in the spherical functions of the angular variables, whereas the coefficients are 
functions of the eigenvalues alone. Inserting everything the angular degrees 
of freedom can be integrated by using properties of the spherical functions. 
In this paper, we evaluate these expansions of the plane waves and show that 
this is just a Fourier-Bessel analysis in matrix spaces. In section 2 we discuss 
the space of ordinary Hermitean 2 x 2 matrices. Although the results are 
somewhat straightforward because of special SU(2) properties we do that in 
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some detail, firstly, to make the reader acquaint with the ideas in the frame
work of the familiar SU(2) and, secondly, to allow a direct comparison with 
the case of graded Hermitean 2 x 2 matrices that is studied in section 3. The 
ordinary and the graded case show both, striking similarities and consider
able differences. In order to make the comparison easy, the subsections in 
sections 2 and 3 are organized fully analogously. Our findings are discussed 
in section 4. The results of the graded case allow a study of the GUE level 
density of the localization problem. This will be treated in a separate pa
per [11]. We hope that our ideas might be of some relavance for chain-like 
models with arbitrary dimensional Hermitean matrices, both ordinary and 
graded. Further investigations are under way. 

2 Ordinary 2 x 2 Hermitean Matrices 

After introducing the Cartesian formulation in subsection 2.1, we go to 
eigenvalue-angle coordinates in subsection 2.2. The eigenfunctions of the 
Laplacian in these coordinates are calculated in subsection 2.3 and used to 
construct a Fourier-Bessel transformation in subsection 2.4. The gradient 
formula is discussed in subsection 2.5 

2.1 Cartesian Coordinates 

We consider ordinary 2 x 2 Hermitean matrices parametrized as 

H = [Hll 
H21 

The trace of two such Hermitean matrices Hand J(, 

(2) 

will in the following play the part of the scalarproduct. Note that it is real 
since real and imaginary parts do not appear mixed. The differential matrix 
dH is found from the matrix H by replacing each matrix element with its 
differential. Hence the square of the invariant length element is given by 

(4) 
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It is possible and very helpful to define a gradient operator in this matrix 
space, it is obtained by replacing the matrix elements of H with the corre
sponding derivatives and transposing the result, 

8 [8/8Hn 8/8H21 ] 
8H = 8/8H;1 8/8H22 

(5) 

The Laplacian is defined as the squared invariant length of the gradient 

82 82 82 82 

~ = tr 8H2 = --2 + --2 + 2 8Hn 8H22 8H218H21 
(6) 

In the context of the Fourier transform, the most important function is the 
plane wave exp(itr HI<). The gradient of the plane wave is given by 

8~ exp( itr HI<) = iI< exp( itr HI<) , 

and applying the Laplacian yields 

~ exp(itr HI<) = -tr I<2 exp(itr HI<) . 

(7) 

(8) 

Thus, the plane wave exp( itr HI<) is eigenfunction of the gradient operator 
and the Laplacian to the eigenvalues iI< and -tr I<2, respectively. All this 
corresponds directly to the usual case of vectors, here, however, the trace 
plays the part of the scalarproduct. 

2.2 Eigenvalues and Angles 

In order to go to a Fourier-Bessel type of analysis we now have to express our 
formulas in Cartesian coordinates in terms of eigenvalues and diagonalizing 
angles, 

H = Ut:cU where (9) 

It is of course advantageous to choose the non-canonical Euler angle para
metrization for the SU(2) matrix U, 

U = [exp(zo·1/J/2) 0 ] [COS({}/2) sin({}/2)] 
exp( -i1/J /2) - sin( {} /2) cos ( {) /2) 

[ exp(oi~/2) 0 ] 
exp( -i~/2) 

(10) 

5 



" 

since the angle 'I/J drops out in equation (9). We can write the matrix H in 
the form 

(11) 

where 1 is the 2 x 2 unit matrix and 

... ... [ cos {} exp( -icp) sin {}] 
eH· T = exp(icp) sin {} -cos{} (12) 

is nothing else but the quaternion representation of the unit vector eH = 
(cos cp sin {}, sin cp sin {}, cos {}), usually called er in spherical coordinates. We 
have introduced the three component vector T of the Pauli matrices 

(13) 

This must imply a close relation to the Fourier-Bessel analysis in the usual 
three dimensional vector space. We now introduce a similar parametrization 
for the matrix f{, 

f{ = vt kV where (14) 

The SU(2) matrix V is obtained by replacing ('I/J, {}, cp) in equation (10) with 
«(,1],e) and the unit vector is given by eK = (cosesin1],sinesin1],cos1]). 
Using the relation tr (eH·T)( eK"T) = 241·4< we can reduce the scalarproduct 
of the matrices Hand f{ to the scalarproduct of the unit vectors, 

trHf{ -

eH . 4< - cos {} cos 1] + sin {} sin 1] cos( cp - e) (15) 

This will be very important in the next subsection. 
We now have to derive the gradient operator and the Laplacian in the 

new coordinates. There are, of course, various ways of doing it. We choose 
the following procedure that proves highly efficient for the present and also 
later for the graded case: The matrix differential can be written in the form 
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where the four matrices Ea , a = Xl,X2,-a,CP are explicitly given by 

EXI Ut 1"11 U 
1( ____ ) 

- - - 1 + eH· 1" 
2 

EX2 ut 1"22 U 1 ( ......) - - - 1 - eH· 1" 
2 

1 1 ... 
E19 y'2 ut 

1"1 U --- - - e19· 1" 
y'2 

1 1 --Ecp -Ut 1"2 U --- - -e .1" 
y'2 vl2CP (17) 

Here, we use the 2 x 2 matrices 1"ij with unity in the position (i,j) and zeros 
elsewhere as a second basis besides the Pauli matrices. Moreover, the unit 
vectors e19 = (cos -a cos cp, cos -a sin cp, - sin -a) and e,., = (- sin cp, cos cp, 0) in 
spherical coordinates have been introduced. As the vectors eH'~' ecp form an 
orthonormal set, the same is true for the four matrices Ea , a = Xl, X2, -a, cp, 
we find 

(18) 

We will call these matrices basis vectors in the following, too. In the vector 
space we have one spherical coordinate, here we have in some sense two, the 
two eigenvalues Xl and X2. At this point, one might consider to introduce the 
new coordinates X± = (Xl ± x2)/v12 since from the results derived so far it 
is clear that these reflect the symmetries. We decided not to do so because, 
firstly, the relation is obvious and, secondly, we want to compare our results 
with the graded case where no similar feature exists. 

Equation (16) allows together with the orthonormality (18) an easy cal
culation of the squared invariant length element, 

Much more important, however, equation (16) gives directly the gradient just 
by inverting the prefactors since the basis vectors are orthonormal, 

(20) 
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again, this result corresponds to the vector case. Hence, we find immediately 
for the Laplacian 

(21) 

where we have defined 

82 82 2 ~(O) = _ + _ + __ _ 
x 8xi 8x~ Xl - X2 (8~1 - 8~2) (22) 

as the pure eigenvalue part and the usual SU(2) Casimir operator 

"'2 82 8 1 82 

L = 8{}2 + cotan {} 8{} + sin2 {} 8<p2 (23) 

as the pure angular part. Observe that we were able to derive the Laplacian 
in eigenvalue-angle coordinates without explicit inversion of some kind of a 
Jacobi matrix, a procedure that is always required in the standard formulas 
for the transformation of the Laplacian to new coordinates [12]. Here, the 
use of the orthonormal basis (17) made it possible to bypass such a matrix . . 
InVerSIOn. 

2.3 Eigenfunctions of the Laplacian 

The spherical harmonics YLM are the eigenfunctions of the pure angular part. 
The orthonormality and completeness, i.e. 

and L ILM) (LMI = 1 (24) 
LM 

in Dirac notation, allow the construction of the hybrid operator ~~L), 

(LMI~IL'M') - ~(L) 6 6 with ~(L) _ ~(O) + 2L(L + 1) (25) 
- x LL' MM' x - x ( )2 

Xl - X2 

whose eigenfunctions to the eigenvalue -(k~ + ki) can be easily calculated 
by introducing the coordinates X±, we find 

T ( k) (.(XI + x2)(kl + k2)) . ((Xl - x2)(kl - k2)) 
L X, = exp z 2 JL 2 (26) 

where jL is the spherical Bessel function of order L. Hence the functions 
TL(x, k)YLM(OH) with f2H shorthand for the angles ('19, <p) are eigenfunctions 
of the Laplacian in eigenvalue angle coordinates. 
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2.4 Fourier-Bessel Transformation 

Since the scalarproduct (3) does not mix real and imaginary parts of the 
matrix elements, it makes sense to define the Fourier transform of a function 
f(H) in Cartesian coordinates by 

F(I<) = 2(2
1
7r)2 J exp(itrHI<)f(H)d[H] (27) 

where the volume element 

d[H] = dHn dH22 dReH21 dlmH21 (28) 

should not be confused with the differential matrix dH. The inverse trans
form is given by 

f(H) = 2(;7r)2 J exp(-itrHI<)F(I<)d[I<] (29) 

Using the results of the last two subsections, it is now very easy to go to a 
Fourier-Bessel type of analysis. We only need the familiar expansion of the 
plane wave 

00 L 
exp(izeH·eK) - 47rL: L: iLjL(Z)YiM(OH)YLM(OK) (30) 

L=OM=-L 

where OK is shorthand for the angles (77, e). This yields together with equa
tion (15) an expansion for the plane wave in the matrix space, 

exp(itr HI<) = 47r L: iL TL(X, k) YiM(OH) YLM(OK). (31) 
LM 

Using the orthonormality we find the integral representation for our Bessel 
functions 

where dOH = sin {)d{)dcp. This is in perfect formal agreement with the vector 
case just by replacing the scalarproducts in the exponent. 
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Every well behaved function f(H) has an harmonic expansion of the form 

f(H) - LfLM(X)YLM(OH) 
LM 

fLM(X) = J f(H) YLM(OH) dOH (33) 

and analogously for F(J<) with coefficients FLM(k). We also need the trans
formed volume element 

1 
d[H] = '8 ~~(x)d[x] dOH where ~~(X )d[x] = (Xl - X2?dxldx2 , 

(34) 
we used the common notation ~2 (x) for the, in this case trivial, Vandermonde 
determinant. Inserting now equations (31) and (33) into equation (27) we 
obtain the relation between these coefficients, i.e. the Bessel transforms 

'L 
__ z_ JTL(k,x)fLM(X)~~(x)d[x] 

161r 

(_i)L J 2 
- 161r TL(X, k) FLM(k) ~2(k)d[k] 

From this, we also find a version of Hankel's integral 

which can be considered as a special case of the Bessel transform. 

2.5 Gradient Formula 

(35) 

(36) 

The raising and lowering operators for the Bessel functions TL(x, k) follow 
directly from equation (26). There is, however, a very instructive way of 
deriving them without using the explicit form of the functions TL(x, k). The 
previous considerations imply the decomposition 

~iL) = L tr (LMI~IL'M')(L'M'I~ILM) (37) 
L'M' 8H 8H 

of the hybrid operator. The matrix elements of the gradient are first order 
differential operators in the eigenvalues and they thus have to be related 
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directly to the raising and lowering operators. In the vector space, such 
considerations are known as gradient formulas [13]. Hence, in our matrix 
space, the only tool we need is the eigenvalue-angle expression (20) for the 
gradient. Due to the close relation between the vector space and our matrix 
space we can use many of the results derived in reference [13]. We therefore 
skip the derivation here, the result is 

where we have defined the matrices 

1 +1 
ALMM',± = vI2 q~l eq · f'8M (M'-q) (LM1ql(L + l)(M + q)) (39) 

Here, we introduced the tensor basis vectors eq, q = 0, ±1 where eo = ez and 
e±l ' +(~±ie;.,)/vI2, moreover, (LM1ql(L+1)(M +q)) are Clebsch-Gordan 
coefficients. The operators ~(L), q = 0, ± are explicitly given by 

_ 1 (a a) 
vI2 aXI + aX2 

1 (a a) vI2(L + 1) 
- vI2 aXI - aX2 + Xl - X2 

7.(L) _ 1 (a a ) vl2L 
+ - vI2 aXI - aX2 - Xl - X2 

(40) 

in the coordinates X±, the operators TJL) are of course the usual raising and 
lowering operators for the spherical Bessel functions. But, remarkably, even 
without knowing the form of the functions TL(X, k), the raising and lowering 
character of the operators ~(L) is directly obvious through the Kronecker 
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symbols next to the operators in equation (38). The properties 

To(L) TL(X, k) - .kl + k2 T ( k) z.J2 L x, 

T~L) TL(x, k) 
kl - k2 V2 TL_1(X, k) 

(L) ( ) kl - k2 
(41) T+ TL x,k - - .J2 TL+1(X, k) 

are easily checked. The hybrid operator is then given by 

~iL) = (To(L») 2 + TJL-l)T~L) = (7o(L») 2 + T~L+I)TJL) (42) 

We emphasize that the operators ~(L) are scalar, they do not show a matrix 
structure. Note that the matrix elements (38) in the space of spherical har
monies are not diagonal in the projection M, i.e. the matrices ALMMI,± are 
not proportional to 8M M'. 

3 Graded 2 x 2 Hermitean Matrices 

There are different ways of defining complex conjugation, integration and 
other properties of anticommuting variables. Throughout this section we 
use the notations and conventions of references [4, 5, 14]. Concerning the 
derivative with respect to an anticommuting variable "/ we use for convenience 
a notation slightly different from the literature. We always write 8fC"Y)/8,,/ 
but the derivative is meant to act from the right. Hence, for example, for 
the function fC"Y) = exp(a,,/) = 1 + a,,/ we find 8fC"Y)/8,,/ = a no matter 
whether a is commuting or anticommuting. This makes the notation easier 
and at the same time it often prevents trouble with signs. This section is 
organized fully analogously to section 2. 

3.1 Cartesian Coordinates 

Now, we consider graded 2 x 2 Hermitean matrices 

(43) 
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where O"lll 0"22 are real commuting and 0"21 is complex anticommuting. The 
imaginary unit in front of 0"22 is introduced for convergence reasons. Similar 
to the ordinary case, the graded trace [3] of two such matrices 0" and p, 

(44) 

which again is real, will have the meaning of the scalarproduct. The differ
ential matrix dO" is defined as in the ordinary case and thus the square of the 
invariant length element is 

(45) 

The gradient operator is given by 

(46) 

note the transposition compared to 0". Again, the Laplacian is defined as the 
squared invariant length of the gradient 

(47) 

For the properties of the plane wave exp( itr 0" p) we find 

:0" exp(itrgO"p) = ip exp(itrgO"p) (48) 

and the Laplacian gives 

~ exp(itrgO"p) = _trgp2 exp(itrgO"p) (49) 

These are eigenequations with eigenvalues ip and -trg p2, respectively. Up 
to now, everything is fully analogous to the ordinary case. 

3.2 Eigenvalues and Angles 

The diagonalization of the graded matrix 0" reads 

0" = utsu where (50) 
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where u is an U(I/I) matrix. The most convenient parametrization is 

( . /2) [exp(iw/2) 0 ] [1 + aa* /2 a ] (51) 
u = exp zx 0 exp( -iw/2) a* 1 + a*a/2 

with two real commuting angles X and wand a complex anticommuting 
angle a. This parametrization is somewhat in the same spirit as the non
canonical Euler angles parametrization (10), some interesting properties from 
a grouptheoretical viewpoint are discussed in a separate paper [15]. The 
commuting angles drop out and we are left with 

[
aa* a] 
-a* aa* 

(52) 

where we have introduced the graded matrices 

t [1 + aa* 
C31 - U Tn U = * -a 

t . . [aa* 
c32 = U ZT22 U = Z a* -a ] 

I-aa* 
(53) 

whose properties will be discussed below. There is no obvious relation to a 
vector as in equation (11). Similarly, for the matrix p we have 

where (54) 

and the U(I/1) matrix v is found by replacing (x,w,a) in equation (51) with 
(1I:,..x, (3). In eigenvalue and angel coordinates, the scalarproduct is given by 

This tells us that the action of v in this scalarproduct is just a simple transla
tion of the anticommuting variables of u and vice versa. Another remarkable 
point is that the first two terms cannot be rewritten in sum and difference 
coordinates SI ± iS2 and rl ± ir2 in such a way that these coordinates become 
decoupled as in equation (15). This will have important consequences. For 
the plane wave we find 

exp(itrgcrp) = exp(itrgsr) (1 + i(SI - is2)(rl - ir2)(a - (3)(a* - (3*)) 
(56) 
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by expanding in the anti commuting variables. 
In order to derive now the gradient and the Laplacian we use the method 

of subsection 2.2. The differential matrix can be written in the form 

du = clf1d81 + clf2d82 + (81 - is2) (cerda + cer-da*) (57) 

The matrices Cer and Cer- are defined by 

cerda - u t T12dau = u t T12 upda 

(58) 

where the matrix p = diag( -1, + 1) takes care of the signs when commuting 
the differentials. Hence we have explicitly 

Cer = U t T12 up = [-;* _~*] 

(59) 

implying the relation cl = eer-' Observe that these matrices are not graded 
in the usual sense, they have anti commuting entries on the diagonal and 
commuting ones on the off-diagonal. Including the differentials, however, 
the matrices (58) are graded in the usual sense. Similar to the ordinary case, 
the four matrices ea , a = 817 82, a, a* form an orthonormal basis. Since eer 
and eer- are by construction related to shift-operators we find slightly different 
from equation (18) 

(60) 

and we emphazise trg eer-eer = -trg eereer.. The crossing feature (60) for 
the basis vectors (59) can be overcome by introducing coordinates a± = 
(a ± a*)/.../2 with a: = a+. However, we do not use them since they 
destroy the translation property mentioned concerning equation (55). 

We easily find for the squared invariant length element 

trg du2 = d8~ + d8~ + 2(SI - iS2?dada* (61) 

As in the ordinary case, the gradient follows directly from the differential 
matrix (57), 

8
8 - elf1 88 + eS2 88 + 1 (eer~ - eer.~) 
u 81 82 81 - iS2 8a* 8a 

(62) 
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the only difference is the interchange of a and a* in the derivatives which is 
of course due to the crossing feature (60). Using results like 

we find for the Laplacian 

where we have defined 

as the pure eigenvalue part and 

8C32 

8a 

82 

8a8a* 

* a = a,a 

( 8 .8) 
8s

l 
- z 8s2 

(63) 

(64) 

(65) 

(66) 

as the pure angular part. It is shown in reference [15] that this is indeed 
the Casimir operator on the coset parameter space. Again, these results 
correspond directly to those in subsection 2.2. 

3.3 Eigenfunctions of the Laplacian 

In order to go now to a Fourier-Bessel type of analysis we cannot resort to 
the results of a corresponding vector case as in the ordinary case. Hence 
we have to solve the eigenequation for the Laplacian (64) in eigenvalue-angle 
coordinates. We do this by the separation ansatz t(s)y(wq ) with Wq shorthand 
for (a, a*). The eigenequation for the angular function is 

(67) 

with an eigenvalue -J.tJ.t* that is real since A2 is real and that is the product of 
an anticommuting variable J.t and its complex conjugate since it has to reflect 
the structure of the operator A 2 • Obviously, there is a freedom of choice for 
the sign of this eigenvalue, we could write +J.tJ.t* as well. The implications 
of this observation are discussed in reference [15]. Here, we always use the 
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form (67) of the eigenequation. Formally, the eigenvalue is something like the 
squared length of the anticommuting variable J1. and we also write 1J1.12 = J1.J1.*. 
The most general form of the function is y( wu) = Yo + Yu a + Y12a* + Y2aa*, 
this ansatz gives equations for the coefficients Yi, i = 0,11,12,2. The first 
solutions are 

(68) 

the second solutions are the complex conjugates Y;~. (wu ) = Y~~· (-wu ). The 
factor 211' will turn out the proper normalization. These angular functions 
have some simple properties like 

y~~.(wu) y~~.(wp) - 211' y~~.(wu + wp) 

Y~~· (wu) Y:~. (wp) - 211' y~~.(wu - wp) 

Y~~· (wu) y~/~/. (wu) - 211' y(~+~/)(~+~/). (wu) 

y~~.(wu) y:/~/.(wu) - 211' y(~_~/)(~_~/). (wu) (69) 

which imply the integral relations 

J y:~.(WU)Y~/~/.(wu)dwu - h(J1.* - J1.'*)h(J1. - l) 

J y~~.(wu) y:~.(wp) d[J1.] - h(wu - wp) (70) 

where dwu = dada* and d[J1.] = dJ1.dJ1.*. The h function of an anticommuting 
variable, is defined [4] by h(T) = $,. The equations (70) can be con
sidered as orthonormality and completeness relations of the functions (68). 
Hence, these functions form something like a Hilbert space. However, they 
are not a countable infinite set labeled by indices like LM as in the ordinary 
case. The indices here are the Grassmann variables J1. and J1.* and the double 
sum is replaced by a Grassmann double integral. Introducing a Dirac type 
of notation we have in full formal analogy to equations (24) 

(J1.J1.*IJ1.'J1.'*) = h([J1.] - [l]) and J d[J1.] 1J1.J1.*)(J1.J1.*1 = 1 (71) 

where we used h([J1.] - [J1.']) = h(J1.* - J1.'*)h(J1. - J1.'). Thus, the functions (68) 
might be called graded spherical harmonics. 
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We now can construct an hybrid operator ~~I~I) by calculating the matrix 
elements of the full Laplacian, 

_ ~(O) _ 21J.t12 
8 (81 - i82)2 

(72) 

Observe that the hybrid operator depends only on the length of the anticom
muting variable J.t. The corresponding eigenequation is 

~~llIl)t(8) = -(ri + r~)t(8) (73) 

to the eigenvalue -(ri + rD. This partial differential equation is entirely 
different from the ordinary case. To show this we introduce the complex 
coordinate z = (81 + i82)/V2 and similarly w = (r1 + ir2)/V2, this gives 

( 
cj2 2 8 1J.t 12) (*) 1 12 ( *) 2 - - -- - - t z, z = -2 w t z, z 

8z*8z z* 8z Z*2 
(74) 

Note that the first order derivative occurs with a minus sign. More important, 
however, due to the imaginary unit in front of 82, mixed expressions in z and 
z* appear whereas the coordinates x± and k± decouple in the ordinary case in 
such a way that the solution TL(x, k) is a product of two functions depending 
on the pairs (x+, k+) and (x_, k_), respectively. Here, the solution cannot be 
a product of functions that depend only on (z, w) and (z*, w*), respectively. 
The ansatz t(z,z*) = exp(iwz*+iw*z)h(z*) couples (z,w*) and (z*,w), the 
remaining function h(z*) which is solution of 

i2w* (~ - 2-) h(z*) = ll:f h(z*) 
8z* z* Z*2 

(75) 

has to depend on (z*, w*). We find h(z*) = 2w*z* +ilJ.t12 which is symmetric 
in z* and w*. Hence, collecting everything and going back to the eigenvalues 
we find including a normalization factor 

These functions will playa part fully analogous to the functions TL(X, k) in 
the ordinary case and will thus be called graded Bessel functions. Observe 
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the symmetry tllll(s,r) = tllll(r,s) corresponding to TL(X,k) = TL(k,x). 
Hence the functions tllll(s, r)Yllllo(wu ) are eigenfunctions to the Laplacian in 
eingenvalue angle coordinates. 

At this point, an important remark is in order. Due to the Efetov-Wegner 
theorem [4, 16], the formula (76) is not yet complete if an integration over 
the whole matrix space is required. In case we want to integrate over the 
whole p space, we find using results of reference [5] I 

tllll(s, r) = (1 -1](s))(rl - ir2)2 exp (~trg (r2 - S2)) h(r) 

+ 2171' exp(itrgsr) ((rl - ir2)(Sl - is2) + i1Jl12
) (77) 

where we have defined the function 

1](s) = {~ if s = 0 
else 

(78) 

The first term in equation (77) is not symmetric in sand r. For integrations 
over the whole u space, sand r have to be interchanged. The practial 
relevance of the Efetov-Wegner term is shown in the appendix. 

3.4 Fourier-Bessel Transformation 

The graded Fourier transform of a function f(u) in Cartesian coordinates is 
well defined through the equation 

F(p) = J exp(itrgup) f(u) d[u] 

where the volume element is given by 

d[u] = dUll dU22 dU;l dU21 

The inverse transform is 

f(u) = J exp(-itrgup) F(p) d[p] 

(79) 

(80) 

(81) 

the necessarily occuring h functions in anti commuting variables are also well 
defined [4]. In order to go to a Fourier-Bessel type of analysis, we need the 
expansion of the plane wave which is given by 

exp(itrgup) = J tl lll(s,r)Y;llo(wu ) YJLllo(Wp ) d[Jl] (82) 
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as can be proven in a direct calculation. The graded Bessel functions in 
this expansion are those from equation (76). Observe the complete formal 
similarity of this expansion to the expansion (31) in the ordinary case. Using 
the orthonormality of the graded spherical harmonics we find the integral 
representation for the graded Bessel functions, 

similar to equation (32). 
Due to the relations (71) we obtain in full analogy to the formulas (33) 

the harmonic expansion of any well behaved function f(a) in the graded 
spherical harmonics 

f(a) - J fllll*(s)YIlIl*(wq)d[JL] 

fllll*(s) - J f(a) Y;Il*(wq) dwq (84) 

and similarly for F(p) with coefficients FIlIl*(r). The transformed volume 
element reads [5] 

ds 1ds 2 B;(s )d[s] = 
(SI - is2 )2 

d[a] = B;(s)d[s] dWCT where (85) 

Inserting now equations (82) and (84) into equation (79) we obtain the re
lation between the coefficients of the harmonic expansion, i.e. the graded 
Bessel transforms 

FIlIl*(r) - J tllll(r,s) fllll*(s) B;(s)d[s] 

fllll*(s) - J tllll(s, r) FIlIl*(r) B;(r)d[r] 

The corresponding graded version of Hankel's integral 

(86) 

(87) 

can again be considered as a special case of the graded Bessel transform. 
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3.5 Gradient Formula 

Fully analogously to the ordinary case, the hybrid operator can be decom
posed in the matrix elements of the gradient, 

~ (I~I) = J d[Jl'] trg (JlJl* I~ IJl' Jl'*)(Jl' Jl'*I~ IJlJl*) 
8 8u 8u 

(88) 

Again, the matrix elements of the gradient are first order differential opera
tors in the eigenvalues. Hence, from our experience in the ordinary case, we 
conclude that, provided they exist, the raising and lowering operators of the 
functions tl~l(s, r) have to show up in these matrix elements. It is of course 
clear that raising and lowering operators fully analogous to the ordinary case 
cannot exist since the index IJlI of the graded Bessel functions does not span 
a countable set whatsoever. But it is worthwhile to construct the graded gra
dient formula in order to see how the first order operators in the eigenvalues 
show up. To do so, we first evaluate the auxiliary relations 

(JlJl* lalJl' Jl'*) - V2i 8(Jl* - Jl'*) 

(JlJl* laa* IJl' Jl'*) - -21r 

8 V2i JlJl' 8(Jl* - Jl'*) (JlJl* 1-IJl' Jl'*) -8a 

(JlJl*la :a IJl' Jl'*) - V2i Jl' 8(Jl* - Jl'*) . (89) 

Now collecting everything we find for the graded gradient formula 

(JlJl*I~IJl'Jl'*) = [8/8s1 
. 0 ] 8(Jl- Jl')8(Jl* - Jl'*) 

8u 0 'l,8/8s2 

V2i (8 . a) [ .J2i -8(Jl* - Jl'*)] 
- 21r 8s1 - 'I, 8s2 -8(Jl - Jl') .J2i 

SI ~ iS
2 
([~ -i*] 8(Jl'*)8(Jl- Jl') - [~Jl ~] 8(Jl')8(Jl* - Jl'*))90) 

which inserted in equation (88) yields of course the correct hybrid operator. 
Comparing now equations (38) and (90), we find considerable differences in 
their structure. In the ordinary case, the operators that involve the eigen
values are scalar, i.e. they do not show a matrix structure. Here, however, 
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this is obviously different. Hence, we draw the conclusion that there are now 
scalar operators somehow similar to the ordinary case. It is of course possible 
to combine the eigenvalue operators appearing in the gradient formula (90) 
in such a way that they yield the hybrid operator 6.~IIlI), but apparently they 
do not allow an interpretation in any sense as raising and lowering operators. 

4 Summary and Discussion 

We formulated the Fourier-Bessel analysis in the space of ordinary and graded 
2 x 2 Hermitean matrices. In the space of ordinary matrices, the close relation 
to the three dimensional vector space simplifies the analysis considerably. 
Remarkably, the Laplacian could be constructed without explicitly inverting 
any kind of Jacobi matrix. Instead, an orthonormal basis was introduced that 
allowed an easy calculation of the Laplacian in eigenvalue angle coordinates 
and thus the bypassing of such an inversion. This method is independent of 
any possible relation between the matrix and a vector space. However in this 
case, the relevant angular operator in the Laplacian is precisely the SU(2) 
Casimir operator. Consequently, the angular part of the eigenfunctions is 
given by the usual spherical harmonics. The eigenvalue part could be reduced 

. to a simple exponential and the spherical Bessel functions by introducing 
proper coordinates which decouple the trace, i.e. the scalarproduct in the 
matrix space. Hence, the formulas for the Fourier-Bessel analysis reflect 
essentially those in the three dimensional vector space. A gradient formula 
in the matrix space was evaluated giving the raising and lowering operators 
for the eigenvalue functions. Generally, this is possible without knowing these 
functions explicitly. 

In the space of graded matrices, however, there is no direct correspon
dence to a vector space. Although it is possible to construct vector spaces 
with related properties, the correpondences found so far are never as close as 
in the ordinary case. The reason~might be the very special properties of the 
algebra of SU(2), or SO(3): it is the only one whose generators can be effi
cientlyordered into a vector, the angular momentum. Apparently, there are 
no similar features for the algebra of the graded group U(l/l). The method 
of evaluating the gradient and thus the Laplacian in eigenvalue angle coor
dinates that was derived in the ordinary case works very well in the graded 
case, too. In particular, an orthonormal basis was found in graded matrices. 
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The eigenfunctions of the angular part of the Laplacian span a space that has 
orthonormality and completeness relations and hence formally something in 
common with an Hilbert space. The indices of those graded spherical har
monics are an anticommuting number and its complex conjugate but not a 
countable infinite set of integers. The eigenvalue part of the eigenfunctions 
satisfies a partial differential equation entirely different from the ordinary 
case, especially, there is no decoupling in suitable coordinates similar to the 
latter. The index of the resulting graded Bessel functions is the length of 
the anticommuting indices of the graded spherical harmonics. All formulas 
concerning the Fourier-Bessel analysis in the ordinary case have a direct anal
ogy in the graded case. However, due to the lack of a corresponding vector 
space and thus a decoupling feature, there are no scalar operators that could 
be interpreted in any sense as analogous to raising and lowering operators. 
This became obvious in the calculation of the graded analogy of the gradient 
formula. 

This investigations provide a tool to study chain-like models in the spe
cial case of 2 x 2 matrices. The application to the study of the GUE level 
density of the localization problem will be discussed in a separate paper [11]. 
Furthermore, these considerations and some of our methods might be rele
vant for the study chain-like models with arbitrarily dimensional matrices, 
in particular we have in mind the procedure of constructing the Laplacian 
without explicit inversions and the gradient formulas which might , in the 
sector of commuting variables, allow the calculation of the higher eigenvalue 
function from the lowest one, i.e. without evaluating integrals. 

Appendix: Relevance of the Efetov
Wegner Term 

In Cartesian coordinates the Fourier transform of the Gaussian function is 
again Gaussian, 

We will now demonstrate that this result is achieved in eigenvalue-angle 
coordinates only if the Efetov-Wegner term is included. Inserting the expan-
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sion (82) and using the integral representation [5] 

7](S) = 1 ( ) Jexp (-~trg(r - S)2) Bt(r)d[r] (92) 
27r B t S 2 

and the orthonormality of the graded spherical harmonics we find 

J exp ( -~trg p2) exp (itrg pO") d[p] 

- J d[r]B;(r) exp (-~trgr2) J dwp 

J d[Jl] tllll( s, r) Y Illl· (WCT) YIlIl· (wp ) 

- J d[r]B;(r) exp ( -~trg r2) J d[Jl] tllll(s, r) YIlIl. (WCT) h(Jli:(Jl) 

- J d[r]B;(r) exp (-~trgr2) to(s,r) 

- (1 - 7](s» exp (-~trgs2) 

+ 27r~t(S) J d[r]Bt(r) exp (-~trgr2) exp (itrgsr) 

- (1 - 7](s)) exp (-~trgs2) + 7](s) exp (-~trgs2) 

_ exp ( -~trg 0"2) 

i.e. the required result. 
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