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Abstract 

Automatic Code Generation in SPARK: 
Applications of Computer Algebra 

and Compiler-Compilers 

Jean-Michel Nataf* and Frederick Winkelmann 

Simulation Research Group 
Building Technologies Program 

Energy and Environment Division 
Lawrence Berkeley Laboratory 

Berkeley, CA 94720 

September 1992 

LB1-32815 

We show how computer algebra and and compiler-compilers are used for automatic code 
generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object­
oriented environment for modeling complex physical systems that can be described by 
differential-algebraic equations. After a brief overview of SPARK, we describe the use of com­
puter algebra in SPARK's symbolic interface, which generates solution code for equations that 
are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to 
achieve important extensions to the SPARK simulation language, including parametrized macro 
objects and steady-state resetting of a dynamic simulation. The application of these methods to 
solving the partial differential equations for two-dimensional heat flow is illustrated. 

1. Introduction 
The Simulation Problem Analysis and Research Kernel (SPARK) is a new equation-based, 

object-oriented simulation environment for modeling complex physical systems. SPARK takes 
algebraic equations as elementary objects and creates simulation programs for virtually any com­
bination of the equations. SPARK is being developed for the U.S. Department of Energy by 
Lawrence Berkeley Laboratory and California State University at Fullerton. 

This paper describes how SPARK automatically generates code using symbolic manipula­
tion and computer algebra. Section 2 gives a brief overview of the SPARK environment. In Sec­
tion 3 we describe the computer algebra tools that relieve the SPARK user of most of the 
tedium of object and module cre.ation, to the point where simply specifying the equations and 
their interconnections is enough to generate a flexible simulation program. The use of compiler­
compilers for code generation is discussed in Section 4. Finally, we show an example application 
in Section 5. 

* Now at Groupe Informatique et Sciences Energetiques, ENPC, La Courtine-Cedex, Noisy Ie Grand, France. 

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Building Technologies, Build­
ing Systems and Materials Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 
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2. The SPARK Environment 
SP ARK generates a solution proced ure that is tailored to each particular sim ulation prob­

lem, then implements that procedure in a program that it automatically generates in the C 
language. The overall organization of SPARK is shown in Fig. 1 [Buhl 1990]. 

Figure 1: 
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The user interacts with SPARK in four basic ways: (1) defining objects (which represent 
the equations of a physical system), (2) linking objects together to define the simulation problem 
to be solved, (3)' specifying run-time data (parameters and time-varying input data); and (4) 
specifying desired output. The objects are defined in text files, either as mathematical equations 
or as component models in Neutral Model Format [Sowell 1989]. These files are processed sym­
bolically with programs written in MACSYMA [MIT 1983], producing C language functions and 
objects that are stored in libraries. Problems are defined by interconnecting objects using the 
graphical user interface, producing a problem specification file in the Network Specification 
Language (NSL)[Anderson 1986]. From the NSL description, SPARK generates internal data 
structures based on graphs. Matching and reduction algorithms are used with these graphs to 
automatically devise an efficient solution algorithm, producing an executable program for each 
particular problem. This program reads constant and time-varying input data from files, produc­
ing the problem solution. The output processor reads the results file and generates graphical 
displays according to interactive user requests. 

The initial version of SPARK (called SPANK - Simulation Problem Analysis Kernel 
[Anderson 1986]) handled only steady state problems, i.e., those involving nonlinear equation 
systems without time derivatives. SPARK was extended to dynamic systems in 1989, and can 
now handle problems involving nonlinear equations with time derivatives on any of the vari­
ables. 

SP ARK has been successfully used for solving problems encountered in building energy 
simulation, including air conditioning systems [Buhl 1990]' desiccant dehumidification [Nataf 
1991], lighting systems [Sowell 1990], and coupled natural convection and conduction [Buhl 
1990]. 

3. The Symbolic Interface to SPARK 
The objects in SPARK are equations whose interfaces with the outside (and with other 

equations) are the equation variables (see Fig. 2). Linking two objects means that one or more 
variables are shared by the equations, as illustrated in Fig. 3. Thus, SPARK neeps to be told 
what the interfaces of each equation are, how they are linked with the interfaces of the other 
equations, and under what name. This information is supplied in "object files" that encapsulate 
all information about each equation. Object files can be linked together to make macro object 
files (which are equivalent to systems of equations). 

The SPARK solution method requires that the user provide functions, in the C language, 
that solve each equation in terms of each of its variables. For an equation of the form 

f(x,y,z,· .. )==0, 

this means that the inverse functions g, h, etc., have to be specified, such that 

x=g(y,z, ... ), y=h(x,z,·· .), etc. 

Although SPARK users can generate object files and function files by hand, the process is 
tedious, error prone and time consuming. For example, for an equation with N explicit variables, 
there are, in general, N C functions to supply, plus one SPARK object file that tells which func­
tions are associated with which variables. An object corresponding to a physical process or com­
ponent is usually described by several equations, each of them having an associated object file 
and retinue of function files . 
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Figure 2: 

Figure 3: 

An elementary SPARK object, which represents a single equation. The interfaces 
of the object are the equation variables. 
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Linking of elementary SPARK objects to represent a system of equations. In this 
example, elementary objects E1 and E2 are linked to form a macro object, M1, 
which is then linked to E9, another elementary object. The links are the vari­
ables that are shared among the equations. 
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Due to the equivalence between equations and objects in SPARK, a system of equations can 
be described as elementary objects hooked together, as shown in Fig. 3. Describing such an 
object requires creating all of the elementary objects and their associated C functions and link­
ing the elementary objects into a "macro" object. 

To simplify this process, we have developed a MACSYMA-based symbolic interface to 
SPARK [Sowell 1990]. With this interface, you need only type in the equations for the system 
that you want to model. The interface consists of a set of commands that invoke MACSYMA 
functions to create the appropriate SPARK files. The arguments of these commands are equa­
tions in symbolic form, names (character strings), lists of names, etc. 

In the following, we describe how you use the interface to easily create an elementary object 
(which corresponds to a single equation), a macro object (which corresponds to a system of equa­
tions), a dynamic object (which invokes an integrator), a dynamic macro object (which 
represents a system of ordinary differential equations), and a complete simulation (which 
includes objects, associated functions, simulation file, and input file). 

3.1 Generation of elementary objects 
The simplest object handled by SPARK is a single algebraic or transcendental equation, 

with no time derivative, but which can be piecewise defined on the variables' space. 

The following command creates an elementary object: 

makespark (eq, "name", badlist); 

where eq is the equation in symbolic form (with a bracketing syntax in case it is piecewise 
defined), and name is a string that names the created object. The last argument, badlist, is a list 
of bad inverses, i.e., a list of variables that the user does not want the equation to be solved for. 
This list can be quite useful in speeding up the generation of object functions and in taking into 
account previous knowledge that some variables are bad iteration variables. 

As an example of makespark, consider the equation for infrared radiation exchange between 
two surfaces of temperature T and To: 

where E(B,</» is the emissivity of the surface as a function of the direction that the radiation 
leaves the surface. The following command will make this into a SPARK object called 
my_rad.obj (see Fig. 4), treating the variables Band </> as input parameters, but retaining the 
ability to, calculate the temperatures or the flux: 

makespark (q12=eps(th,phz)*(r 4-tOA4)" "my_raff', [th,phiJ); 

Here, eps is an external function invoked by the generated C code. It is assumed to be present 
in the function library or embedded by the user as an internal function in the generated C code. 

As an additional example of makespark - for the case of a piecewise defined equation - we 
consider the above equation for radiation exchange with a linear simplification for small tem­
perature differences: 

q12-:-E(B,</»(T4_ T 04) if I T-To I >fl.T 

q12=heq(B,</»(T-To) if IT-To 1<fl.T 
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where heq (B,¢) is the equivalent heat transfer coefficient in case of radiative linearization. The 
command for the creating the new object is: 

makespark (f/q12=eps(th,phi)*(r 4-lO A 4),(T-TOr 2> delta A 2), 
/q12=h_eq(th, phi) *(t- to ),(T- TOr 2< .c...-delta

A 2/, "my_rad2", /th,phi, delta)); 

Here, h_eq and eps are external C functions present in the function library. Note that delta is a 
bad inverse since it would an input to any problem using this equation. 

r------------------------------------------------------------, 
I my -,ad conv : 

--

Figure 4: 
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SPARK macro object representing coupled radiative and convective heat transfer. 
Conv is a dynamic object, which, in SPARK, corresponds to a single ordinary 
differential equation. 

It is worth noting that the notion of "bad inverse" is taken·into account in modern generic 
engineering component description languages such as the Neutral Model Format [Sowell 1989]. 
It is based on the knowledge that a variable to which the overall system behavior is almost 
insensitive will be a bad variable to iterate on. Of course, the choosability of a bad variable is 
made possible by the fact that the SPARK environment does not force any variable to be input 
or output until specifically told so by the user. Therefore the objects available in the library 
after generation are essentially undirected. Specifying bad inverses is a way to limit this lack of 
directionality. Maximum limitation would occur by making all the equation variables bad except 
for one, which variable would then become the privileged output of the object. This would 
reduce the SPARK object to a classical subroutine with several inputs and one output. 

The C function code that is generated when the elementary SPARK objects are created has 
several noteworthy features: 

Along with the equation resolution code of the piecewise defined equation, satisfaction of 
the constraints is verified. This is implemented by adding to the domain condition the require­
ment that the obtained solution is within the domain. 
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When the domain supplied by the user does not entirely cover the variable domain, the 
remainder domain is handled by supplying as a default the solution found on the last portion of 
the variables' domain that was treated. 

In case no solution is found, a default value is returned along with a warning message. This 
is sometimes useful to prevent the global Newton-Raphson iteration from failing in a region from 
which it cannot recover. Returning default values is acceptable as long as that happens only dur­
ing the intermediate iterations and does not take place at final iteration time, when the final 
result is actually computed. 

There is an additional safeguard option, that automatically generates code within the body 
of the generated C function, ensuring that no division by 0 occurs. In practice, this amounts to 
solving for all denominators in the expression and determining the conditions on the variables 
for which the denominators are zero. Then code is generated that flags these conditions and 
returns default values should they occur. The main purpose of these checks is to avoid a simula­
tion that would be lost in numerical exceptions without chance of recovery. They amount essen­
tially to resetting a break variable during iteration. 

We have also implemented related safeguards, such as checking that the arguments of spe­
cial functions (like log, asin, tan) are within range. An out-of-range argument is localized at run 
time precisely in the object in which it occurs. 

We are considering extending these safeguards to automatic returning of limits or flagging 
of discontinuities in the functions. The first would be helpful when mathematical singularities 
correspond to no physical singularity. The second would be a useful warning for solu tions tech­
niques that rely on the continuity of functions or their derivatives (for example the Newton­
Raphson method). 

3.2 Generation of macro objects 

A macro object is a system of equations, each of which may be piecewise defined. Macro 
objects are useful for representing complex physical components. In building science, for exam­
ple, a typical HV AC component, such as a heat exchanger, will have several conservation laws to 
satisfy plus some constitutive behavioral equations. The number of equations depends on how 
detailed the model is. Describing an entity as a macro object allows the user to treat the entity 
as a whole - to instantiate it and link it to other objects - without having to worry about its 
internal details. 

The following command creates a SPARK macro object along with its su bobjects (the ele­
mentary objects corresponding to the individual equations) and associated C-Ianguage functions: 

writemacro (sys, name, listofbadlist); 

Here, sys is the equation system in symbolic form and name is either a string that names the 
macro object, or a list of names (if the user wants to choose the names of the subobjects), and 
listofbadlist is a list of bad inverses for each equation in the system. 

Alternatively, to reuse objects that already exist in the SPARK library, name can be a list 
of the form 

(name, (name1,(x=y,x2=y2jj, (name2,(xl=z3,t=y, .. j, ... j 

The symbolic interface will then generate the macro object by instantiating eXIstmg objects 
instead of creating new objects. In this case, the first argument of the list is the name of the 
macro object to be generated, and name1, name2, etc., are the names of the existing objects. 
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The list of equalities after each name£ is a substitution that maps the names of the global vari­
ables in the macro object to the names of the local variables in the existing objects. In the exam­
ple above, existing object namel has local variables called y and y2 and the corresponding vari­
ables in the macro object are called x and x2. Thus, the macro object that is generated will con­
tain statements of the form: 

l£nk x(nameLinst.y) 

link x2(nameLinst.y2) 

where name1_inst is the name of the instantiation of object namel. 

The effect of writemacro is to put an equation system in network form. It scans the equa­
tions for common variables, states the links between equations with common variables, and gen­
erates all the elementary objects associated with the individual equations, along with the C func­
tions that solve the equations for particular variables. 

For example, consider the equation system 

q12=E( (),if»( T4_ To 4) 

q12+q=O 

where the first equation is not already in the object library, but the second equation is (under 
the name minus.obj, with equation in +out =0). Then the following command will generate a 
macro object named big_rad.obj that ·corresponds to this system, plus new elementary object 
my_rad.obj and old elementary object minus.obj: 

writemacro (f((q12~eps(th,phi}*(r 4-tO~ 4)}j,f(q12+q=Ojjj, 
(' big_raa', "my_raa',('minus", (q12=in, q=outjjj, ((th,phij,!JJ); 

Here we have specified that () and if> are bad inverses in my_rad; we have specified no bad 
inverses for minus. 

3.3 Generation of elementary dynamic objects 
An elementary dynamic object corresponds to a single ordinary differential equation (ODE), 

possibly piecewise defined. The corresponding SPARK representation actually consists of two 
(or more) equations: the ODE itself (with the derivative given a variable name, for example xdot) 
and the integrator equations, which state that xdot is the derivative of x, ydot is the derivative of 
y, and so on. Thus the SPARK object will actually be a macro object with two (or more) subob­
jects and associated C functions. The command for creating an elementary dynamic object is: 

makedynspark (eq, name, badlist, dynlist) 

where the first three arguments are the same as those in makespark and the last argument, dyn­
list, is a list of pairs ((x,xdotj,(y,ydotj, ... j indicating that xdot is the derivative of x, etc. 

Typically, a dynamic object would be a first-order nonlinear differential equation. For 
example, the following command will create a dynamic object, conv.obj (see Fig. 4), for the heat 
transfer equation 
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for the case that the heat capacity, C, is always an input parameter (i.e., is never calculated): 

makedynspark (e*T1dot=h12*(T2- T1), "eonv", [e], [T1, T1dot]) 

Here T1dot is the time derivative of T1. 

The time integrator used in this implementation is the backward difference integrator of 
order 4. It is an object. Thus makedynspark is nothing more than a writ em aero involving an 
existing integrator object. Thus, it is very easy to change the integrator, provided its interfaces 
remain the same. For more complex integrators, it might be advisable to write the object by 
hand. However, code has been written that allows automatic implementation of the Runge­
Kutta method of order 4 on a dynamic object. The command is: 

makerungespark (eg, name, var, vardot) 

or 

makerungespark (eg, name, [var, vardot], dynvarlist) 

where dynvarlist is the list of dynamic variables in the equation. 

3.4 Generation of dynamic macro objects 
A dynamic macro object represents a system of differential-algebraic equations. The com­

mand for creating this kind of object is: 

writedynmaero '(sys, name, listofbadlist, dynlist); 

where the first three arguments are the same as for writemaero, and the fourth argument is a list 
of lists of the same type as dynlist in makedynspark. 

Most components encountered in building thermal modeling are of this kind; an example is 
transient heat conduction through a wall discretized into several nodes. 

3.5 Generating a simulation 
If the user does not intend to link any objects together himself in the overall simulation 

file, and wants everything to be created for him, then the following syntax can be used: 

writesimul (eg, name); 

where eg is the overall equation system, including the equations that give the values of the 
inputs, and name is the name assigned to the overall simulation file. The writesimul command 
creates everything that is needed for a SPARK simulation to be ready to run, including the 
simulation and input files. This utility allows SPARK to be used simply as an equation solver, 
with no attention given to the crafting of objects or their reusability. This approach is con­
venient but inefficient, since the overhead for code generation is not exploited by reusing the 
code. 
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3.6 Component merging utility 
It is sometimes numerically useful to eliminate variables from an equation system before 

making it in to a SPARK object. That is especially true in the simulation of nonlinear con trois, 
where numerical difficulties can occur. 

Also, some internal variables of a macro object may of no interest, and are just calculation 
intermediaries. To eliminate such variables, a graph theoretic method applied to symbolic equa­
tions is used [Nataf 1987]. The command is: 

reducer (sys, varlist); 

where sys is the equation system and varlist the list of variables to be eliminated. The goal is 
the same as that of the MACSYMA command eliminate, but reducer is more versatile: 
MACSYMA's eliminate uses resultants, and is therefore suitable only for polynomial systems, 
whereas reducer can handle any type of equation. 

In reducer, the ability of the equations to be solved in terms of their variables with inverse 
functions is used in order to perform heuristically chosen substitutions. The algorithm 
transforms the equation system into a graph in which the equations are arcs and the variables 
are nodes. Two nodes are connected by an arc if a variable is shared by two equations. In gen­
eral, there are several arcs associated with each node, since most equations will have more than 
two variables. 

At this point, the varjables that are present in many equations are saved for later substitu­
tion, since substituting them might make implicit many equations where they are used. The rea­
son for this is that a pessimistic heuristic approach is taken, and it is assumed that substitutions 
into equations make these equations more complicated, and probably implicit in the variables 
that were injected. Although this is not always the case, it provides a rough guideline on how to 
choose variables to substitute. 

The criteria for choosing the order of the variables to substitute and the equations to use 
for the substitution are described in more detail in [Nataf 1987]. These criteria have been imple­
mented in both FORTRAN and MACSYMA. The MACSYMA implementation is slower but 
more efficient since the substitutions are actually performed and advantage is taken of the 
resulting simplifications, whereas the FORTRAN implementation can only take the pessimistic 
hypothesis that substituting a variable in an equation will make it implicit in the new variables 
that are injected. For example, substituting y=x5 into z=x+y+1 (explicit in x) yields 
z=x 5+x+1 (implicit in x). 

3.7 Generation of macro oDject networks 

Some equation systems have a particularly simple and repetitive form. In heat transfer, for 
example, the electrical analogy for conductive, convective and radiative transfer leads to equa­
tion systems of a simple form: 

N 

Ck= ~ aik bj 

i=l 

where b is any expression with index i (a vector) and a is any expression with two indices (a 
matrix). This approach can be used, for example, for conveniently expressing the equations for 
the radiative interaction between plane surfaces for which the shape factors have two indices and 
the flux has one index. 

- 10 -
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The SPARK command for generating macro object networks is: 

writegenericnetmacro{n, name, objname, exprl, expr2, badinvlist}; 

where n is the number of equations, name is the macro name, and objname is the name of the 
elementary object describing the equations. These equations have the form 

n 

expr 1 = ~expr 2 
j=l 

where exprl depends on index k and expr2 depends on indices k and i 
The last argument, badinvlist, is the list of bad inverses for the equation associated with 

k=l. It is assumed that this list is also valid - by "symmetry" - for the other instantiations of 
n 

the equation expr 1= ~ expr2. It must be remembered that only one elementary object is created 
j=l 

for that equation, and that that object is then instantiated n times. But since bad inverses can 
only be excluded in elementary objects, the ist of bad inverses is supplied only for the equation 
associated with k =1. 

There is a noteworthy problem associated with network objects: they are unphysical in the 
sense they can only be used when connected to other objects. For example, if we create a radia­
tive exchange network object for a room with N walls, we will have to connect it to the wall sur­
faces between which the radiative exchange takes place. If we now add a new wall, then the ori­
ginal N-wall radiative network object is no longer valid, and has to be replaced with an (N+1)­
wall radiative network object. 

One could argue that this problem is due to the matrix representation method chosen, and 
that one does not need to represent the interaction as an object, but can put the radiative 
behavior in the walls themselves. But then each wall will have a radiative influx interface that 
will have to be the sum of the exchanges with the other walls, the number of which is not 
known a priori. So the problem remains. Therefore, when adding a wall, one has to change the 
global radiation object, or one has to change the wall objects. The first alternative shows that 
there can be no general radiation object in SPARK. The second alternative shows that there 
can be no general radiative wall object in SPARK. 

This type of difficulty arises because a variable environment cannot be parametrized a 
priori and put into an interface. An interface is scalar, and the number of scalar variables 
through which a SPARK object communicates with the outside is fixed. 

In- practice, it is usually possible to deal with these problems, since the number of walls 
(continuing with the above example) always ends up being instantiated to a fixed value. 
Difficulties might arise, however, when new objects appear during a simulation and cause the 
number of equations to change. In principle, SPARK cannot handle this. But it may be possible 
to write the equation system so that at certain times certain equations, although present, are 
irrelevant, and only take on a physical meaning when the system reaches a certain state. In this 
case, the "extra" equations are fired during the iteration process even if the current state is inap­
propriate for them, but their effect does not influence other results. This approach has been pro­
ven to be feasible (for example, for a coil that switches from heating, with no condensation, to 
cooling, with condensation and therefore with additional equations) but requires extreme care in 
designing a system of equations that will, under certain conditions, behave as a smaller system, 
with the complementary subsystem not influencing the part that remains of physical 
significance. 
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3.8 Generation of a simulation containing two-dimensional PDE's 
SP ARK handles systems of algebraic and ordinary differential equations, but has no built­

in way to treat partial differential equations (PDE's). Two approaches to handling PDE's in 
SPARK are illustrated in Fig. 5. One approach is to resort to approximate closed-form solutions 
of the PDE, as determined, for example, by a variational method. The resulting equation is then 
used to create a SPARK object using the symbolic interface, as described above. 

A second approach is t9 observe that a finite difference represen tation of a problem yields a 
system of differential-algebraic equations that is well suited to treatment with the SPARK 
objed-oriented methods. In the 2-D finite difference discretization, each elementary bulk domain 
rectangle can be described by the same object (see Fig. 6). Furthermore, there are only a few 
possible configurations for the boundary elements (primarily corners and flat boundaries), which 
means that only a few types of objects are needed to represent all possible boundary conditions 
(see Fig. 6). 

The finite-difference approach has been implemented in SPARK. It handles second-order 
PDE's with first-order boundary conditions on 2-D domains of any shape that is regular enough. 
However, no provision is made for the error due to approximating a smooth boundary with rec­
tangles, although a wider variety of boundary objects could be implemented automatically*. 

For steady state, the command is: 

writefindiff2Dsimui (name, objname, bcname, diffeq, domain, constraint, dX,dy, badlist); 

where name is the name of the overall simulation file, objname is the bulk cell object name, 
bcname is the suffix for the boundary condition object name (prefixed with X_, y_ or xy_ depend­
ing on whether it is a left/right, top/down or corner boundary), diffeq is the PDE, constraint 
specifies the boundary conditions, and domain is a 2-D function that is negative inside of the 
domain and zero at the boundary. The quantities dx and dyare the spatial discretization steps 
in the x and y dimension, and badlist is the list of variables that we do not want to solve for 
(either because they will be parameters and we will always input them, or because solving for 
them is very time consuming for MACSY11A, or because they exhibit bad numerical properties 
as iteration variables). 

The syntax for dynamic or dynamic vectorial PDE's is the same but a slightly different 
package is invoked .. 

SPARK can therefore handle problems as complex as natural convection in two dimensional 
enclosures, for example. You need only enter the PDE in symbolic form, together with the boun­
dary conditions and domain geometry. The C code needed to simulate the problem is then 
automatically generated. However, only fairly coarse grids can be handled, otherwise the solver 
that is generated may be very slow to compile or may exceed the capabilities of the compiler. 

The user has the option to specify alternative algorithms for discretization. In the code the 
discretization is described by rules. The user can change these rules, and not further modify the 
code, provided that the value at each point in the domain is influenced only by its immediate 
neighbors. 

An example of using writefindijJ2Dsimui for generating the simulation of 2-D heat conduc­
tion in a disk in shown in Section 5. 

* This is to take into account the fact that the rectangular cells overlap the real domain. One reason is simplicity: the smaller the 
number of boundary objects the better (here we need only side and corner objects), even though one might have to resort to a finer 
grid to red uce the discretization errors. Another reason is that body-fitted coordinates can be used to transform the domain into a 
collection of rectangular domains, as described in IThompson 1985)' thus eliminating entirely the need to deal with the irregular 
boundary case in the computational cells themselves. 
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4. Use of Compiler-Compilers 
In this section we describe the use of compiler-compilers for code generation in SPARK. 

4.1 Multilinks 
Originally, the links connecting SPARK objects were restricted to be scalar quantities. To 

link objects with vector quantities required specifying separate links for each component of the 
vector. For example, the exchange of a fluid characterized by a (temperature, mass-flow-rate) 
vector required separate temperature and mass-flow-rate links. To get around this problem, the Ii 

"multilink" concept was introduced. 

A multilink is an array of scalars (or other multilinks, to any depth). Multilinks were 
implemented by extending the SPARK Network Simulation Language syntax and writing a lexi­
cal analyzer and syntactical parser, using Lex [Lesk 1986] and Yacc [Schreiner 1985 and Johnson 
1978]' to translate the new syntax into the old, SPARK-compatible syntax. The Lex and Yacc 
utilities take as input formalized descriptions of atoms and grammar, and generate C programs 
that do the parsing of any file for these language specifications. The SPARK language, being 
very simple, is suitable for treatment by these utilities, which can be used for writing compilers 
or translators (the latter being the case here). The Lex and Yacc generated parser just has to be 
modified slightly, since it is not recursive, while the SPARK parser is (since it has to deal with 
embedded macros). This treatment (which involves adding and maintaining a "depth of recur­
sion" dimension to the internal arrays of the generated parser) is all automated. 

In the extended syntax, an mport statement defines a multilink. For example, the statement 

mport air(h, db, w) 

will have the parser understand that linking two air-flow interfaces called air together means 
actually linking three separate interfaces - specific enthalpy h, dry bulb temperature db, and 
humidity ratio w. Thus, a statement of the form 

link air45 (tube1.aicout, co£l2.aicin) 

will be expanded into: 

linkair45->h (tubel.air_out->h, coiI2.aicin->h) 

link air45-> db (tube1.aicout- > db, coil2.aicin-> db) 

l£nk air 45-> w (tubel. air _out-> w, coil2. air _in- > w) 

The nesting feature allows the elements of an mport to be other mports, to any depth. 

4.2 Parametrized macro 0 bj ects 

Another limitation of the SPARK approach is that each object has a fixed number of inter­
faces. This is bothersome when dealing with "parametrized objects," an example of which is a 
wall with N layers, where N is not known a priori. 

To overcome this limitation a preprocessor was built, using Lex and Yacc, that allows the 
user to create parametrized objects aI\d simulations using an indexed syntax, with N as a vari­
able. Upon instantiation of that variable, the preprocessor creates a C program that asks the 
user to specify the value of N, and then generates a MACSYMA program that in turn generates 
the associated SPARK simulation or macro object file. 
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4.3 Steady-state resetting of a dynamic simulation 
A dynamic simulation may fail to converge at a particular time step. There are various 

possible reasons for this, including bad problem conditioning, too large a time step, or sudden 
change of a parameter. To deal with this, a method has been devised for SPARK using Lex and 
Yacc that - upon non-convergence - automatically creates a "ghost" steady-state simulation 
by removing all time derivatives from the dynamic simulation and assigning input parameters to 
be those at the time of failure. The dynamic simulation is then restarted at this time step using 
as new starting values the results of solving the steady-state problem. This approach can often 
save simulations that can otherwise be made to converge only by resorting to unreasonably 
small time steps. 

5. Example of the Symbolic Interface: 2-D Conduction 
We consider the SPARK simulation of heat conduction in a disk. We take the disk to be a 

section through an infinitely long rod, so that the heat conduction is in the two dimensions per­
pendicular to the axis of the rod. The disk has a heat production term in the bulk domain and 
a Newtonian convection boundary condition. The conduction equation to be solved is 

u aT 
~T+-=pc -

k P at 

where T is the temperature,u is the bulk heat generation rate, k is the thermal conductivity, p 
is the density, and cp is the specific heat capacity. 

The boundary condition on the perimeter of the disk is 

dT -k-=h(T-To) 
dn 

where h is the heat transfer coefficient, To is the ambient temperature, and dT is the normal 
dn 

derivative of the temperature at the boundary. 

The SPARK commands for generating the simulation for this problem are as follows: 

/ *p2dyn simulation * / 
/ *Disk with unzJorm heat generation, Newtonian convection loss*/ 
batch(,/ ul/ nata!/ vaxima/ mysolve. mac"); 
batch('/ ul! nata!/ vaxima/ FINDIFF2D/ fin dijJ2Ddyn. mac"); 
rO:l.0; 
circle1(x,y):=xA 2+yA 2-rOA 2; 
ctt:((-k_avg/ rO *( 'dijJ('temp, 'x) * 'x('x, 'y)+ 'dijJ('temp, 'y) *'y( 'x, 'y))=h_avg *('temp( 'x, 'y)- tempO)}}; 
eqdif:((Lavg*('dijJ('temp, 'x, 2)+ 'dijJ('temp, 'y,2))+ 'u_avg=rho*cp*'dijJ('temp, 't)}}; 
writefindijJ2Dsimui ('p2dyn", "p2dyneU", "bcp2dyneU", eqdi/, circlel, 

ctt, 0.1, 0.1, (tempO, rho, cp,k_avg, u_avg}); 
closefile(); 

The SPARK solution for the disk temperature distribution at 0, 1, 2, and 10 sec is shown 
in Fi§. 7 for the following parameters: disk radius (ro) =·0.1 m, k=0.032 W/(mK), u=10000 
W/m , h=400 W/(m2K), p=1020 kg/m3

, cp =0.24 J/(kg-K), initial disk temperature = 24 C, 
and ambient temperature = 20 C. 

- 15 -



100 

80 

~ 60 
;::l ....... 
CI:S 
I-< 

8. 40 
S 
~ 

20 

o 

100 

80 

----U 
'-" 
(\) 60 I-< 
;::l ....... 
CI:S 
I-< 
(\) 

0.. 
S 
~ 20 

0 

Figure 7: 

t = 0 sec t = 1 sec • 

t = 2 sec t = 10 sec 

40 

20 

0 

SPARK solution for disk temperature distribution. 

- 16 -



For this problem, the reduction factor is 1 (i.e., no reduction, which mean.s there are as 
many iteration variables as there are dynamic variables) or infinity (which means there are no 
iteration variables), depending on whether all of the dynamic variables are in the cut set by con­
struction, as in an initial implementation of SPARK, or not, as in a new version where this con­
straint has been eliminated. 

The MACSYMA input needed is fairly short, but generates a lot of reusable SPARK and C 
code. The simulation that is automatically generated has 1741 objects or links, and 285 break 
variables. Thus, the number of iteration variables is quite large. An alternative implementation, 
which does not force the dynamic variables to be break variables, leads to zero iteration vari­
ables! The reason for this is that the integrator used is explicit. Hence, initial conditions are 
enough to explicitly calculate all unknowns at each time step using only the unknown values at 
the previous time step. However, in this case the simulation is sensitive to the usual stability 
criteria between time step and grid size, while the previous code is not and converges to the 
right values even outside the usual stability domain. This is to be expected: iteration on all 
dynamic variables leads to a resolution process immune to the stability problems occasioned by 
forward time and center space differencing. 

Conclusion 
The SPARK environment provides a convenient basis for quick prototyping of simulation 

programs. Its object-oriented interface makes it suitable for component-based simulations of the 
kind encountered in heat transfer and thermal engineering. SPARK's symbolic preprocessors 
reduce model-building time, generate component libraries automatically, and permit automatic 
generation of solutions to complex PDE problems. The implementation of these problems is not 
necessarily the most efficient, since the SPARK idea of efficiency is only based on equation sys­
tem size red uction. It is not necessarily the most accurate either, since a general purpose discreti­
zation is used that does not consider the physical characteristics of the problem. 

Introducing physical insight in the choice of numerical schemes by integrating an expert 
system into SPARK is under consideration. Under development are symbolic graph theoretical 
tools for reducing equation subsystems and for generating customized simulations (discretizing 
PDE's with arbitrary boundary conditions, for example). 
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