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Abstract 

Total energy density-functional methods have made it possible to calculate, from first 

principles, such important properties as cohesive energies, lattice constants and elastic moduli for 

elemental crystals and perfectly ordered compounds. Real solids are imperfect, however, so that 

lattice vibrations and compositional disorder lead to entropy contributions, vibrational and 

configurational. When these effects are included in an appropriate manner, properties of real 

crystals can be computed ab initio as a function of temperature and concentration. Consequently, it 

is possible to obtain, virtually from the knowledge of atomic numbers alone, such basic 

thermodynamic properties as free energies, entropies, heats of formation, and lattice parameters for 

stable and metastable phases, leading, for example, to the successful computation of certain classes 

of phase diagrams. Recent progress in the field will be reviewed. 

1. Introduction 

It was in 1951 that the Cluster Variation Method (CVM) was introduced by Ryoichi 

Kikuchi [1]. In the following years, CVM calculations were performed, in particular by Kikuchi 

himself, mainly for the purpose of improving on the values of critical temperatures for various 

two- and three-dimensional Ising models. An important breakthrough occurred in 1973 when van 

Baal [2] first applied the CVM to the calculation of an ordering phase diagram of a model binary 

alloy on an fcc lattice. A realistic Cu-Au phase diagram was shortly thereafter calculated by 

Kikuchi and the present author [3], in which the energy parameters, first neighbor pair and 

tetrahedron interactions, were obtained by fitting to the experimentally determined phase diagram. 
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First neighbor pair ordering on the fcc lattice in a binary (A,B) system presents a special 

challenge because of the phenomenon ofJrustration: on an nn (nearest neighbor) triangle, a basic 

geometrical feature of the fcc lattice, all three atomic pairs cannot all satisfy the requirement of 

unlike (A-B) pair bonds. The Bragg-Williams model, which contains no geometrical information, 

cannot deal with frustration, but the CVM handles the problem very well. Unfortunately, the 

complexity of ordering reactions which can occur cannot be modeled by nn interactions alone; at 

the very least, second neighbors (nnn) must be included. It was therefore necessary to go beyond 

the nn tetrahedron cluster approximation in the CVM. The tetrahedron-octahedron combination 

was found to be a suitable CVM approximation incorporating nnn interactions [4], and a series of 

"prototype phase diagrams" was calculated in this T-O approximation for varying ratios of the 

values of the nn to nnn pair interactions [4-7]. Surprisingly, these calculations were the fIrst ever 

to describe phase equilibrium on the fcc lattice for nn and nnn interactions. It is remarkable that 

such an apparently simple and classical problem had to wait this long for a solution, a solution 

made possible by the development of the CVM, its application to phase diagram calculations, the 

derivation of the T -0 approximation, and the availability of fast computers. Moreover, by these 

calculations, it was shown how very different phase diagrams, with different ordered 

superstructures could be made to evolve continuously from one another, all the way to miscibility 

gap behavior, simply by changing the value of a single dimensionless parameters, the ratio of nn 

and nnn pair interactions. 

Realistic phase diagrams, reproducing the crystalline phase boundaries observed in real 

binary systems, further required the introduction into the CVM free energy of either concentration

dependent interactions or of multi-site interactions. Quite impressive results could be obtained by 

fitting, as was done by Sigli and Sanchez for the Al-Li phase diagram [8], for example, but it was 

far more satisfying to try to calculate the required parameters from physical principles, ideally from 

fIrst principles, i.e., from the mere knowledge of the atomic numbers ZA, ZB of the constituents. 

To achieve this ambitious but exciting goal, it was necessary to establish a link between 

quantum and statistical aspects of the problem. The connection turned out to be based on the 
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clusters of the CVM, thanks to a remarkable orthogonal property of "cluster functions", already 

discovered by Sanchez in the late seventies [4], and formulated rigorously by himself, Ducastelle 

and Gratias in a classic paper of 1984 [9]. The key result of this work was that any function 

depending on atomic configurations could be rigorously expanded in a set of complete, 

orthonormal cluster functions, with expansion coefficients given by generalized scalar products 

over the space of configurations. 

The basic idea of the method will be briefly described in Section 2 (for details, the reader is 

referred to the cited literature), then applied to the problem of determining effective cluster 

interactions (Section 3), to that of calculating ground states (Section 4), and to phase diagram 

calculations (Section 5). Examples of calculations pertaining to Pd, Rh, and V alloys will be given 

in Section 6. 

2 . Cluster Method 

The cluster method works best on perfect lattices, i.e., on crystals for which we may 

associate an atom uniquely to each lattice (or sublattice) point. It does not mean that atomic 

displacements are disallowed, but merely that the reference lattice is unbroken, undistorted. 

Hence, we are considering only compositional, not topological disorder. That being the case, it 

becomes possible to decouple configurational from vibrational entropy. The CVM does very well 

for the former, is not particularly appropriate for the latter. 

In binary alloys (A,B), we may then associate the value a = +1 (A atom) or a =-1 

(B atom) to each lattice point. A configuration is then an N-dimensional vector a consisting of + 1 

and -1 values, N being the total number of lattice points. Of course, + 1 may also represent an 

atom A, -1 a vacancy. A binary alloy with vacancies must be modeled as a ternary system, etc. 

Such an explicit description of configuration is neither practical nor useful. In the past, 

"configuration" was characterized somewhat ambiguously by long-range and short-range order 

parameters. A more general and straightforward definition is based on the notion of clusters, 

consisting of small collections of lattice points: pairs, triplets, quadruplets, and so on. Let ex 
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denote such a cluster of lattice points {PI, P2, ... Pn} and define a corresponding cluster function 

which we define, at least for the time being, as the product of a's on the cluster points: 

(1) 

The following orthogonality 

(2) 

and completeness 

(3) 

a 

relations can be proved [9,11], where the angle brackets denote an inner product over. the space of 

configurations, thus a nonnalized trace (or sum).over all2N possible configurations (for a binary 

system). 

From this important property, it follows that any function of configuration f(a) can be 

expanded in a set of cluster functions 

(4) 
a 

with coefficients obtained by the "inversion fonnula" 

(5) 

The thennodynarnic, or ensemble average of f( a) is also of interest, it is given by 
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(6) 
a 

where the cluster, or multi site correlationfunction is given by 

(7) 

where the super-bar in Eqs. (6) and (7), and elsewhere, denotes thermodynamic average. Since 

the expansion coefficients Fa are obtained in Eq. (5) by performing a sum over all possible 

configurations, they must not depend on the average concentration c = (1 - (5)/2 of B atoms «(5 is 

the average "spin" variable over all N points). 

There is another way of defining scalar products, that is to perform summations over those 

configurations which conserve the average concentration c. It can be shown [10], in that case, that 

the required set of orthonormal functions differs slightly from that of cluster functions, as defined 

by Eq. (1): one must now take 

-<Pa( 0) = II (op - 0) (8) 

p 

where the product must be taken over points p of the cluster <x. Correspondingly, the ensemble -average of the modified cluster functions <P <X are multisite cumulants 

(9) 

rather than correlation functions. In Eqs. (8), (9) and following, a caret denotes quantities related 

to c-dependent summations. 

In this restricted-summation scheme, the expansion coefficients Fa are necessarily 

concentration dependent. Both types of expansions, unrestricted or restricted, are valid, indeed are 
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equally rigorous. The cumulant for cluster a may be expressed as a function of correlations of 

subclusterofa (denoted symbolically as "a-I", "a-2", ... ) 

(10) 

When such expressions are introduced into a concentration-dependent expansion for the 

expectation value (ensemble average) of some function f, and when the two equivalent expansions, 

concentration-independent and -dependent, are compared term for term, a simple relationship is 

found between the coefficients Fa and ~ [10]. The former can be expressed linearly as a function 

of the latter and of powers of cr. Surprisingly, the explicit concentration-dependence of the cr 
compensates for the implicit concentration-dependence of the ~ to produce the concentration-

independent Fa. These considerations are particularly relevant to the case of expansions of the 

energy in terms of effective cluster interactions, to be taken up next. 

3. Effective Cluster Interactions 

Let us expand the energy E(a) of a given configuration, as in Eq. (4). The expansion 

coefficients are obtained by the inversion formula (5). To illustrate how this calculation is to be 

performed, consider the case a = (p,q), i.e., a cluster consisting of a pair of atoms situated at 

lattice points p and q. We split the sum over configurations into two contributions: a sum over 

cluster (pair) configurations and one over a', consisting of all configurations of the "medium" on 

lattice points not including p, q. We find 

(11) 

or, since each a can be ±1, 
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(12) 

where Wu (I, J = A or B) is the average energy of all configurations having atom of type I at p and 

J at q. Similar expressions can be derived rigorously for triplets p, q, r: 

Epqr = i<W AM - W AAB ••• + W BBB> 

quadruplets, etc. The En are the effective cluster interactions (Eel) mentioned above, and are 

obtained as (small) differences of (large) total energies, W. These effective interactions, the correct 

ones to use in Ising-model-like calculations, differ fundamentally from pair (or triplet, etc.) 

potentials. In particular, even the nn effective pair interaction contains, in principle, all electronic 

interactions, of arbitrary range. Similar considerations apply, of course, to concentration

dependent E: interactions. 

It may appear curious that the same physical quantity, such as the expectation value of the 

configurational energy, could be represented equally by series featuring concentration-dependent or 

-independent interactions. Actually, only the value of the summed series matters, not the particular 

form of the individual coefficients En (or E~. In any case, the energy <E> itself surely depends 

on the average concentration: in the c-independent Eel case, through the correlations ~n only, in 

the c-dependent Eel case, both through the Ea and the cumulants ~. 

If only effective pair interactions are considered in the c-independent case, then all energetic 

properties of a binary alloy will be symmetric about the mid-point of the (0,1) concentration 

interval, at c = 0.5. In actual practice, such perfect symmetry is not observed. It is then necessary 

to use either multisite Eel's (beyond the pair) in the c-independent case, or, if pair interactions are 

deemed sufficient, use the c-dependent scheme. The ultimate equivalence of these two approaches 

can be understood qualitatively as follows: if multisite interactions are included in the expansion 

then a nn pair energy W AB, say, will have different energies depending upon the configuration of 

the larger cluster (W ABAAB ... ) that includes it. Thus, in the c-independent scheme, a given pair 
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;'knows about" the composition of its local environment. In the c-dependent scheme, the pair in 

question "knows about" the average composition of the whole system. In the limit of very large 

clusters, both schemes are seen to be equivalent. 

Cluster expansions would not be of much use if the series did not converge sufficiently 

rapidly. Unfortunately, there exist, as yet, no rigorous criteria for the convergence of, say, the 

energy expansions. One has to rely on heuristic arguments or on actual numerical calculations. As 

a general rule, it is found that the magnitude of pair interactions V2 (we now adopt this notation, 

which is simpler than Epq) decreases as the pair spacing increases. It is easy to see why this is so, 

qualitatively: for large separation between p and q, the energy Wu is practically proportional to the 

sum of the "point" energies WI + WI, since the atom at p hardly "notices" the one at q, and 

conversely. But if the pair energy is equal to the sum of the corresponding point energies, the 

linear combination (12) vanishes. Likewise, the magnitude of cluster interactions tends to decrease 

rapidly as the "size" of the cluster increases: if an atom, A or B, is added to a given cluster a, we 

have 

where V a( +1) denote the ECI for cluster a with an I atom added to it. The addition of one atom to 

a large cluster will have little effect on the value of Va ( +A) or Va ( +B), so the difference in 

Eq. (13) will tend to be much smaller than Va itself. 

How are the ECl's to be calculated in practice? The most obvious way of computing ECl's 

(Ea) is by taking sums and differences ofW's, as in Eq. (12). The energies W themselves can be 

calculated by selecting an arbitrary configuration 0' in a finite portion of the crystal (containing N 

atoms), computing the energy by suitable electronic structure techniques, then repeating the 

procedure over and over, with different configurations selected at random, keeping that on the 

chosen a-cluster fixed. It has been shown that convergence is obtained after about 30 

configurations [12]. 
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Obviously, the computations are very repetitive, hence lengthy. For that reason, we have 

used the very efficient tight-binding approximation for the band structure energy of the 

configurational energy E(cr) of each configuration, that of the cluster and that of the outside 

medium, comprising about 1000 lattice sites. Tight-binding parameters were obtained from LMTO 

(linear muffm-tin orbital) calculations in the atomic sphere approximation (ASA) for the pure metal 

elements [13]. Scalar relativistic effects were included along with (in some cases) so-called 

combined correction terms. Hopping integrals for unlike atomic sites were calculated by taking 

geometric means~ Change in matrix elements of the Hamiltonian upon alloying was taken into 

account by shifting the on-site energies of the pure elements, the shift being determined self

consistently, along with the location of the Fermi level, by imposing local charge neutrality, a 

reasonable assumption for transition metal alloys. The resulting Hamiltonian, containing matrix 

elements from s, p and d orbital contributions, in nn and nnn hopping integrals, was 

tridiagonalized by using the recursion method [14]. Since this is a real-space method which does 

not appeal to the Bloch theorem, any non-translation ally symmetric configuration can be handled in 

this way. Actually, taking differences of large numbers, as prescribed by Eq. (12), can be avoided 

by use of the "orbital peeling" method introduced by Burke [15]. 

We have called the method just presented the method of direct configurational averaging 

(DCA) [12], since it is based on the exact definition of the ECl's given symbolically in Eq. (5), or 

. more explicitly for pairs in Eqs. (11) and (12). A flow chart of the DCA is shown in Fig. 1. 

Atomic numbers of the constituent atoms, A, B, C ... are selected, then a lattice is chosen (fcc, 

bcc, hcp), then tight-binding parameters are obtained by the LMTO method. A cluster of na sites 

is chosen, and is "embedded" in a medium of N-na atoms. For a given "medium" configuration 

(cr'), all configurations of ,atoms on the sites of the selected cluster are examined, and recursion 

plus orbital peeling operations are performed for all configurations of the cluster in that particular 

medium configuration (cr'). Since recursion returns a Hamiltonian in tridiagonal form, the local 

" 
density of states (LDOS) is obtained as a continued fraction which is continued by use of a 

quadratic terminator. The whole calculation is repeated for a number of other medium 
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configurations. All possible 2N configurations should be thus investigated, obviously an 

impractical task. Usually, about 20 to 50 configurations suffice. Generally, the average 

concentration of each configuration turns out to be, as expected for such a large computational 

region, very close to c = 1/2. Local densities of states for the various configurations are averaged 

together, and the Eel's are then obtained by integration up to the Fermi level. 

The types of clusters for which Eel's have been calculated on fcc lattices are shown in 

Fig. 2. The first subscript on the V symbol indicates the number of points in the cluster, the 

second denotes the type of pair (triplet, etc.) envisaged. Values of Eel's calculated for a model 

system (canonical d-band, number of d electrons for A and B elements equal to 8 and 3, 

respectively), are plotted in Fig. 3 on a logarithmic scale for interactions normalized by the absolute 

value of the nn pair V2,1. It is seen that convergence is quite rapid, though not necessarily 

monotonic in pair spacing or cluster "size". In particular, note that the octahedron cluster Eel is 

almost four orders of magnitude smaller than V2,1. It also follows that almost 90% of the ordering 

energy is already contained in the cluster expansion terminated after the nn pair. By "ordering 

energy" is meant the expression 

(14) 

where 

-na 
= ~a - a (15) 

is the difference between the <x-cluster correlation function (at given T and (j = 1-2c) and the 

corresponding one for the fully disordered state, for which multisite correlations are simply powers 

of the "point" correlation, or average spin. ~ in Eq. (14) thus has the form of the difference 

between the energy of the (partially) ordered configuration, characterized by its ~a correlations, 
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and the energy of the random state. It follows that, in most cases, the most important role played 

by higher ECl's (beyond V2,1) is that of lifting structural degeneracies, i.e., of insuring that the 

correct ordered superstructure, or ground state, is obtained. This crucial aspect of the calculation, 

that of predicting ground states, is examined next. 

4 . Ground States of Order 

Predicting, for a given binary system, which intermetallic structures will have lowest 

energy, for all concentrations, at zero Kelvin, is an impossible task. Fortunately, most 

intermetallics of interest are superstructures of either fcc, bcc or hcp. Then, the problem of 

determining the lowest-energy superstructures of a given lattice is a simpler one which, in 

favorable cases, can be solved exactly. Each lattice must of course be handled separately: the 

ECl's calculated on different lattices will have different values. As for other intermetallic 

compounds, those which are not superstructures, they must be treated differently: for these 

"interloper" phases, their total energies must be calculated directly by appropriate electronic 

structure codes and compared to other, possibly competitive structures. 

Eq. (4), written for the energy E(cr), is the one to minimize, but it must fIrst be rewritten in 

a more convenient form. Many of the clusters (ex) appearing in the summation are equivalent 

through the space group symmetry operations of the underlying lattice. The set of such clusters 

equivalent to a given one by symmetry is known as the orbit of the given cluster. Each distinct 

orbit (or its generating cluster) will be denoted by the index j. The total number of clusters in orbit 

j is then the total number of lattice translational symmetry operations times the number of 

equivalent clusters per lattice point, or multiplicity mj- Let us also denote the "empty cluster" by 

the index j = O. Then, the energy of a given stoichiometric superstructure, per lattice point, is, by 

Eq. (6), given by the linear form 

J 

e = eo + ImjEjSj 
j=l 

11 
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where the brackets have been removed from < e > since, at absolute zero of temperature, the 

expectation value is just the energy of the perfect structure. The variables ~j here are not strictly 

ensemble averages, but "orbit averages" of cluster functions; such averaging process must be taken 

into account since the symmetry of the ordered superstructure is generally lower than that of the 

parent lattice. The summation in Eq. (16) extends from the "point" cluster to some maximal 

cluster(s), denoted by the index J. 

Simply minimizing the linear function (16) with given ECl's Ej will not do since the 

parameters ~j must describe a real structure, or mixture of structures, on the lattice. Hence, a 

number of constraints (i.e., linear inequalities) on the domain of ~j must be imposed. The required 

constraints are usually derived from considerations of clusters (see Refs. [16] and [17] and 

references cited therein), but the most straightforward method is probably that suggested by 

Sanchez and the present author [18] and described fully, for the case of pair interactions, by Finel 

[17] and in a recent review [19]. The handling of combinatorics of large clusters was treated even 

more recently in the Ph.D. dissertation of G. Ceder [20] and a more detailed application to the Pd

V system is presented elsewhere [21]. 

Briefly, the idea is the following: denote the probability of finding a given cluster, say a 

nearest-neighbor triangle oflattice points (equilateral triangle in fcc) populated by atoms in a certain 

configuration (a = AAA, AAB, ... ) by the symbol x/a). This probability, or "dressed" cluster 

concentration, being a function of configuration, can be expanded in a set of cluster functions, as 

in Eq. (4). For simplicity, let distinct configurations on a given cluster be labeled by the index k. 

For the maximal cluster J, the concentrations of various configurations k are then given by [22]: 

xiaJ (17) 
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where p ~ is a nonnalization factor given by the reciprocal of the number of configurations on the 

cluster, i.e., 2-1. The summation is over all subclusters j of the maximal cluster J and the 

coefficients Ckj, calculated by means of Eq. (2), are elements of a rectangular matrix, the so-called 

configuration matrix (or C-matrix). Often, more than one "maximal cluster" is used, J, J', J", ... , 

neither one being a subcluster of any other. 

Since the Xj are probabilities, their values must be constrained to lie between 0 and 1. 

Then, only the lower constraint needs to be considered, since the upper one is guaranteed by the 

fact that cluster averages lie between -1 and +1. Hence, from Eq. (17), we must have, for all 

maximal clusters, and for all cluster configurations k, 

(18) 

These linear inequalities define a convex region in multidimensional ~-space, the so-called 

configurational polyhedron, which contains all realizable configurations on the lattice. The 

determination of ground states then consists of minimizing the energy (objective) function (16), 

under the constraint of inequalities (18). This is a standard problem in linear programming and can 

be solved by the simplex algorithm, but only when the ECl's are calculated in the c-independent 

case. It follows that the vertices of the configuration polyhedron are the solutions sought, i.e, the 

ordered ground state superstructures, different vertices corresponding to different stoichiometries. 

One must then construct the crystal superstructure corresponding to the correlations~, which are 

the coordinates of the vertex to which the linear programming algorithm has converged. This is a 

non-trivial problem; in fact, there are cases for which the ~-coordinates of a vertex do not 

correspond to a constructible crystal structure. 

The C-matrix, which has more rows (configurations k) than columns (subcluster types j) 

contains all the geometric properties of the problem, and is used to transfer that infonnation (lattice 

13 



type, largest cluster(s), subclusters, symmetry equivalence) to both ground state and CVM codes. 

Unfortunately, the number of (sub)clusters and the number of configurations tend to increase 

exponentially with the number of points in the largest cluster retained in the energy (or entropy) 

approximation chosen. For example, in the 13-, 14-point fcc approximation (central lattice point 

and its twelve nearest neighbors, fcc cube itself), there are 742 distinct clusters, 554 configurations 

on the 14-point cluster and 288 on the 13-point cluster. Hence the C-matrix has 842x742 

elements! Clearly, the enumeration of all variables and constraints must be obtained by a suitable 

computer algorithm based on group theoretic considerations. One such algorithm has recently been 

developed [20]. 

5 • Phase Diagrams 

When temperature is brought into the picture, so must its conjugate "extensive" quantity, 

the entropy S, be included. Here, we shall be concerned only with configurational entropy. If 

equilibria between ordered structures on the same reference lattice only are considered, then the 

change of vibrational entropy upon phase transition is probably quite small compared to the 

configurational contribution. Thermal expansion will also be neglected since, over the range of 

temperatures of interest for crystalline phase equilibria, the lattice parameter dilatations are expected 

to have little influence on the values of the calculated ECl's. Hence, the appropriate 

thermodynamic function to be minimized at equilibrium is the Helmholtz free energy F = E -TS. 

The basic idea of the CVM is to express the configurational entropy as an analytic function 

of the cluster concentrations xjCa) defined in the previous section. Kikuchi [1] showed that the 

configurational entropy per lattice point could be expressed as 

(19) 
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where kB is Boltzmann's constant, Xj( ak) is the concentration, or frequency of occurrence at 

equilibrium of cluster of type j in configuration ak, and 'Yj are integers which depend on the nature 

of the (sub)lattice and on the cluster approximation used. The first summation in Eq. (19) is in 

principle, over all clusters, the second one over all configurations of the cluster considered. 

Cluster concentrations Xj and correlation functions l; are linearly related by the configuration matrix 

C, as in Eq. (17). The configurational free energy can then be written as an implicit function of the 

(independent) correlations as F = F(l;), collectively. The variational principle is now invoked to 

claim that the equilibrium free energy is the one obtained by minimizing F(l;) with respect to the 

multisite correlation retained in the approximation. The choice of clusters which produce 

satisfactory approximations is discussed at some length by Finel [17]. 

Phase diagram calculations proceed as indicated schematically in the flow diagram of 

Fig. 4. The DCA flow diagram of Fig. 1 ended with the all-important ECl's which provide the 

link between quantum and statistical mechanical calculations. The CVM flow diagram of Fig. 4 

starts when Fig. 1 leaves off. Knowledge of the configuration matrix and of the ECl's determines 

the ground states, hence the ordered phases which are expected to playa role in the system under 

consideration, for each of the lattices. For each phase, the free energy is minimized, and the 

eqUilibrium F is plotted as a function of T and c. All lattices must be handled in this way (in 

Fig. 4, see arrow marked "Another Lattice" returning the calculation to the lattice selection box of 

Fig. 1). Finally, domains of existence of stable (and metastable) phases are determined by 

constructing common tangents to the relevant equilibrium free energy curves, according to standard 

classical thermodynamic procedure. 

Such calculations are extremely valuable to perform even when the phase diagram has 

already been determined from experimental measurements. The calculated diagram gives much 

more than a picture, or map of stable equilibria: numerical values of energies of cohesion, 

formation, order have been calculated, along with equilibrium lattice parameters, elastic moduli, 

entropies, free energies. It is also possible to deduce, from the calculations leading to the phase 

diagram, information concerning states of long- and short-range as a function of T and c, and other 
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parameters of interest. In addition, it becomes possible to understand the physical why and 

wherefore of a phase diagram: why certain phases coexist, why they have certain domains of 

existence. 

6 . Application to Pd-Rh-V Systems 

The tight-binding approximation is expected to give satisfactory results for transition 

metals, so let us take, by way of example, the three metals Pd, Rh and V. Here, only the fcc 

reference lattice is considered. The c-independent scheme was adopted for the binaries Pd-V and 

Pd-Rh, which means, practically, that DCA calculations were performed at alloy compositions 

very close to 0.5. A volume correction was introduced by assuming that average atomic volumes 

varied linearly with concentration. Atomic volumes of pure elements were calculated by 

minimizing the energy of Pd, Rh and V obtained by the LMTO-ASA. The tight-binding 

parameters of these elements, to be used in binary alloy calculations, were obtained from the 

LMTO at volumes corresponding to the 0.5 alloy concentration. 

For each of the three binary systems, fIrst through fourth-neighbor pair interactions were 

calculated, as well as several triplet and quadruplet interactions. ECl's thus calculated for Pd-V 

and Pd-Rh are plotted in Figs. 5a and b respectively (filled circles). Lines are mere guides to the 

eye. It is seen that, as expected, convergence to very small ECI values is quite rapid. For 

comparison, Figs. 5a and b also show (open circles, dashed line) ECl's calculated by other first

principles methods, the KKR-CPA-GPM for Pd-V [22], and the inversion (or Connolly-Williams) 

method, featuring LAPW calculations for Pd-Rh [23]. It is seen that, in both cases, the agreement 

is very good between the TB-DCA and the calculations based on more elaborate electronic structure 

techniques. 

Having obtained numerical values of the ECl's, we can now search for fcc-based 

superstructure ground states, according to the methods described in Section 4. Pd-V calculations 

are described in more detail elsewhere [21]; Fig. 6a summarizes the results. All vertices obtained 

by the linear programming method were found to be "constructible" and are shown, with their 
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respective structures and formation energies, as filled circles lying along the convex hull (full 

polygonal line) in Fig. 6a. The dashed curve in this figure represents the fOImation energy of the 

fully disordered state, obtained by replacing actual correlations by powers of the "point" 

correlation, as explained in connection with Eq. (15). By "formation energy" we mean the total 

energy of a superstructure, here at zero Kelvin, compared to the non-interacting mixture of pure 

(fcc) elements at the same concentration. Of course, the equilibrium structure of pure V is bcc, so 

that the diagram of Fig. 6a is incomplete; one would have to perform the same analysis on the bcc 

lattice, for V, Pd and all its ground state superstructures, followed by construction of the lowest 

convex hull. This has not yet been done, but comparison of the Pd side of Fig. 6a with 

experimental evidence is quite encouraging: the D022-type .structure is indeed the one observed to 

be the stable one for VPd3, and the MOPt2-type structure is the observed one for VPd2. The 

N4Mo-type structure (Dl~ is not observed in this system, but its representative point is seen to lie 

in Fig. 6a practically on the tie line between pure fcc Pd and D022. If the energy of "VPc4" were 

pushed up ever so slightly, it would cease to appear in the ground state diagram. In the actual V

Pd system, a two-phase region straddles the 50-50 composition, and therefore masks the possible 

appearance of the predicted L10 fcc superstructure . 

. Ground state results for V -Rh are shown similarly in Fig. 6b. In this case, at the AB3 

composition, it is the L12 structure which is stable, in agreement with experiment, rather than the 

D022 of VPd3. Also, in V -Rh, there are no predicted VRh2 and VRh4 stable superstructures, 

again in agreement with experiment. It follows that the fcc portion of the V -Rh system belongs to 

the <100> family of superstructures, and V-Pd to the <I¥» family, the bracketed expression 

indicating the Miller indices of the concentration wave corresponding to the ordering instability 

[16]. 

The ground state search for Pd-Rh has been performed as well, but the results are trivial: 

since the nn effective pair interaction is large and negative, phase separation rather than ordering is 

expected, so that the two ground states are just pure fcc Pd and Rh. For this system, however, we 

have used the CVM to calculate a phase diagram according to the methods described in Section 5. 
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Only nn and nnn pair interactions were used in the energy expansion. The calculated unmixing 

boundary (dashed line) is compared in Fig. 7 with the experimentally determined miscibility gap 

(unbroken line). The excellent agreement is partly due to the fact that the tight-binding parameters 

for the DCA calculations were calculated from the LMTO at the average atomic volume obtained for 

the chosen concentration by interpolating linearly between experimental values of the atomic 

volumes of pure Pd and Rh. 

The fact that DCA calculations provide the correct ordering and phase separation trends for 

the three fcc-based binaries V-Pd, V-Rh and Pd-Rh gives us confidence to tackle the V-Pd-Rh 

ternary itself. In this preliminary study, ternary ECl's were calculated for first through fourth nn 

pairs in the c-dependent scheme; otherwise artificial symmetries in the concentration dependence of 

the energy would develop due to the neglect of multiplet interactions (see Section 3). The 

formation energy of the completely disordered fcc state is plotted as shaded contours in the V -Pd

Rh Gibbs triangle in Fig. 8. For a narrow strip along the Pd-Rh binary, the energy is positive 

(phase separation tendency) whereas it is negative (ordering tendencies) for all other concentrations 

(see vertical energy scale in Fig. 8). One may not conclude, however, that ordering will be 

preferred at almost all ternary concentrations: it is necessary, at the very least, to perform a 

stability analysis on the disordered state which, for ternary (and higher) systems is not as 

straightforward as it is for binaries. Consider, for example, the central composition of the Gibbs 

triangle. At that point, the contours indicate that the energy surface is saddle-shaped, with negative 

curvature along directions rough,ly parallel to the Pd-Rh binary. An instability toward phase 

separation into Pd-rich and Rh-rich (possibly ordered) solutions is therefore to be expected 

[16,24]. 

It is also instructive to examine separately the concentration dependence of the independent 

Pd-Rh, Pd-V and Rh-V pair interactions. Values of these nn pair interactions are plotted 

individually on three Gibbs triangles in Fig. 9. The pairs retain their respective signs over the 

whole composition ranges: negative for Pd-Rh (light shading) positive for the other two (heavy 

shading). These signs are such as to place the Pd-Rh-V system in category II of Meijering's 
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diagram is expected to show, as main feature, a miscibility gap extending into the ternary from the 

Pd-Rh side, without touching the other two binaries. 

7 • Conclusion 

The cluster method has become the preferred technique for the study of crystalline alloys, 

binary, ternary, stable, metastable, ordered, disordered. The orthonormal expansion is in principle 

exact, and its convergence properties make it an indispensable tool for the theoretical study of 

alloys. The DCA is the most straightforward application of the cluster method, and its TB-LMTO 

formulation has been shown to provide excellent quantitative results for transition metal alloys, in 

particular for fcc-based Pd-Rh-V binary and ternary systems. Much work remains to be done, but 

we can already foresee the impact that a truly reliable fIrst-principles thermodynamic theory will 

have on predicting properties of materials. 
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Figure Captions 

Fig. 1. Flow chart of direct configurational averaging (DCA) method. 

Fig. 2. Clusters of fcc lattice points used in the DCA calculations. 

Fig. 3. Convergence of effective cluster interactions (ECI) as a function of pair separation and 

cluster types. As in Fig. 2, subscripts on the V symbols (ECl's) indicate, first, the 

number of points in the cluster, then the pair spacing or cluster type. 

Fig. 4. Flow chart for CVM phase diagram calculations. Free energy curves and phase diagram 

are schematic on! y. 

Fig. 5. Effective cluster interactions calculated by the DCA (fIlled circles) and by other electronic 

structure methods (empty circles): (a) Pd-V, (b) Pd-Rh systems. 

Fig. 6. Fonnation energies of fcc ground state superstructures for (a) Pd-V, (b) Rh-V systems. 

Dashed curve is for fonnation energy of fully disordered state. 

Fig. 7. Pd-Rh phase diagram with calculated and experimentally determined miscibility gap. 

Fig. 8. Fonnation energy of the completely random system Pd-Rh-V. The largest negative 

fonnation energies are seen to occur not at equiatomic composition, but rather at two 

positions near the equiatomic binary Rh-V and Pd-V systems. 

Fig. 9. Effective pair interactions for the ternary system Pd-Rh-V. Each of the three types of 

distinct pair interactions is calculated individually over the entire composition space of the 

ternary alloy. Negative values of the interaction (light shading) indicate phase separating 

tendencies. Strong ordering tendencies are given by positive values of the interaction 

(dark shading). 
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