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PROGRAMMING DIRECT N-BODY SOLVERS 

ON CONNECTION MACHINES 

I. INTRODUCTION 

In this paper, we analyze various ways to program a direct N -body solver on both the CM2 and 

the CMS. The goal is to produce timing numbers over a fairly wide range of problems, and compare 

different ways to program the basic algorithm. In CM Fortran on both the CM2 and the CMS, we 

analyzed the performance of CSHIFfs, broadcasts, and SPREADs, and the effect of masking opera­

tions. On the eMS, without vector units, we analyze the performance of a CMMD message passing 

direct solver. All of the above tests (except CMMD) are also performed on a small test CMS vector 

machine. A different implementation, which makes use of a multi-wire broadcast available on the 

CM2 (see [Brunet, Edelman, and Mesirov]), is not studied here. 

In this paper, we took the perspective the average user might take to program a parallel version 

of the direct N -body algorithm. That is, we assumed that the user was well-acquainted with CMFor­

tran, and tried to consider various ways that such a user might think of programming the algorithm. 

We then performed timings of these various approaches. We wanted to know the timings that such a 

user might be reasonably expected to obtain. We did not try to obtain maximum speed using lower 

level programming or a collection of tricks. 

The direct N -body solver is based on a force law used in a vortex calculation, and is typical of 

the calculations performed in N -body codes. We perform all of the above tests for a two-dimensional 

N -body problem. The balance between communication and computation changes significantly 

between two and three dimensions. 

II. BACKGROUND 

B.A. The Basic N -body Algorithm 
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We imagine that we are given N bodies, each described by a position x and a strength C. 

The goal is to compute the total force exerted on each body, which consists of the superposition of 

the individual forces exerted by all other bodies. More precisely, Let F(/,J) be the force exerted 

on body i by body j. Then the following serial algorithm computes the total force Force (I) on 

each body: 

N-Body Algorithm: 

Do 1=1,N 
Force(1} = 0.0 

Do J=l,N 
Force(l} = Force(l) + F(I) 

Enddo 
Enddo 

As written, this is an 0 (N 2) algorithm. A somewhat faster algorithm may be obtained by noting 

that it is more convenient to compute both F (/ ,1) and F (J ,/) when / and J are in place, which 

then suggests the foUowing "triangular" N -body algorithm: 

Triangular N-Body Algorithm: 

Do 1=1,N 
F _Static = 0.0 
F _Dynamic = 0.0 

Enddo 

Do l=l,N-l 
F _Static(I) = F _Static(I) + F(I,I) 

Do J=I+l,N 
F _Static(l) = F _Static(l) + F(I) 
F _Dynamic(J) = F _Dynamic(J) + F(J,I) 

Enddo 
Enddo 

Do 1=1,N 
Force(l} = F _Static(l) + F _Dynamic(1} 

Enddo 

The important thing to notice in the above algorithm is that the J index now runs from 1+ 1 to N, 
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rather than from 1 to N as it does in the previous algorithm. The reason that this algorithm may run 

faster is because the calculation of F(I) may contain quantities that may be used in the calculation 

of F(J ,I) without recomputing. For example, a typical force law may require the evaluation of a 

square root to compute the distance between body 1 and body J, and need to calculated only once 

for both F(I,J) and F(J ,I). 

n.B. The Two-Dimensional Vortex Code 

For our purposes, the N -Body solver under study forms a kernel of vortex method for com-

puting viscous, incompressible flow, see [Sethian, Brunet, Greenberg and Mesirov]. The force law 

for a collection of discrete vortex particles in two dimensions is given by 

Force (I) = (U(I) V(I) =_1 f C(J) (Y(J)-Y(I), -(Y(J)-Y(I) 
, 21t 1 max(cr,(Y(J)-Y(l)f + (X(J)-X(I)~ 

where (X (I),Y (I) is the position of bOdy I, C (I) is its strength, and sigma is a small cutoff param-

eter to insure that the velocities remain bounded, see [Sethian]. 

m. BASIC IMPLEMENT A TION OF N -BODY AND TRIANGLE N -Body ALGORITHM IN 

CM FORTRAN. 

We investigated coding the two basic N -body algorithms using CSHIFfs, SPREADs, and broad-

casts. 

m.A Using Cshifts 

Here, we consider a static and dynamic copy of the vortex elements, containing the position 

and strengths. The data is always layed out in one-dimensional arrays. For the full N -body algo-

rithm, the dynamic copy is rotated through N -1 CSHIFTs, and between shifts the forces of the 

dynamic copy on the static copy are computed. The algorithm is given by: 
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The Full N -body Cshift Algorithm 

cmf 
cmf 
cmf 

~ubroutine cs_ld( n ) 
mteger n , 
real, array~ S, n ) :; statIC 
real, array n):: dist , 
real, aI'Ipy 3, n ) :: dynamIc 
mteger I 

layout static( :serial, :news ) 
layout dynamic( :serial, :news ) 
layout dist( :news ) 

call cmf random( static(I:3,:), 1.0 ) 
call cm timer clear( 0 ) 
call cm-timer-start( 0 ) 
call cm-timer-stop( 0 ), 
call cm-timer-clear( 0 ) 
call cm-timer-startCO ) 
dYIIflmic = stabc(1:3, :) 
s(atIc(4:S, :) =;= 0,0 
dlSt = dynamlc(3,:) / (max( .001, 

~ dynamic~l~:): statiCp

1
:)! 

~
dynamlC 1'~- statIC I,.}} + dynamic 2,: - static 2,: 

,* dynamic 2}: - static 2,: » 
statIC(' ,:) = statIc\ ,:) + 

,(dy~~ic(2.:) - s!'ltic(2,:» * dist 
statIc(5,,) - statIC(S,.) -

, (dynamicfl,:) - static(1,:» * dist 
do I = 1, ,n - , 

dynamlc(I:3,:) = CSHIFf(d,Yl)amlc(I:3,:), 2, 1) 
dist = dynamlc(3,:) / (maxt .001, 

~ dynamicP

1
:).- statICp

1
:)? 

{

dynamIC 1 "~ - statIC 1 ,.}} + dynamic 2,: - static 2,: 
~ dynamic 4,: -static 2,: » 

statIC 4,:) = statIC 4,:) + 
(dynamic(2,:) - static(2,:» * dist 

statIct5,:) = statIc(S,:) -
(dynamic(I,:) - static(l,:» * dist 

end do 
call cm timer stope 0 ) 
print *,"c-shifi: time for ',n, ' bodies = " 

cm_timerJead_elapsed( 0) 
return 
end 

Here, we include the self-interaction term of each body against itself, which may 

be important in other N -body problems. 

An implementation of the N -body Triangle Algorithm using CSHIFTs requires two accumula-

tors, This algorithm is very similar to the one above, but is given below for completeness. 

The Triangle N -body Cshift Algorithm 

cmf 
cmf 
cmf 

~ubroutine cs_ld_triang( n ) 
mteger n 
real, array( S, n ) :; static, dynamic 
real, array( n·) :: dist 
integer, ,array( n ) :: mask 
mteger I, nrot 

layout static( :serial, :news ) 
layout dynamic( : serial , :news ) 
layout, dlst( :news ) 

dOI= 1 n 
statiCfl 'i~ = i static 2,j = i + 1 
statIC 3,1 = 1.0 

end do 
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call cm timer clear( 0 ) 
call cm-timer-start( 0 ) 
call cm-timer-stop( 0 J 
call cm-timer-clear( 0 ) 
call cnCtime()tart( 0 ) 
dynamic = statIC 
sfatic(4:5,:) = 0.0 
dynamlc(4:5~) = 0.0 
nrot = (n - I, I 2 
do i = 1, nrot 

dynamic = CSHIFf(dvnamic, 2, I) 
dist = 1.0 I ( max( .001, 

~ dynamic(1 :) - static(I,:» 

~dynam~c11 ':l- stat\C~1 ':}} + dynamic 2,. - stabc 2,. 
~ dynamic 4,: -static 2,: » 

stattc 4,:) = stattc 4,:) + 
(dynamic(2,:) - static(2,:» * dist * dynamic(3,:) 

stattcl5,:) = stattc(5,:) -
(dYI,lamic(I,:) - stati~(1J:)! * dist * dymimic(3,:) 

dynamlc(4,:) = oynamlc(4,: + 
(sta~ic(2,:) -dynami~(2 .. :) * dist * static(3,:) 

dynamlc(5,:) = dynamlc(:',: -
(static(I,:) - dynamic(l,:) * dist * static(3,:) 

end do 
if (mod(n,2) .eq. 0) then 

nrot = nrot + 1 
dynamic = CSHIFf(dynamic 2 I) 
dist = dynamlc(3,:) I \.max( .001, 

~ dynamic~I,:).- stattcp,:) ~ 

+ dynamic 2,: - stauc 2,: ~
dynam~cfl "j -sta~c~1 ,.}} 

~ dynamic 4,: -static 2,: » 
stauc 4,:) = stauc 4,:) + 

(dY,!1amic(2,:) - static(2,:» * dist 
stattcl5,:) = stauc(5,:) -

. (dynamic(I,:) - static(I,:» * dist 
end If 
static(4:5,:) = static(4:5,:) + CSHIFf(dynamic(4:5,:), 2, -nrot) 
call cm ttmer stope 0 ) 
print *,'" c-shifi: time for " n, , bodies = " 

cm_timer_read_elapsed( 0 ) 
return 
end 

Here, we consider a static and dynamic copy of the vortex elements, containing the position 

and strengths. For the full N -body algorithm, the dynamic copy is created by spreading each ele-

-
ment from the fixed copy to form the entire dynamic copy, Between each SPREAD, we compute 

the influence of the dynamic copy on the static copy. After N such SPREADs, the complete interac-

tion has been summed. The algorithm is given by: 

The Full N -body Spread Algorithm 

~ubroutine cs_Id( n ) 

cmf 
cmf 
cmf 

mteger n . 
real, array~ 5, n ) :; stattc 
real, array n):: dist 
real, arrflY 3, n ) :: dynamic 
mteger I 

layout static( :serial, :news ) 
layout dynamic( :serial, :news ) 
layout dlst( :news ) 

• 



static = 0.0 
doi= 1 n 

statiCfI,i~ = i static 2,i = i + 1 
static 3,i = 1.0 

end do 
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call cm timer clear( 0 ) 
call cm-timer-start( 0 ) 
call cm-timer-stop( 0 ), 
call cm-timer-clear( 0 ) 
call. cm-timer=start( 0 ) 
dOl=f,n 

dynamic~I':~ = spread~stat.jc~I~i ,1,n~ dynamic 2,: = spread statiC 2,1 ,I,n 
dynamic 3,: ~ ~read static 3 i lI,n 
dist = dynamlc(J,:) / (max( . , 

~dynamic~I :).-statICp,:)~ 

~dynam~c1I'.1. - sta~c~I'.}} + dynamic 2,: - statiC 2,: 
~ dynamic 4,: -static 2,: » 

statiC 4,:) = statiC 4,:) + 
(dynamic(2,:) - static(2,:» * dist 

statIc{5,:) = statIc(5,:) -
(dynamic(I,:) - static(I,:» * dist 

end do 
call cm timer stop( 0 ) 
print *, ..... broacfcast time for '6 n, ' bodies = " 

cm_timer_read_elapsed( ) 
return 
end 

ID.e Using Broadcasts 

Here, we consider a static and dynamic copy of the vortex elements, containing the position 

and strengths. For the full N -body algorithm, the dynamic copy is created by broadcasting each 

element from the fixed copy to form the entire dynamic copy, Between each broadcast, we compute 

the influence of the dynamic copy on the static copy. After N such broadcasts, the complete interac-

tion has been summed. The algorithm is given by: 

The Full N -body Broadcast Algorithm 

cmf 
cmf 
cmf 

liubroutine cs_Id( n ) 
mteger n . 
real, array~ 5, n ) :; statiC 
real, array n):: dist . 
real, arqty 3, n ) :: dynamic 
mteger 1 

layout static( : serial , :news ) 
layout dynamic( : serial , :news ) 
layout. dlst( :news ) 

statiC = 0.0 
doi=I n 

statiCfI'i~ = i static 2,i = i + 1 
statiC 3,1 = 1.0 

end do 
call em timer clear( 0 ) 
call cm-timer-start( 0 ) 
call cm-timer-stop( 0 J 
call cm-timer-clear( 0 ) 
call cm=timer=start( 0 ) 
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do i = I, n 
dynam!C~l':~ = stat!C~l, !~ dynamic 2,: = statiC 2, I 
dynamic 3,: := static 3, i 
rust = dynamlc(3,:) I (max( .001, 

~dynamicp :).-statICP :)? 

~dynamlc~l"i- statIC~l'.}} t dynam~c 2,: - sta~c 2,: 
. dynamic 4,. -static 2,. » 

statiC 4,:) = stabc 4,:) + 
(dynamic(2,:) - static(2,:» * dist 

stabct5,:) = stabc(5,:) -
(dynamic(l,:) - static(l,:» * dist 

end do 
call cm timer stop( 0 ) 
print *, -'broadCast: time for " n, , bodies = " 

cm_timer_read_elapsed( 0 ) 
return 
end 

A different broadcast may be obtained by using the CMF array transfer utility function, 

known as a bit-blit, to send the entire CM array to the front end of the CM-2 (or control processor 

of the CM-5) at once, and then broadcast one body at a time as in the above. The following code 

gives the array transfer/broadcast: 

The Bit-blit Full N -body Broadcast Algorithm 

program bjt-bli~-broadcast 
mte~r n, Iterabons 
reane static( 5, 100000 ) 
print ~ 'bit-blit broadcast Id' 
print * " 

cmf 
cmf 
cmf 

print *: 'Enter number of bodies' 
read *, n 
call bit-bc_ld( n, fe_static) 
stop 
end 

~ubroutine bit-bc_ld( n, fe_static) 
mteger n . 
real, array! 5, n ) :: static 
real, array 5, lOOQOO ) :: fe_static 
real, array n):: dist . 
real, array 3, n ) :: dynamiC 
!nteger, .array ( 2 ) :: end 
Integer I 

layout static( :serial, :news ) 
layout dynamic( :serial, :news ) 
layout. dlst( :news ) 

static = 0.0 
doi= 1 n 

statiC~l ,il = i 
static 2,i = i + 1 
static 3,i = 1.0 

end do 
end(1) = 5 
end(2) = n 
call cm timer clear( 0 ) 
call cm-timer-start( 0 J 
call cm-timer-stop( 0 l 
call cm-timer-clear( 0 ) 
call cm-timer-start( 0 ) 
call cmf from- cm( fe static, static, end) 
do i = l~n - -
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dynamic~l,:~ = fe static~l' ~. dynamic 2,: = fe=static 2, i 
dynamIc 3,: ~ fe statIC 3, I 
rust = dynamlc(3,:) / (max .001, 

~ dynamic~l :).- stabcp,:)? 

! dynam~c 2,: - sta~c 2,: ~dynamlc!l"i- stabc~l,.}} 
. dynamIc ~,. - stabc 2,. » 

stauc 4,:) = stauc 4,:) + 
(dr,namic(2,:) - static(2,:» * dist 

stauct5,:) = stauc(5,:) -
(dynamic(l,:) - static(l,:» * dist 

end do 
call cm timer stop( 0 ) 
print *, ..... broaacast time for ~ n, ' bodies = " 

cm_timer_read_elapsed( u ) 
return 
end 

IV. "FILLS" TO A VOID MASKING IN CM FORTRAN. 

IV. A. Fills and Cshifts 

If the number of vortices is not exactly matched with the layout of the array on the CM, the 

compiler inserts garbage masking, which flags the processors that do not contain actual bodies. 

While this is transparent to the user, it unfortunately means that operations such as CSHIFf become 

significantly slowed while the garbage mask is checked. A simple fix is to determine the number of 

processors (here, processors means virtual processors) that the machine will allocate for a given 

number of bodies, and initially load the "extra" processors with bodies of zero strength. Adding 

these extra bodies of zero strength does not affect the forces calculated on the "live" bodies. We 

call this an ''N -body algorithm with fill". First, we note that this approach does not require any 

extra memory, since those processors are automatically allocated during compile time. Second, by 

filling the "extra" processors with bodies of zero strength, the garbage masking is turned off, and 

hence the speed of such operations as CSHIFf is increased. 

Determining the number of bodies to add to reach the size of array allocated during compila-

tion depends on the particular machine. Let P be the number of processing nodes on the machine 

(by a processing node, we mean a floating point unit on a CM-2). A CM-2 will allocate an array 

with an across-processor axis of length a multiple of 4P , while a CM-5 with vector units will allo-
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cate an array with an across-processor axis of length a multiple of 8P, and a CM-5 without vector 

units will allocate an array with an across-processor axis of length a multiple of P . The idea of an 

"N -body problem with fill" is to make sure that the number of bodies is always equal to an integral 

multiple of this across-processor axis length. For example, given 300 bodies, and a CM-2 with 256 

processing nodes, garbage masking can be avoided by augmenting the 300 live bodies with 724 

bodies of strength zero to bring the total number of bodies up to 1024. In this case, the compiler 

will allocate an across-processor axis of length 1024, which in practice means that the across­

processor axis will have a serial component of dimension 4. It is unfortunate that CM Fortran does 

not currently allow the user to access this serial axis. 

In order to add these extra "zero" strength bodies, we must be careful to provide an extra 

copy of the initial live bodies at the end of the static array to maintain the full interaction of the 

dynamic copy with the static copy. This idea is best illustrated through an example. Suppose we 

have five live vortices, labeled "A" through "E". The static copy must contain these live bodies 

plus an extra copy at the end, making a total of 10 bodies. Imagine for a moment a CM-2 with four 

floating point nodes. Given these 10 bodies, the compiler will allocate an across-processor axis of 

length 16, which once again in practice means that the across-processor axis will have a serial com­

ponent of dimension 4. Thus, we must fill the static array as follows: 

Initially 

Dynamic: ABCDE ------ ABCDE 

Static: ABCDE -----------

After one CSHIFI' 

Dynamic: ABCDE ------ ABCDE 

Static: BCDE A -----------

where the blanks denote processors without live bodies. We note that the set up of the extra bodies 

at the end of static array requires a cross-geometry move, and gathering the accumulated velocities 



J 

11 

which are distributed among the two copies in the static array requires an additional two CSHIFI's 

and add. The program to accomplish this for a CM-2 is given below. Here we include the driver 

which calculates the size of the fill array, as well as the N -body kernel subroutine. 

The N -body Cshift Algorithm with Fill 

progra!U CSHIFCld_fill 
!mpliclt none. . 
Integer ,,~ ..... nllteratlOns, proc 

#include <cm/CNil' uefs.h> 
#ifdefCM5 -
#include <cm/timer-forth> 
#else 
#else 
#include <cm/paris-configuration-forth> 
#endif 
#endif 

print * 'CSHIFr Id' 
print*' .. 
print *: 'Enter number of bodies' 
read *, n 
g-~ 0 CMF _number_oCprocessorsO 

#ifdefCM5 
#else 
#endif 

if (2 * n .Ie. m) go to 2 
go to 1 
stop 
end 

~ubf(;>4tine cs_ld_filUop( m, n ) 
!mphclt none 
Integer m n 

#include <cm/CMF defs.h> 
#ifdefCM5 -
#include <cm/timer-forth> 
#else 
#else 
#include <cm/paris-configuration-fort h> 
#endif 

real, arr~y( 5, n ) :: static 
Integer I 

cmf layout. static( :serial, :news ) 
do 1 = 1 n 

statiC~l'i~ = i static 2,! = i + 1 
statiC 3,1 = 1.0 

end do 
call cm timer clear( 0 ) 
call cm-timer-start( 0 L 
call cm-timer-stop( 0 
call cs_ld_filf( m, n, s tic) 
return 
end 

~ubr94tine cs_ld_fill( m, n, static) 
!mphclt none 
Integer m, n . 
real, arr~y( 5, n ) :: statlc 
.Integer I .. 
real, arra~ 5, m) :: blg_s~tlc 
real, array 3, m) :: .dynamlc 
real, arra m):: dlst 

#include <cm/C defs.h> 
#ifdefCM5 -
#include <cm/timer-forth> 
#else 
#include <cm/paris-configuration-forth> 
#endif 
cmf layout static(:serial, :news) 
cmf layout big_static(:serial, :news) 
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layout dynamic(:serial, :news) 
layout dist(:news) 

call cm timer clear( 0 ) 
call cm-timer-start( 0 ) 
bi!Lstaijc = 0:0 . 
bl!LSt.&bC(I:~, l:n).= stabc{l:3, :) 
dynamic = big stabc(l:3,:1 
bl!Lstatic = DI&-static + cshift( bi!Lstatic, 2, n) 
do I = 1, n - 1 

dynamic = CSHIFf(dynamic, 2, 1) 
dist = dynamlc(3,:) / { max( .001, 

~ dynamicp :).- bi!Lstaticp,:)! 

~dynamlc!l'.}- 6i!Lstabc~1'.}} + dynamic 2,: -bi!Lstatic 2,: 
· * dynamic 2t: - biLstatie 2,: » 

blg",.statiC(4;~ = DI!LStabC(4,:) + 
· (dyn~ie 2,:) -pi!Ls~tic(2,:» * dist 

blg",.Slattc(5,: = bl&_statIc(5,:) -
.(dynamic 1,:) - OI!LstatiC(l,:» * dist 

end do 
bi!Lstatic(4:5,:) = bi!LstatiC(4:5':J + 

· cshift{ big &tatic\:4;5.:), 2, -n 
stattc(4:5, :) = DI!Lstabc(4:5, l:n 
call cm tImer stop{ 0 ) 
print *, -. c-shifi: ttme for " n, , bodies (fill = " m, ') = " 

cm_timerJead_elapsed( 0) 
return 
end 

The Triangular N -body Cshift Algorithm with fill is given below. The driver program is the 

same as the above. 

The Triangle N -body Cshift Algorithm with Fill 

~ubroutine cs_ld_filUop( m, n ) 

cmf 

mteger m, n . 
real, arr1lY( 5, n ) :: stabC 
mteger I 

layout statie( :serial :news) 
call. cmCrandom( static(r:3,:), 1.0 ) 
dOI= 1 n 

statiC

f
l ,i~ = i 

static 2,i = i+ 1 
static 3,i = 1.0 

end do 
call cm timer clear( 0 ) 
call cm-timer-start( 0 L 
call em-timer-stop( 0 
call cs_ld_fill( m, n, s tic) 
return 
end 

~ubr9Qtine cS_ld_fill( m, n, static) 
!mphclt none 
mteger m, n . 
real, arr1lY( 5, n ) :: stabc 
Integer I, nrot 
real, arra~ 5, m) :: big static, dynamic 
real, array 2, m) :: .cmlbugtemp 
real, arra m):: dlst 

#include <cm/C defs.h> 
#ifdefCM5 -
#include <cm/timer-forth> 
#else 
#include <cm/paris-configuration-forth> 
#endif . 
cmf layout statie(:serial, :news) 
cmf layout bi!Lstatic(:serial, :news) 
cmf layout dynamic(:serial, :news) 
cmf layout qnfbugtemp(:serial, :news) 
cmf layout dlst(:news) 
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call cm timer clear( 0 ) 
call cm-timer-start( 0 ) 
bi~staijc = 0:0 . 
bl~sU\uc(I:~, I:n).= stauc(1:3, :) 
dynamic = b~_tatlc 
bl~static = CSHIFf( biiLstatic, 2, n ) 
big static = big static + -dynamic 
nroT"= (n - 1) r2 
do I = 1, nrot 

dynamic = CSHIFf(dvnamic, 2, 1) 
dist = 1.0 / ( max( .001, 

~ d~~~=g!t}~iNrt~~ti~!~?}} + dynamic 2,: - bi~static 2,: 
· '" dy'namic 2~ - biiLstatic 2,: » 

bl~statiC(4':~ = 0l&-statlc(4,:) + 
· (dyn~ic 2,:) -pI~s~tic(2,:» '" dist'" dynamic(3,:) 

bl~SlatIC(S,: = bl&-Stauc(5,:) -
(dynamic 1,:) - DliLstatic(1,:» '" dist'" dynamic(3,:) 

dynamic(4,:) = oynamlc(41:) + 
(bi&"'StatIC(2,:) - dYl!amlc(2,:» '" dist '" bi~static(3 ,:) 

dynamlc(S,:) = oynamlc(S1:) -
(bi~statIc(1 ,:) - dynamlc( 1,:» '" dist '" bi~static(3 ,:) 

end do 
if (mod(n,2) .eq. 0) then 

nrot = nrot + 1 
dynamic = CSHIFf(dynamic, 2, 1) 
dist = dynamlc(3,:) I ( max( .001, 

~ d~~~~g!t}~iNr~~~~g~'i~?}} + dynamic 2,: - bi~static 2,: 
· '" dy'namic 2\: - biiLstatic 2,: » 

bl~stabC(4':~ = 0l!Lstatlc(4,:) + 
· (dyn~ic 2,:) -pi~s~tic(2,:» '" dist 

bljcSlatIC(S,: = bl&-Stauc(5,:) -
. dynamic 1,:) - DI~static(I,:» '" dist 

end I 
qnfbug~emp = CSH.IFf(bi~static(4:5,:), 2, -n) 
bl&"'StatIc(4:S,:) = bl8..,.Stauc(4:S,:) + 

· CSHIFr(dYl)amlc(~:SJ:). 21 -nrot) + cmfbugtemp 
statlc(4:S, :) = bi~statIc( .. :5, :n) 
call cm timer stop{ 0 ) 
print "',"c-shift: Ume for " n, ' bodies (fill = " m, ') = " 

cm_timer_read_elapsed( 0) 
return 
end 

IV. B. Fills and Broadcasts/Spreads 

In the same manner as above, fills can be used with both broadcasts and SPREADs to avoid 

garbage masking. There is no need to include the additional copy at the end of the static array, and 

thus we need only add zero-strength bodies to fill the static array up to the size allocated by the 

compiler. We do not include that code, since it looks almost identical to the previous codes. 

V.CMMD CODE 

The various CM Fortran techniques presented in previous sections share a common feature: 

they move the bodies as independent entities. This is a consequence of the limited control of data 

layout provided by the current (Version 2.0) versions of the compiler. Instead, one would like to 
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configure the vortex array as a two-dimensional array (in actuality. three-dimensional. since the x. y. 

c. u. v elements are included). where one axis is purely physical (across processors) and the other 

purely serial. In this case. both the CSHIFf and SPREAD algorithms could be modified to use 

block transfers which could then make use of vectorization capabilities. In this view. the bodies are 

distributed uniformly so that either (NIP) or «N-l)IP) bodies reside on each physical processor. 

That is. the array subgrid which resides on each processor is two-dimensional. Computation then 

consists of an N -body solver among the bodies on a node interleaved with a communication step 

that moves all of the bodies (the entire serial axis) from one processor to the next. If the nodes are 

equipped with vector units. we may expect that the compiler will efficiently optimize (vectorize) the 

serial axis computations. 

like: 

For a machine with P nodes. a CM Fortran program for the block move variant would look 

c 

c 
c 

~ubr9Qtine CSHIFf-block-triang( n. P. vortices) 
ImpliCit none 
mteger n. p . 
real. arrflyJ 5. nip. p ) :: vortIces 
mteger I. J k . 
real. array'{ ~~n/p. p ) :; dynamic 
real~ array( !lfl./. p ) :: dlst . 
vortIce~( 4:5. : •. : ) = 0.0 
dynarmc = VOrtIces 

compute interactions of bodies residing on a processor 
do j = 1. n / p. - 1 

do k = j + 1. nip 

!!
(dynamic( l.j.:) - vortices( 1. i.: II * 
dynami~( l,tj~:~ - vorti~es( 1,t i~:? ;­
(dynamlc( :t.J •. ) - VOrtIces( :t.l •. 
dynamic(2.j.:) - vortices(2. i.:) 

) dynam~c( 3.j.:): d~st 
end do 

dynamlc( 3.J. :) dist 

bloc.k move and compute interactions between resident and visiting 
vortices 

do i = 1. P / 2 - 1 
dynamic ~ CSHIFf( dynamic. 3. 1 ) 

do k = J + 1. nip 

!!
(dynamiC( l.j.:) - vortices( 1. i.: II * 
dynami~( l,tj~:~ - vorti~es( 1,t i!:. )/ 
(dynamlc( :to J •. ) - VOrtICes( :t.l •. 
dynamic(2.j.:) - vortices(2.i.: ) 

) 

end do 
end do 

dynamic( 3.j.:) * dist 
dynamic( 3.).:) * dist 
vo~ces( 3.J.:): d~st 
vOrtlceS( 3.J.:) dist 



.J 

c 

15 

add the static and JITMmic velocity accumulations. 
dy~ic = CSH1Ff( dyn~ic, 3 -p I 2 + 1 ) . 
VOrtIces( 4:5, :, : ) = VOrtIces( 4:), :a, : ) + dynamIc( 4:5, :, 
return 
end 

The SPREAD Variant would look similar: 

~ubrQ~tine spread-block-triang( n, p, vortices) 
!mplicIt none 
mteger n, p . 
real, arrflY.( 5, nip, p ) :: vortIces 
mteger 1, j k . 
real, array( \ ... n/p, p ) :; dynamIc 
real, array( n,p, p ) :: dlst 
VOrtIce~( ~:5, :,.: ) = 0.0 
dyruu~llc = vortIces 

C compute interactions of bodies residing on a processor 
do j = 1, nip. - 1 

do k = j + 1, nip 

!!
(dynamiC( I,j,:) - vortices( 1, i,: II '" 
dynami<;:( I,jt:~ - vorti<;:es( I,.t it:? t 
(dyn~IC( 2,),.) - vo~ces(:tt 1,. 
dynamIc(2,j,:) - vortIces(2, 1,:) 

)d . ~3 . ~"'di ynamIc ,J,: st 
dynamic 3,j,: '" dist 

end do 
c blocJc move and compute interactions between resident and visiting 
c vortIces 

doi=I,p .. 
dynamIc =: spread( dynamIc(:, :, 1), 3, p ) 

do k = j + 1, nIp 

l!(dyna~iC( l,j~:) - voJ1.ices( It i~: II '" 
dynamlc( l,j,.) - VOrtICes(1,.tI,. )+ 
(dyna~ic( 2,j ~ :) - voJ1.ices( :tt i: : '" 
dynamlc( 2,j,.) - vOrtlCes( 2, 1,. ) 

) dynam!c( 3,j,:): d!st 
dynamlc( 3,j,:) dist 

end do 
end do 
return 
end 

Note that the SPREAD version should be less efficient since it cannot take advantage of the 

triangular structure structure of the computation across SPREADs. That is, only one side of the 

force interaction is computed per communication step, so p steps must be performed. The CSHIFf 

version requires only (P I 2) + 1 steps. 

It seems reasonable to expect that the CSHIFf version will be the optimal CM Fortran imp le-

mentation once version 2.1 is available. This compiler will allow the explicit data layout described 

above and will also provided a degree of vectorization for computations on serial axes. 

As an experiment, we coded a version of the block CSHIFf algorithm using CMMD, the 

message passing library available on the CM-5. Here, the CSHIFfs have been replaced by the 

explicit CMMD _send_and_receive calls. This code is given below. 
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progra~ n_body 
Implicit none 
integer alive, n, size 
real static(5, 1), dynamicl(5, 1), dynamic2(5, 1) 
!nteger byte Size, l>ytes_pecfloat, H~ts_peCbOdy 
mteger src, (lest, tag, floats_per_ velocity 
real extra 
parameter *g = 10) 
parameter .Y.t~s_~cfloat = 4) 
character* 0) bOdies 
pointer (s, static), (dl, dynamic 1), (d2, dynamic2) 
external malloc 
external getarg 
external largc 
jnteger Plalfoc 
mteger largc 

. integer i, J, ps, result, swad, swas, t, v_size 
#mclude <cm/cmmd fort.h> 

floats per OOdy_ = 5 
c result = Ieee nandle~ 'set', 'inexact', handler in ) 
c result = ieeenandle 'set', 'overflow', handler ov) 
c result = ieee nandle 'set', 'underflow', handler un ) 

p,s = cmma partition sizeO -
If (iargcQ. .It. 2) then-

print ,"Usage: n-body size procs" 
stop 

end if 
call g~tar~(1, bodi~s ) 
read{ bodies, * ) size 
call getar~(2, bOdies) 
read{ bodles, * ) i 
if (i .ne. P) ps = i 
print *, 'bOdi~ = " si~, ' processors jq computation = " ps 
prmt .*, lE' tIon sIZe IS " cmmd-partltIon_slzeO 
n = Size ps 
~xtra = oat( size) / float( ps ) - n 
If (extra .ne. 0.0) then 

I 7 extra * cmmd_partition_sizeO 
alive = n 
if (qnmd_self addressO .It. i) then 

alIve = n +' 
end if 
n=n+l 

end if 
print * > 'bodies/processor = " n, extra, i 
byte_SIZe = n * l>ytes_pecfloat * floats_per_body 

c allocate arrays 
s = malloc( byte size ) 
d 1 = malloc( byte size) 
d2 = malloc( byte-size ) 

c make standard error and output units indeJX<ndent across pns 
result = cmmd set io mooe( 0, cmma independent) 
result = cmmd-seCio - mode( 6, cmmd-independent ) 

c only do the calcuHltion in-the desired processors 
... if {cmmd_~!f_addressO .It ps) then 

c mltIahze velOCIties 
doi=ln 

statid'4, i) = 0.0 
static(5, i) = 0.0 

end do 
c initialize vortices 

call initialize(stai.!.c-1 dypamicl, n, alive) 
result = cmma nooe tImer clear( 0 ) 
result = cmmd-node-timer-clear( 1 ) 
result = cm~d:node:timer=start( 1 ) 

c now compute statIC mteractIon 
call vortex kernel_s( n, static, dynamicl, n ) 

c now cycle through the nOdes 
(Jest = cmmd self addressO - 1 
if (dest .eq. -TI then 

dest = ps - 1 
endif , 
src = cmmd self addressO + 1 
if (src .eg. pS) then 

src = U 
endif 
swad = mod( cmmd_selCaddressO + ps/2, ps ) 
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swas
1 

= mod( ps + cmmd_selCaddressO - ps/2, ps ) 
t= 
do i = 1, ps/2 - 1 

t = 1 -1 
if (t .eg. 1) then 

result = cmmd_send_andJeceive( src, tag, dynamicl, 
byte_size, dest, ta~, d'ynamic4, byte_sizy) 

call vortex_kerneC.so{ n, statIC, oynamIcl, n ) 
else 

result = cmmd_send_and_receive( src, tag, dynamic2, 
byte size, dest, ta.&, d'ynamicl, byte size) 

caJI vortex_kerneC.so( n, static, oynamic2, n ) 
end If . 

end do 
Now do last pair. If j)S is even, this is a one way calculation. 
Otherwise to do the tull bidirectional calculation. 

j = mod(ps, 2) 
1 = 1 - t 
if (j .ne. 0) then 

do die full case 
if (t .eg. 1) then 

result = cmmd_send_and_receive( src, tag, dynamicl, 
byte size, dest, ta~, d'ynamic2, byte size) 

call vortex_kerneC.so{ n, static, oynamic 1, n ) 
else 

result = cmmd_send_andJeceive( src, tag, dynamic2, 
byte size, dest, ta~, ~namic 1, byte size) 

call vortex kernel s n, static, oynamic2, n ) 
end if - -

else 
do the half case 

if (t .eg. 1) then 
result = cmmd_send_and_receive( src, tag, dynamicl, 
byte_size, dest, ta.&, dynami<;2, byte_si~ ) 

ls
ca1l vortex_kerneC.s( n, statIC, dynamIc}, n ) 

e e 
result = cmmd_send_and ... receive( src, tag, dynamic2, 
byte size, dest, tag, dfnamIc 1, byte size) 
call vortex kernel s n, static, oynamic2, n ) 

end if - -
end if 

now do send with add of velocity. 
if (t .eg. 0) then 

resufi = cmmd_send_and_receive( swas, tag, dynamicl, 
. byte size, swad, tag, dynamic2, byte_size) 

do 1 =1 n 
statid'4, D = static(4, D + dynamic1(4, D 
statIc(5, 1) = statIc(5, 1) + dynamIcl(5, 1) 

end do 
else 

result = cmmd_send_and_receive( swas, tag, dynamic2, 
byte size, swad, tag, dynamicl, byte_size) 

do 1 =1 n 
statid'4, D = static(4, D + dynamic2(4, D 
statIc(5, 1) = statIc(5, 1) + dynamIc2(5, 1) 

end do 
end if 
result = cmmd node timer stop( 1 ) 

end if - - -
call cmmd sync with nodesO 
if (cmmd self aodresSO .eq. '0) then 

pTjfnt *;'total time = " cmmd_node_timecelapsed( 1 ) 
end 1 
stop 
end 

~ubf(;)U.tine initialize( static, dynamic, bodies, alive) 
ImplICIt none 
integer i, bodies, alive 
real oynamic( 5, bodies) 
real sfatic( 5, bodies) 
Integer offset 
external rand 
real rand 

#include <cm/cmmd fort.h> 
offset = cmmd self addressO * bodies 
do i = 1 bodies -

statid'l, i) = i + offset 
static(2, i) = i + 1 + offset 
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else 

18 

su,.tic(3, i) = 0.0 

r$~!i: Ij ~ i~tlg!~: Ij dynarmc 4, I = statiC 4, I 
dynamic 5, i = static 5, i 

end do 
return 
end 

l'ub«;)\~tine vortex_kemeCsd( bodies, static, dynamic, alive) 
Implicit none 
integer bodies, alive, indexl, index2 
real mverse d 
real dynamiC(S, bodies) 
real sfatic(S, bOdies) 
do indexl = I, alive 

do index2 = I, alive 
inverse d = l.0 / max( .001, 

!( dynamic(1, index2) - static(1, index III * 
dynami~(1,.t i~dex2) - stati~(1,.t ~dexl) + 
(dynamlc(~, mdex2) - stauc(~, mdex1 * 
dynamic(2, index2) - static(2.,. index 1) ) 

static(4, index 1) = static(4, inoexl) + 
dynamic( 3, index2) * 
(dynamicO, index2) - staticO .. index 1» * inverse d 

static(S, indexl) = static(5, inoexl) - -
dynamic( 3, index2 ) * 
(dynamic(2, index2) - static(2, index 1» * inverse d 

dynamic(4, index2) = dynamlc(4, indeX2) - -
static( 3, index 1 ) * 
(d~mic(1, index2) - static(1, index 1» * inverse d 

dynamic(S, index2) = dynamlc(S, indeX2) + -
static( 3, index 1 ) * 
(dynamic(2, index2) - static(2, index 1» * inverse_d 

end do 
end do 
return 
end 

l'ubrQQtine vortex_kemeCs( bodies, static, dynamic, alive) 
ImplIcit none 
integer bodies, alive, indexl, index2 
real mverse d 
real dynamiC(S, bodies) 
real sfatic(S, bOdies) 
do indexl = I, alive - 1 

do index2 = indexl + 1 ~ alive 
inverse_d = l.0 / max\ .001, 

!( dynamic(1, index2) - static(1, indexlll * 
dynami~(1,.t i~dex2) - stati~(1,.t ~dexl) + 
(dynamlc(~, mdex2) - stauc(~, mdex 1 * 
qynamic(2, index2) -. statiC;(2.,. indexl) ) 

stauc(4, mdexl) = statlc(4, moexl) + 
dynamic( 3, index2 ) * 
(qynamicO, index2) ~statiC;(~ index 1» * inverse_d 

stauc(5, mdexl) = stauc(S, moexl) -
dynamic( 3, index2 ) * 
(dynamic(2, index2) - static(2, index 1» * inverse d 

dynamic(4, index2) = dynamlc(4, indeX2) - -
static( 3, index 1 ) * 
(dynamlc(1, index2) - static(1, indexl» * inverse d 

dynamic(S, index2) = dynamlc(S, indeX2) + -
static( 3, index 1 ) * 
(dynamic(2, index2) - static(2, indexl» * inverse_d 

enddo 
enddo 
return 
end 
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VI. RESULTS 

In Table I, we give the results of timing runs to evaluate the various algorithms described 

above. We perfonn the CSHIFf, triangle-CSHIFf, SPREAD, and broadcast/broadcast-bit-blit algo-

rithms, both with and without fill, for a 256 floating point node CM2, a 256 Spare node eM-5, and 

a 128 pn (512 vector unit) CM-5. The times for the smaller problems are the average of ten runs. 

The fastest time in the table for 100,000 bodies is for the broadcast/bitblit on the 128 pn (512 VU) 

CM-5. 

VII. OTHER ISSUES AND IMPLEMENTATIONS 

It is important to note a seemingly minor change in coding style can make a major impact in 

timings. For example, in the implementation of the simple SPREAD algorithm, we note that it is 

unnecessary to spread the stored velocities from the static copy to the dynamic copy. Thus the static 

copy is of serial dimension 5, whereas the dynamic copy has serial dimension 3. In the implementa-

tion given in the text, the x and y positions and strength are each spread separately, that is, 

dynam!C~I':~ = spread~sta~c~I'!~'I,n~ dynamiC 2,: = spread statiC 2,1 ,I,n 
dynamic 3,: = spread static 3,i ,I,n 

However, if one were to replace this with the single SPREAD 

dynamic = spread(static{l:3,i),I,n) 

the resulting code is fifteen times slower. As another example, in the bit-blits, it makes considerable 

difference whether or not one bit-blits all or part of the array. For example, given the static array of 

serial length 5 containing x,y,c,u and v, one only need the x,y, and c components bit-blitted to the 

front end and then shipped to the CM to build the dynamic array. However, bit-blitting only 3 of 

the 5 elements causes garbage masking, which once again considerably slows the code. Other pro-

gramming pitfalls abound. 

Finally, the above techniques for programming direct N -body solvers is by no means exhaus-

tive. We have attempted only to program some relatively straightforward implementations, and tried 



Table 1: Comparative 2-D Direct N-body Kernel Timings (in seconds) 

CM-2 CM-2 Fill CM-S Sparc CM-S Sparc Fill CM-SVU CM-S VU Fill 
256Weiteks 256Weiteks 256 Nodes 256 Nodes 128 nodes (512 VU) 128 nodes (512 VU) 

Aig. \ # Bodies 1 e3 le4 le5 le3 le4 le5 le3 le4 le5 le3 le4 le5 le3 le4 le5 le3 le4 . le5 

CSHIFI' .996 60.72 2873 .169 7.13 610.0 .336 6.14 744.6 .304 6.46 505.2 .616 7.67 170.2 .970 8.90 227.4 

CSHIFI'TRI II .710 I 48.77 I 2300 II .134 I 8.79 I 637.7 II .245 I 4.58 I 637.3 II .205 I 4.79 I 409.4 II .317 I 4.48 I 113.3 II .349 I 5.19 I 159.5 

SPREAD II .125 I 3.96 I 325.5 II .125 I 4.02 I 325.6 II .236 I 4.28 I 246.3 II .238 I 3.88 I 252.0 II .292 I 5.82 I 91.01 II .364 I 4.65 I 116.1 

BROADCAST II .125 I 3.93 I 327.6 II .125 I 4.03 I 325.5 II .245 I 3.93 I 242.0 II .238 I 4.32 I 252.5 II .451 I 5.98 I 119.7 II .282 I 5.76 I 110.7 

II II II II II II I~ 
BC -BITBLT .065 I 3.39 I 307.0 .088 I 2.11 I 66.53 

CMMD .040 I 1.14 I 105.7 

~ 
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to examine how the coding affects the efficiency. Some other techniques might include: 

(1) Use global communication to replace CSHIFfs/broadcasts/SPREADs (most probably 
considerably slower). 

(2) Place the bodies in an across-physical axis, transpose, and then SPREAD to get all N 
bodies on each node. Then loop through serial axis in each node, performing the N -body 
interaction with the body located in that node. 

(3) Place the bodies in an across-physical axis, transpose, and then SPREAD to get all N 
bodies on each node. Then compute the interaction matrix which gives the distance 
between body I and J, and then use a matrix-vector multiply to compute the interactions. 

(4) Bit-blit all the bodies to the front end at the beginning, and then broadcast a section of 
the bodies to each node. This may be especially useful if/when the Fortran compiler per­
forms vectorization along the serial axis. 
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