
'1 ' .
'1''''

LBL-32899
UC-405
Preprint

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division
Mathematics Department

To be submitted for publication

Programming Direct N -body Solvers on
Connection Machines

A. Greenberg, J.P. Mesirov, and J.A. SeL,ian

August 1992

Prepared for the U.S. Department of Energy under Contract Number DE·AC03· 76SF00098

- -'-.... n
o r
'i 'i 0

o > .,.,c:z:
.: OJ C1
IDr+O
ID ID ."
"-000<
00 - --
ttl
Co

IQ .
U1
IS)

r
r ttl r trn I
'i 0 W
OJ't' tv
'i"< CO
"< l.O . tv l.O

DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. Neither the United States Government
nor any agency thereof, nor The Regents of the University of Califor­
nia, nor any of their employees, makes any warranty, express or im- -
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe pri­
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufac­
turer, or otherwise, does not necessarily constitute or imply its en­
dorsement, recommendation, or favoring by the United States Gov­
ernment or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur­
poses.

This report has been reproduced directly
from the best available copy.

Available to DOE and DOE Contractors
from the Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, 1N 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service

U.s. Department of Commerce
5285 Port Royal Road, Springfield, VA 22161

Lawrence Berkeley Laboratory is an equal opportunity employer.

\ . •

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-32899

Programming Direct N -body Solvers on Connection Machines

Adam Greenberg
Jill P. Mesirov

Thinking Machines Corporation
Cambridge, Massachusetts 02142

J .A. Sethian •

Department of Mathematics
University of California

and
Lawrence Berkeley Laboratory

Berkeley, California 94720

August 1992

Abstract

We analyze various ways to program a simple direct N -body solver on the Connection
Machine CM-2 and CM-5, using both CM Fortran and CMMD Message Passing.

• This author was supported in part by the Applied Mathematics Subprogram of the Office of Energy
Research under contract DE-AC03-76SF00098, and the National Science Foundation and DARPA
under grant DMS-8919074.

2

PROGRAMMING DIRECT N-BODY SOLVERS

ON CONNECTION MACHINES

I. INTRODUCTION

In this paper, we analyze various ways to program a direct N -body solver on both the CM2 and

the CMS. The goal is to produce timing numbers over a fairly wide range of problems, and compare

different ways to program the basic algorithm. In CM Fortran on both the CM2 and the CMS, we

analyzed the performance of CSHIFfs, broadcasts, and SPREADs, and the effect of masking opera­

tions. On the eMS, without vector units, we analyze the performance of a CMMD message passing

direct solver. All of the above tests (except CMMD) are also performed on a small test CMS vector

machine. A different implementation, which makes use of a multi-wire broadcast available on the

CM2 (see [Brunet, Edelman, and Mesirov]), is not studied here.

In this paper, we took the perspective the average user might take to program a parallel version

of the direct N -body algorithm. That is, we assumed that the user was well-acquainted with CMFor­

tran, and tried to consider various ways that such a user might think of programming the algorithm.

We then performed timings of these various approaches. We wanted to know the timings that such a

user might be reasonably expected to obtain. We did not try to obtain maximum speed using lower

level programming or a collection of tricks.

The direct N -body solver is based on a force law used in a vortex calculation, and is typical of

the calculations performed in N -body codes. We perform all of the above tests for a two-dimensional

N -body problem. The balance between communication and computation changes significantly

between two and three dimensions.

II. BACKGROUND

B.A. The Basic N -body Algorithm

3

We imagine that we are given N bodies, each described by a position x and a strength C.

The goal is to compute the total force exerted on each body, which consists of the superposition of

the individual forces exerted by all other bodies. More precisely, Let F(/,J) be the force exerted

on body i by body j. Then the following serial algorithm computes the total force Force (I) on

each body:

N-Body Algorithm:

Do 1=1,N
Force(1} = 0.0

Do J=l,N
Force(l} = Force(l) + F(I)

Enddo
Enddo

As written, this is an 0 (N 2) algorithm. A somewhat faster algorithm may be obtained by noting

that it is more convenient to compute both F (/ ,1) and F (J ,/) when / and J are in place, which

then suggests the foUowing "triangular" N -body algorithm:

Triangular N-Body Algorithm:

Do 1=1,N
F _Static = 0.0
F _Dynamic = 0.0

Enddo

Do l=l,N-l
F _Static(I) = F _Static(I) + F(I,I)

Do J=I+l,N
F _Static(l) = F _Static(l) + F(I)
F _Dynamic(J) = F _Dynamic(J) + F(J,I)

Enddo
Enddo

Do 1=1,N
Force(l} = F _Static(l) + F _Dynamic(1}

Enddo

The important thing to notice in the above algorithm is that the J index now runs from 1+ 1 to N,

4

rather than from 1 to N as it does in the previous algorithm. The reason that this algorithm may run

faster is because the calculation of F(I) may contain quantities that may be used in the calculation

of F(J ,I) without recomputing. For example, a typical force law may require the evaluation of a

square root to compute the distance between body 1 and body J, and need to calculated only once

for both F(I,J) and F(J ,I).

n.B. The Two-Dimensional Vortex Code

For our purposes, the N -Body solver under study forms a kernel of vortex method for com-

puting viscous, incompressible flow, see [Sethian, Brunet, Greenberg and Mesirov]. The force law

for a collection of discrete vortex particles in two dimensions is given by

Force (I) = (U(I) V(I) =_1 f C(J) (Y(J)-Y(I), -(Y(J)-Y(I)
, 21t 1 max(cr,(Y(J)-Y(l)f + (X(J)-X(I)~

where (X (I),Y (I) is the position of bOdy I, C (I) is its strength, and sigma is a small cutoff param-

eter to insure that the velocities remain bounded, see [Sethian].

m. BASIC IMPLEMENT A TION OF N -BODY AND TRIANGLE N -Body ALGORITHM IN

CM FORTRAN.

We investigated coding the two basic N -body algorithms using CSHIFfs, SPREADs, and broad-

casts.

m.A Using Cshifts

Here, we consider a static and dynamic copy of the vortex elements, containing the position

and strengths. The data is always layed out in one-dimensional arrays. For the full N -body algo-

rithm, the dynamic copy is rotated through N -1 CSHIFTs, and between shifts the forces of the

dynamic copy on the static copy are computed. The algorithm is given by:

./

5

The Full N -body Cshift Algorithm

cmf
cmf
cmf

~ubroutine cs_ld(n)
mteger n ,
real, array~ S, n) :; statIC
real, array n):: dist ,
real, aI'Ipy 3, n) :: dynamIc
mteger I

layout static(:serial, :news)
layout dynamic(:serial, :news)
layout dist(:news)

call cmf random(static(I:3,:), 1.0)
call cm timer clear(0)
call cm-timer-start(0)
call cm-timer-stop(0),
call cm-timer-clear(0)
call cm-timer-startCO)
dYIIflmic = stabc(1:3, :)
s(atIc(4:S, :) =;= 0,0
dlSt = dynamlc(3,:) / (max(.001,

~ dynamic~l~:): statiCp

1
:)!

~
dynamlC 1'~- statIC I,.}} + dynamic 2,: - static 2,:

,* dynamic 2}: - static 2,: »
statIC(' ,:) = statIc\ ,:) +

,(dy~~ic(2.:) - s!'ltic(2,:» * dist
statIc(5,,) - statIC(S,.) -

, (dynamicfl,:) - static(1,:» * dist
do I = 1, ,n - ,

dynamlc(I:3,:) = CSHIFf(d,Yl)amlc(I:3,:), 2, 1)
dist = dynamlc(3,:) / (maxt .001,

~ dynamicP

1
:).- statICp

1
:)?

{

dynamIC 1 "~ - statIC 1 ,.}} + dynamic 2,: - static 2,:
~ dynamic 4,: -static 2,: »

statIC 4,:) = statIC 4,:) +
(dynamic(2,:) - static(2,:» * dist

statIct5,:) = statIc(S,:) -
(dynamic(I,:) - static(l,:» * dist

end do
call cm timer stope 0)
print *,"c-shifi: time for ',n, ' bodies = "

cm_timerJead_elapsed(0)
return
end

Here, we include the self-interaction term of each body against itself, which may

be important in other N -body problems.

An implementation of the N -body Triangle Algorithm using CSHIFTs requires two accumula-

tors, This algorithm is very similar to the one above, but is given below for completeness.

The Triangle N -body Cshift Algorithm

cmf
cmf
cmf

~ubroutine cs_ld_triang(n)
mteger n
real, array(S, n) :; static, dynamic
real, array(n·) :: dist
integer, ,array(n) :: mask
mteger I, nrot

layout static(:serial, :news)
layout dynamic(: serial , :news)
layout, dlst(:news)

dOI= 1 n
statiCfl 'i~ = i static 2,j = i + 1
statIC 3,1 = 1.0

end do

m.B Using Spreads

6

call cm timer clear(0)
call cm-timer-start(0)
call cm-timer-stop(0 J
call cm-timer-clear(0)
call cnCtime()tart(0)
dynamic = statIC
sfatic(4:5,:) = 0.0
dynamlc(4:5~) = 0.0
nrot = (n - I, I 2
do i = 1, nrot

dynamic = CSHIFf(dvnamic, 2, I)
dist = 1.0 I (max(.001,

~ dynamic(1 :) - static(I,:»

~dynam~c11 ':l- stat\C~1 ':}} + dynamic 2,. - stabc 2,.
~ dynamic 4,: -static 2,: »

stattc 4,:) = stattc 4,:) +
(dynamic(2,:) - static(2,:» * dist * dynamic(3,:)

stattcl5,:) = stattc(5,:) -
(dYI,lamic(I,:) - stati~(1J:)! * dist * dymimic(3,:)

dynamlc(4,:) = oynamlc(4,: +
(sta~ic(2,:) -dynami~(2 .. :) * dist * static(3,:)

dynamlc(5,:) = dynamlc(:',: -
(static(I,:) - dynamic(l,:) * dist * static(3,:)

end do
if (mod(n,2) .eq. 0) then

nrot = nrot + 1
dynamic = CSHIFf(dynamic 2 I)
dist = dynamlc(3,:) I \.max(.001,

~ dynamic~I,:).- stattcp,:) ~

+ dynamic 2,: - stauc 2,: ~
dynam~cfl "j -sta~c~1 ,.}}

~ dynamic 4,: -static 2,: »
stauc 4,:) = stauc 4,:) +

(dY,!1amic(2,:) - static(2,:» * dist
stattcl5,:) = stauc(5,:) -

. (dynamic(I,:) - static(I,:» * dist
end If
static(4:5,:) = static(4:5,:) + CSHIFf(dynamic(4:5,:), 2, -nrot)
call cm ttmer stope 0)
print *,'" c-shifi: time for " n, , bodies = "

cm_timer_read_elapsed(0)
return
end

Here, we consider a static and dynamic copy of the vortex elements, containing the position

and strengths. For the full N -body algorithm, the dynamic copy is created by spreading each ele-

-
ment from the fixed copy to form the entire dynamic copy, Between each SPREAD, we compute

the influence of the dynamic copy on the static copy. After N such SPREADs, the complete interac-

tion has been summed. The algorithm is given by:

The Full N -body Spread Algorithm

~ubroutine cs_Id(n)

cmf
cmf
cmf

mteger n .
real, array~ 5, n) :; stattc
real, array n):: dist
real, arrflY 3, n) :: dynamic
mteger I

layout static(:serial, :news)
layout dynamic(:serial, :news)
layout dlst(:news)

•

static = 0.0
doi= 1 n

statiCfI,i~ = i static 2,i = i + 1
static 3,i = 1.0

end do

7

call cm timer clear(0)
call cm-timer-start(0)
call cm-timer-stop(0),
call cm-timer-clear(0)
call. cm-timer=start(0)
dOl=f,n

dynamic~I':~ = spread~stat.jc~I~i ,1,n~ dynamic 2,: = spread statiC 2,1 ,I,n
dynamic 3,: ~ ~read static 3 i lI,n
dist = dynamlc(J,:) / (max(. ,

~dynamic~I :).-statICp,:)~

~dynam~c1I'.1. - sta~c~I'.}} + dynamic 2,: - statiC 2,:
~ dynamic 4,: -static 2,: »

statiC 4,:) = statiC 4,:) +
(dynamic(2,:) - static(2,:» * dist

statIc{5,:) = statIc(5,:) -
(dynamic(I,:) - static(I,:» * dist

end do
call cm timer stop(0)
print *, broacfcast time for '6 n, ' bodies = "

cm_timer_read_elapsed()
return
end

ID.e Using Broadcasts

Here, we consider a static and dynamic copy of the vortex elements, containing the position

and strengths. For the full N -body algorithm, the dynamic copy is created by broadcasting each

element from the fixed copy to form the entire dynamic copy, Between each broadcast, we compute

the influence of the dynamic copy on the static copy. After N such broadcasts, the complete interac-

tion has been summed. The algorithm is given by:

The Full N -body Broadcast Algorithm

cmf
cmf
cmf

liubroutine cs_Id(n)
mteger n .
real, array~ 5, n) :; statiC
real, array n):: dist .
real, arqty 3, n) :: dynamic
mteger 1

layout static(: serial , :news)
layout dynamic(: serial , :news)
layout. dlst(:news)

statiC = 0.0
doi=I n

statiCfI'i~ = i static 2,i = i + 1
statiC 3,1 = 1.0

end do
call em timer clear(0)
call cm-timer-start(0)
call cm-timer-stop(0 J
call cm-timer-clear(0)
call cm=timer=start(0)

8

do i = I, n
dynam!C~l':~ = stat!C~l, !~ dynamic 2,: = statiC 2, I
dynamic 3,: := static 3, i
rust = dynamlc(3,:) I (max(.001,

~dynamicp :).-statICP :)?

~dynamlc~l"i- statIC~l'.}} t dynam~c 2,: - sta~c 2,:
. dynamic 4,. -static 2,. »

statiC 4,:) = stabc 4,:) +
(dynamic(2,:) - static(2,:» * dist

stabct5,:) = stabc(5,:) -
(dynamic(l,:) - static(l,:» * dist

end do
call cm timer stop(0)
print *, -'broadCast: time for " n, , bodies = "

cm_timer_read_elapsed(0)
return
end

A different broadcast may be obtained by using the CMF array transfer utility function,

known as a bit-blit, to send the entire CM array to the front end of the CM-2 (or control processor

of the CM-5) at once, and then broadcast one body at a time as in the above. The following code

gives the array transfer/broadcast:

The Bit-blit Full N -body Broadcast Algorithm

program bjt-bli~-broadcast
mte~r n, Iterabons
reane static(5, 100000)
print ~ 'bit-blit broadcast Id'
print * "

cmf
cmf
cmf

print *: 'Enter number of bodies'
read *, n
call bit-bc_ld(n, fe_static)
stop
end

~ubroutine bit-bc_ld(n, fe_static)
mteger n .
real, array! 5, n) :: static
real, array 5, lOOQOO) :: fe_static
real, array n):: dist .
real, array 3, n) :: dynamiC
!nteger, .array (2) :: end
Integer I

layout static(:serial, :news)
layout dynamic(:serial, :news)
layout. dlst(:news)

static = 0.0
doi= 1 n

statiC~l ,il = i
static 2,i = i + 1
static 3,i = 1.0

end do
end(1) = 5
end(2) = n
call cm timer clear(0)
call cm-timer-start(0 J
call cm-timer-stop(0 l
call cm-timer-clear(0)
call cm-timer-start(0)
call cmf from- cm(fe static, static, end)
do i = l~n - -

-0)

9

dynamic~l,:~ = fe static~l' ~. dynamic 2,: = fe=static 2, i
dynamIc 3,: ~ fe statIC 3, I
rust = dynamlc(3,:) / (max .001,

~ dynamic~l :).- stabcp,:)?

! dynam~c 2,: - sta~c 2,: ~dynamlc!l"i- stabc~l,.}}
. dynamIc ~,. - stabc 2,. »

stauc 4,:) = stauc 4,:) +
(dr,namic(2,:) - static(2,:» * dist

stauct5,:) = stauc(5,:) -
(dynamic(l,:) - static(l,:» * dist

end do
call cm timer stop(0)
print *, broaacast time for ~ n, ' bodies = "

cm_timer_read_elapsed(u)
return
end

IV. "FILLS" TO A VOID MASKING IN CM FORTRAN.

IV. A. Fills and Cshifts

If the number of vortices is not exactly matched with the layout of the array on the CM, the

compiler inserts garbage masking, which flags the processors that do not contain actual bodies.

While this is transparent to the user, it unfortunately means that operations such as CSHIFf become

significantly slowed while the garbage mask is checked. A simple fix is to determine the number of

processors (here, processors means virtual processors) that the machine will allocate for a given

number of bodies, and initially load the "extra" processors with bodies of zero strength. Adding

these extra bodies of zero strength does not affect the forces calculated on the "live" bodies. We

call this an ''N -body algorithm with fill". First, we note that this approach does not require any

extra memory, since those processors are automatically allocated during compile time. Second, by

filling the "extra" processors with bodies of zero strength, the garbage masking is turned off, and

hence the speed of such operations as CSHIFf is increased.

Determining the number of bodies to add to reach the size of array allocated during compila-

tion depends on the particular machine. Let P be the number of processing nodes on the machine

(by a processing node, we mean a floating point unit on a CM-2). A CM-2 will allocate an array

with an across-processor axis of length a multiple of 4P , while a CM-5 with vector units will allo-

10

cate an array with an across-processor axis of length a multiple of 8P, and a CM-5 without vector

units will allocate an array with an across-processor axis of length a multiple of P . The idea of an

"N -body problem with fill" is to make sure that the number of bodies is always equal to an integral

multiple of this across-processor axis length. For example, given 300 bodies, and a CM-2 with 256

processing nodes, garbage masking can be avoided by augmenting the 300 live bodies with 724

bodies of strength zero to bring the total number of bodies up to 1024. In this case, the compiler

will allocate an across-processor axis of length 1024, which in practice means that the across­

processor axis will have a serial component of dimension 4. It is unfortunate that CM Fortran does

not currently allow the user to access this serial axis.

In order to add these extra "zero" strength bodies, we must be careful to provide an extra

copy of the initial live bodies at the end of the static array to maintain the full interaction of the

dynamic copy with the static copy. This idea is best illustrated through an example. Suppose we

have five live vortices, labeled "A" through "E". The static copy must contain these live bodies

plus an extra copy at the end, making a total of 10 bodies. Imagine for a moment a CM-2 with four

floating point nodes. Given these 10 bodies, the compiler will allocate an across-processor axis of

length 16, which once again in practice means that the across-processor axis will have a serial com­

ponent of dimension 4. Thus, we must fill the static array as follows:

Initially

Dynamic: ABCDE ------ ABCDE

Static: ABCDE -----------

After one CSHIFI'

Dynamic: ABCDE ------ ABCDE

Static: BCDE A -----------

where the blanks denote processors without live bodies. We note that the set up of the extra bodies

at the end of static array requires a cross-geometry move, and gathering the accumulated velocities

J

11

which are distributed among the two copies in the static array requires an additional two CSHIFI's

and add. The program to accomplish this for a CM-2 is given below. Here we include the driver

which calculates the size of the fill array, as well as the N -body kernel subroutine.

The N -body Cshift Algorithm with Fill

progra!U CSHIFCld_fill
!mpliclt none. .
Integer ,,~ nllteratlOns, proc

#include <cm/CNil' uefs.h>
#ifdefCM5 -
#include <cm/timer-forth>
#else
#else
#include <cm/paris-configuration-forth>
#endif
#endif

print * 'CSHIFr Id'
print*' ..
print *: 'Enter number of bodies'
read *, n
g-~ 0 CMF _number_oCprocessorsO

#ifdefCM5
#else
#endif

if (2 * n .Ie. m) go to 2
go to 1
stop
end

~ubf(;>4tine cs_ld_filUop(m, n)
!mphclt none
Integer m n

#include <cm/CMF defs.h>
#ifdefCM5 -
#include <cm/timer-forth>
#else
#else
#include <cm/paris-configuration-fort h>
#endif

real, arr~y(5, n) :: static
Integer I

cmf layout. static(:serial, :news)
do 1 = 1 n

statiC~l'i~ = i static 2,! = i + 1
statiC 3,1 = 1.0

end do
call cm timer clear(0)
call cm-timer-start(0 L
call cm-timer-stop(0
call cs_ld_filf(m, n, s tic)
return
end

~ubr94tine cs_ld_fill(m, n, static)
!mphclt none
Integer m, n .
real, arr~y(5, n) :: statlc
.Integer I ..
real, arra~ 5, m) :: blg_s~tlc
real, array 3, m) :: .dynamlc
real, arra m):: dlst

#include <cm/C defs.h>
#ifdefCM5 -
#include <cm/timer-forth>
#else
#include <cm/paris-configuration-forth>
#endif
cmf layout static(:serial, :news)
cmf layout big_static(:serial, :news)

cmf
cmf

12

layout dynamic(:serial, :news)
layout dist(:news)

call cm timer clear(0)
call cm-timer-start(0)
bi!Lstaijc = 0:0 .
bl!LSt.&bC(I:~, l:n).= stabc{l:3, :)
dynamic = big stabc(l:3,:1
bl!Lstatic = DI&-static + cshift(bi!Lstatic, 2, n)
do I = 1, n - 1

dynamic = CSHIFf(dynamic, 2, 1)
dist = dynamlc(3,:) / { max(.001,

~ dynamicp :).- bi!Lstaticp,:)!

~dynamlc!l'.}- 6i!Lstabc~1'.}} + dynamic 2,: -bi!Lstatic 2,:
· * dynamic 2t: - biLstatie 2,: »

blg",.statiC(4;~ = DI!LStabC(4,:) +
· (dyn~ie 2,:) -pi!Ls~tic(2,:» * dist

blg",.Slattc(5,: = bl&_statIc(5,:) -
.(dynamic 1,:) - OI!LstatiC(l,:» * dist

end do
bi!Lstatic(4:5,:) = bi!LstatiC(4:5':J +

· cshift{ big &tatic\:4;5.:), 2, -n
stattc(4:5, :) = DI!Lstabc(4:5, l:n
call cm tImer stop{ 0)
print *, -. c-shifi: ttme for " n, , bodies (fill = " m, ') = "

cm_timerJead_elapsed(0)
return
end

The Triangular N -body Cshift Algorithm with fill is given below. The driver program is the

same as the above.

The Triangle N -body Cshift Algorithm with Fill

~ubroutine cs_ld_filUop(m, n)

cmf

mteger m, n .
real, arr1lY(5, n) :: stabC
mteger I

layout statie(:serial :news)
call. cmCrandom(static(r:3,:), 1.0)
dOI= 1 n

statiC

f
l ,i~ = i

static 2,i = i+ 1
static 3,i = 1.0

end do
call cm timer clear(0)
call cm-timer-start(0 L
call em-timer-stop(0
call cs_ld_fill(m, n, s tic)
return
end

~ubr9Qtine cS_ld_fill(m, n, static)
!mphclt none
mteger m, n .
real, arr1lY(5, n) :: stabc
Integer I, nrot
real, arra~ 5, m) :: big static, dynamic
real, array 2, m) :: .cmlbugtemp
real, arra m):: dlst

#include <cm/C defs.h>
#ifdefCM5 -
#include <cm/timer-forth>
#else
#include <cm/paris-configuration-forth>
#endif .
cmf layout statie(:serial, :news)
cmf layout bi!Lstatic(:serial, :news)
cmf layout dynamic(:serial, :news)
cmf layout qnfbugtemp(:serial, :news)
cmf layout dlst(:news)

)

13

call cm timer clear(0)
call cm-timer-start(0)
bi~staijc = 0:0 .
bl~sU\uc(I:~, I:n).= stauc(1:3, :)
dynamic = b~_tatlc
bl~static = CSHIFf(biiLstatic, 2, n)
big static = big static + -dynamic
nroT"= (n - 1) r2
do I = 1, nrot

dynamic = CSHIFf(dvnamic, 2, 1)
dist = 1.0 / (max(.001,

~ d~~~=g!t}~iNrt~~ti~!~?}} + dynamic 2,: - bi~static 2,:
· '" dy'namic 2~ - biiLstatic 2,: »

bl~statiC(4':~ = 0l&-statlc(4,:) +
· (dyn~ic 2,:) -pI~s~tic(2,:» '" dist'" dynamic(3,:)

bl~SlatIC(S,: = bl&-Stauc(5,:) -
(dynamic 1,:) - DliLstatic(1,:» '" dist'" dynamic(3,:)

dynamic(4,:) = oynamlc(41:) +
(bi&"'StatIC(2,:) - dYl!amlc(2,:» '" dist '" bi~static(3 ,:)

dynamlc(S,:) = oynamlc(S1:) -
(bi~statIc(1 ,:) - dynamlc(1,:» '" dist '" bi~static(3 ,:)

end do
if (mod(n,2) .eq. 0) then

nrot = nrot + 1
dynamic = CSHIFf(dynamic, 2, 1)
dist = dynamlc(3,:) I (max(.001,

~ d~~~~g!t}~iNr~~~~g~'i~?}} + dynamic 2,: - bi~static 2,:
· '" dy'namic 2\: - biiLstatic 2,: »

bl~stabC(4':~ = 0l!Lstatlc(4,:) +
· (dyn~ic 2,:) -pi~s~tic(2,:» '" dist

bljcSlatIC(S,: = bl&-Stauc(5,:) -
. dynamic 1,:) - DI~static(I,:» '" dist

end I
qnfbug~emp = CSH.IFf(bi~static(4:5,:), 2, -n)
bl&"'StatIc(4:S,:) = bl8..,.Stauc(4:S,:) +

· CSHIFr(dYl)amlc(~:SJ:). 21 -nrot) + cmfbugtemp
statlc(4:S, :) = bi~statIc(.. :5, :n)
call cm timer stop{ 0)
print "',"c-shift: Ume for " n, ' bodies (fill = " m, ') = "

cm_timer_read_elapsed(0)
return
end

IV. B. Fills and Broadcasts/Spreads

In the same manner as above, fills can be used with both broadcasts and SPREADs to avoid

garbage masking. There is no need to include the additional copy at the end of the static array, and

thus we need only add zero-strength bodies to fill the static array up to the size allocated by the

compiler. We do not include that code, since it looks almost identical to the previous codes.

V.CMMD CODE

The various CM Fortran techniques presented in previous sections share a common feature:

they move the bodies as independent entities. This is a consequence of the limited control of data

layout provided by the current (Version 2.0) versions of the compiler. Instead, one would like to

14

configure the vortex array as a two-dimensional array (in actuality. three-dimensional. since the x. y.

c. u. v elements are included). where one axis is purely physical (across processors) and the other

purely serial. In this case. both the CSHIFf and SPREAD algorithms could be modified to use

block transfers which could then make use of vectorization capabilities. In this view. the bodies are

distributed uniformly so that either (NIP) or «N-l)IP) bodies reside on each physical processor.

That is. the array subgrid which resides on each processor is two-dimensional. Computation then

consists of an N -body solver among the bodies on a node interleaved with a communication step

that moves all of the bodies (the entire serial axis) from one processor to the next. If the nodes are

equipped with vector units. we may expect that the compiler will efficiently optimize (vectorize) the

serial axis computations.

like:

For a machine with P nodes. a CM Fortran program for the block move variant would look

c

c
c

~ubr9Qtine CSHIFf-block-triang(n. P. vortices)
ImpliCit none
mteger n. p .
real. arrflyJ 5. nip. p) :: vortIces
mteger I. J k .
real. array'{ ~~n/p. p) :; dynamic
real~ array(!lfl./. p) :: dlst .
vortIce~(4:5. : •. :) = 0.0
dynarmc = VOrtIces

compute interactions of bodies residing on a processor
do j = 1. n / p. - 1

do k = j + 1. nip

!!
(dynamic(l.j.:) - vortices(1. i.: II *
dynami~(l,tj~:~ - vorti~es(1,t i~:? ;­
(dynamlc(:t.J •.) - VOrtIces(:t.l •.
dynamic(2.j.:) - vortices(2. i.:)

) dynam~c(3.j.:): d~st
end do

dynamlc(3.J. :) dist

bloc.k move and compute interactions between resident and visiting
vortices

do i = 1. P / 2 - 1
dynamic ~ CSHIFf(dynamic. 3. 1)

do k = J + 1. nip

!!
(dynamiC(l.j.:) - vortices(1. i.: II *
dynami~(l,tj~:~ - vorti~es(1,t i!:.)/
(dynamlc(:to J •.) - VOrtICes(:t.l •.
dynamic(2.j.:) - vortices(2.i.:)

)

end do
end do

dynamic(3.j.:) * dist
dynamic(3.).:) * dist
vo~ces(3.J.:): d~st
vOrtlceS(3.J.:) dist

.J

c

15

add the static and JITMmic velocity accumulations.
dy~ic = CSH1Ff(dyn~ic, 3 -p I 2 + 1) .
VOrtIces(4:5, :, :) = VOrtIces(4:), :a, :) + dynamIc(4:5, :,
return
end

The SPREAD Variant would look similar:

~ubrQ~tine spread-block-triang(n, p, vortices)
!mplicIt none
mteger n, p .
real, arrflY.(5, nip, p) :: vortIces
mteger 1, j k .
real, array(\ ... n/p, p) :; dynamIc
real, array(n,p, p) :: dlst
VOrtIce~(~:5, :,.:) = 0.0
dyruu~llc = vortIces

C compute interactions of bodies residing on a processor
do j = 1, nip. - 1

do k = j + 1, nip

!!
(dynamiC(I,j,:) - vortices(1, i,: II '"
dynami<;:(I,jt:~ - vorti<;:es(I,.t it:? t
(dyn~IC(2,),.) - vo~ces(:tt 1,.
dynamIc(2,j,:) - vortIces(2, 1,:)

)d . ~3 . ~"'di ynamIc ,J,: st
dynamic 3,j,: '" dist

end do
c blocJc move and compute interactions between resident and visiting
c vortIces

doi=I,p ..
dynamIc =: spread(dynamIc(:, :, 1), 3, p)

do k = j + 1, nIp

l!(dyna~iC(l,j~:) - voJ1.ices(It i~: II '"
dynamlc(l,j,.) - VOrtICes(1,.tI,.)+
(dyna~ic(2,j ~ :) - voJ1.ices(:tt i: : '"
dynamlc(2,j,.) - vOrtlCes(2, 1,.)

) dynam!c(3,j,:): d!st
dynamlc(3,j,:) dist

end do
end do
return
end

Note that the SPREAD version should be less efficient since it cannot take advantage of the

triangular structure structure of the computation across SPREADs. That is, only one side of the

force interaction is computed per communication step, so p steps must be performed. The CSHIFf

version requires only (P I 2) + 1 steps.

It seems reasonable to expect that the CSHIFf version will be the optimal CM Fortran imp le-

mentation once version 2.1 is available. This compiler will allow the explicit data layout described

above and will also provided a degree of vectorization for computations on serial axes.

As an experiment, we coded a version of the block CSHIFf algorithm using CMMD, the

message passing library available on the CM-5. Here, the CSHIFfs have been replaced by the

explicit CMMD _send_and_receive calls. This code is given below.

The CMMD Code

16

progra~ n_body
Implicit none
integer alive, n, size
real static(5, 1), dynamicl(5, 1), dynamic2(5, 1)
!nteger byte Size, l>ytes_pecfloat, H~ts_peCbOdy
mteger src, (lest, tag, floats_per_ velocity
real extra
parameter *g = 10)
parameter .Y.t~s_~cfloat = 4)
character* 0) bOdies
pointer (s, static), (dl, dynamic 1), (d2, dynamic2)
external malloc
external getarg
external largc
jnteger Plalfoc
mteger largc

. integer i, J, ps, result, swad, swas, t, v_size
#mclude <cm/cmmd fort.h>

floats per OOdy_ = 5
c result = Ieee nandle~ 'set', 'inexact', handler in)
c result = ieeenandle 'set', 'overflow', handler ov)
c result = ieee nandle 'set', 'underflow', handler un)

p,s = cmma partition sizeO -
If (iargcQ. .It. 2) then-

print ,"Usage: n-body size procs"
stop

end if
call g~tar~(1, bodi~s)
read{ bodies, *) size
call getar~(2, bOdies)
read{ bodles, *) i
if (i .ne. P) ps = i
print *, 'bOdi~ = " si~, ' processors jq computation = " ps
prmt .*, lE' tIon sIZe IS " cmmd-partltIon_slzeO
n = Size ps
~xtra = oat(size) / float(ps) - n
If (extra .ne. 0.0) then

I 7 extra * cmmd_partition_sizeO
alive = n
if (qnmd_self addressO .It. i) then

alIve = n +'
end if
n=n+l

end if
print * > 'bodies/processor = " n, extra, i
byte_SIZe = n * l>ytes_pecfloat * floats_per_body

c allocate arrays
s = malloc(byte size)
d 1 = malloc(byte size)
d2 = malloc(byte-size)

c make standard error and output units indeJX<ndent across pns
result = cmmd set io mooe(0, cmma independent)
result = cmmd-seCio - mode(6, cmmd-independent)

c only do the calcuHltion in-the desired processors
... if {cmmd_~!f_addressO .It ps) then

c mltIahze velOCIties
doi=ln

statid'4, i) = 0.0
static(5, i) = 0.0

end do
c initialize vortices

call initialize(stai.!.c-1 dypamicl, n, alive)
result = cmma nooe tImer clear(0)
result = cmmd-node-timer-clear(1)
result = cm~d:node:timer=start(1)

c now compute statIC mteractIon
call vortex kernel_s(n, static, dynamicl, n)

c now cycle through the nOdes
(Jest = cmmd self addressO - 1
if (dest .eq. -TI then

dest = ps - 1
endif ,
src = cmmd self addressO + 1
if (src .eg. pS) then

src = U
endif
swad = mod(cmmd_selCaddressO + ps/2, ps)

c
c

c

c

c

17

swas
1

= mod(ps + cmmd_selCaddressO - ps/2, ps)
t=
do i = 1, ps/2 - 1

t = 1 -1
if (t .eg. 1) then

result = cmmd_send_andJeceive(src, tag, dynamicl,
byte_size, dest, ta~, d'ynamic4, byte_sizy)

call vortex_kerneC.so{ n, statIC, oynamIcl, n)
else

result = cmmd_send_and_receive(src, tag, dynamic2,
byte size, dest, ta.&, d'ynamicl, byte size)

caJI vortex_kerneC.so(n, static, oynamic2, n)
end If .

end do
Now do last pair. If j)S is even, this is a one way calculation.
Otherwise to do the tull bidirectional calculation.

j = mod(ps, 2)
1 = 1 - t
if (j .ne. 0) then

do die full case
if (t .eg. 1) then

result = cmmd_send_and_receive(src, tag, dynamicl,
byte size, dest, ta~, d'ynamic2, byte size)

call vortex_kerneC.so{ n, static, oynamic 1, n)
else

result = cmmd_send_andJeceive(src, tag, dynamic2,
byte size, dest, ta~, ~namic 1, byte size)

call vortex kernel s n, static, oynamic2, n)
end if - -

else
do the half case

if (t .eg. 1) then
result = cmmd_send_and_receive(src, tag, dynamicl,
byte_size, dest, ta.&, dynami<;2, byte_si~)

ls
ca1l vortex_kerneC.s(n, statIC, dynamIc}, n)

e e
result = cmmd_send_and ... receive(src, tag, dynamic2,
byte size, dest, tag, dfnamIc 1, byte size)
call vortex kernel s n, static, oynamic2, n)

end if - -
end if

now do send with add of velocity.
if (t .eg. 0) then

resufi = cmmd_send_and_receive(swas, tag, dynamicl,
. byte size, swad, tag, dynamic2, byte_size)

do 1 =1 n
statid'4, D = static(4, D + dynamic1(4, D
statIc(5, 1) = statIc(5, 1) + dynamIcl(5, 1)

end do
else

result = cmmd_send_and_receive(swas, tag, dynamic2,
byte size, swad, tag, dynamicl, byte_size)

do 1 =1 n
statid'4, D = static(4, D + dynamic2(4, D
statIc(5, 1) = statIc(5, 1) + dynamIc2(5, 1)

end do
end if
result = cmmd node timer stop(1)

end if - - -
call cmmd sync with nodesO
if (cmmd self aodresSO .eq. '0) then

pTjfnt *;'total time = " cmmd_node_timecelapsed(1)
end 1
stop
end

~ubf(;)U.tine initialize(static, dynamic, bodies, alive)
ImplICIt none
integer i, bodies, alive
real oynamic(5, bodies)
real sfatic(5, bodies)
Integer offset
external rand
real rand

#include <cm/cmmd fort.h>
offset = cmmd self addressO * bodies
do i = 1 bodies -

statid'l, i) = i + offset
static(2, i) = i + 1 + offset

if (i .l~. aliye) then
stauc(3, I) = l.0

else

18

su,.tic(3, i) = 0.0

r$~!i: Ij ~ i~tlg!~: Ij dynarmc 4, I = statiC 4, I
dynamic 5, i = static 5, i

end do
return
end

l'ub«;)\~tine vortex_kemeCsd(bodies, static, dynamic, alive)
Implicit none
integer bodies, alive, indexl, index2
real mverse d
real dynamiC(S, bodies)
real sfatic(S, bOdies)
do indexl = I, alive

do index2 = I, alive
inverse d = l.0 / max(.001,

!(dynamic(1, index2) - static(1, index III *
dynami~(1,.t i~dex2) - stati~(1,.t ~dexl) +
(dynamlc(~, mdex2) - stauc(~, mdex1 *
dynamic(2, index2) - static(2.,. index 1))

static(4, index 1) = static(4, inoexl) +
dynamic(3, index2) *
(dynamicO, index2) - staticO .. index 1» * inverse d

static(S, indexl) = static(5, inoexl) - -
dynamic(3, index2) *
(dynamic(2, index2) - static(2, index 1» * inverse d

dynamic(4, index2) = dynamlc(4, indeX2) - -
static(3, index 1) *
(d~mic(1, index2) - static(1, index 1» * inverse d

dynamic(S, index2) = dynamlc(S, indeX2) + -
static(3, index 1) *
(dynamic(2, index2) - static(2, index 1» * inverse_d

end do
end do
return
end

l'ubrQQtine vortex_kemeCs(bodies, static, dynamic, alive)
ImplIcit none
integer bodies, alive, indexl, index2
real mverse d
real dynamiC(S, bodies)
real sfatic(S, bOdies)
do indexl = I, alive - 1

do index2 = indexl + 1 ~ alive
inverse_d = l.0 / max\ .001,

!(dynamic(1, index2) - static(1, indexlll *
dynami~(1,.t i~dex2) - stati~(1,.t ~dexl) +
(dynamlc(~, mdex2) - stauc(~, mdex 1 *
qynamic(2, index2) -. statiC;(2.,. indexl))

stauc(4, mdexl) = statlc(4, moexl) +
dynamic(3, index2) *
(qynamicO, index2) ~statiC;(~ index 1» * inverse_d

stauc(5, mdexl) = stauc(S, moexl) -
dynamic(3, index2) *
(dynamic(2, index2) - static(2, index 1» * inverse d

dynamic(4, index2) = dynamlc(4, indeX2) - -
static(3, index 1) *
(dynamlc(1, index2) - static(1, indexl» * inverse d

dynamic(S, index2) = dynamlc(S, indeX2) + -
static(3, index 1) *
(dynamic(2, index2) - static(2, indexl» * inverse_d

enddo
enddo
return
end

19

VI. RESULTS

In Table I, we give the results of timing runs to evaluate the various algorithms described

above. We perfonn the CSHIFf, triangle-CSHIFf, SPREAD, and broadcast/broadcast-bit-blit algo-

rithms, both with and without fill, for a 256 floating point node CM2, a 256 Spare node eM-5, and

a 128 pn (512 vector unit) CM-5. The times for the smaller problems are the average of ten runs.

The fastest time in the table for 100,000 bodies is for the broadcast/bitblit on the 128 pn (512 VU)

CM-5.

VII. OTHER ISSUES AND IMPLEMENTATIONS

It is important to note a seemingly minor change in coding style can make a major impact in

timings. For example, in the implementation of the simple SPREAD algorithm, we note that it is

unnecessary to spread the stored velocities from the static copy to the dynamic copy. Thus the static

copy is of serial dimension 5, whereas the dynamic copy has serial dimension 3. In the implementa-

tion given in the text, the x and y positions and strength are each spread separately, that is,

dynam!C~I':~ = spread~sta~c~I'!~'I,n~ dynamiC 2,: = spread statiC 2,1 ,I,n
dynamic 3,: = spread static 3,i ,I,n

However, if one were to replace this with the single SPREAD

dynamic = spread(static{l:3,i),I,n)

the resulting code is fifteen times slower. As another example, in the bit-blits, it makes considerable

difference whether or not one bit-blits all or part of the array. For example, given the static array of

serial length 5 containing x,y,c,u and v, one only need the x,y, and c components bit-blitted to the

front end and then shipped to the CM to build the dynamic array. However, bit-blitting only 3 of

the 5 elements causes garbage masking, which once again considerably slows the code. Other pro-

gramming pitfalls abound.

Finally, the above techniques for programming direct N -body solvers is by no means exhaus-

tive. We have attempted only to program some relatively straightforward implementations, and tried

Table 1: Comparative 2-D Direct N-body Kernel Timings (in seconds)

CM-2 CM-2 Fill CM-S Sparc CM-S Sparc Fill CM-SVU CM-S VU Fill
256Weiteks 256Weiteks 256 Nodes 256 Nodes 128 nodes (512 VU) 128 nodes (512 VU)

Aig. \ # Bodies 1 e3 le4 le5 le3 le4 le5 le3 le4 le5 le3 le4 le5 le3 le4 le5 le3 le4 . le5

CSHIFI' .996 60.72 2873 .169 7.13 610.0 .336 6.14 744.6 .304 6.46 505.2 .616 7.67 170.2 .970 8.90 227.4

CSHIFI'TRI II .710 I 48.77 I 2300 II .134 I 8.79 I 637.7 II .245 I 4.58 I 637.3 II .205 I 4.79 I 409.4 II .317 I 4.48 I 113.3 II .349 I 5.19 I 159.5

SPREAD II .125 I 3.96 I 325.5 II .125 I 4.02 I 325.6 II .236 I 4.28 I 246.3 II .238 I 3.88 I 252.0 II .292 I 5.82 I 91.01 II .364 I 4.65 I 116.1

BROADCAST II .125 I 3.93 I 327.6 II .125 I 4.03 I 325.5 II .245 I 3.93 I 242.0 II .238 I 4.32 I 252.5 II .451 I 5.98 I 119.7 II .282 I 5.76 I 110.7

II II II II II II I~
BC -BITBLT .065 I 3.39 I 307.0 .088 I 2.11 I 66.53

CMMD .040 I 1.14 I 105.7

~

•

21

to examine how the coding affects the efficiency. Some other techniques might include:

(1) Use global communication to replace CSHIFfs/broadcasts/SPREADs (most probably
considerably slower).

(2) Place the bodies in an across-physical axis, transpose, and then SPREAD to get all N
bodies on each node. Then loop through serial axis in each node, performing the N -body
interaction with the body located in that node.

(3) Place the bodies in an across-physical axis, transpose, and then SPREAD to get all N
bodies on each node. Then compute the interaction matrix which gives the distance
between body I and J, and then use a matrix-vector multiply to compute the interactions.

(4) Bit-blit all the bodies to the front end at the beginning, and then broadcast a section of
the bodies to each node. This may be especially useful if/when the Fortran compiler per­
forms vectorization along the serial axis.

Acknowledgements: We wish to acknowledge the contributions of Woody Lichtenstein .

22

References

1) Brunet, J-Ph., Edelman, A., and Mesirov, J.P., An optimal hypercube direct N -body solver on
the Connection Machine, Proceedings of Supercomputing '90, IEEE Computer Society Press
(1990), 748--752

2) Sethian, J.A, A Brief Overview of Vortex Methods, in Vortex Methods and Vortex Motion,
Eds. K. Gustafson and J.A. Sethian, SIAM Publications, Philadelphia, 1991.

3) Sethian, J.A., J.P. Brunet, A. Greenberg, J. Mesirov, Two-Dimensional, Viscous, Incompressi­
ble Flow on a Massively Parallel Processor, J. Comp, Phys. 101, 1, pp. 185-206 (1992).

~~- ...--

LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
TECHNICAL INFORMATION DEPARTMENT

BERKELEY, CALIFORNIA 94720

-- --

