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2 Generalized Approach to Inverse Problems in Tomography 

Abstract 

A major limitation in tomographic inverse problems is inadequate computation 
speed, which frequently impedes the application of engineering ideas and principles 
in medical science more than in th~ physical and engineering sciences. Medical prob
lems are computationally taxing because a minimum description of the system often 
involves 5 dimensions (3 space, 1 energy, 1 time), with the range of each space co
ordinate requiring up to 512 samples. The computational tasks for this problem can 
be simply expressed by posing the problem as one in which the tomograph system 
response function is spatially invariant, and the noise is additive and Gaussian. Un
der these assumptions, a number of reconstruction methods have been implemented 
with generally satisfactory results for general medical imaging purposes. However, if 
the system response function of the tomograph is assumed more realistically to be 
spatially variant and the noise to be Poisson, the computational problem becomes 
much more difficult. Some of the algorithms being studied to compensate for position 
dependent resolution and statistical fluctuations in the data acquisition process, when 
expressed in canonical form, are not practical for clinical applications because the num
ber of computations necessary exceeds the capabilities of high performance computer 
systems currently available. Reconstruction methods based on natural pixels, specifi
cally orthonormal natural pixels, preserve symmetries in the data acquisition process. 
Fast implementations of orthonormal natural pixel algorithms can achieve orders of 
magnitude speedup relative to general implementations. Thus, specialized thought in 
algorithm development can lead to more significant increases in performance than can 
be achieved through hardware improvements alone. 
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1 Background 

The tomographic projection formation can be described by the discrete-continuous model 
[1], [2], [3], [4] 

POk - Fok ' b 

~dy ~dxfok(X'Y) b(x,y) 

(1) 

(2) 

where POk is the measured projection at angle index () and bin position k. FOk is a second order 
tensor functional operating on the two dimensional object distribution b. The operation of 
equation 1 represents the integration of the product of the impulse response jOk (x, y) and 
the object distribution b(x, y) over the imaging field as depicted in figure 1. The symbol 
. indicates integration over the imaging field. The impulse response function is the spatial 
response of a projection at angle () and bin k to a point source moved to every position within 
the sampling domain. There are e different angles and J{ projection bins at each angle. 

b(x,y) ---.. 

x 

F (X,y) 
8k 

Figure 1: Schematic of projection formation. 

To simplify notation 1 , the projection formation equation is written in vector form 

p = F·b (3) 

1 Lower case bold symbols denote vectors, lower case script symbols denote functions or scalars, upper 
case bold symbols denote matrices, and upper case script symbols denote operators. 
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by combining the () and k indices into one index. Specifically[5], 

b E L2 [R2] , 
P E R9K, and 

F L2 [R2] ~ R9K. 

(4) 

(5) 

(6) 

Because the model is based on the fact that the detection process is defined on a discrete 
domain and the original distribution is defined on a continuous domain, the model is easily 
adapted to include a variety of physical effects found in many imaging modalities. For 
positron emission tomography (PET), FOk can include radioactive decay, positron range, 
non-collinearity of photons, sampling geometry, attenuation, inter-detector-crystal scatter, 
detector crystal penetration, and detection efficiency [6] [7] [8]. 

The singular value decomposition of the tomograph system response function is 

F = US·VT
. (7) 

U is an orthogonal matrix containing the left singular vectors of F and is defined by the 
eigenvalue decomposition of the projection normal matrix, 

(8) 
(9) 

where FT is the adjoint operator of F [5]. An element AOlklOk is the projection at angle ()' 
and bin k' of the backprojection at angle () and bin k of a unit projection value, POk = 1. A 
schematic of this operation is shown in figure 2. The projection normal matrix is symmetric 
and positive semidefinite. V are the right singular functions of F and are defined by the 
relationship 

(10) 

The functional S operates similarly to F in that it maps continuous domain functions to 
discrete domain samples. Thus, V performs an infinite dimensional rotation on the continu
ous domain object space, S selects and scales a finite number of the rotated functions, and 
U performs a finite dimensional rotation into the discrete domain projection measurement 
space as shown in equations 11-13. 

U R9K ~ R9K, 
S L2 [R2] R9K 

~ , and 

V L2 [R2] ~ L2 [R2] . 
A geometric interpretation is given in figure 3. 

(11) 

(12) 

(13) 



Generalized Approach to Inverse Problems in Tomography 5 

Figure 2: Schematic of the computation of one element of the projection normal matrix. A 
unit projection is backprojected and reprojected to a new projection to form a projection 
matrix element. 



6 Generalized Approach to Inverse Problems in Tomography 

s u 

Figure 3: Singular value decomposition of the projection operator. The operator VT performs 
an infinite dimensional rotation on the continuous domain object space, S selects and scales 
a finite number of the rotated functions, and U performs a finite dimensional rotation into 
the discrete domain projection measurement space. 

The goal of tomography is to reconstruct the unknown distribution, b, from one re
alization, p, of the projection measurement process p [9] [10] [11] [12] [13] [14] [15] [16]. 
Reconstructing the true continuous space distribution, b, from sampled projections is prob
ably impossible without prior information about the distribution [3] [17] [18] [19]. Instead, a 
discretized representation, Cmn , is estimated from the measurements where Bmn (x, y) defines 
a generalized pixel. 

(14) 
mn 

In vector form the pixelization is 

(15) 

Using this representation, a least squares estimator (LSE) [5] [20] [21] [22] [23] is for
mulated to estimate the mean intensity of the generalized pixels, c, used to describe the 
unknown spatial distribution from one measured projection dataset, p. While the resulting 
LSE formula is quite general, specific application to image reconstruction using square pix
els, Buonocore's natural pixels [24] [25], and the new orthonormal natural pixels is shown. 
The least squares estimator for the mean intensity of the generalized pixel image is found 
by minimizing the square of the L2 norm of the difference between the projection vector, p, 
and the estimated projection, F· BT c, over all possible image vectors, c; i.e., 
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e arg mjn {lip - F· BT ell:} 
(S . VT . BT) + U T p. 

7 

(16) 

(17) 

The operator + is the Moore-Penrose pseudo-inverse [26] [27] [28]. Using the measured 
projection vector, l!.., as a single sample estimate of the mean projection vector gives 

(18) 

The fluctuations of the generalized pixel least squares estimator due to random variations 
in the measurements can typically be characterized in terms of the covariance between pixel 
estimates. The covariance matrix for the generalized pixel estimator is 

E [(c - Ec)(c - Ec?] 
(S . VT . BT) + U T EpU (B . V . ST) + . 

where Ep is the covariance of the projections. 

(19) 

(20) 

The estimator for the mean of the intensity of the object in continuous space is found 
by applying the adjoint of the basis operator, B, to the generalized pixel estimator of the 
intensity mean. For the continuous space object, the least squares estimator for the mean 
of the intensity is 

b BTc 

BT (S . VT . BT) + U T p. 

(21) 

(22) 

The basis set used to describe the pixels influences the types of artifacts that appear in 
the reconstructed image [25] [29] [30]. In this work, three bases are evaluated. The first, B1, 
is the traditional square pixel or Heaviside basis. The second basis set, B2, consists of the 
set of functions that comprise the tomograph system response functional and was proposed 
by Buonocore [24]. The third, B3, has been proposed by us and is composed of the right 
singular functions V, defined by equation 7, that have been selected by S and normalized 
by the L2 norm. 

B1 

B2 

B3 

Heaviside 

F 

[ (S . ST) + ] t S. VT 

(23) 

(24) 

(25) 

1 

Small singular values in the singular value filter, [( S . ST) +] 2, of equation 18 can lead 

to large statistical errors in the reconstructed image, b. By applying a diagonal weighting 
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matrix, D, to the filter, the mean square error of the object estimates may be decreased [3]. 
The resulting estimates and covariance are 

1 

D [ ( S . ST) + r U T e (26) c 
1 1 

Ec D [(S. ST)+r UTEpU [(S. ST)+r D (27) 

b V . ST D (S . ST) + U T e. (28) 

Determining the weighting values is the subject of ongoing research. Since basis vectors are 
assumed to be arranged so the singular values are in the accepted non-increasing order, one 
possibility is to truncate the number of singular values used in the singular value filter so 
only the J largest singular values will be included. A weighting matrix with elements 

D.,. _ {I if j' = j and j < J, 
J.7 - 0 otherwise (29) 

will select only the J largest singular values. Since the basis is orthonormal, the resulting 
object estimate is the sum of the estimates of each pixel that was multiplied by one; i.e., 

2 Example 

J-l 

L B3Jcj 
j=O 

J-l 

LV. SJ (s . ST) + UTe. 
j=O 

(30) 

(31) 

As a simple example, consider the spatial sampling system of figure 4 that has three projec
tion angles and two projection bins at each angle. The angles are equally spaced between 
zero and 7r radians. The impulse response functions are defined by 

fOk(X,y) = {I if k -1 ~ -xsin (8~) + ycos (8~) < k and x2 + y2 ~ 1, (32) 
o otherwise 

and are shown in figure 4. The projection normal matrix and the singular value decomposi
tion of the projection normal matrix for this example are 

,. 
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A F·FT 
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(33) 

1 

Vi2 

(34) J] -1 
1 

where the left singular vectors, U, are given as the product of a matrix and the inverse of the 
norm of that matrix. There are four non-zero singular values for this example parallel beam 
sampling system meaning that of the six measurements only four are linearly independent. 
The linear dependence between the measurements is simply demonstrated by subtracting 
one of the impulse response functions at one angle from all of the impulse response functions 
at the other angle, the resulting difference is equal to the impulse response function that was 
not included in the difference; e.g., for the system of figure 4, 

!OO(',') + !01(',') - !1O(".) = !11(-, .). (35) 

Figures 5-7 show, respectively, a possible set of basis functions for square pixels, Buono
core's natural pixels, and orthonormal natural pixels using the sampling defined by the 
impulse response functions of figure 4. 

Consider the wedge shaped object of figure 8 which is defined as 

b( x, y) = {1 if I; I ~ ! and x ~ 0 and x
2 + y2 ::; 1, 

o otherWIse. 
(36) 



10 Generalized Approach to Inverse Problems in Tomography 

y y 

x x 

x x 

Figure 4: Schematic of spatial sampling functions for a simple parallel beam tomographic 
system with three equally spaced projection angles and two projection bins at each angle. 
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Figure 5: Square pixel or Heaviside basis for a simple parallel beam tomographic system 
with three equally spaced projection angles and two projection bins at each angle. 
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B;Cx,y) 

Figure 6: Buonocore's natural pixel basis for a simple parallel beam tomographic system 
with three equally spaced projection angles and two projection bins at each angle. 
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Figure 7: New orthonormal pixel basis for a simple parallel beam tomographic system with 
three equally spaced projection angles and two projection bins at each angle. 
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The pixel coefficients using the square pixel basis of figure 5 are 

c= [~OO~r. 
In Buonocore's natural pixel basis of figure 6, the pixel coefficients are 

1 [ ] T C = 72 4 4 13 -5 13 -5 

and for the orthonormal natural pixel basis shown in figure 7 

c 

y 

1t 

6 

1t 

6 

x 

Figure 8: Wedge shaped phantom object. 

(37) 

(38) 

(39) 

Figure 9 shows, respectively, the continuous space representation of the wedge shaped 
object using square pixels, Buonocore's natural pixels, and orthonormal natural pixels with 
the sampling defined by the impulse response functions of figure 4. 

All systematic reprojection errors due to pixelization are eliminated using a basis like B2 
or B3 as shown in table 1 for the wedge phantom. While this is true in particular for B2 
and B3, any basis that spans the subspace of functions defined by S· V T will also have this 
property. A geometric interpretation of the error associated with computing projections of 
pixelized object is shown in figure 10. Many of these bases may represent the original object 
distribution, b, better than B2 or B3. However, no information about the coefficients for the 
functions that are outside the space S . V T is available from the projection measurements. 
By using a priori information about the continuous space distribution of b, the formulation 
of Bayesian estimators that use basis functions not in S . V T is an exciting area for future 
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Figure 9: Representation of a wedge shaped object using top) square pixels, middle) Buono
core's natural pixels, and bottom) orthonormal natural pixels. 
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Basis Object Estimate Projection Estimate 

Squared Error Squared Error 

lib - BTcll: lip - F . BT cJI~ 
Bl 4 11"2 

3 324 

B2 7 0 6 

B3 7 0 
6 

Table 1: Errors due to pixelization for a wedge shaped phantom sampled with a parallel 
beam tomographic system with three equally spaced projection angles and two projection 
bins at each angle. 

s u 

Figure 10: Simplified geometric representation of the systematic error that results from 
computing model projections from pixelized versions of an object. Pixel bases that include 
the subspace S . V T eliminate systematic pixelization error. 
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research. Thus, the basis subset contained in s· V T is from a channel model for F and the 
subset contained in VT - S . V T is from a process model for b. 

To test the LSE in the presence of noise, a noisy projection dataset, 

p = [0.8579 0.2920 1.4252 0.0000 0.4829 0.0000 r ( 40) 

will be used. This projection dataset was created by sampling an independent multivariate 
normal (Gaussian) distribution with mean and variance equal to the noiseless projections 
of the wedge shaped object. The estimated pixel coefficients and the covariance of those 
estimates using the square pixel basis of figure 5 are 

c [0.5508 -0.3602 0.0981 1.0092 r (41) 

[ 

0.1738 0.0014 -0.0854 0.0870 1 
0.0014 0.0677 -0.0191 -0.0854 

-0.0854 -0.0191 0.0677 0.0014 . 
0.0870 -0.0854 0.0014 0.1738 

(42) 

In Buonocore's natural pixel basis of figure 6, the pixel coefficient estimates and covariance 
are 

c [0.1534 0.0629 0.5383 -0.3220 0.1336 0.0827] T (43) 

0.1810 -0.1771 -0.1428 0.1468 0.1556 -0.1517 
-0.1771 0.1810 0.1556 -0.1517 -0.1428 0.1468 
-0.1428 0.1556 0.1899 -0.1771 -0.1384 0.1512 

0.1468 -0.1517 -0.1771 0.1722 0.1512 -0.1561 
(44) 

0.1556 -0.1428 -0.1384 0.1512 0.1899 -0.1771 
-0.1517 0.1468 0.1512 -0.1561 -0.1771 0.1722 

and for the orthonormal natural pixel basis shown in figure 7 

c [ 0.5751 0.6879 -0.3641 -0.2124 0.0000 0.0000 t (45) 

0.0556 0.0340 -0.0589 0.0000 0.0000 0.0000 
0.0340 0.1250 0.0000 0.0000 0.0000 0.0000 

-0.0589 0.0000 0.1250 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 

( 46) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Figure 11 shows, respectively, the continuous space reconstruction of the wedge shaped 
object using square pixels, Buonocore's natural pixels, and orthonormal natural pixels with 
the sampling defined by the impulse response functions of figure 4. Table 2 shows the mean 
and observed object squared error and the the observed projection squared error for these 
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reconstructions. The natural pixel and orthonormal natural pixel estimates have better 
observed squared error than the square pixel estimates. The square pixel estimator has 
better mean squared error characteristics than the unfiltered estimators based on natural 
pixels or orthonormal natural pixels for the wedge shaped object. 

Figure 11: Least squares reconstruction of a wedge shaped object using top) square pixels, 
middle) Buonocore's natural pixels, and bottom) orthonormal natural pixels. 

Table 3 shows the effects of using the diagonal weighting matrix defined in equation 29 
with the value J varied from one to four for the example of figure 8. The projection estimate 
error decreases with the inclusion of each orthonormal natural pixel basis function; however, 
adding the image corresponding to the third basis vector, J = 4, increases the mean object 
squared error. The increase in mean object squared error is due to noise being added to 
the reconstructed image while no new information about the object is being added since the 
wedge phantom only has non-zero projections onto the first three orthonormal natural basis 
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Basis Mean Object Observed Object Observed Projection 

Squared Error Squared Error Squared Error 

E IIb- BTcll: IIEb - BTcll: IIEp - F· BTcll: 
B1 1.1775 3.2636 0.3001 

B2 1.3571 2.6294 0.2348 

B3 1.3571 2.6294 0.2348 

Table 2: Least squares reconstruction errors for a wedge shaped phantom sampled with noise 
by a parallel beam tomographic system with three equally spaced projection angles and two 
projection bins at each angle. 

vectors as shown in equation 39. 

Truncation Index Mean Object Observed Object Observed Projection 

Squared Error Squared Error Squared Error 

J E lib - BTcll: IIEb - BTcll: IIEp - F . BTcll: 
1 1.4762 1.9655 1.5270 

2 1.3839 2.8223 0.5360 

3 0.8571 2.4571 0.2584 

4 1.3571 2.6294 0.2348 

Table 3: Effects of truncating the number of singular values included in the singular value 
filter on orthonormal natural pixel least squares reconstruction errors for a wedge shaped 
phantom sampled with noise by a parallel beam tomographic system with three equally 
spaced projection angles and two projection bins at each angle. 

3 Implementation 

The computational complexity of reconstruction algorithms can be reduced by using the 
orthonormal natural pixel basis because it preserves symmetries in the data acquisition 
process. In this section, an implementation of the orthonormal natural pixel least squares 
estimator for rotationally invariant systems is described and analyzed. 
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3.1 Orthonormal Least Squares 

The continuous space representation of the truncated minimum L2 norm least squares esti
mator for the mean value of the orthonormal natural pixel image is from equation 31 

J-l 

b = LV. sJ (s . ST) + uT I!.' (47) 
j=O 

This estimate of the object is converted to a square pixel representation using the Heaviside 
basis operator, B1, of equation 23. The resulting square pixel representation is 

J-l 

C = L B1 . V . SJ (S . ST) + UTI!. (48) 
j=O 

and after rearrangement using equation 7, 

J-l 

C = L B1· FTU (S. ST)+. UTI!.' 
j=O JJ 

( 49) 

A block diagram of the orthonormal natural pixel least squares estimation algorithm is 
shown in figure 12. In general, the computation of the projection normal matrix requires 
0( 0 2 f{2) integral evaluations2 3. An 0(03 f{3) singular value or eigenvalue decomposition 
routine is used to compute U and S . ST. After the singular value decomposition of the 
projection normal matrix is known, evaluation of equation 49 uses 0(02 f{2) operations. 

For a rotationally invariant system, the evaluation of the projection normal matrix 
requires only 0(0f{2) integral evaluations and its singular value decomposition requires 
O(0f{3) operations using the block circulant singular value decomposition algorithm de
scribed in section 3.2. The rotationally invariant orthonormal least squares estimator is 
computationally tractable on current computer systems. 

2Let n, no E Nand t E R, t > O. Also, f, g : N - R. Then, define 
[31] 

1. Upper bound 

O(f(n)) - {g(n) : g(n) ::::: tf(n) V n > no} 

2. Lower bound 

n(f(n)) = {g(n) : g(n) ~ tf(n) V n > no} 

3. Combined bound 

6(f(n)) - O(f(n)) n n(f(n)) 

4. Asymptotic. 

fen) "" g(n) {:::} lim f((n)) = 1 
n-oo g n 

3Using the symbol 6 for the number of projection angles measured and the combined bound function 
6(·) is somewhat confusing but. parenthesis distinguish between the two uses. 
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c 

Figure 12: Block diagram of orthonormal natural pixel least squares estimation algorithm. 
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3.2 Block Circulant Singular Value Decomposition (BCSVD) 

When the elements of the projection normal matrix are a function of only the difference 
~() = ()' - () modulo 8 as shown in equation 50, the system is rotationally invariant. If it 
is not a function of the difference between k and k' modulo f{, then the system is radially 
variant. The system is spatially variant if it is rotationally or radially variant. 

AOlk'Ok A[(O-O/)modejkIOk 

A[~OmodejkIOk 

k dy k dx ![Mmodejk(X, y) !Ok(X, y) 

(50) 

(51) 

. (52) 

When the system is rotationally invariant, the projection normal matrix can be written in 
block circulant form [32]. The block circulant structure is 

Ao Al A2 Ae-2 Ae-I 
Ae-I Ao Al A e - 3 Ae-2 

A 
Ae-2 Ae-I Ao Ae-4 A e - 3 

(53) 

A2 A3 A4 Ao Al 
Al A2 A3 Ae-I Ao 

There are 8 x 8 blocks each of size f{ x f{. 

For the simple system of figure 4 the projection normal matrix can be written in block 
circulant form by reversing the direction of the projection axis for projection angle () = 1. 
With this change, 

3 0 1 2 1 2 
0 3 2 1 2 1 

A 
7r 1 2 3 0 1 2 

(54) 
6 2 1 0 3 2 1 

1 2 1 2 3 0 
2 1 2 1 0 3 

There are three by three blocks each of size two by two. 
By using the rotational invariance properties of the projection normal matrix, compu

tationally fast and efficient algorithms have been implemented for the reconstruction pro
cedures described in section 1. As an example for the rest of this section, the case where 
8 = f{ = 64 shall be used because it is representative of some typical tomographic inverse 
problems. 

A 8(f{28 log 8) fast Fourier transform (FFT) technique [33] [34] and an 
n(8Ie) singular value decomposition (SVD) algorithm are used to compute the factorization 
[35] 
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A (Fe ® IK)t D (Fe ® I K) 

(Fe ® IK)t U nAnUb (Fe ® IK) 

UAnUT 

us. STUT 

23 

(55) 

(56) 

(57) 

(58) 

where Fe is a normalized 0 x 0 discrete Fourier operator matrix and I K is J{ x J{ identity 
matrix.4 The operator t is conjugate transpose and ® is the outer product operation. 

Each of the J{2 discrete Fourier transforms of equation 56 can be computed independently; 
i.e., each sum does not need the result or input of another sum [36] [37]. The SVD of the 
blocks of D also do not have input/output dependencies with other blocks and can be 
computed without explicit synchronization. Therefore, parallel processing implementations 
of the block circulant singular value decomposition algorithm are possible. 

Two parallel versions [38] of the BCSVD algorithm were implemented and tested on a 
Cray-2 supercomputer using macrotasks [35]. The 0(0 log 0) grain size of FFT tasks is 
extremely small. For the example, it takes about 0.45 ms [39] [40]. This is comparable to 
the 0.31 ms necessary to synchronize with a server process and is much smaller than the 
2.63 ms necessary to create a new process. It is thus advantageous to increase the grain size 
of FFT tasks by computing J{ FFTs per task. The resulting granularity of 0(J{0 log 0) 
is about 29 ms. The task granularity of an SVD process is O(I{3) which is 428 ms for the 
example problem. 

A pre scheduled algorithm was implemented by creating one process for each of the J{ 

FFT tasks and another process for each of the 0 SVD tasks. The parent task starts n 
processes with either an FFT or an SVD task. All of the n processes run to completion 
before another n processes are started. This method is very easy to implement because all 
synchronization is implicit in the fork and join like paradigm [41]. 

To overcome the process creation overhead, a self-scheduling algorithm was constructed 
[38]. This method is more complex than the prescheduled algorithm but has a smaller time 
overhead. It requires explicit synchronization between server processes and a task manager. 
n server processes are created and each waits for a start signal after initial setup of local 
state information. After receiving the start signal from the task manager, a server checks 
what part of the matrix it is to work on next. When finished the server sends a ready signal 
to the hibernating manager. The manager then reassigns each of the server processes until 
the task queue is empty. 

Figure 13 shows the computation time for different sizes of input matrices. The speedup 
of the algorithm, shown in figure 14, increases as the size of 0 and J{ are increased. The 
prescheduled algorithm is faster for very small matrix sizes because the self-scheduled al
gorithm server processes have a larger startup overhead than a process started by the 
prescheduled algorithm. The self-scheduled algorithm is faster for medium sized problems 
that have small grain sizes but the prescheduled algorithm again approaches the speedup of 
self-scheduling as the problem size increases. . 

4The matrix A of equation 53 is less general than the algorithm will accept since it is symmetric with 
square blocks and real elements inst.ead of having rectangular blocks and complex elements. 
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Execution time versus Matrix size 

Sequential algorithm solid line 
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Figure 13: Computation time versus problem size with four tasks and four processors avail
able to service tasks. 
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Figure 14: Speedup versus problem size with four tasks and four processors available to 
service tasks. 
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The efficiency, shown in figure 15, does not approach unity as quickly as expected. This 
might be attributed to the timesharing scheduling algorithm used by the CTSS operating 
system and not to synchronization overhead because the overhead, shown in table 4, is less 
than 1.0% for e and f{ larger than 64 [42] [43]. It was not possible to verify this conjecture 
by using the machine without other users present. 
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Figure 15: Efficiency versus problem size with four tasks and four processors available to 
service tasks. 

The process creation time was found to be 2.63 ms. Task synchronization in the self
scheduling algorithm was 0.31 ms. A typical procedure call was measured to take 4.7 flS. 

Self-scheduling has less time overhead than prescheduling but is still 66 times more expensive 
than a procedure invocation. 

Data memory usage and overhead is shown in table 5. Very little memory is necessary 
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8=J{ prescheduled self-scheduled 
over head (ms) % overhead overhead (ms) % overhead 

4 25.7 29.9 
8 46.8 42.77 32.3 5.09 

16 80.2 10.89 37.3 1.29 
32 155.7 2.66 47.2 0.32 
64 306.8 0.61 67.1 0.07 

Table 4: Synchronization overhead versus problem size. 

for the synchronization of tasks. Each of the processes needs some local working storage for 
computing FFTs and SVDs. Code memory usage and overhead is shown in table 6. The 
code space sharing was small due to a problem in the Fortran compiler that made code 
replication necessary. 

8=J{ sequential prescheduled self-scheduled 
usage (kB) usage (kB) % overhead usage (kB) % overhead 

8 112 409 265.2 475 324.1 
16 240 533 130.4 604 151.7 
32 1648 1946 18.1 1948 18.2 
64 12400 12698 2.4 12888 3.9 

Table 5: Data memory usage and overhead versus problem size with four tasks. 

n sequential prescheduled self-scheduled 
usage (kB) usage (kB) % overhead usage (kB) % overhead 

1 404 450 11.4 447 10.6 
2 404 489 21.0 492 21.8 
3 404 530 31.1 537 32.9 
4 404 570 41.1. 582 44.1 

Table 6: Code memory usage and overhead versus number of active tasks. 

Dynamic memory allocation costs are basically independent of the block size being al
located for small blocks. The cost depends almost entirely on the number of blocks being 
allocated. Each block takes approximately 0.68 ms to allocate. The server processes of the 
self-scheduling algorithm avoid this overhead by reusing their local storage during each ac
tivation. The prescheduling algorithm originally allocated local storage blocks within each 
child process. This was deemed to be unsatisfactory and another parameter with working 
storage was passed to each child to avoid the overhead of dynamic memory allocation. 
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The BCSVD algorithm provides orders of magnitude speedup by utilizing the circulant 
structure of matrices. A further speedup was obtained using macrotasking. This does not 
reduce central processing unit charges because time on all processors is billed to the job [43]. 
However, a substantial savings in memory charges is achieved because the program memory 
residency time is reduced by the multiprocessor speedup [44] [45]. For typical problems E> 
and K are approximately 256. This requires approximately 800 megabytes of memory which 
can be quite costly to use. 

Self-scheduling is useful when the task granularity is small. As the task granularity 
increases, prescheduling overhead becomes less important. Prescheduling is much easier to 
implement and debug. There are no explicit synchronizations to consider since the operating 
system handles the process allocation and scheduling. The parent only has to wait for 
the operating system to signal that the child has finished. Self-scheduling needs explicit 
synchronization with the server tasks and is therefore more difficult to implement and debug. 

The Fortran compiler does not allocate local variables on the stack properly. It puts 
some local variables into static storage. Thus, code sharing is not possible for the Fortran 
subroutines. Each process must have a separate copy of the code and local data space. This 
was done by creating copies of the subroutines and giving each copy a unique name space 
by appending the process number to the name of the subroutine and all of its descendants. 

4 Conclusions 

The inverse problem requires the solution of large systems of linear and non-linear equations. 
For example, the Donner 600-Crystal Positron Tomograph takes 120,200 projection measure
ments and the resulting linear system is 120,200 x 120,200. The computational complexity 
of configuration space methods based on orthonormal natural pixels has led to the use of a 
distributed computing environment in which workstations are used to analyze results from 
our identification, estimation, and optimization algorithms running on supercomputers in 
a multitasking environment with priority scheduling. Several of the algorithms have been 
implemented using large grain parallel processing and also remote procedure calls. 

The block circulant singular value decomposition (BCSVD) algorithm uses discrete Fouri
er transforms to rotate the blocks of a block circulant matrix into block diagonal form. Each 
block on the diagonal is then factored using a general singular value decomposition (SVD) 
algorithm. The BCSVD algorithm provides orders of magnitude speedup over general SVD 
algorithms. For a 642 X 642 block circulant matrix, computation time decreased from 12 
hours to 23 seconds on a Cray-2 (approximately 1 hour on a SPARCstation II) . Because 
the BCSVD algorithm is easy to partition, a further speedup can be achieved using parallel 
processing. The orthogonality properties of multidimensional fast Fourier transforms (FFT) 
allows the FFT portion of the algorithm to partition into macrotasks. The SVD of the 
blocks of the block diagonal matrix can be computed independently and a macrotask can be 
assigned to each SVD. A multiprocessor speedup of 3.06 was achieved for prescheduling and 
for self-scheduling a multiprocessor speedup of 3.25 was observed using four processors on a 
Cray-2. Relative time overhead was 0.5% for the prescheduled algorithm and 0.07% for the 
self-scheduled algorithm. Relative memory overhead was 4% for both cases. Self-scheduling 
is useful when the task granularity is small. As the task granularity increases, preschedul-
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ing overhead becomes less important. The prescheduled algorithm is satisfactory for most 
emission tomography problems because all the dimensions of the matrices are greater than 
64 and the task granularity will therefore be large when compared to the synchronization 
overhead. 

Multitasking the block circulant singular value decomposition algorithm decreases overall 
computation costs by reducing the time large sections of memory are in use. Little or no gain 
comes from reduced central processing unit charges since processing time on all processors 
is charged to a job. 

The data acquisition model presented in this work provides a mathematical framework 
to incorporate detailed knowledge about the response function of a tomography system and 
the statistical properties of the signals acquired using that system. Using this mathematical 
forward problem model, it is easy to represent systems of varying complexity; e.g., simple 
spatially invariant systems, systems with spatially variant response that have symmetries, 
and the most general linear case, a spatially variant system without symmetry. The novel sin
gular value decomposition of the projection formation operator used in the data acquisition 
model is a powerful mathematical description of a tomography system and is fundamental to 
the estimation (inverse problem) methods presented here. While the results presented in the 
examples are not inconsequential, these techniques should find the most utility in modeling 
the spatial sampling of each unique tomograph. Extensions of the model to include sampling 
in three spatial dimensions as well as time should be straightforward; but, in practice, higher 
dimensional applications may be limited by computational tractability without using special 
computing technology. 

Because the data acquisition process is represented as a linear map from a continuous 
domain object space to a discrete domain observation space, it is a more physically re
alistic model of many systems than approximations using continuous-continuous maps or 
discrete-discrete maps. Thus, the validity of many results that were obtained using these ap
proximations, e.g., angular and lateral sampling density in emission tomography, may need 
to be reexamined using the new, more robust techniques presented in this work. While the 
verification of old results is worthwhile, it is the unanswered questions such as the efficacy 
of iterative algorithms and stopping rules, the formulation of Bayesian estimators that use 
basis functions in the null space of the projection formation operator, the representation 
of object functions that are convex cones, and the efficiency of algorithm implementations 
that provide challenging new research opportunities for the application of the mathematical 
methods presented here to characterize and solve inverse problems in tomography. 

The computational complexity of reconstruction algorithms can be reduced by using 
orthonormal natural pixels because this basis preserves symmetries in the data acquisition 
process. The present state of the art in computing hardware can be expected to accomplish 
a properly composed orthonormal natural pixel least squares reconstruction of data taken 
with a modern rotationally invariant tomography system, such as the Donner 600-Crystal 
Positron Tomograph, in 13 minutes per tomograph slice. While substantial performance 
enhancements are often realized using improved hardware, specialized thought in algorithm 
development can lead to more significant performance increases allowing the solution of 
previously intractable problems like those found in tomography. 
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