
1

I
~

A

•

LBL-32989
UC-405

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division

Mathematics Department

To be submitted for publication

An Adaptive Cell Method for Delaunay Triangulation

J. Strain

March 1991

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

til
S

r r !XI r
D" n I
~ 0 (.J
OJ " I\)
~ '< ID
'< ()) ID

DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. Neither the United States Government
nor any agency thereof, nor The Regents of the University of Califor­
nia; nor any of their employees, makes any warranty, express or im­
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe pri­
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufac­
turer, or otherwise, does not necessarily constitute or imply its en­
dorsement, recommendation, or favoring by the United States Gov­
ernment or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur­
poses.

Lawrence Berkeley Laboratory is an equal opportunity employer.

This report has been reproduced directly from the
best available copy.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

"

An Adaptive Cell Method
for Delaunay Triangulation *

John Strain
Department of Mathematics

Princeton University
Princeton, N J 08544

20 March 1991

LBL-32989

AMS(MOS) Subject Classifications: 65N50, 68C05, 68C25, 65D05,
52A45, 05B45.

Keywords : Delaunay triangulation, Voronoi diagram, Dirichlet region,
Thiessen triangulation, cell method, fast algorithms, adaptive methods.

Electronic Mail: strain@math.princeton.edu

* This work was supported in part by a NSF Mathematical Sciences Postdoctoral Research Fellowship and in part
by the Applied Mathematical Sciences Subprogram of the Office of Energy Research, U.S. Department of Energy
under Contract DE-AC03-76SF00098 while the author was visiting Lawrence Berkeley Laboratory.

Abstract

We present two new fast algorithms for constructing the Delaunay triangu­
lation of a set of N points in the plane. The first algorithm is based on a
uniform cell approach; it runs in O(N log N) expected time when the points
are uniformly distributed and O(N2) otherwise. The second algorithm is an
adaptive cell method which runs in O(N log N) time even when the points
are drawn from a highly nonuniform distribution. Both algorithms extend
immediately to three-dimensional Delaunay tessellation.

We also describe numerical experiments which show both methods to be
highly efficient when N is larger than a hundred. The adaptive method is
slightly slower than the uniform on uniformly distributed points but hundreds
of times faster when N is large_and the points are nonuniformly distributed.
It is O(N log N) in either case, while the uniform method degenerates to
O(N2) for nonuniformly distributed points.

2

1 Introduction

The Voronoi diagram arid its dual, the Delaunay triangulation, are important
tools in scientific computing. They are used in:

• computational chemistry [36]

• crystal growth modelling [2, 3, 34]

• free Lagrangian methods in computational fluid dynamics [6, 16, 15,
17, 26]

• interpolation of data given at irregularly arranged data points [1, 20,
24, 28, 29, 38]

• nearest-neighbor problems in computational geometry [31, 5, 27]

• particle methods for fluid mechanics and transport problems [30]

• triangulation for finite element methods [19, 39, 22, 33]

For applications to geography, ecology, statistics, pattern recognition, and
other areas, see [4] and the references therein.

Many practical situations require construction of the Voronoi diagram or
Delaunay triangulation for a set of N points in R d where d = 2 or 3 and N
can be as large as 106 • This can be a very expensive calculation, requiring
hours of CPU time and large amounts of memory. Thus it is. important to
have fast algorithms for constructing the Delaunay triangulation. Previous
work in this direction is discussed in §2.2, after a brief survey of the relevant
properties of the Delaunay triangulation in §2.1.

The main body of the paper begins in §3, where we present a uniform cell
method for constructing the Delaunay triangulation in R 2 • This method is
quite efficient when the points are more or less uniformly distributed, and is
fairly straightforward to program. It also extends immediately to the three­
dimensional case, unlike many of the fast algorithms discussed in §2.2. The
algorithm also extends to solve constrained Delaunay triangulation and other
local geometric problems.

In §4, we present an adaptive cell method which triangulates non-uniformly
distributed points efficiently. Unlike the uniform cell method, it is not slowed

3

down by normally distributed points. Like the uniform cell method, it ex­
tends to three dimensions and to other local geometric problems.

The results of numerical experiments with both algorithms are presented
in §5. They confirm the O(N log N) timing of the uniform method on uniform
points and the O(N log N) timing of the adaptive method on non-uniformly
distributed points.

In §6, we discuss refinements and generalizations of the methods presented
in §3 and §4. These include different search strategies and other geometric
problems. Finally, in §7, we discuss our conclusions.

4

2 Delaunay triangulation

For the history and development of Voronoi diagrams and the Delaunay trian­
gulation, the reader is referred to [4]. Here, we confine ourselves to describing
a few useful properties in §2.1 and describing some of the many previous al­
gorithms for construction of the Voronoi diagram or Delaunay triangulation
in §2.2.

2.1 The Delaunay triangulation

Suppose X = {Xj : i = 1,2, ... , N} is a set of N points in a set n c R2; for
convenience we assume n has a polygonal boundary. The l'oronoi diagram
V(X) of X is the set of polygons V; defined by

(1) V; = {x En: Ix - Xjl $ Ix - xii for all i ::I il.

Thus V; is the set of points in n which are closer to x j than to any other point
Xi in X. The Voronoi diagram of X is a useful tool for identifying nearest
neighbors, because the nearest neighbors of x j are precisely those points Xi

whose Voronoi polygons lti share an edge with V;. The Voronoi diagram is
used to solve closest point problems in computational geometry, for precisely
this reason, in [5].

The dual of the Voronoi diagram is the Delaunay triangulation, obtained
by connecting two points with a triangle edge iff their Voronoi polygons share
an edge. (This prescription breaks down if four or more points of X lie on
a circle; then some edges of their Voronoi polygons have zero length. Then
one can triangulate the cocircular points in any non degenerate way, so the re­
sulting Delaunay triangulation is not unique. This possibility requires careful
treatment in numerical calculations, because the topology of the Delaunay
triangulation can change by passing through such a case [36];)

The Delaunay triangulation is distinguished among all possible triangu­
lations of X by certain properties; for example, it is locally equiangular [32],
also, the circumcircle of any of its triangles contains no other point of X
in its interior [20]. It has been criticized as a tool for finite element cal­
culations because it cont.ains too many long thin triangles near boundaries
[11,33], but it is proved almost optimal for interpolation of scattered data in
[38]; the Delaunay triangulation nearly maximizes the minimum angle and
minimizes the error bounds for linear interpolation over all triangulations of

5

X, as a consequence of the minimum-angle property proved in [20]. This
controversy seems to spring from the dichotomy between constructing a nice
triangulation of a set of given points and constructing, as one does in finite
element calculations, the points and the triangulation simultaneously. When
the points are fixed, the Delaunay triangulation is one of the best possible
triangulations; but when points can be added or deleted at will, better finite
element meshes can be constructed.

Many generalizations of the Delaunay triangulation have been introduced.
For example, there is much interest in the constrained Delaunay triangulation
[10], in which some edges and some barriers (which edges may not cross) are
given as well as the points X to be triangulated. It is useful in motion
planning, for obvious reasons, and can be constructed with the methods of
this paper.

2.2 Previous Algorithms

Many authors have constructed fast algorithms for the Delaunay triangula­
tion or the Voronoi diagram. (With enough information about either, it is
straightforward to construct the other.) These algorithms are based on vari­
ous principles and transformations; they can be roughly classified as follows:

• Diagonal swapping methods [16, 17] usually start with some reasonable
triangulation of X and swap diagonals until the Delaunay triangulation
is reached. That is, they inspect the quadrilateral formed by each pair
of adjacent triangles to see if the triangulation can be improved by
reconnecting its diagonal. Finite termination of this method was proved
in [20]. The more sophisticated approaches in [20, 28, 9] determine the
convex hull simultaneously to achieve O(N4/3) running time. These
methods have some advantage in time-dependent problems because X
may. change only slightly from one time step to the next, giving a
natural starting point for swapping. But each quadrilateral still needs
to be checked, so the advantage is not as great as one might hope.

• Divide-and-conquer methods which construct the Voronoi diagram or
Delaunay triangulation in worst-case O(N log N) time are described in
[31, 13, 21]. These methods split the set X into two or more subsets,
form the Voronoi diagram or Delaunay triangulation of each subset
separately, and merge the results to obtain'the whole object. Applying
this technique recursively produces an O(N log N) algorithm, which is

6

asymptotically optimal in a common model of computation. (Maus [23]
points out that one can do better in finite precision.) The difficulty in
applications seems to be the difficulty of programming the merge step
efficiently. Thus these methods seem to be mainly of theoretical interest
so far. See, however, [22] which combines a divide-and-conquer method
for constructing the initial triangulation with diagonal swapping to
make it Delaunay.

• Incremental methods which construct the Voronoi diagram by adding
one point at a time have been very popular; see [7, 18, 36, 26, 37].
These methods have been extended to a periodic geometry and applied
to fluid mechanics in [6]. This latter algorithm, like most incremental
algorithms, is not worst-case optimal, but can update V(X) in O(N)
time if X is not too different from a configuration for which the diagram
is known and certain extra information is saved. Dually, the methods
presented in [24, 23] find the Delaunay triangulation one triangle at
a time, typically by a local optimization procedure as summarized in
[20]. The method presented in the current paper is based on the lo­
cal optimization technique introduced in [24], speeded up with a' cell
approach.

• Sweepline methods were introduced in [14]. They seem to combine
some of the simplicity of incrememental methods with the O(N log N)
worst-case behavior of divide-and-conquer, and thus seem likely to be
qui te useful in practice.

• Cell methods for Voronoi diagrams have been used in [5, 25]. These
methods combine incremental construction of the diagram with a data
structure which organizes the points of X into "cells" by spatial lo­
cation. They run in O(N log N) expected time when the points of X
are drawn from a quasi-uniform distribution on a bounded set, because
construction of the Voronoi diagram is then a local problem away from
the boundary. (If X is a polygon, the Voronoi diagram is not a local
object because each point must see neighbors at 0(1) distances.) The
method of [23] uses cells also, but combines them with an incremental
construction of the Delaunay triangulation. It is perhaps the closest in
spirit to the uniform method of this paper, though still quite dissimilar.

7

3 A Uniform Cell Method

Before discussing the construct~on of the Delaunay triangulation, we must
specify how it is to be stored. There are many possibilities; we choose a
storage scheme which requires more than the minimum space necessary but
makes it easy to work with the resulting triangulation. We store a triangu­
lation by giving two integer arrays, itt and i tp, in addition to the two real
arrays needed to store the coordinates Xi and Yi of the points in X. (These
arrays are named in accordance with a general scheme used throughout this
work. An array beginning with i is a set of pointers, t stands for "triangle,"
and p stands for "point." Thus itp is a triangle-to point pointer array.) Let
NT be the number of triangles in the Delaunay triangulation. (It is a well­
known consequence of Euler's formula that NT < 2N, which simplifies the
assignment of storage considerably.) Then the first integer array itp(i,j),
for i = 1,2,3 and j = 1,2, ... , NT, points from triangles Tj of the Delaunay
triangulation to points of X. Thus k = itp(i,j) is the index of the ith vertex
XI. of triangle Tj. (The vertices are numbered in counterclockwise order, with
the sides numbered by their first vertex.) The second array itt(i,j) points
from triangles to neighboring triangles. Thus k = itt(i,j), for i = 1,2,3
and j = 1,2, ... , NT, is the index of the triangle Tic which lies across edge i
of triangle Tj. If edge i of triangle Tj lies on the convex hun of X, there will
be no neighboring triangle on that edge; we signal this situation by setting
itt(i,j) = O.

Given these two arrays, a total of 6NT ~ 12N integer storage spaces, the
triangulation can be used effectively. The triangulation is of course specified
by the first array alone, but in most practical computations with a triangu­
lation one needs to know the neighbors of a given triangle. For example, the
standard way [21] of finding the triangle to which a point X belongs is to
start with some arbitrary triangle and walk from neighbor to neighbor in the
direction of x.

3.1 McLain's Method

Next we describe an algorithm due to McLain[24] which constructs the De­
launay triangulation step by step. It starts with a triangle belonging to the
Delaunay triangulation and adds triangles one at a time until done, using
the circumcircle criterion described below.

8

The first point, say Xi, is chosen at random. Then the second vertex of
the first triangle, say X j, is chosen from the set of closest points to Xi in
X. The third vertex XI. of triangle 1 is chosen by the circumcircle criterion,
applied to one side at a time of the edge XiXj. This criterion says that we
select the next vertex XI. to an edge XiXj having outward normal n so that
a) XI. lies outside the edge and b) no other point of X lies in the interior of
the circumcircle of the resulting triangle. This means that XI. is one of the
minimizers of the signed distance of the center of the circumcircle from the
line through Xi and Xj, counted positive on the side to which n points. The
signed distance can be computed explicitly by analytic geometry; it is given
by

t (x - Xi) • (X - Xj)

(X) = 2(x _ m). n

where m = (Xi + xj)/2 is the midpoint of XiXj and . is the dot product. If
there are several points where t(x) attains its minimum, anyone of them
may be chosen as the third vertex of the first triangle.

We now have the first triangle. We store the indices of Xi, Xj and XI. in
the array itp(m,I), and set itt(m, n) = -1 initially for 1 < m ~ 3 and
1 ~ n < 2N. (We also make sure XiXjXk is oriented counterclockwise, and
switch two points if necessary.)

The triangulation is completed by adding one triangle at a time-each
triangle belongs to the final Delaunay triangulation. We loop through the
indices n of existing triangles, adding a triangle (if possible) to each side i of
triangle n which is not already shared by another triangle. It may be that it
is impossible to add a triangle to an unoccupied edge, because there are no
points of X outside the line extending that edge. In that case, we mark the
edge as a boundary edge of the convex hull of X by setting itt(m,n) = 0,
and proceed to the next edge. IT there are points outside the current edge,
on the other hand, we find the third vertex of the new triangle by the cir­
cumcircle criterion. Thus we find all minimizers of t(x) over X which lie
outside the current edge. IT the minimizer is unique, as it usually is, it is
taken as the third vertex of the new triangle. Otherwise, if there is more than
one minimizer, then there are four or more cocircular points in X; namely
the two ends of the current edge and the minimizers of t(x). In this case,
careless selection of the third edge can lead to degeneracy. We then search
through all previous triangles for those triangles having cocircular vertices;
those are checked for degeneracy against each prospective new triangle, and
a non degenerate choice of the third vertex is made. (This treatment of co­
circularity represents a slight deviation from McLain's original algorithm,

9

o

which triangulated all cocircular vertices at this point, for a slight gain in
efficiency.)

Whether there was a unique minimizer or not, we have now found the
third vertex of a new triangle which can be added to the current edge. We
add the new triangle to itt as a neighbor of the current triangle and vice
versa, and add the three vertices to the next empty location in i tp.

One further check must be made. The new triangle may well be a neighbor
of some previously constructed triangle which we have not yet accounted
for. Ignoring this possibility would lead to duplicate entries for the same
triangle and thus to degeneracy of. the triangulation. Hence we must check
all previous triangles to find neighbors of the new triangle. If any are found,
the appropriate entries must be made in itt.

This concludes the addition of a new triangle to the current data struc­
ture. \Ve now proceed to the next unoccupied edge and repeat. When we
run out of unoccupied edges, the Delaunay triangulation will be complete.

3.2 The Cell Method

McLain's method as presented in §3.1 is robust and easy to program, but can
be quite slow when N is large. To speed it up, we introduce a cell structure
and point-to-triangle pointers. Cells were used in [5, 23, 25] to speed up
Voronoi diagram calculations. The basic idea is that only nearby points can
affect the addition of a new triangle, if the points are arranged in a reasonably
uniform way (so that the triangles don't get too long and thin). Thus we can
organize the points into a data structure by spatial location and eliminate
the necessity of searching through all N points of X every time we add a
triangle. Of course, we have to make sure we get the right answer; we can't
consider only nearby points without checking that we have included all the
points which matter. Fortunately, the circumcircle criterion lends itself to
such a check. Let C be the circle produced by minimizing t(x) over a subset
of X, with center Xc = m + tminn and radius R = Ilxc - Xiii, say. Then no
point outside C can be the global minimizer of t(x) over the whole set X.
Thus any candidate for a new vertex excludes all points of X except those
which lie in the intersection of a circle and a half-space. (Points on the wrong
side of the edge are excluded as well as those outside the circumcircle.)

There are two stages of the triangle addition process which require check­
ing O(N) data. First, we have to find the minimizer of t(x) among the N - 2

10

remaining points of X. Second, when a new triangle is found, we have to
check all previously found triangles to find those sharing an edge with the
new triangle.

We reduce the cost of the minimization step by organizing the points
of X into a data structure according to their spatial location. To do this,
we first find the maximum and minimum x and y values, so that all points
(Xi, Yi) lie in a rectangle B with sides parallel to the coordinate axes. Then
we subdivide B into NB = O(Vii) x O(Vii) rectangular boxes and store
each Xi in the box where it lies. To do this, we use an array ibp of length N
which contains the index of each point and an array ibpl of length NB which
contains, in its jth location, the index in ibp where storage for the points in
box j begins. Thus the points Xj in box i have their indices j stored in ibp
between addresses ibpl(i) and ibpl(i + 1) - 1 inclusive. (The boxes i are
ordered lexicographically and ibpl(NB + 1) points to the first empty space
at the end of ibp.) This data structure can be constructed in three steps.
First, we loop through the N points Xi, calculating which box j each Xi lies
in and incrementing ibpl(j) by 1. (It is set to zero initially.) We now know
how many points lie in each box i and thus how much storage to assign to
the ith box in the array ibp. Second, we loop again through the points Xi.

This time, we actually store the index i of Xi in the position in ibp where
it belongs, keeping track of the next empty address for that box in ibp1.
Third, we reset each ibpl(i) to indicate the beginning of storage in ibp for
the points in box i, and this completes the construction of the uniform cell
data structure.

Once this data structure has been constructed, we use it to reduce the cost
of the first step in adding a triangle-minimizing t(x)-as follows. Say we
are finding minimizers of t(x) on a certain side of the segment XiXj, indicated
by the normal n. Find the boxes i l and i2 which contain Xi and Xj (probably
i l = i2) and construct the smallest rectangular union C of boxes in the cell
structure which contains both i l and i2• Rather than minimizing t(x) over
all points, we now find only those minimizers of t(x) which lie in C. Thus we
only compute t(Xk) for Xk E C: to do this, we run through the boxes i which
constitute C. For each such i, we run from j = i bp 1(i) to j = i bp 1(i + 1) -1,
and compute t(Xk) where k = ibp(j).

It is possible that C contains no points on the right side of XiX j. If this
happens (it rarely does), we search those points of X in boxes intersecting
the correct side of XiXj according to the standard procedure for the O(N2)
method.

11

If, on the other hand, there is at least one point in C on the correct side
of XiXj, then we will find at least one point Xle which minimizes t{x) among
all the points of X in C. This point may not be the global minimizer we are
looking for, though usually it will be (if the Delaunay triangulation does not
contain excessively many long and thin triangles), because C may not include
the point we are really looking for. However, if we construct the circumcircle
passing through Xi, Xj and XIe, we are guaranteed that any minimizer of t(x)
over all N points of X will lie inside the circumcircle. This follows from
the definition of t(x). In practice, the minimizer of t{x) over X lying in C
will be the global minimizer almost all the time, if the point distribution is
reasonably uniform.

Hence if the circumcircle of Xi, X j and X Ie is contained in the original search
area C, we have already found the minimizer of t{x) over X. Otherwise, we
expand C until it contains the circumcircle, and search the new union of
boxes. This is guaranteed to produce all minimizers of t{x) on the correct
side of XiXj.

Now if there is only one minimizer, we can take it as the third vertex of the
new triangle, add the new triangle to our data structure, and proceed. This
will almost always be the case for random points, but often fails to be true in
the degenerate case when some of the points lie exactly on a rectangular grid.
If there are several minimizers, degeneracy of the triangulation could result
from a bad choice, so we have to choose the new vertex carefully among the
minimizers. The idea is to avoid having the new triangle cross any previous
triangle. A moment's thought shows that the new triangle can cross only
triangles which have all three vertices on the circumcircle of Xi, Xj and the
minimizers. To check these triangles efficiently, we use an array of pointers
from the points of X to each triangle having them as a vertex This requires
3NT < 6N integer storage locations, because each triangle has three verticesd
and there are NT < 2N triangles, but each point belongs to six triangles only
on the average; in the worst case, one point can belong to all NT triangles.
Hence the storage scheme must allow for variations in the length of triangle
storage, from point to point. Also, this structure must be constructed along
with the triangulation, dynamically, rather than all at once. Thus the scheme
we used to construct the cell structure, which requires two sweeps over the
points, cannot be applied here.

A similar situation is handled in [18] by the use of a heap; an array ipt of
length about 9N is used as free-form storage, as we do for the pointers from
boxes to points, with pointers ipt1 and ipt2 to the beginning and end of
storage for indices of triangles to which a given vertex point belongs. When

12

a triangle is added to the list for a given point, a new copy of the list is made
at the end of the heap and the old list is flagged for removal. When the
storage space available is exhausted, garbage collection must be carried out
to remove superseded lists.

Early implementations of our algorithm also used a heap, but we found
that nonuniform point distributions required too much garbage collection.
A linked list requires 6NT memory, almost the same as a heap when the
beginning and end pointers are taken into account, and no garbage collection,
so our later implementations used a linked list instead. We use a single long
array ipt(i,j), where i runs from 1 to 2 and j from 1 to 3NT, structured as
follows. The triangle indices for a given point are stored in a chain of non­
contiguous locations, with the triangle index stored in ipt(l,j) and ipt(2,j)
occupied by a pointer to the next triangle index. To get started, we have the
first triangle Xj belongs to stored in ipt(l,j) for 1 ~ j ~ Nj then we make a
slight variation on the usual linked list by having ipt(2,j) point to the place
in ipt where the index of the last triangle (in order of creation) to which Xj

belongs is stored. If this location is k, then ipt(l, k) is the last triangle to
which Xj belongs and ipt(2, k) is the location in ipt where the next to last
triangle for x j is stored. The storage proceeds backwards in this way until
the end of the triangle list for the jth point is signaled by a -1 in ipt(2, n)
for some n. Explicitly, the indices of the triangles for which Xj is a vertex
are stored in locations (1,j), (1,j2 = ipt(2,j)), (1,j3 = ipt(2,h)), (1,j4 =
ipt(2,h)), ... , until a -1 is encountered in ipt(2,js), for example. Storing
the first triangle in location j saves having pointers to the beginning of the
list for each point, while storing the triangles backwards avoids the necessity
of searching all the way through the list in order to add a triangle at its end.
We can add a triangle to the list of a given point Xj simply by breaking and
resetting the end link ipt(2,j)and adding the triangle to the next empty
location at the end of ipt.

Given this storage arrangement, we can easily look up all triangles having
x" as a vertex, check if all three vertices lie on the circumcircle, and check for
degeneracy if necessary. The degeneracy check is carried out by ensuring that
the new triangle with vertices Xi, Xj and x" does not separate, with its edges,
the vertices of any previously constructed triangles. Once this test is passed,
by choosing another minimizer if necessary, we have found the third vertex,
and can proceed to add the new triangle to the existing data structure.

Now we must speed up the second O(N) stage of the triangle addition
proceSSj we must check all previously constructed triangles and find· those
sharing a common edge with the new triangle. When we find them, we must

13

add the new triangle to their neighbor list itt and add them to the itt entry
for the new triangle. This is easy to speed up, because we have introduced the
linked list ipt which points from points to triangles having them as vertices;
hence we can find all the desired triangles immediately in time proportional
to their number and independent of N.

Finally, we update the pointers and proceed to the next edge of the grow­
ing triangulation. When there are no more edges to be augmented, the
triangulation is concluded.

14

4 An Adaptive Cell Method

The uniform cell method is much more efficient than any quadratic method
when N is large enough and the points are distributed in a reasonably uni­
form way. Unfortunately, in applications such as finite element triangulation,
we do not want the points distributed uniformly. Even for the simple purpose
of interpolation of a function known at irregularly distributed data points,
we want to use more data points in regions where the function to be interpo­
lated varies more rapidly [29]. Thus practical situations often lead to highly
nonuniform point distributions. For these distributions, numerical experi­
ments and theory both indicate that the uniform cell method runs in time
close to its worst-case O(N 2) timing. Even worse, the uniform method can
be fooled simply by adding a few outlying points at a large distance from the
majority of points; it will then construct a grid which is much too coarse,
and the only remedy for this is adaptivity.

In this section, we present an adaptive cell method which runs much faster
than the uniform method on certain nonuniform point distributions such as
the normal. The basic idea is to sort points into boxes of varying size, so as
to have no more than a fixed number s of points per box. This is done, as in
[8, 12], by recursive bisection. The data structure used is described in §4.1.
In §4.2, we describe our adaptive cell method, which differs from the uniform
method both in the adaptive data structure and in the more complicated
search strategy employed.

4.1 Adaptive Cells

In this section, we describe our data structure and how to construct and
manipulate it. The object of the structure is to organize the points Xj spa­
tially into groups of no more than say s points. This is done by recursively
subdividing the rectangle B which contains X until no box contains more
than s points. The boxes are then stored as follows.

At the end of the construction, we have partitioned B into NB subboxes
of varying sizes. For each box i, we store a) data on its spatial location
and b) the indices j of the points Xj lying in box i. Part a) is achieved
by storing three pointers per box, arranged in a 3 x NB array ibxy(n, i)j
L = ibxy(3, i) is the level of i in the sense that box i is 2-L times smaller in
each dimension than the original box B. Two more pointers nx = i bXy(1, i)

15

and ny = ibxy(2, i) give the spatial location of the box, as if it were part of a
regular grid on B composed entirely of boxes of level L; its lower left corner
is at the point (x = ax+nx·hx,y = ay+ny·hy). Here B = [ax, bx] x lay, by]
while the box sides of i have lengths hx = 2-L (bx-ax) and hy = 2-L (by-ay)
respectively. Thus the array ibxy tells us the location and size of every box i
from 1 to NB. We have an overflow restriction L < M where M is determined
by the finite length of an integer in computer arithmetic; typically M > 30,
so we can refine no more than 30 levels and the smallest box can be no more
than 2-30 ~ 10-9 times smaller than the size of the domain. This has proved
sufficient for most practical problems. Part b) is achieved by storing a list
ibp of points lying in each box. Additional pointers ibpl and ibp2 give
the addresses in ibp of the beginning and end of the list of points in box
i. Thus the points in box i have coordinates (Xj, Yj), where j = ibp(k) for
k = ibpl(i), ... , ibp2(i).

The boxes are sorted lexicographically within each level, and arranged
by level. Thus we use also a short array of pointers iIbl such that all the
boxes on level L are given by i = iIbl(L), iIbl(L) + 1, ... , iIbl(L + 1)-1.
Lexicographic ordering for boxes of the same size means that ibxy(l, i) <
ibxy(l, i + 1) and if equality holds then ibxy(2, i) < ibxy(2, i + 1). Thus the
boxes on each level are arranged from left to right into columns and within
each column from bottom to top. The purpose of lexicographic ordering on
each level is to speed up the operation of searching for a box with given
values of i1 = ibxy(l, i), i2 = ibxy(2, i) and i3 = ibxy(3, i); we simply
carry out a binary search of ibxy(l, i) and ibxy(2, i) for i between iIbl(i3)
and iIbl(i3 + 1) - 1. This operation is important when we construct the
list of neighbors of a given box or when we find all boxes which intersect a
given geometric object. This data structure is similar to that used in [8] and
even more similar to that used in [12]. In the latter work, the three pointers
were packed into a single 28-digit base-3 number, in a method designed for
use with the vectorized bit-handling operations of the CDC CYBER 205.
This limited the number of levels of subdivision possible to 16, which was
sufficient for the calculations carried out in [12].

Next we describe the construction of the adaptive cell structure. \Ve
begin with the rectangle B and subdivide it into four boxes by bisecting each
coordinate. We assign each point Xj to the box in which it lies. These boxes
constitute level 1 of the structure. To construct level 2, we run through
boxes created at levelland bisect any which contain more than s points,
reassigning points to the subboxes in which they lie. The resulting boxes
are added to the end of ibxy,ibp, ibpl and ibp2 in the order in which

16

they were formed. Boxes which are subdivided are marked for deletion, and
when the level 2 boxes have all been created, the subdivided boxes from
level 1 are deleted and storage is reassigned. Thus empty boxes are kept but
subdivided boxes are eliminated; the result is a partition of B into boxes with
disjoint interiors. After deletion, pointers ilb1 are made. The algorithm now
proceeds recursively one level at a time. At each level, the boxes created in
the previous level are subdivided where necessary, and the new boxes assigned
numbers ibxy and storage in ibp1 and ibp2. Subdivided boxes are deleted
and storage moyed up.

When this process terminates, either because the maximum number of
levels is reached or more likely because no box has more than s points in
it, the boxes on each level are sorted and rearranged in lexicographic order.
Finally pointers ipb from points to boxes, showing which box a point lies in,
are created, and we are done.

A typical cell structure obtained by this method is shown in Figure 1.
To generate it, we took N = 400 points nonuniformly distributed in the
unit square, and applied the algorithm just described, with no more than 3
points permitted per box. The construction of the adaptive structure turns
out to require only a small fraction of the CPU time required for the whole
triangulation process.

We need to carry out two primitive operations on this data structure.
First, we consider the problem of finding the nearest neighbors of a given
box i. The nearest neighbors, for our purposes, contain all boxes having
a point in common with i, that is corner as well as side neighbors. To do
this, we use the array i bXy. If all the boxes were the same size, the task
would be easy; the spatial location numbers of the desired boxes would be
obtained from ibxy(n, i) by adding 0, -lor +1 to ibxy(l, i) and ibxy(2, i).
A search through the boxes on level rna = ibxy(3, i) would produce them
and we would be done. Unfortunately, the boxes are not all the same size.
Thus we must look on all levels for neighbors. Fortunately, the box numbers
stored in i bxy are arranged to facilitate this. For example, suppose we are
looking for the lower left corner neighbor of i. We begin on the same level
as i by setting rnl = ibxy(l, i) - 1 and rn2 = ibxy(2, i) - 1. These are
the values ibxy(l,j) and ibxy(2,j) would have if a box j of the same size
as i occupied the lower left corner position. Thus we search through boxes
on level rna = ibxy(3, i) for a box with numbers rnl and rn2. If the search
succeeds, we are done. If it fails, we must look for a larger or smaller box.
A larger box is easier to find in general, so we go up first; set rnl +- rnl/2,
rn2 +- rn2/2 and rn3 +- rn3 - 1. (We use the FORTRAN integer divide, which

17

.
•

•

~ ~ •
~

~ •
-~. l- ." ~ . ~. ,. i 1 !'f io" -.- I--

fiLl
H fl- ·1 • ~

•
41 • ~ ~

r-• •
;H" .Jr!I ~

HI \. . • 1 1

~ I • • r-~ -I .,. ,. • +- .
• • J

~. • - K! • .- 1 ~ •
f!..~ •

~ 1 •
• • • j, - ~ r-r- • , • f-I

'1;1
,. • • · ~ f-

lo :-~
I--

• •
• ~ [;-f- ~ •

• •

lit'" · •
~ •

• I-- I--

Figure 1: Adaptive cell structure for N = 400 non uniformly distributed
points in the unit square, with no more than 3 points per box.

18

throws away the remainder.) These are the numbers a box one level larger
in the lower left corner position would have, so we look on level m3 for the
parent having numbers ml and m2' This procedure is repeated if necessary
until either we find the box or we reach the top level without finding it. If the
latter occurs, we have to look for a smaller box. The corners and sides differ
here because on the corners we are looking for a single box, while on the
sides we are looking for several smaller boxes. On the lower left corner, for
example, we seek a smaller box by putting ml +- 2· ml + 1, m2 +- 2· m2 + 1,
m3 +- m3 + 1, and searching on level m3, then repeating this procedure as
needed until the box is found. Before any searching at all is done, of course,
we must take a precaution against going outside B; thus we check that ml
and m2 lie in the range [0,2m3 -1]. If this constraint is violated, the box we
are seeking does not exist and there is no neighbor on that side of box i.

On the sides, the search for smaller neighbors is slightly more complicated.
We begin, say on the left side, with ml +- ml -1 and m2 +- m2' If no box on
level m3 with numbers (mt, m2) exists, then we look for smaller neighbors,
possibly several of them. First, we subdivide (mt, m2) into four boxes and
put the right-hand two boxes on a stack. The left two boxes are discarded.
We now run through the stack, searching for each box on the level where it
should live. If it is found, it is added to the neighbor list and we continue
with the next stack entry. If no such box exists, the box is subdivided, the
right-hand two boxes are stacked and the left-hand ones discarded, and we
continue with the next stack entry. When the stack is empty, this process
terminates and we have the list of neighbors. If necessary, duplicates are
discarded (a large box may be found several times) and we are done.

Another operation we need to carry out with this data structure is to find
all boxes which intersect a given geometrical object n such as a square or
(in our case) the intersection of a circle with a half-space. A straightforward
and robust way to do this is to begin on the top level and search every level
for every box intersecting n. A faster method uses recursion. We begin
by stacking the four top-level boxes. Each is examined for existence and
intersection; if it exists in our data structure and intersects n it is added to
our list, if it exists and does not intersect it is discarded, and if it does not
exist, then it is subdivided, its subboxes are stacked, and we proceed with
the next item in the stack.

19

4.2 An Adaptive Cell Method

The adaptive cell method we now present is one of several possible straightfor­
ward extensions of the uniform method, so we concentrate on the differences.

The main difference is in the search strategy, because that is where the
cell structure was used. Our adaptive search strategy for adding a triangle
to an edge XiX j is as follows.

The first step is to search the box or the two boxes containing the end­
points Xi and Xj of the current edge. If a point Xk is found to minimize
t(x) over this search area, we compute the circle through Xi, Xj and Xk and
test whether it is contained entirely within the search area. If it is, we have
found the global minimizer and can proceed with the degeneracy check and
the triangle addition precisely as in the uniform scheme. Otherwise, or if no
point at all was found in the first search area on the outside of XiXj, we must
enlarge the search area.

Our next step is then to find the nearest neighbor boxes of the one or
two boxes of the first search area and take their union as the second search
area. Heuristically, we expect a layer of nearest neighbors to be sufficient
in most cases because they will screen the current edge from distant points.
The second search can again have three outcomes. First suppose no point
has yet been found when the second search terminates. Then it is quite likely
but not certain that XiX j is on the boundary of the convex hull of X; thus we
find all boxes intersecting the half-space outside XiXj and take their union as
the third search area. If a point has been found, on the other hand, then we
have a local minimizer Xk. Let C be the circumcircle of Xi, Xj and Xk. If the
interior of C is contained in the second search area, we have found the global
minimizer and can proceed with the degeneracy check and so forth.

Otherwise, we must enlarge our scope to the third and final search area
comprising all boxes which intersect the interior of C. After searching the
third search area, we have either found all global minimizers of t(x) which
lie outside XiXj, or determined that XiXj lies on the boundary of the convex
hull of X, and can proceed with the degeneracy check and so forth.

A considerable speedup (usually about thirty percent), if enough memory
is available, is obtained by precomputing all neighbors of nonempty boxes
and storing them. This eliminates the necessity of repeatedly finding the
neighbors of boxes, a considerable savings when the number of points per
box is large. If there are ten points per box, then there are usually about

20

NB = N/5 boxes, so the storage is probably available. It requires an array
of length perhaps lONB ~ 2N and another of length NB.

21

5 Numerical Results

.We have implemented the three algorithms described in this paper in portable
ANSI FORTRAN 77 and tested their performance on many sets of data points.
We used a SUN SPARCstation 1+ with 64 megabytes of RAM and the SUN
FORTRAN optimizer. For comparison purposes, this setup runs Linpack
benchmarks at about 1.5 megaflops.

Results from two sets of test data will be reported here. The first set
consisted of N points generated by a pseudorandom number generator, uni­
formly distributed on the region n interior to the circle with center (0.5,0.5)
and radius 0.45 but exterior to the circle with center (0.45,0.3) and radius
0.25. The resulting Delaunay triangulation is shown in Figure 2 for the case
N = 800.

The second set of test data were composed of four sets of N /4 normally
distributed points, centered at four points in [0, 1]2 and with variances given
by u = 0.15,0.15/7,0.15/72 ,0.15/73

• The resulting Delaunay triangulation
is shown in Figure 3 for the case N = 800.

Table 1 reports the results of triangulating the first set of data points,
. with N ranging from 100 to 51,200. The column headings have the following
meanmgs;

N is the number of data points.

NT is the number of triangles produced; NT was checked against the well­
known Euler formula [20] to ensure its consistency with the number of
points and the number of boundary points.

Tq is the CPU time in seconds required by the quadratic algorithm of §3.1,
estimated by extrapolation for N > 10,000 to avoid wasting too much
computer time.

Tu is the CPU time required by the uniform cell method, with N B -

(L y'jVJ)2 cells.

To is the CPU time required by the adaptive cell method, using s = 25 as
the maximum number of points per cell permitted.

Table 2 reports the results of triangulating the second set of data points, with
N ranging from 100 to 204,800. The parameters have the same meaning as

22

Figure 2: Delaunay triangulation of a set of N = 800 uniformly distributed
random points between two circles

23

Figure 3: Delaunay triangulation of a set of N - 800 nonuniformly dis­
tributed random points.

24

in Table 1, except that Tu is estimated by extrapolation for N > 20000, to
avoid using too much computer time. It is clearly growing quadratically by
this point.

We can draw the following conclusions from these tablesj first, both the
uniform and adaptive methods are faster than the quadratic method as soon
as N ~ 200. Thus for large problems, they are much to be preferred if
sufficient memory is available. The uniform method requires about 26N
integer memory in addition to 2N real storage for x and Yj about 12N of
the integer storage is used just to store the triangulation. Thus the uniform
method uses only about twice the minimum amount of memory. The adaptive
method typically has similar storage requirements, despite the larger amount
of information it stores, because we take bigger boxes and hence have fewer
of them. It is difficult to give a tight upper bound for its memory usage,
especially when the number of points per box is chosen very small.

Second, the adaptive method is about twice as slow as the uniform method
on uniform points. Some slowdown is probably unavoidable, because of the
inherently greater overhead involved in an adaptive cell structure. Vve con­
jecture, however, that our implementation could be speeded up by a factor of
two, by more arduous programming or by altering the search strategy slightly.
We have not attempted to optimize the program extensively, concentrating
instead on demonstrating that it achieves O(N log N) performance without
worrying about a possible factor of two in the constant.

Third, on nonuniformly distributed points, the uniform method behaves
well when N is small, but degenerates to O(N2) performance when N gets
large. This is to be expected on theoretical grounds. The adaptive method,
on the other hand, displays a gratifyingly regular O(N log N) performance
throughout the whole range of N, It beats the uniform method consistently
when N > 400, and outperforms the quadratic method as soon as N ~ 200.
The CPU time required by the adaptive method is only increased by about
ten percent by the nonuniformity of the point distribution.

Table 3 gives fuller statistics about the adaptive method applied to the
second set of nonuniformly distributed data points, with N ranging from 100
to 204,800. We give the following information: NB is the number of boxes
created by the adaptive method. M / N is the integer storage required (in ad­
dition to the 24N integer storage required by all three methods), divided by
N. L is the highest level used in construction of the adaptive cell struCture.
PI respectively P2 is the percentage of the edges for which the initial respec­
tively second search area had to be enlarged. Clearly many of the initial

25

search areas were enlarged, because only 25 points per box were used, but
very few of the nearest-neighbor searches were unsuccessful. Tests with more
points per box decreased the percentage of expansions of the first search area,
but failed to improve the total running time, because each search then took
longer. Note that the adaptive method requires only about 4N additional
integer storage beyond that required by all three methods.

26

N NT Tq . Tq/Nz Tu Tu/NlogN Ta Ta/N log N
100 178 0.11 0.11E-04 0.06 0.13E-03 0.15 0.33E-03
200 378 0042 0.10E-04 0.14 0.13E-03 0.34 0.32E-03
400 770 1.63 0.1OE-04 0.31 0.13E-03 0.72 0.30E-03
800 1563 6.58 0.1OE-04 0.66 0.12E-03 1.63 0.30E-03

1600 3156 26.21 0.1OE-04 1.37 0.12E-03 3.54 0.30E-03
3200 6347 111.18 0.11E-04 2.88 0.11E-03 7.86 0.30E-03
6400 12731 438.06 0.11E-04 5.98 0.11E-03 16.11 0.29E-03
12800 25514 1752.23* 0.11E-04 12.52 0.10E-03 35.30 0.29E-03
25600 51092 7008.94* 0.11E-04 27.96 0.11E-03 68.92 0.27E-03
51200 102260 28035.75* 0.11E-04 62.32 0.11E-03 144.64 0.26E-03

Table 1: Timings for constructing the Delaunay triangulation of N uniformly
distributed points in a region between two circles, using the quadratic (Tq),
uniform cell (Tu) and adaptive cell (Ta) methods. NT is the number of trian­
gles in the triangulation. Asterisks denote timings obtained by extrapolation
for the quadratic method.

N NT Tq Tq/Nz Tu Tu/NlogN To
100 189 0.14 0.14E-04 0.11 0.24E-03 0.20
200 387 0.54 O.13E-04 0.32 0.30E-03 0.44
400 789 2.12 O.l3E-04 1.07 OA5E-03 0.97
800 1586 8.75 0.14E-04 3.86 0.72E-03 2.06
1600 3184 33.73 0.13E-04 13.35 0.11E-02 4042
3200 6385 136.05 0.13E-04 51.04 0.20E-02 9.22
6400 12789 566.79 0.14E-04 198.19 0.35E-02 19.66

12800 25588 2267.16* 0.14E-04 779.70 0.64E-02 40.95
25600 51186 9068.64* 0.14E-04 3118.80* 0.12E-01 82.94
51200 102385 36274.56* 0.14E-04 12475.20* 0.22E-01 169.57
102400 204788 145098.25* 0.14E-04 49900.80* 0.42E-01 . 350.75
204800 409587 580393.00* 0.14E-04 199603.22* 0.80E-01 716.35

Table 2: Timings for constructing the Delaunay triangulation of N nonuni­
formly distributed points, using the quadratic (Tq), uniform cell (Tu) and
adaptive cell (Ta) methods. NT is the number of triangles in the triangula­
tion. Asterisks denote timings obtained by extrapolation for the quadratic
and uniform methods.

27

Ta/NlogN
OA3E-03
0.42E-03
OAOE-03
0.39E-03
0.37E-03
0.36E-03
0.35E-03
0.34E-03
0.32E-03
0.31E-03
0.30E-03
0.29E-03

N NT NB MIN L Pt P2 T TINlogN
100 189 28 10.02 8 62.94 9.64 0.22 0.48E-03
200 387 40 7.24 10 69.02 5.04 0.45 0.42E-03
400 789 58 5.60 10 68.88 2.63 1.03 0.43E-03
800 1586 109 5.03 11 66.69 1.88 2.10 0.39E-03
1600 3184 178 4.42 12 66.53 0.75 4.44 0.38E-03
3200 6385 319 4.12 13 67.11 0.33 9.46 0.37E-03
6400 12789 583 3.91 14 65.40 0.14 19.71 0.35E-03

12800 25588 1144 3.87 14 65.39 0.13 40.68 0.34E-03
25600 51186 2275 3.85 15 65.30 0.04 82.82 0.32E-03
51200 102385 4426 3.80 16 64.65 0.03 172.10 0.31E-03
102400 204788 9031 3.84 16 65.24 0.02 348.83 0.30E-03
204800 409587 17689 3.80 17 64.89 0.01 721.99 0.29E-03

Table 3: Information on the adaptive method for the second test case. NB
is the number of boxes used. MIN is the additional memory used by the
adaptive method with neighbor lists stored, divided by N. L is the highest
level used in the adaptive box structure. PI and P2 are the percentages of
the first and second search areas which had to be enlarged after the search.
T is the CPU time required, in seconds.

28

6 Refinements and Generalizations

There are many possible ways to refine and generalize our methods. As noted
in [5], uniform cell methods in general seem likely to be useful in many local
problems of computational geometry. Their worst-case behavior is usually
far from optimal, but their average behavior is quite fast when the data
is uniformly distributed. The adaptive method presented here attempts to
extend the cell idea to be useful in non-uniform situations.

There are many details of the adaptive method which could be imple­
mented differently. Currently, we search only the nearest neighbor boxes,
then use the resulting information to construct a new search area in which
the third vertex is guaranteed to lie. Another possibility is to expand the
search area one shell at a time, by adding all boxes which are neighbors of
boxes already searched, and checking the circumcircle inclusion after each
shell is searched. This version seems much more complicated to program.,
and many boxes must be found and added to the list when the number of
shells grows beyond one or two. Thus this approach seemed likely to be
slower in practice, even though it may offer a better chance at proving the
method optimal in theory. Thus it was not implemented.

The adaptive method is fast when N is very large and X is highly non­
uniform, but there are limits to the nonuniformities it can handle. Its theo­
retical worst-case performance seems quite difficult to analyze. Experiments,
however, indicate that our implementation runs quite slowly in the (rather
pathological) case when the points of X almost all lie on a curve. This is be­
cause the Delaunay triangulation connects points from one side of the curve
to the other with very long thin triangles; this destroys the locality of the
problem, because many points have to see vertices at 0(1) distance indepen­
dent of N. See Figure 1 and the Delaunay triangulation of that set of points,
superimposed on the adaptive cell structure in Figure 4. Clearly many points
have to reach outside their nearest neighbors in order to build the Delaunay
triangulation, making cell methods infeasible. This case can be excluded if
we analyze the expected time required when the points are randomly but not
quasi-uniformly distributed in the sense of [5], but the Delaunay triangula­
tion nevertheless has triangles of bounded aspect ratio. A N log N expected
time seems likely in this case, though quite difficult to prove. Something like
an a priori estimate seems to be needed here, perhaps bounding the aspect
ratio of the Delaunay triangulation in terms of an approximate Hausdorff
dimension of the set X; this is an area of research still in its infancy, though
such ideas were used in [35].

29

Figure 4: Delaunay triangulation of a set of N = 400 non-uniformly dis­
tributed points in the unit box. The nonlocality of the problem is evident in
the many long thin triangles reaching beyond their nearest neighbor boxes.

30

..

Another problem which can be solved by our methods is constrained
Delaunay triangulation [10]. In this problem, one must triangulate a point
set X subject to the restrictions that a set E of edges be included and that no
edge may cross any barrier from a set B of line segment (or more complicated)
barriers. The locality of this problem implies that our cell methods extend
immediately to handle it as well.

More generally, our methods seem likely to be useful in other geometric
problems having a local character. Nearest neighbor search is an obvious
though simple example. It can be solved very efficiently with a spiral search
through our adaptive cell structure.

Another important generalization is the construction of the three-dimensional
Delaunay tessellation. Our method generalizes straightforwardly in every
detail, unlike many other two-dimensional fast algorithms which cannot be
extended to three dimensions. The Delaunay tessellation in three dimensions
can be expensive to compute, because the number of tetrahedra can be as
large as O(N2) rather than O(N). However, the adaptive cell structure still
requires only O(N log N) storage and time to construct, making it relatively
even less expensive than in the two-dimensional case.

31

7 Conclusions

We have presented fast algorithms for constructing the Delaunay triangula­
tion in the plane and described numerical experiments, on up to two hundred
thousand points, which indicate the efficiency of these new methods.

The uniform cell method outpaces the straightforward quadratic method
as soon as we have more than a hundred points to triangulate, even when the
points are non-uniformly distributed. It slows down for non-uniform points,
to become asymptotically O(N2) for normally distributed points (though still
several times faster than the quadratic method in our tests).

Thus we introduce an adaptive cell method which displays an O(N log N)
behavior even on nonuniformly distributed points. It costs more overhead
than the uniform method, making it slightly less efficient on uniform points
and generally when N is less than about 400, but it is several hundred times
faster for two hundred thousand nonuniformly distributed points, a substan­
tial improvement.

-.--~ -- - ~~- ----- - ----- -------

32

8 Acknowledgements

I would like to thank B. Chazelle, A. Chorin and G. Russo for helpful con­
versations.

References

[1] H. AKIMA, A method of bivariate interpolation and smooth surface
fitting for irregularly distributed data points. ACM Trans. Math. Softw.
4, 148-164 (1978).

[2] F. ALMGREN, "Computing soap films and crystals," in Computing Opti­
mal Geometries, edited by J. E. Taylor (American Mathematical Society,
1991).

[3] F. ALMGREN, "The geometric calculus of variations and modelling nat­
ural phenomena," in Statistical Geometry and Differential Geometry,
edited by H. T. Davis and J. C. C. Nitsche (IMA Volumes in Mathe­
matics and its Applications, Springer-Verlag, New York, 1991).

[4] F. AURENHAMMER, "Voronoi Diagrams-A Survey," Technical Report,
Gras Technical University, Austria.

[5] J. L. BENTLEY, B. W. WEIDE AND A. C. YAO, Optimal expected­
time algorithms for closest-point problems. ACM Trans. Math. Softw.
6, 563-580 (1980).

[6] C. BORGERS AND C. S. PESKIN, A Lagrangian fractional step method
for the incompressible Navier-Stokes equations on a periodic domain. J.
Comput. Phys. 70, 397-11? (1987).

[7] A. BOWYER, Computing Dirichlet tessellations. The Computer J. 24,
162-166 (1981).

[8] J. CARRIER, L. GREENGARD AND V. ROKHLIN, A fast adaptive mul­
tipole algorithm for particle simulations. SIAM J. Sci. Stat. Comput. 9,
669-686 (1988).

[9] A. K. CLINE AND R. J. RENKA, A storage-efficient method for con­
struction of a Thiessen triangulation. Rocky Mountain J. Math. 14, 119-
139 (1984).

33

[10] A. K. CLINE AND R. J. RENKA, A constrained two-dimensional tri­
angulation problem and the solution of closest node problems in the
presence of barriers. SIAM J. Num. Analysis 27, 1305-1321 (1990).

[11] H. H. DANNELONGUE AND P. A. TANGUY, Efficient data structures
for adaptive remeshing with the FEM. J. Comput. Phys. 91, 94-109
(1990).

[12] L. VAN DOMMELEN AND E. A. RUNDENSTEINER, Fast adaptive sum­
mation of point forces in the two-dimensional Poisson equation. J. Com­
put. Phys. 83, 126-147 (1989).

[13] R. A. DWYER, A faster divide-and-conquer algorithm for constructing
Delaunay triangulations. Algorithmica 2, 151 (1987).

[14] S. FORTUNE, A sweepline algorithm for Voronoi diagrams. Algorithmica
2, 137 (1987).

[15] M. J. FRITTS, "Three-dimensional algorithms for grid restructuring
in free-Lagrangian calculations," in The Free Lagrange Method, Lecture
Notes in Physics ~38" edited by M. J. Fritts, W. P. Crowley and H.
Trease (Springer-Verlag, Berlin, 1985).

[16] M. J. FRITTS AND J. P. BORIS, The Lagrangian treatment of transient
problems in hydrodynamics using a triangular mesh. J. Comput. Phys.
3, 173-215 (1979).

[17] D. E. FYFE, E. S. ORAN AND M. J. FRITTS, Surface tension and vis­
cosity with Lagrangian hydrodynamics on a triangular mesh, J. Comput.
Phys. 76, 349-384 (1984).

[18] P. J. GREEN AND R. SIBSON, Computing Dirichlet tesselations in the
plane. The Computer J. 21, 168-173 (1978).

[19] A. JAMESON AND T. J. BAKER, "Euler calculations .for a complete
aircraft," in Proceedings International Conference on Numerical Meth­
ods in Fluid Dynamics, Lecture Notes in Physics ~64, edited by 717
(Springer-Verlag, Berlin, 1987).

[20] C. LAWSON, "Software for C1 surface interpolation," in Mathematical
Software III, edited by J. Rice (Academic Press, New York, 1977).

[21] D. T. LEE AND B. J. SCHACHTER, Two algorithms for constructing a
Delaunay triangulation. Int. J. Comput. Inf. Sci. 9, 219-242 (1980).

34

[22] B. A. LEWIS AND J. S. ROBINSON, Triangulation of planar regions
with applications. The Computer J. 21, 324-332 (1978).

[23] A. MAUS, Delaunay triangulation and the convex hull of n points in
expected linear time. BIT 24, 151-163 (1984).

[24] D. H. McLAIN, Two dimensional interpolation from random data. The
Computer J. 19, 178-181 (1976).

[25] T. OHYA, M. IRI AND K. MUROTA, A fast Voronoi diagram algorithm
with quaternary tree bucketing. Inf. Process. Lett. 18, 178-181 (1984).

[26] C. PESKIN, J. Comput. Phys. 25, 220 (1977).

[27] F. P. PREPARATA AND M. 1. SHAMOS, Computational Geometry: An
Introduction (Springer-Verlag, New York, 1985).

[28] R. J. RENKA, Algorithm 624: Triangulation and interpolation at ar­
bitrarily distributed points in the plane. ACM Trans. Math. Softw. 10,

·440-442 (1984).

[29] R. J. RENKA AND A. K. CLINE, A triangle-based Cl interpolation
method. Rocky Mountain J. Math. 14, 119-139 (1984).

[30] G. Russo, Deterministic diffusion of particles. Comm. Pure Appl.
Math., to appear.

[31] M. 1. SHAMOS AND D. HOEY, "Closest-point problems," in Proceedings
16th IEEE Symposium on Foundations of Computer Science, October
1975, p. 151.

[32] R. SIBSON, Locally equiangular triangulations. The Computer J. 21,
243-245 (1978).

[33] W. D. SMITH, Studies in computational geometry motivated by mesh
generation (Ph.D. Thesis, Princeton University Department of Com­
puter Science, 1989).

[34] J. STRAIN, A Delaunay method for crystal growth, in preparation.

[35] J. STRAIN, Fast potential theory II: Layer potentials and discrete sums.
submitted to J. Comput. Phys.

[36] M. TANEMURA, T. OGAWA AND N. OGITA, A new algorithm for three­
dimensional Voronoi tessellation. J. Comput. Phys. 51, 191-207 (1983).

35

[37] D. F. WATSON, Computing the n-dimensional Delaunay tessellation
with application to Voronoi polytopes. The Computer J. 24, 167-172
(1981).

[38J F. W. WILSON, R. K. GOODRICH AND W. SPRATTE, Lawson's algo­
rithm is nearly optimal for controlling error bounds. SIAM J. Numer.
Anal. 27, 190-197 (1990).

[39J M. A. YERRY AND M. S. SHEPHARD, Automatic three-dimensional
mesh generation by the modified-octree technique. Int. J. Num. Meth.
Engrg. 20, 1965-1990 (1984).

36

