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Neutron Stars, Strange Stars, and the Nuclear 
Equation of State 

F Weber Institute for Theoretical Physics, University of Munich, Theresien
str. 37 jIII,W-BOOO Munich 2, FRG 

N K Glendenning Nuclear Science Division, LawrenceBerkeley Laboratory, 
University of California, Berkeley, California 94720, USA 

Abstract. This article consists of three parts. In part one we review the 
present status of dense nuclear matter calculations, and introduce a represen
tative collection of realistic nuclear equations of state which are derived for 
different assumptions about the physical behavior of dense matter (baryon 
population, pion condensation, possible transition of baryon matter to quark 
matter). In part two we review recently performed non-rotating and rotat
ing compact star calculations performed for these equations of state. The 
minimum stable rotational periods of compact stars, whose knowledge is of 
decisive importance for the interpretation of rapidly rotating pulsars, are de
termined. For this purpose two different limits on stable rotation are studied: 
rotation at the general relativistic Kepler period (below which mass shedding 
at the star's equator sets in), and, secondly, rotation at the gravitational 
radiation-reaction instability (at which emission of gravitational waves set in 
which slows the star down). Part three of this article deals with the proper
ties of hypothetical strange stars. Specifically we investigate the amount of 
nuclear solid crust that can be carried by a rotating strange star, and answer 
the question whether such objects can give rise to the observed phenomena 
of pulsar glitches, which is at the present time the only astrophysical test of 
the strange-quark-matter hypothesis. 

1 Introduction 

Neutron stars contain matter in one of the densest forms found in the universe. Matter 
in their cores possesses densities ranging from a few times eo to an order of magnitude 
higher. Here eo = 0.15 nucleons/fm3 denotes the density of normal nuclear matter, 
which corresponds to a mass density of 2.5 x 1014 g/cm3 • The number of baryons 
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Figure 1: Distribution of pulsar periods. There is a relatively strong attenuation iIi 
sensitivity of radio pulsar surveys for periods below about 1ms [4] which is due to 
the fact that most pUlsar surveys had no sensitivity b~low about 4 ms. Therefore the 
cut-off at short periods is possibly an artifact. . 

forming a neutron star is· of the order of A ~ 1057 •. The understanding of matter 
. under such extreme conditions of density is one of the central but .also most complex 

problems of physics. ' . 
Neutron stars are associated with two classes of astrophysical objects: Pulsars [1], 

which are generally accepted to be rotating neutron stars (the fastest sofai' observed 
ones have rotational periods P ~ 1.6 ms), and compact X-ray sources (e.g. Her X
l and Vela X-I), certain of which are neutron stars in close binary orbits with an 
ordinary star. The first millisecond pulsar was discovered in 1982 [2], and in the next 
seven years about one a year has beeri found. The situation has changed radically 
with the recent discovery of an anomalously large population of millisecond pulsars in . 
globular clusters [3], where the density of stars is roughly 1000 times that in the field 
of the galaxy and which are therefore very favorable environments for the formation 
of rapidly rotating pulsars that· have· been spun· up by means. of mass accretion from 
a binary companion. The distribution of the presently known pulsars as a function 
of their rotational period is shown in Figure 1. .. 

As just outlined, neutron stars are objects of highly compressed matter so that 
the geometry of space-time is changed considerably from flat space. Thus for the 
construction of realistic models of rapidly rotating compact stars one has to resort to 
Einstein's theory of general relativity. To date only a few authors have constructed 
star models within this framework that are unrestricted with respect to the strength 
of the gravitational field of the star, not limited to small rotational star frequen
cies, and performed for realistic models for the equation of state. Studies fulfilling 

. these conditions have been presented by Friedman, Ipserand Parker [5, 6], Lattimer, 
Prakash, MaSak and Yahil [7), and Weber and Glendermi~g [8, 9, 10). The studies 
of the latter authors are reviewed here. The equation of state of the star matter, i.e. 
pressure as a function of energy density, is the basic input quantity whose knowledge 
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over a broad range of densities (ranging from the density of iron at the star's' surface 
up to"" 15 times the density of normal nuclear matter reached in the cores of massive 
stars) is necessary in order to solve the Einstein equations. Unfortunately the physi
cal behavior of matter under such extreme densities as in the cores of massive stars 
is rather uncertain and the associated equation of state is only poorly known. The 
models derived for it differ considerably with respect to the dependence of pressure 
on density, which has its origin in various sources. To mention several are: (1) the 
many-body technique used to determine the equation of state; (2) the model for the 
nucleon-nucleon interaction, (3) description of electrically charge neutral neutron star 
matter in terms of either (a) only neutrons, (b) neutrons and protons in ,a-equilibrium 
with electrons and muons, or (c) nucleons, hyperons and more massive baryon states 
in ,a-equilibrium with leptons, (4) inclusion of pion condensation, and (5) treatment 
of the transition of confined hadronic matter into quark matter. It is the purpose of 
this work to 

• outline the present status of dense matter calculations, 

• explore the compatibility of the properties of non-rotating and rotating compact 
star models, which are constructed for a collection of equations of state which 
accounts for items (1)-(5) from above, with observed data, and 

• investigate the properties of strange stars [11, 12, 13] (specifically we answer 
the question whether such objects can give rise to the observed phenomena of 
pulsar glitches, which is at the present time the only astrophysical test of the 
strange-quark-matter hypothesis). 

2 The nuclear equation of state 

2.1 Theoretical framework 

2.1.1 Non-relativistic approach 

For non-relativistic models, the starting point is a phenomenological nucleon-nucleon 
interaction. In the case of the equations of state reported here, different two-nucleon 
potentials (denoted Vii) which fit nucleon-nucleon scattering data and deuteron prop-

/ erties have been employed. Most of these two-nucleon potentials are supplemented 
with three-nucleon interactions (denote~ Viik). The Hamiltonian is of the form 

(1 ) 

The many-body method adopted to solve the Schroedinger equation is based on the 
variational approach [14, 15, 16] where a variational trial function Iwv > is constructed 
from a symmetrized product of two-body correlation operators (Pii ) acting on an 
unperturbed ground-state, i.e. 

(2) 
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where I<p > denotes the antisymmetriz~d Fermi-gas wave function, 

(3) 
.. j 

The correlation operator contains variational parameters which are varied to minimize 
the energy per baryon for a given density (! (see Refs. [14, 15, 16,17] for details): 

E- ( ) - . {< q,,,IHIq,,, >} > E "f! - mIn ,T, I ,T, - 0· < '.l'v '.l'" > 
(4) 

As indicated, Ev constitutes an upper bound to the ground-state energy Eo. The 
ener~ density f(f!) and pressure P(f!) are obtained from Eq. (4) by 

f(f!) = f! [Ev(f!) + m] , 
a -

P(f!) = (i a Ev«(!) , 
- f! 

(5) 

which. leads to the equation of state in the form P( f) _used for the star structure 
calculations here. 

2.1.2 Relativistic approach 

A consistent theoretical framework for deriving relativistic models for the equation 
of state, which allows for the incorporation of dynamical two-particle correlations, 
is the Martin-Schwinger hierarchy of coupled Green's functions [18, 19, 20]. In the 
lowest order, the Martin-Schwinger hierarchy can be truncated by factorizing the four
point Green's function g2(1, 2; 1'2') (unprirned (primed) arguments -refer to ingoing 
(outgoing) particles) into a product of two-point Green's functions 9 [= gl(I'; I')]. 
This leads to the well-known relativistic Hartree (i.e. mean-field) and Hartree-Fock 
approximations (see Fig. 2). The T-matrix approximation (also blown as A or ladder 
approximation), which goes beyond this, trunc~tes the Martin-Schwinger hierarchy 
by factorizing the six-point Green's function 93(123; 1'2'3') into products of four- and 
two-point functions by which dynamical two-particle correlations in matter - which 
are connected with the two-body potential (denotedv) - are taken into account. The 
main problem which one encounters hereby is the calculation of the effective scattering 
matrix (effective two-particle potential) in matter, T, which satisfies 

T = v - vex + J v AT. (6) 

We have restricted ourselves to the so-called A 00 approximation, for which the nucleon
nucleon propagator is given by the product of two free two-point Green's functions 
(denoted gO), i.e. A = igOgo. The basic input quantity in Eq. (6) is the nucleon
nucleon interaction in free space as derived, for example, in the Bonn meson;.exchange 
model [21]. We have adopted the latest version of this interaction together with the 
HEA potential [22] to compute the T -matrix in neutron matter 'up to twp-times 
nuclear matter density [8]. The important feature of such meson-exchange models is 
that the potential parameters are adjusted to the two-body nucleon-nucleon scattering 
data and the properties of the deuteron, whereby (in this sense) a parameter-free 
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Figure 2: Factorization scheme of the four and six-point green's functions 92(12; 1'2') 
and 93(123; 1'2'3'), respectively, which leads to the Hartee, Hartree-Fock (exchange 
term included), and T matrix approximations. 

treatment of the many-body problem is achieved. The "Born" approximation of T 
sums the various meson potentials of the nucleon-nucleon interaction in free space, 
I.e., 

< 12 1 v 11'2' > = (7) 
M=O',w,'lI',(},'1,S,<I> 

~ 

and thus neglects dynamical nucleon-nucleon correlations. It is this approximation 
which leads to the Hartree and Hartree-Fock approximations [10, 23, 24, 25]. The 
symbol r in Eq. (7) stands for the various meson-nucleon vertices, and 6,M denotes 
the free meson propagator of a meson of type M. 

The nucleon self-energy (effective one-particle potential) is obtained from the T 
matrix by [10] 

EA = i J [ tr (T g) - T g ] , (ladder approximation) , (8) 

and 

EB,HF 

M=O',w'll',(} B'=p,n,l:±,O,A,'E.0'-,~++,+.o.-

(Hartree - Fock approximation) . (9) 

Equation (9) indicates that on the Hartree-Fock level the baryon self-energies in
clude all charged baryon states whose threshold densities are reached in star models 
contructed from' them. The nuclear forces in Eq. (9) are those of the scalar-v~ctor
isovector model [28]. The baryon 'propagators in Eqs. (8) and (9) are given as the 
solutions of Dyson's equation, 

gB = gOB + 90B EB( {gBI}) 9B , (10) 

5 
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Figure 3: Graphical representation of the self-energy contributions (second termin 
Eq. (10» arising from both the Fermi sea, i.e. nuclear matter consisting of filled 
baryon states of energies wB(O) ::; wB(p) < pB (upper graph), as well as . Dirac sea 
(states -00 < wB(p) < wB(O), lower graph). The former (latter) lead to so-called 
medium (vacuum) polarization contributions [26, 27] .. 

which terminates the set of equations that are to be s~lve self-consistently, subject 
to· additional constraints of charge neutrality and generalized ,a-equilibrium [25, 29]. 
The diagrammatic representation of the second term in Dyson's equation, gOBr.BgB, 
is given in Fig. 3. There, single lines denote the free propagator, gOB, and double 
lines refer to the self-consistent propagator in matter; gB. This term corrects the free 
propagator functions (first term) for medium effects arising from the Fermi sea of filled 
baryon states, i.e. the nuclear matter medium (upper shaded area in Fig. 3), within 
which the baryons move.1 Obviously these vanish for baryons propagating in free 
space, for which tB = O. Note the mathematical structure of the matter equations: 

·in order to calculate EB, knowledge of the functions gB' (B' = p, n, A, etc., see Eq. 
(9» is already necessary. Furthermore, in the framework of the ladder approximation, 
the T matrix possesses a functional dependence on the two-point function too. The 
determination of gB from Dyson's equation thus leads to a self-consistent treatment 
of the coupled matter equations (6)-(10), and the functions gB are referred to as 
self-consistent propagators. 

The equation of state finally follows from the stress-energy density tensor ~v of 

lContributions coming from the lower shaded area account for vacuum polarization corrections. 
The so-called no-sea approximation, which has been applied for the determination of most of the 
equations of state presented in.Sec. 2.2, neglects such corrections. A critical discussion of the influ
ence of vacuum renormalization on the equation of state of high-denity matter has been performed 
in Ref. [30]. It was found that these have negligible influence on the equation of state up to densities . 
of at least ten times normal nuclear matter density, provided the coupling constants are tightly 
cpnstrained by the saturation propertieS of nuclear matter. Here, vacuum polarization contributions 
are contained in equations of state denoted G300 and G;oo (see Table 1) [30]. 
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Table 1: Nuclear equations of state applied for the construction of models of gen
eral relativistic rotating neutron star models. Their tabulated representations, i.e. 
pressure versus energy and baryon density P( f, e), are given in Ref. [33]) . 

Label 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

12 
13 
14 
15 
16 

the system, 

EOS Description (see text) Reference 

Relativistic field theoretical equations of state 
G300 H,J(=300 [30] 
HV H,J(=285 [29, 25] 

GDCM2 8180 Q, 1< =265, B 1
/
4 = 180 [4, 34] 

GDCM2 
265 H,J(=265 [35] 

G1I" 
300 H, 7r, 1< =300 [30] 

G2"oo H, 7r, 1< =200 [36] 
AWonn + HV H,J(=186 [8] 

GDCMl 
225 H,J(=225 [35] 

GDCM1 8180 Q, [{ =225, B 1
/ 4 = 180 [4, 34] 

HFV H,~, [{=376 [25] 
AWEA +HFV H,~,[{=115 [8] 

Non-relativistic potential model equations of state 
BJ(I) H,~ [31] 

WFF(UV 14+ TNI) NP,1<=261 [17] 
FP(V14+TNI) N,[{=240 [37] 

WFF(UV14+UVII) NP,[{=202 [17] 
WFF(AV14+UVII) NP,1<=209 [17] 

(11) 

(12) 

The sum in the latter equation sums the contributions coming from the baryons and 
leptons (A = e, p). The quantity C denotes the Lagrangian of many-baryon/lepton 
matter (see Ref. [25] for details). 

2.2 Models for the nuclear equation of state 

A representative collection of nuclear equations of state that are determined in the 
framework of non-relativisitic Schroedinger theory and relativistic nuclear field theory 
is listed in Table 1. A few of them are graphically shown in Fig. 4, where the pressure , 
is plotted as a function of energy density (in units of the density of normal nuclear 
matter, f.o = 140 MeV /fm3

). This collection of equations of state has been applied 
for the construction of models of general relativistic rotating compact' star models, 
which will be presented in Sec. 4.2. The specific properties of these equations of 
state are described in the third column of Table 1, where the following abbreviations 
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are used: N = pure neutrOnj NP= n, p, leptonsj 7r. -:- pion condensat"iolljH = 
composed of n, p, hyperons (I;±'o, A, :=;0.-), and leptons; D.. = D..1232-resOnancej Q 
= quark hybrid ·composition, i.e. n, p, hyperons in equilibrium with u, d, s-quarks, 
leptons; J( = incompressibility (in MeV)j B 1/

4 = bag constant (in MeV). Not all 
equations of state of our collection account for neutron matter in .a-equilibrium (i.e. 
entries 13-16). These models treat neutron star matter as being composed of only 
neutrons (entry 14), or neutrons and protons in equilibrium with leptons (entries 
13, 15, 16), which is however not the ground-state of neutron star matter predicted 
by theory [29, 31, 32]. As an example of such an equation of state, we exhibit the 
FP(V 14 + TNI)model in Fig. 4. The relativistic equations of state account for all 
baryon states that become populated in dense star models constructed from them. 
As representative examples for the relativistic equations of state, we show the HV, 
HFV,-G300 , and G~f8rgl models in Fig. 4. A special feature of the latter equation of 
state· is that it also (as G~fro2, which is not shown in Fig. 4) accounts for the possible 
transition of baryon matter to quark matter. One clearly sees in Fig. 4 the softening 
of the equation of state, i.e. reduction ofpressu-re for a given density, at t: ~ (2 - 3) fO 

which is caused by _ the onset of baryon population and/or the transition of baryon 
matter to quark matter. The stiffer behavior of HFV in comparison with HV at 
high densities has its origin in the exchange (Fock) contribution that is contained 
in the former equation of state. An inherent feature of the relativistic equations of 
state is that they do not violate causality, i.e. the velocity of sound is smaller than the 
velocity of light at all densities, which is not the case for the non-relativistic models 
for the equation of state (cf. eighth column of Table 2). Among the latter only the
WFF(UV 14 + TNI) equation of state does not violate causality up to densities relevant 
for the construction of models of neutron stars from it. 

The nuclear matter properties at saturation related to our collection of equations 
of state are summarized in Table 2. The listed quantities are: binding energy of 
normal nuclear matter at saturation density, E(flo)/Aj compression modulus, J((flo)j 

. effective nucleon mass, M*(flo) (= m*(Uo)/m, where m denotes the nucleon mass); 
symmetry energy, asy(Uo). With the exception of A~nn + HV and A~oE~ + HFV, 
the coupling constants of the relativistic equations of state are determined such that 
these saturate infinite nuclear matter at densities in the range (0.15 -0.16) fm-3 for 
a binding energy per nucleon of ~ -16 MeV. For the AWonn + BV and A~~A + HFV 
equations of state the saturation properties are determined by respectively the reI a
tiv'lstic Bonn and HEA meson-exchange models for the nucleon· nucleon interaction 
whose parameters are determined by the free nucleon-nucleon scattering problem and 
the properties of the deuteron (parameter-free treatment). The influence of dynami
cal two-particle correlations calculated from the scattering matrix leads for these two 
equations of state to a relatively soft behavior in the vicinity of the saturation density 
flo. This is indicated by the rather small compression moduli J( (and large effective 
nucleon masses) related to these equations of state. All non-relativistic equations 
of state of our collection, which are determined in the framework of the variational 
method outlined in Sec. 2.1.1, contain the impact of dynamical two-particle corre
lations in matter, too. The correlations are calculated for different Hamiltonians. 
With the exception of the BJ(I) model, the calculations are performed for the Ur
bana and Argonne two-nucleon potentials V14, UV14 [38] and AV14 [39], respectively, 

, . 
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Table 2: Nuclear matter properties of the equations of state used in this work. 

Label EOS E/A eo .J( M* asy f./ fo f Ref. 
[MeV] [fm-3] . [MeV] [MeV] [MeV] 

1 G 300 -16.3 0.153 300 0.78 32.5 [30] 
2 HV -15.98 0.145 285 0.77 36.8 [29, 25] 
3 G DCM2 

8180 -16.0 0.16 265 0.796 32.5 [35] 
4 GDCM2 

265 -16.0 0.16 265 0.796 32.5 [35] 
5 G 300 -16.3 0.153 300 0.78 32.5 [30] 
6 G 200 -e15.95 0.145 200 0.8 36.8 [36] 
7 A~nn + RV t -11.9 0.134 186 0.79 [8] 
8 G DCM1 

225 -16.0 0.16 225 0.796 32.5 [35] 
9 GDCM1 

8180 -16.0 0.16 225 0.796 32.5 [35] 
10 HFV -15.54 0.159 376 0.62 30 [25] 
11 A~oEA + HFV § -8.7 0.132 115 0.82 [8] 
12 BJ(I) 23.1 [31] 
13 WFF(UV 14+ TNI) -16.6 0.157 261 0.65 30.8 > 14 [17] 
14 FP(V14+TNI) -16.00 0.159 240 0.64 5.6 [37] 
15 WFF(UV 14 + UVII) -11.5 0.175 202 0.79 29.3 6.5 [17] 
16 WFF(AV14+UVII) -12.4 0.194 209 0.66 27.6 7.2 [17] 
f Energy density in units of normal nuclear matter density beyond which the veloc-

ity of sound in neutron matter becomes larger (superluminal) than the velocity 
- of light. The symbol "-" indicates that causality is not violated. As concerns 

WFF(UV 14 + TNI), see text. 
t T matrix calculation. The Bonn meson-exchange potential served·as an input. 

§ T matrix calculation. The REA meson-exchange potential served as an input. 

supplemented by different models for the three-nucleon interaction. These are the 
density-dependent three-nucleon interaction of Lagaris and Pandharipande, TNI [40], 
and the Urbana three-nucleon model, UVII [38] (see entries 13-16 in Table 2). One 
sees that nuclear matter is underbound by ~ 4 Me V for two of these equations of state. 
The corresponding saturation densities eo are in the range (0.17 - 0.19) fm-3

, thus 
nuclear matter saturates at slightly too large densities for these equations of state. 
(The empirical saturation density is ~ 0.15 fm-3 [41].) Equations of state l,abeled 13 
and 14 lead to binding energies and saturation densities that are in good agreement 
with the empirical values which has its origin in the density-dependent three-nucleon 
interaction TN!. 2 A comparison with the relativistic parameter-free equations of state, 

2It is well known that two-particle correlations alone fail in reproducing the empirical values of 
binding energy and saturation denstiy. In this case the saturation points calculated from the standard 
Brueckner-Hartree-Fock [14, 42, 43] and non-relativistic T matrix approximations [44, 45, 46] for 
different nucleon-nucleon interactions fall in a narrow band, often called the Coester band; it appears 
likely that this band would contain the calculated saturation point for any realistic nucleon-nucleon 
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Figure 4: Graphical illustration of the equations of state HV, HFV, FP(V 14 + TNI), 
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A~~nn + HV and A~oE~ + HFV, shows that these saturate nuclear ~atter at somewhat 
smaller densities in the range (0.13 - 0.16) fm- 3

. The corresponding binding energies 
lie respectively ~ 4 and ~ 7 MeV above the the epirical value, thus nuclear matter is 
considerably underbound for these models. Interesting is the shift of the saturation 
density relative to non-relativistic treatments toward smaller values which is caused 
by relativity [23, 26, 49, 50, 51]. For this reason the A~nn + HV and A~oEA + HFV 
equations of state saturate at eo = 0.13 fm-3

, which is smaller than the above given 
range related to the non-relativistic potential models. _ 

The four equations of state G~2~Ml, G~6~M2, G~flJl, and G~fro2, which are based 
on the relativistic Lagrangian of Zimanyi and Moszkowski, have only, recently been 
determined [34, 52]. The transition of connned hadronicmatter into quark matter 
is taken into account in equations· of state G~f8~1 (Fig. 4) and Ggf8~2. Here a bag 
constant of B 1/ 4 = 180 MeV has been used for the determination of the transition 

_ of baryon matter into quark matter, which places the energy per baryon of strange 
. matter at 1100 MeV, well above the energy per n1J.cleon in 56Fe (~930 MeV). Most 
interestingly, the transition to quark matter sets in already at a density f = 2.3 fa 

[4, 34], which lowers the pressure relative to confined hadronic matter. The mixed 
phase of baryons and quarks ends, i.e. the pure quark phase begins, at f ~ 15 fo, 

which is larger than the central density encountered in the maximum-mass star model 
constructed from this equation of state. We stress that these density thresholds are 
rather different from those computed by other authors in earlier investigations. The 
reason for this lies in the realization that the transition between confined hadronic 
matter and quark matter takes place subject to the conservation of baryon and elec..
tric charge. Correspondingly, there are two chemical potentials, and the transition of 
baryon matter to quark matter is to be determined in three-space spanned by pressure 
and the chemical potentials of the electrons and neutrons. The only existing investi-

interaction [47, 48]. 
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gation which accounts for this properly has been performed by Glendenni"ng [4, 34]. 
(An investigation of the structure of the mixed phase of baryons and quarks has re
cently been performed by Heiselberg, Pethick, and Staubo [53].) Further important 
differences between the determination of G~fl(P and earlier (and thus inconsistent) 
treatments concern the description of the dense interior'of compact stars3 and the 
approximation of the mixed phase as two components which are separately charge 
neutral. 

3 Observed neutron star properties 

The global neutron star properties such as masses, rotational frequencies, radii, mo
ments of inertia, redshifts, etc. are known to be sensitive to the adopted microscopic 
model for the nucleon-nucleon interaction or, in other words, to the nuclear equation 
of state [63]. Thus, by means of comparing the theoretically determined values for 
these quantities with observed ones one may hope to learn about the physical be~ 
havior of" matter at super-nuclear densities. In the following we briefly summarize 
important star properties. 

3.1 Masses 

The gravitational mass is of special importance since it can be inferred directly from 
observations of X-ray binaries and binary pulsars (e.g. the Hulse-Taylor radio pulsar 
PSR 1913+16 [64]). Rappaport and Joss were the first who deduced neutron star 
masses for six X-ray binaries [65]. A reexamination of these masses became possible 
owing to the improved determinations of orbital parameters [66]. The improved values 
are 

1.56 ~ M (4U 0900-40)/M0 < 1.98, 

0.75 ~ M (SMC X -1)/M0 < 1.39, 

0.88 ~ M (LMC X - 4)/Me ~ 1.88, 

and the most probable masses are " 

M (4U 0900 - 40)/M0 = 1.77, 

M (SMC X -l)/Me - 1.06, 

M (LMC X - 4)/Me - 1.38, 

0.96 ~ M (4U 1538-52)/Me :5 2.75, 

0.53 ~ M (Cen X - 3)/Me ~ 1.62, 

0.86 ~ M (Her X -1)/M0 < 1.1 , 

M (4U 1538 - 52)/Me = 1.79, 

M (Cen X - 3)/Me - 1.06, 

M (Her X -1)/M0 - 0.98. 

3If the dense core may be converted to quark matter [54, 55, 56], it must be strange quark matter, 
since 3-ftavor quark matter has lower energy than 2-ftavor and just as is the case for the hyperon 
content of neutron stars, strangeness is not conserved on macroscopic time scales. Many of the earlier 
discussions [54, 55, 56, 57, 58, 59, 60, 61, 62] have treated the neutron star as pure in neutrons, and 
the quark phase as consisting of the equivalent number of fl and d quarks. However neither is pure 
neutron matter the ground state of a star nor is a mixture of nd ::: 2 nu! In fact it is a highly excited 
state, and will quickly weak decay to an approximate equal mixture of fl, d, s quarks. 
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Estimates of the limits of the masses of two non-pulsating X-ray binaries" are (it is 
expected that at least one of these objects, likely Cyg X-I, is a black hole): 

M (3U 1700 --37)/M0 ~ 0.6, 0.9 < M (Cyg X - 1)/M0 ~ 15. 

Finally we note the extremely accurately determined mass of the Hulse-Taylor binary 
pulsar PSR 1913+16 which is given by [64] 

M(PSR 1913 + 16)/M0 = 1.444 ± 0.003 . 

In summary, neutron star mass determinations derived from observations of binary 
X-ray pulsars suggest that the most probable values of neutron star mass is close 
to 1.4 M 0 , but the masses of individual neutron stars are likely to be in the range 
1.1 ,$ MIMe ,$ 1.8 [66]. 

3.2 Rotational frequencies of faSt pulsars 

The rotational periods of fast pulsars provide conditions on the equation of state when 
combined with the mass constraint [67]. As already mentioned in Sec. 1, the fastest 
so far observed pulsars have rotational periods of 1.6 ms (see Fig. 1). The successful 
model for the nuclear equation of state, therefore, must account for rotational neutron 
star periods of at least P = 1.6 ms as well as masses that lie in range listed in Sec. 
3.1. ' 

3.3 Radii 

Direct radius determinations for neutron stars do not exist. However, combinations 
of data of 10 well-observed X-ray burste~s with special theoretical assumptions lead 
Van Paradijs [68] to the conclusion that the emitting surface has a radius of about 
8.5 km. This vallie, as pointed out in [69], may be underestimated by a factor of two. 
Fujimoto and Taam [70] derived from the observational data of the X-ray burst source 
MXB "1636 - 536, under rather uncertain theoretical assumptions, a neutron star 
mass and radius of 1.45 Me and 10.3 km. An error analysis lead them to predicting 
mass and radius ranges of 1.28 to 1.65M0 ,and 9.1 to 11.3 km, respectively. When 
comparing these values with computed neutron star data, however, one should be 
aware of the fact that burster are suspected, but not known, to be neutron stars. 

3.4 Moment of inertia 

Another global neutron star property is the moment of inertia, I. Early estimates 
of the energy-loss rate from pulsars [71] spanned a wide range of I: 7 x 1043 < I < 
7 X 1044 g/cm3

• From the luminosity of the Crab nebula (- 2 - 4 X 1038 erg/sec), 
several authors have found a lower bound on the moment of inertia of the pulsar given . 
by I ~ 4 -8 X 1044 g cm2 [72, 73, 74]. 
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3.5 Redshift 

Finally we mention the neutron star redshift, z. Liang [75] has considered the neutron 
star redshift data base provided by measurements of ,-ray burst redshifted annihi
lation lines in the range 300 - 511 keY. These bursts have widely been interpreted 
as gravitationally redshifted 511 keY e± pair annihilation lines from the surfaces of 
neutron stars. From this he showed that there is tentative evidence (if the interpre
tation is correct) to support a neutron star redshift range of 0.2 ~ z ~ 0.5, with the 
highest concentration in the narrower range 0.25 ~ z ~ 0.35. A particular role plays 
the source of the 1979 March 5 ,-ray burst source, which has been identified with 
SNR N49 by its position. From the interpretation of its emmision, which has a peak 
at '" 430 keY, as the 511 keY e± annihilation line [76, 77] the resulting gravitational 
redshift has a value of z = 0.23 ± 0.05. 

3.6 Glitches 

Glitches are sudden relatively small changes in the period of pulsars, which otherwise 
increase very slowly with time due to the loss of rotational energy through radiation. 
They occur in various pulsars at intervals of days to months or years, and in some pul
sars are small (Crab), and in others large (Vela) and infrequent (AO/O '" 10-8 _10-6 

respectively). If the star quake model for glitches is correct [78, 79], the characteristic 
time between two glitches, or quakes, (the so-called interglitch time) is given by 

(13) 

Here Rs is the radius in kilometers, Lis the moment of inertia in units of 104s g cm2 , 

and Mp and M denote the proper respectively gravitational mass [80]. The interglitch 
time is given in years. Furthermore we note that in order to arrive at Eq. (13) an 
iron crust (Z = 26) has been assumed, and for nand dO/dt the observational data 
from the Crab pulsar (T ~ 2260 yr) and an oblateness change of A£ ~ 0.9 X 10-9 has 
been taken. 

4 Properties of compact star 

4.1 Non~rotating star models 

Figure 5 exhibits the spherical neutron star mass, in units of the solar mass, as 
a function of central energy density for a sample of equations of state of Table l. 
The star sequences are shown up to densities that are slightly larger than those of 
the maximum-mass stars (indicated by tick marks). One sees that all equations of . 
state are able to support non-rotating neutron star models of gravitational masses 
M ;::: M(PSR 1913 + 16). On the other hand, rather massive stars of say M ~ 2 M0 
can only be obtained for a few equations of state, depending on their stiffness at large 
nuclear densities (cf. Fig. 4). The largest maximum-mass, M = 2.2 Me, is obtained 
for HFV. Knowledge of the maximum-mass value is of importance for two reasons. 
Firstly, quite a few neutron star masses are known (Sec. 3), and the largest of these 
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Figure 5: Non-rotating neutron star 
mass as a function of central density. 
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Figure 6: Non-rotating neutron star" 
mass as a function of redshift. 

imposes a lower bound on the maximuin-mass of a theoretical model. The current 
lower bound is 1.56 M0 (neutron star 4U 0900 - 40), which, as we have just seen, 
does not set a too stringent constraint on the nuclear equation of state. The situation 
could easily change if an accurate future determination of the mass of neutron star 
4U 0900 - 40 (see Fig. 5) should result in a value that is close to its present upper 
bound of 1.98 M 0 . In this case most of the equations of state of our collection would 
be ruled out! (Only entries 10,11,15, and 16 in Table 1 can easily account for such 
a heavy neutron star [33].) The second reason is that the maximum mass can be 
useful in identifying black hole candidates [81]. For example, if the mass of a compact 
companion of an 'Optical star is determined to exceed the maximum mass of a neutron 
star it must be a black hole. Since the maximum mass of stable neutron stars in 
our theory is 2.2 M 0 , compact companions being more massive than that value are 
predicted to be black holes. 

The neutron star mass as a function of gravitational redshift is displayed in Fig. 
6 for the same sample of equations of state as in Fig. 5. One sees that the maximum
mass stars can have redshifts in the range 0.4 ~ z ~ 0.8, depending on the equation 
of state. Neutron stars of typically M ~ 1.5 M0 (e.g. PSR1913+ 16) are predicted to 
have redshifts in the considerably narrower range 0.2 :5 z :5 0.32. The solid rectangle 
covers masses and redshifts in the ranges of respectively 1.30 < Ms/ M0 :5 1.65 
and 0.25 :5 z :5 0.35. As outlined in Secs. 3.3 and 3.5, the former range has been 
determined from observational data of X-ray burst source MXB 1636 - 536 [70], while 
the latter is based on the neutron star red shift data base provided by measurements 
of gamma-ray burst pair annihilation lines [75] (note however the critical remarks in 
Secs. 3.3 and 3.5 concerning the interpretation of these data). From the redshift value" 
of SNR N49 (if correct) we predict a neutron mass star of 1.1 ~ M/M0 ~ 1.6, which 
is consitent with the observed mass range given in Sec. 3.1. The relativistic eq1,lations 
of state set a narrower mass limit for SNR N49, 1.4 ~ MIMe ~ 1.6. 

Figure 7 displays the radius as a function of gravitational redshift. The solid 
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function' of mass for a sample of 
equations of state of Table 1. 

dots refer to the maximum-mass star of each sequence. Of course, stars at their 
termination points possess the largest redsifts, and these become the smaller the 
lighter the stars. Under the assumption that the annihilation line interpretation is 
correct (Sec. 3.5), SNR N49 is predicted to have a radius in the range of 10 - 14 km, 
which is consistent with the rather broad range given in Sec. 3.3. The relativistic 
equations of state lead to a narrower radii range, 12.5 - 14 km. In general, the non~ 
relativistic equations of state lead to smaller radii for a given redshift.The reason for 
this lies in the relatively soft (stiff) behavior at low (high) nuclear densities of the non
relativistic equations of state, which is less pronounced for the relativistic equations 
of state. Small radius values of star models are important in order to achieve rapid 
rotation, For that reason star models constructed for the non-relativistic equations 
of state possess limiting rotational periods that are smaller than those obtained for 
the relati'{istic equations of state(Sec. 4.2). However, because of causality violation of 
the non-relativistic equations of state at high nuclear densities (Sec. 2.2), this trend 
may be considered as an artifact. 

In Fig. 8 we show the moment of inertia as a function of mass. In Sec. 2.2 we have 
pointed out that, in general, the inclusion of baryon population in neutron star matter 
as well as the possible transition of confined hadronic matter to quark matter causes 
a softening of the equation of state which leads to somewhat smaller star masses and 
radii. Since I oc R~ Ms one expects a relative decrease of the moment of inertia of star 
models constructed for such equation of state.4 By means of comparing the curves 
labeled GRf8~1 and G~2~Ml with each other one sees the impact of the transition into 
quark matter on I. The difference however is rather small, as is the case for other ~tar 

40f course, the general relativistic expression for the moment of inertia is more complicated. It 
accounts for the dragging effect of inertial frames and the curvature of space [82]. The qualitative 
dependence of the moment of inertia on mass and radius as expressed in the classical expression for 
the moment of inertia remains valid [63]. 
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Figure 9: Interglitch time between two successive pulsar glitches as a function of star 
mass. 

properties. Therefore one cannot expect that the transition might register itself in 
observational quantities. (This is different, to some ext~nt, for a hypothetical strange 
stars which will be discussed in Sec. 5). Estimates for the upper and lower bounds 
on the moment of inertia of the Crab pulsar derived from the pulsar's energy loss 
rate (labeled Rud72), and the lower bound on the moment of inertia derived from 
the luminosity of the Crab nebula (labeled Crab) [72, 73, 74] are shown in Fig. 8 for 

cthe pur:pose of comparison. (The arrows refer only to the value of ICrab and not to 
its mass, which is not known.) 

The interglitch time, calculated from Eq. (13), as a function of star mass is plotted 
in Fig. 9 for a few' representative equations of state. It is striking that t~ depends 
rather sensitively on M. For example, considering tq'" 10 yr as compatible with 
observational evidence for glitches, we obtain masses in the range R:: 0.3 - 1.1 M0 • 

Conversely, if we assume values of M R:: 1.4-1.5 Me as the most probable Crab pulsar 
mass, theinterglitch time ranges from 30 to 700 years! .In the case that the Crab 
pulsar would be a medium massive neutron star of say M R:: 1 Me, the interglitch 
times obtained for the relativistic equations of state are compatible with observation, 
provided, of course, the star quake model for glitches is correct. In order to obtain 
compatibility with star models constructed for the non-relativistic equations of state, 
the pulsar's mass must be M R:: 0.4 Me. 

4.2 Rotating star models 

4.2.1 Minimum rotational period set by the gravitational radiaion-reaction 
instability 

Figures 10 and 11 exhibit the limiting rotational periods of compact stars, which is set 
by the gravitational radiation reaction-driven instability [83, 84, 85]. Figure 10 refers 
to hot (T = 1010 K), newly born stars in supernova explosions (i.e., pulsars ). Figure 
11 is the analog of Fig. 10, but for old and therefore cold compact stars of temperature 
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Figure 11: Gravitational radiation 
instability period pT versus mass for 
old stars of temperature T = 106 K 
[89]. 

T = 106 K, like neutron stars in binary systems that are being spun up (and thereby 
reheated) by mass accretion from a companion. One sees that the limiting periods pT 
(= 27r /07, where nT denotes the temperature dependent rotational star frequency) 
are the smaller the more massive (and thus the smaller the radius) the star model (cf. 
Fig. 7). A comparison between Figs. 10 and 11 shows that the instability periods are 
shifted toward smaller values the colder the star. Consequently, the instability modes 
of compact stars in binary systems are exCited at smaller rotational periods than is 
the case for hot and newly born pulsars in supernovae.5 The dependence of pT on 
the equation of state is shown too in these figures. One sees that the lower limits on 
pT are set by the non-relativistic equation of state labeled 16 due to the small radii 
values obtained for the star models constructed from it. The relativistic models for 
the equation of state generally lead to larger rotational periods due to the somewhat 
larger radii of the associ ted star models. 

The rectangles in Figs. 10 and 11 denoted "observed" cover both observed star 
masses, 1.1 :5 M/M0 :5 1.8, and observed pulsar periods, i.e. P ~ 1.6 ms (see Fig. 1). 
One sees that even the most rapidly rotating pulsars so far observed can be understood 
as rotating neutron or hybrid stars.6 The observation of pulsars possessing masses in 

5Sawyer [86] has found that the bulk viscosity of neutron star matter goes as the sixth power 
of the temperature, as compared with a T-2 dependence for the shear viscosity which is treated 
here. This means that at T ~ 109 K the bulk viscosity would dominate over the shear viscosity and 
thus damp the gravitational-wave instability. In this case the instability periods would be shifted 
toward values that are relatively close to the Kepler period A<. [87, 88], which sets an absolute limit 
on stable rotation because of mass shedding, Bound for the FK are given in Table 3. 

6Depending on their composition, compact star models are denoted as neutron, hybrid, or strange 
stars. Neutron stars consist of protons, neutrons and more massive baryons in .a-equilibrium with 
leptons; hybrid stars are compact stars which, in addition to baryons, also contain quarks in their 
dense cores; hypothetical strange stars consist of (3-flavor) strange-quark-matter which, by hypoth-
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. the observed range but rotational periods that are smaller than say,..., 1 ms (depending 
on temperature and thus on the pulsar's history) would be in clear contradiction 
to our equations of state. Consequently the observation of such pulsars cannot be 
reconciled with the interpretation of such objects as rapidly rotating neutron or hybrid 
stars. An investigation of the limiting rotational Kepler period of neutron and other 
compact stars that is performed without taking recourse to any particular models of 
dense matter (but derives the limit only on the general principles that: Einstein's 
equations describe stellar structure, matter is microscopically stable, and causality is 
not violated) has only recently been performed by Glendenning [90]. He establishes 
a lower bound for the minimum Kepler period for a M= 1.442 Me neutron star of 
. PK = 0.33 ms. Of course the equation of state that nature has chosen need not be 
the one that allows stars to rotate most rapidly. On the basis of the neutron star 
models constructed from the selection of equations of state studied here, the lowest 
Kepler period was found to be 0.7 ms (cf. ,Table 3). 

4 .. 2.2 Bounds offast pulsars 

Here we restrict ourselves to discussing the properties of a rapidly rotating pulsar 
model having a mass of M ~ 1.45Me , as supported by the evolutionary history of 
supermassive stars [69]. The bounds on its properties, whose knowlege is of great 
importance for the interpretation of fast pulsar, are summarized in Table 3. The 
listed properties are: period at which the gravitational radiation-reaction instability 
sets in, pT (in ms) with star temperature listed in parenthesesj Kepler period, PK (in 
ms); central density, €c (in units of the density of normal nuclear matter); moment of 
inertia, I (in g cm2 )j redshifts of photons emitted at the star's equator in backward 
(ZB) and forward (ZF) direction. According to Table 3, newly born pulsars observed 

. in supernova explosions can only rotate stably at periods 2:. 1 ms. Half-millisecond 
periods, for example, are completely excluded for pulsars made of baryon matter. 
Therefore, the possible future discovery of a single sub-millisecond pulsar, rotating 
with a period of say'" 0.5 ms, would give a strong hint that such an object is a 
rotating strange'star, not a neutron star, and that 3-Havor strange quark matter is 
the true ground-state of the strong interaction, as pointed out by Glendenning [91]. 
An old pulsar of T = 106 K (and inass M~ 1.45 M0 ) cannot be spun up to stable 
rotational periods smaller than ~ 0.8 ms. Again, the two fastest yet observed pulsars, 
rotating at 1.6 ms, are compatible with the periods in Table 3, provided their masses 
are larger than 1 M0 [89]. For the purpose of comparison the Kepler period, below 
which mass shedding at the star's equator sets in, is listed too. It might playa role in' 
cold (hot) pulsar whose rotation is stabilized by its large shear (b1:llk) viscosity val~e 
(see footnote on Sawyers calculation of the viscosity in dense nuclear matter). 

esis, forms the absolute ground-state of the strong interaction (see Sec. 5 for more details). 
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Table 3: For the broad sample of equations of state, the lower and upper bounds on 
the properties of a pulsar of M ~ 1.45 M(!), calculated for the collection of equations 
of state of Table 1 [92]. 

P(106 I<) P(1010 I<) PK f.e/fO log I Zs 

. upper bound 
lower bound 

1.1 
0.8 

5 Strange stars 

1.5 
1.1 

1 
0.7 

5 
2 

5.1 The strange matter hypothesis 

45.19 1.05 
44.95 0.59 

Zp 

-0.18 0.45 
-0.21 0.23 

The hypothesis that strange quark matter may be the absolute ground state of the 
strong interaction (not 56Fe) has been raised by Witten in 1984 [11]. If the hypothesis 
is true, then a separate class of compact stars could exist, which are called strange 
stars. They form a distinct and disconnected branch of compact stars and are not 
part of the continuum of equilibrium configurations that include white dwarfs and 
neutron stars. In principle both strange and neutron stars could exist. However if 
strange stars exist, the galaxy is likely to be contaminated by strange quark nuggets 
which would convert all neutron stars that they come into contact with to strange 
stars [91, 93, 94]. This in turn means that the objects known to astronomers as 
pulsars are probably rotating strange matter stars, not neutron matter stars as is 
usually assumed. Unfortunately the bulk properties of models of neutron and strange 
stars of masses that are typical for neutron stars, 1.1 ~ M/M(!) ~ 1.8, are relatively 
similar and therefore do not allow the distiction between the two possible pictures. 
The situation changes however as regards the possibility of fast rotation of strange 
stars. This has its origin in the completely different mass-radius relations of neutron 
and strange stars (see ~ig. 12) [54]. As a consequence of this the entire familiy of 
strange stars can rotate rapidly, not just those near the limit of gravitational collapse 
to a black hole as is the case for neutron stars. As an example, above the minimum 
possible rotational periods of maximum-mass neutron and hybrid stars have been 
determined to be larger than ~ 0.8 ms; this is to be compared with::::::: (0.4 - 0.6) ms 
calculated for maximum-mass strange stars [82]. 

5.2 Hadronic crust on strange stars 

At the present time there appears to be only one crucial astrophysical test of the 
strange-quark-matter hypothesis, and that is whether strange quark stars can give 
rise to the observed phenomena of pulsar glitches (see Sec. 3.6). In the crust quake 
model an oblate solid nuclear crust in its present shape slowly comes out of equilibrium 
with the forces acting on it as the rotational period changes, and fractures when the 
built up stress exceeds the sheer strength of the crust material. The period and rate of 
change of period slowly heal to the trend preceding the glitch as the coupling between 
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crust and core re-establish their co-rotation. The existence of glitches may have a 
decisive impact on the question of whether strange matter is the ground state of the 
strong interaction. ' 

The only existing investigation which deals with the calculation of the thickness, 
mass and moment of inertia of the nuclear solid crust that can exist on the surface of 
a rotating, general relativistic strange quark star has only recently been performed by 
Glendenning and Weber [82]. Their calculated mass-radius relationship for strange 
stars with a' nuclear crust, whose maximum density is the neutron drip density, is 
shown in Fig. 12. (Free neutron in the star cannot exist. These would,be dissolved 
into quark matter as they gravitate into the core. Therefore the maximum density of 
the crust is strictly limited by neutron drip. This density is about 4.3 x 1011 g/cm3

.) 

Since the crust is bound by the gravitational interaction (and not by confinement, 
which is the' case for tl~e strange matter core), the relationship is qualitatively similar 
to the one for neutron and hybrid stars, as can be seen from Fig. 7. The radius 
being largest for the lightest and .smallest fot the heaviest stars (indicated by the 
soid dot in Fig. 12) in the sequence. Just as for neutron stars the relationship is 
not necessarily monotonic at intermediate masSes. The radius of the strange quark 
core, denoted Rmi~, is shown by the dashed line. (A value for the bag constant of 
BI/4 = 160 MeV for which 3-flavor strange matter is stable has been chosen. This 
choice represents weakly bound strange matter with an energy per baryon", 920 MeV, 
and thus corresponds to strange quark matter being absolutely bound with respectto 
56Fe). The radius of the strange quark core is proportional to M I /3 which is typical 
for self-bound objects.' This proportionality is only modified near the mass where 
gravity terminates the stable sequence. The sequence of stars has a minimum mass of 
'" 0.015 M0 ·(radius .of '" 400 km) or about 15 J~piter masses, which is smaller than 
that of neutron star sequences, about 0.1 M0 [95]. The low-mass strange stars may 
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be of considerable importance since they may be difficult to detect and the~efore may 
effectively hide baryonic matter. Furthermore, of interest to the subject of cooling of 
strange stars is the crust thickness of strange stars [96]. It ranges from'" 400 km 
for stars at the lower mass limit to '" 12 km for stars of mass'" 0.02 Me, and is a 
fraction of a kilometer for the star at the maximum mass [82]. 

The moment of inertia of the hadronic crust, Icrust, that can be carried by a strange 
star as a functin of star mass for a sample of rotational frequencies of 0 = OK, OK/2 
and 0 is shown in Fig. 13. Because of the relatively small crust mass of the maximum
mass models of each sequence, the ratio Icrust/ Itotalis smallest for them (solid dots in 
Fig. 13). The less massive the strange star the larger its radius (Fig. 12) and therefore 
the larger both Icrust as well as I total . The dependence of ICMlBt and I total on M is such 
that their ratio Icrust/ Itotal is a monotonically decreasing function of M. One sees \ 
that there is only a slight difference between I~t for 0 = 0 and 0 = OK/2. 

Of considerable relevance for the question of whether strange stars can exhibit 
glitches in rotation frequency, one sees that Icrust/ Itotal varies between 10-3 and", 10-5 

at the maximum mass. If the angular momentum of the pulsar is conserved in the 
quake then the relative frequency change and moment of inertia change are equal, 
and on~ arrives at [82J 

~n = I~II > I~II = f IcruIst '" (10-5 _ 10-3 ) f , with 0 < f < 1. (14) 
n 10 I 

Here 10 denotes the moment of inertia of that part of the star whose frequency is 
changed in the quake. It might be that of the crust only, or some fraction, or all of the 
star. The factor fin Eq. (14) represents the fraction of the crustal moment of inertia 
that is altered in the quake, i.e. I~II = f ICMlBt . Since the observed glitches have 
relative frequency changes ~n/n = (10-9 - 10-6 ), a change in the crustal moment 
of inertia by less than 10% would cause a giant glitch even in the least favorable case 
(for more details, see [82]). Finally we find that the observed range of the fractional 
change in n is consistent with the crust having the small moment of inertia calculated 
and the quake involving only a small fraction f of that, just as in Eq. (14). For this 
purpose we write [82] 

~n = ~n/n I~II = ~n/n f Icrust (10-1 10) f 
o ~n/n 10 ~n/n 10 > . to , (15) 

which yields a small f value as before: f < (10-4 to 10-1 ). Here measured values of 
the ratio (~n/n)/(~n/n) '" 10-6 to 10-4 for the Crab and Vela pulsars, respectively, 
have been used. 

6 Summary 

This work begins with an investigation of the properties of superdense nucleClX matter. 
Various models for the associated equation of state are introduced and discussed in 
greater detail. These equations of state are then applied for the construction of models 
of non-rotating as well as rotating compact stars, whose properties are compared with 
observational data. Our particular interest is aimed toward answering the following 
questions: 
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• Can a compact star rotate rapidly and with a central density that is plausibly 
below the transition point at which matter consisting of individual nucleons will 
dissolve into quark matter so that it is a neutron star? 

• Can a hybrid star, a neutron star with a quark core, rotate veryrapidly? 
\ 

• What is the'minimum rotational period in either case? 

• Can strange stars give rise to the observed phenomena of pulsar glitches? 

The indication of this work is that the gravitational radiation-reaction instability 
sets a lower limit on stable rotation for massive neutron or hybrid stars of P ~ 0.8 ms. 
Lighter ones having typical pulsar masses of 1,45 M0are predicted to have rotational 
periods P ~ 1 ms. This finding may have very important implications for the nature 
of any pulsar that is found to have a shorter period, say below P ~ 0.5 ms. Since 
our repre~entative collection of nuclear equations of state does not allow for rotation 
at such small periods, the interpretation of such objects as rapidly r:otating neutron 
or hybrid stars fails. Such objects, however, can be understood as rapidly rotating 
strange stars. The plausible ground-state state in that event is thedeconfined phase 
of (3-flavor) strange-quark-matter. From the QCD energy scale this is as likely a 
ground-state as the confined phase. At the present time there appears to be only one 
crucial astrophysical test of the strange-quark-matter hypothesis, and that is whether 
strange quark stars can give rise to the observed phenomena of pulsar glitches. We 
demonstrate that the nuclear solid crust that can exist on the surface of a strange star 
can have a moment of inertia sufficiently large that a fractional change can account 
for the magnitude of pulsar glitches. Furthermore low..,mass, strange stars can have 
enormously large nuclear crusts (up to '" 400 km) which might considerably alter the 
cooling rate of strange stars and enables such objects to be possible hiding places of 
baryonic matter. '-

If strange-quark-matteris the ground-state of baryonic matter at zero pressure 
then the conclusion that the confined hadronic phase of nucleons and nuclei is only 
metastable would be almost inescapable, which would have far-reaching consequences 
for laboratory nuclear physics, the early universe, and astrophysical compact oJ>jects. 
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