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Since their introduction by Barenblatt et al. (1960), double-porosity models have 

been widely used for simulating flow in fractured reservoirs. In a dual-porosity sys

tem, the matrix blocks provide most of the storage of the reservoir, whereas the frac

tures provide the global transmissivity. Initially, most work on dual-porosity models 

emphasized the development of analytical solutions to idealized reservoir problems. 

Increasingly, the dual-porosity approach is being implemented by numerical reservoir 

simulators. Accurate numerical simulation of a dual-porosity problem often requires a 

prohibitively large number of computational cells in order to resolve the transient pres

sure gradients in the matrix blocks. In this paper we discuss a new dual-porosity 

model that utilizes a nonlinear differential equation to approximate the fracture/matrix 

interactions. When implemented into a numerical simulator, it eliminates the need to 

discretize the matrix blocks, and thereby allows more efficient simulation of reservoir 

problems. 

When a single-phase, slightly compressible fluid flows through a 

macroscopically-homogeneous fractured medium, the fluid pressure P f in the fractures 

is gove~ed by 

(1) 

where t is time, x is the position vector of a point in the fracture continuum, kf is the 

effective permeability of the fracture continuum, CPf is the total fracture porosity, and 

C f is the total compressibility of the fractures and the fluid within them. Q is a 

volumetric source/sink term representing fluid flow from the matrix blocks to the frac

ture system, per unit of total volume. 

One commonly-used type of dual-porosity model allows global flow only through 

the fracture network, with the matrix blocks serving as continuously-distributed 

sources/sinks of fluid for the fractures. The matrix blocks at each location in the frac

ture continuum are represented by a single average pressure, Pm (x , t ). Conservation 

of mass for the matrix block leads to the following equation for Pm : 

(2) 

.' 
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In order to close the system given by (1) and (2), an equation is needed to relate Q to 

PI and Pm. Warren and Root (1963) assumed that Q is proportional to PI -Pm: 

(3) 

where a has dimensions of l/area. Eq. (3) is often referred to as the "quasi-steady

state" approximation (Chen, 1989). This terminology follows from consideration of 

the problem in which there is an instantaneous change in the fracture pressure PI' 

which serves as the boundary condition for the matrix block, which will be assumed to 

be a sphere of radius am' Differentiation of the most-slowly-decaying Fourier com

ponent in the expression for the average pressure, which is the dominant component' at 

large times, leads to an equation of the form (2,3), with a=1C2/a;'. Other matrix block' 

shapes, such as slabs or cubes, lead to long-time behavior governed by (2,3), but with 

different expressions for a. 

An exact coupling term could be developed in terms of the step-function response 

of a single matrix matrix by using the convolution principle. This would lead to an 

. integro-differential system of equations, which most reservoir simulators are not suited 

to solve. Pruess and Wu (1989) and Dykhuizen (1990) improved upon the quasi-
, 

steady-state model by approximating flow in the matrix blocks with trial functions that 

satisfy the boundary conditions and global mass conservation. We have taken the 

approach of utilizing a nonlinear ordinary differential equation which, in some sense, 

approximates the linear partial differential equation that actually governs Pm' This 

equation, first proposed by Vermeulen (1953) in the context of ion-exchange chroma

tography, is: 

(4) 

where Pi is the initial pressure. When Pm is close to PI' (4) reduces to (3), and is 

therefore accurate in the long-time regime. We have found that (4) is also very accu

. rate in the small-time limit, as will be briefly demonstrated. 
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We have tested (4) under situations in which the fracture pressure, which serves 

as the boundary condition for the matrix block, is a known function of time, thereby 

isolating the matrix pressure response from that of the overall reservoir. Fig. 1 shows 

the mean matrix block pressure, when the fracture pressure increases abruptly from Pi 

to Po at t = O. The solution to (4) very closely approximates the exact solution, 

whereas the prediction of (2,3) is not accurate until the process is nearly complete. 

As another example, consider the case where PI =Pi +Btm. The leading term in 

the solution to (4) for small times is 

P = p. + m 1tB tm + 112 

[ 
k ]2 

m I <l>m JlC m a'; "'2m + 1 . 
(5) 

The exact small-time approximation can be found from the solution (Crank, 1975) for 

diffusion into a semi-infinite media, which applies to all geometries as t ~ 0: 

(6) 

The solution to (2,3) in this case is 

(7) 

The quasi-steady-state equation (2) incorrectly predicts that Pm:::: tm+l, whereas (4) 

correctly predicts Pm:::: tm+ll2. Although the numerical constant in (7) is too small, the 

error varies from only 7% ~ 26% as m varies from 0 ~ 00. 

Having shown that (4) accurately predicts the mean matrix pressure, we have 

incorporated it as a fracture/matrix coupling term in the simulator TOUGH (Pruess, 

1987). In solving problems with this modified simulator; we assume that each compu

tational cell represents an element of the fracture continuum, with the fracture/matrix 

interaction computed from (4). As a test of this approach, consider flow from a 

\ i 
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boundary that is maintained at pressure Po, into a semi-infinite formation that is ini

tially at Pi' The permeabilities are taken as kf = 10-15 m2 and km = 10-18 m2, the poro

sities as $f =0.001 and $m =0.1, and the matrix block radii as am = 1 m. The tempera

ture is 20°C, and the boundary and initial pressures are Pi = 10 MPa and 

Po = llMPa. 

The flowrate into the formation is shown in Fig. 2. In the case "MINC - 1 

shell", . the matrix blocks were represented by a single computational cell; this is a 

numerical implementation of the Warren-Root equation (3). In the case "MINC - 10 

shells "each matrix block was discretized into 10 concentric shells. All three compu

tations predict the correct pressure response in the short and long-time limits, when 

P f :: t -112. In the intermediate-time regime, when the matrix blocks near the inlet are 

being filled, the Warren-Root method incorrectly predicts P f :: constant, whereas the 

new method correctly leads to the known (Nitao and Buscheck, 1991) t-1I4 pressure 

dependence. 

The computational time required for simulating a given problem with a code such 

as TOUGH grows linearly with the number of computational cells, since most of the 

computing effort consists in inverting a sparse matrix by Gaussian elimination. Since 

the nonlinear coupling equation removes the need for discretizing the matrix blocks, 

the savings in computational time compared to the fully-discretized simulation is about 

90%. 

This work was supported by the Assistant Secretary for Conservation and Renew

able Energy, Geothermal Division, U.S. Department of Energy, under Contract No. 

DE-AC03-76SF00098, with the Lawrence Berkeley Laboratory. The authors thank 

Marcelo Lippmann and Lea Cox of LBL for reviewing an extended version of this 

paper. 
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Fig. 1. Average matrix pressure in a spherical block that is subjected to a step

function increase in pressure at its outer boundary. 
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Fig. 2. Flowrate into a one-dimensional fractured formation, as described in the text. 
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