
LBL-33116 
UC-413 
Preprint 

ITl1I Lawrence Berkeley Laboratory 
~ UNIVERSITY OF CALIFORNIA 

Submitted to Physical Review C 

The Effective Action for SU(N) at Finite Temperature 

S. Chapman 

November 1992 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

r 
m 
r 

n I 
o lJ 
" lJ '< .. .. 
.. (J"t 



DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. Neither the United States Government 
nor any agency thereof, nor The Regents of the University of Califor
nia, nor any of their employees, makes any warranty, express or im
plied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any infonnation, apparatus, product, 
or process disclosed, or represents that its use would not infringe pri
vately owned rights. Reference herein to any specific commercial 
product, process, or service by its trade name, trademark, manufac
turer, or otherwise, does not necessarily constitute or imply its en
dorsement, recommendation, or favoring by the United States Gov
ernment or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government 
or any agency thereof or The Regents of the University of California 
and shall not be used for advertising or product endorsement pur
poses. 

Lawrence Berkeley Laboratory is an equal opportunity employer. 

.. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain COlTect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any walTanty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



\( 

The Effective Action for SU(N) 
at Finite Temperature 

Scott Chapman 

NUCLEAR SCIENCE DIVISIONt 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, CA 94720 

November, 1992 

LBL-33116 

UC-413 

tThis work was supported by the Director, Office of Energy Research, Division of Nuclear Physics 
of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract 
No. DE-AC03-76SF00098. 



Abstract 

Techniques are developed in order to study static magnetic screening and other 

nonperturbative aspects of QeD at high temperatures. In particular, a covariant 

derivative expansion of the one loop effective action is presented and then modified 
( -

by an infinite resummation so as to provide agreement with the exactly calculable 

one loop effective potential. Essential to this technique is a self-consistently d~fined 

infrared cutoff which determines the prefactor in semiclassical calculations. Using 

this prefactor, densities of monopole and dyon plasmas are calculated, and it is found 

that if such plasmas do exist at finite temperature, then the solitons involved must be 

overlapping one another. It is also shown that no consistent perturbative or nonper

turbative approximation can give rise to a linear term in the SU(2) effective potential, 

since such a term would not be gauge invariant. Finally, contour plots of the SU(3) 
. 

Ao effective potential are presented. 
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1 Introduction 

It has long been predicted that QCD features a phase transition from hadronic matter 
\ 

to a quark-gluon plasma at sufficiently high temperatures or densities[l]. Creating 

such a plasma is in fact the aim of many of the heavy ion experimental programs at 

the AGS, SPS and RHIC. Since the quarks and gluons in such a hot plasma would 

be very energetic, they would also be ~eakly interacting due to asymptotic freedom. 

Consequently, extensive work has been done in developing perturbative techniques for 

finite temperature QCD[2, 3]. One of the most interesting results of this perturbation 

theory is a resummation of infrared divergent diagrams which gives rise to an Ao De

bye mass of order gT that screens static color electric fields[2]. Unfortunately, no such 

resummation has yet been found for the magnetic sector. Consequently, for diagrams 

above a certain order, infrared divergences become intractable and perturbation the

ory breaks down[4]. These divergences are a result of loops involving massless (n=O) 

Matsubara modes, so they do not occur in in QED since the photon only couples to 

fermions which always have Matsubara frequencies of order 1rT. 

A constant Ao field cannot in general be gauged away at finite temperature the 

. way that it can at zero temperature; consequently quantum effects give rise to an 

effective potential for the Ao field when T > 0[5]. One way that QCD could generate 

a magnetic screening mass would be if the Ao effective potential were to feature an 

absolute minimum which was not simply a gauge transformation of Ao = O. The Ao 

field co.uld then possess a nonzero vacuum expectation value (vev), thus behaving like 
'" 

a Higgs field and giving a magnetic mass to the Ai fields through the gauge-gauge 

coupling terms. Unfortunately, no such minimum exists at the one loop level[5, 6]. 

At the two loop level, on the other hand, the presence of a negative linear term 

in the effective potential does produce a vev at Ao "" O(gT), thus giving rise to a 

magnetic mass of order g2T[7]. This vev and magnetic mass is spurious, however, 

since the linear term is exactly cancelled by a term arising from the summation of the 

ring diagrams[8]. Beyond the order of the ring diagrams, perturbation theory breaks 
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down due to the magnetic infrared divergences mentioned earlier. There is therefore 

no way that perturbation theory alone can generate a nontrivial absolute minimum 

in the Ao effective potential. One of the results of this paper is to show in addition y 

that no gauge invariant resummation or non-perturbative technique can give rise to a 
. , 

linear term in the effective potential, since such a term would not be gauge invariant. 

In a more general context, it is well known that perturbation theory is limited in 

its application and by its very nature is not able to shed light on a number of very 

important unsolved physical problems. For this reason, non-perturbative techniques 

have been increasingly sought after and explored in recent years. Perhaps the most 

successful and well-developed of these techniq1.les is the semiclassical method of ex

panding around classical solutions. In the language of the path integral formalism, 

the idea behind this method is that by integrating over field configurations which 

are small fluctuations around nontrivial classical solutions, as well as over ones which 

are close to the perturbative vacuum, one can better approximate the full functional 

integral, which should in principle be performed over all possible field configurations. 

In field theory for example, integrating around instanton solutions allows one to gain 

insight into quantum tunneling processes which can never be described by any finite 

order of perturbation theory[9, 10, 11]. 

Similarly, for finite temperature QCD, it has been pointed out that integrating 

around a plasma of magnetic monopoles could possibly provide magnetic screening 

as T ~ 00 [6, 12, 13]. Is there any evidence for the presence of such monopoles? At .. 
zero temperature, Mandelstam showed that if th~ ground state of QCD is a coher

ent superposition of monopoles, then confinement could be understood as the dual 

analog of superconductivity[14]. In other words, just as a condensate of electrically 

charged Cooper pairs will adjust to confine magnetic fields inside a superconductor, 

a condensate of color magnetic charges would adjust to confine color electric fields in 

the QCD vacuum. It has never been proven that such a condensate actually forms 

the ground state of QeD, however Savvidy has shown that a constant color magnetic 
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field H has negative energy compared to the perturbative vacuum at T = 0[15]. Al

though Savvidy's configuration violates Lorentz invariance, his result suggests that 

the ground state of QeD does have some nontrivial magnetic structure. Based on this 

idea, Oleson has advocated a picture in which random distributions of magnetic vor

tices form a Lorentz invariant ground state featuring < H >= 0 bllt < H2 ># 0[16]~ 

This picture is not contradictory with one involving a monopole condensate since 

magnetic vorices of finite length must begin and end at monopoles, and both pictures 

feature strongly enhanced low frequency fluctuations[14]. At high temperatures, even 

though the Savvidy effect disappears[17], the presence of l~w frequency (infrared) 

magnetic instabilities could be indicating the presence of monopoles or other magnet

ically charged objects. In this paper, we consider only high temperature monopoles 

and dyons and do not specifically address condensate formation or other issues relat

ing to confinement at T = O. 

In SU(N) at zero temperature the AD field can always be gauged away, so if there 

are monopole solutions, one must be able to create them from the Ai fields alone. 

Infinite energy monopole solutions and finite energy monopole configurations which 

are not solutions have been found[18, 19], but no finite energy monopole solutions 

are known for T = O. In order to find a solution which sufficiently smoothes out the 

l/r singularities in the Ai fields at the origin, one usually introduces a scalar field 

in the adjoint representation, as is done for the 't Hooft-Polyakov[20, 21] or Prasad

Sommerfield [22] monopoles. At finite temperature, however, the AD field cannot in 

general be gauged away, and it is therefore able to play the role of the Higgs field in 

a monopole configuration. Making this substitution, Prasad-Sommerfield monopoles 

become dyon solutions in pure gauge theories, possessing electric as well as magnetic 

charge. Although the dual charge of dyons makes them necessarily more complicated 

than monopoles, they are at present the only available magnetically charged classical 

solutions with finite energy at the tree level, so they are a logical object of study. In 

addition to knowing the classical mass of-these dyons, it is obviously important to 
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know how dense of a gas or plasma they might form at any given temperature. 

Finding the density of a soliton plasma can be a highly nontrivial task. In order to 

derive an expression for the density, I will present a brief outline of the semiclassical ~ 

method for a field theory at finite temperature. The first step is to find a nontrivial 

field configuration with energy El < 00 which is a local minimum of the classical 

action l . Since the solution has finite energy, it must be localized, approaching the 

perturbative vacuum solution (or one of them if there is more than one) as r -+ 00. For 

the sake of simplicity, we will assume that the solution is a time independent soliton. 

It is plausible that a configuration with two solitons which are separated by a distance 

much larger than their size would be a close approximation to another solution. One 

therefore proceeds by either proving or assuming that configurations with N well

separated identical solitons are also local minima of the action[9, 23, 24, 25]. Often 

it is shown or assumed in addition that the solitons are weakly interacting. If this 

is the case, then the relative positions of solitons in. an N soliton configuration are 

arbitrary and must be integrated over as well, giving a factor of volume V for each 

soliton. Putting together these ideas, one can write down a rough approximation to 

the partition function of a plasma of these solitons[23]: 

where the first term corresponds to no solitons, the second to one soliton, the third 

to two, etc. Since the position of each identical soliton is being integrated over, a 

symmetry factor of ~! must be included for N soliton configurations. In addition, 

there is a dimensionless "prefactor" I included for each soliton which can in general 

be some complicated function of the coupling constant g. 

The density of a plasma of solitons is determined by-noting that for Z = E xn In!, 
1 It is not enough to find a classical solution which maximizes the action in some functional 

direction, because integrating over all small fluctuations around such a configuration would 
give an infinite result. This is the problem of negative eigenmodes which we address later 
in the paper. 
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the average n is given by < n >= x. Thus, the density is simply: 

(1.2) 

To determine I in the one loop approximation, one must calculate functional deter

minants around a soliton background. This is a very formidable task since no general 

method is known for calculating these determinants exactly. For this reason, the 

value of I is often simply estimated by heuristic arguments. 

The main thrust of this paper is to develop new approximation techniques for 

determining prefactors "f around a large class of background configurations. at finite 

temperature. As examples of their utility, these techniques are applied to dyon and 

monopole configurations in pure gauge SU(2). It is found that if plasmas of such 

configurations do exist, then either they are unstable, infinitely massive, or else their 

density is so high that they are strongly overlapping. For these types of configurations , 

semiclassical techniques are therefore not applicable. However, it is not ruled out that 

other soliton solutions may be found in the future which are not plagued by the above 

problems. In that event, the density of plasmas of those solitons could then be found 

by using the techniques developed here. For example, magnetically charged meron

antimeron solutions are known to exist at finite temperature[26], though no explicit 

solutions are available. Alternatively for pure gauge theories, Coleman has found 

topologically stable monopole solutions which have a singularity at the origin[19]. It 

is possible that singularity-free monopole configurations could be found which would 

approach the above solutions as r ~ 00 and would also minimize the one loop effective 

action. 

I begin this paper by presenting the basic notation and formulas for finding the 

regularized one loop effective action for a pure gauge non-Abelian theory. Next, 

I generalize the methods of ref. [27] to finite temperature and derive a covariant 

derivative expansion for the effective action. The increasing dimension of successive 

terms of this expansion is balanced by an infrared cutoff mass which is self consistently 

determined so as to optimize the expansion. This infrared scale is shown to uniquely 
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determine the semiclassical prefactor 'Y. Comparison of the results of the expansion to 

the known effective potential for a constant Ao field in SU(2) suggests that the lowel:!t 

order form of this expansion should be reliable for slowly varying configurations in • 

whichlAgl < O(T/g) when 9 ...,.. a (T ---* 00). Aft~r showing that dyons meeting the 

above qualifications must necessarily be overlapping, I extend the covariant derivative 

'expansion by performing a resummation in order to find an expression which is valid 

for static background configurations with IAgl = O(T / g). Since the effective potential' 

of the Ag field can have periodic minima at 4n7rT/Ng for pure gauge SU(N) (see 

Appendix B), I also examine dyon solutions and monopole configurations in which the 
, 

magnitude of the Ag field approaches one of these minima as r ---* 00. I show that these 

monopoles are unstable and that depending on the temperature, the corresponding 

dyons are either infinitely massive or else overlapping. I complete the discussion of 

monopoles and dyons by showing that introducing fermions into the theory does not 

improve the situation. 

2 Preliminaries 

We consider a pure gauge, Euclidean, non-Abelian theory with the Lagrangian: 

£, = _~(F:J2, (2.1) 

where 

F;" = 8tLA~ - D~b A~ (2.2) 

and 

D~b = 8tLS
ab 

- grbc A~. (2.3) 

Since we are interested in finite temperature, the fields have periodic temporal bound

ary conditions A~(T) = A~(T + (3), where {3 = 1/T[2]. The equations of motion for 

this Lagrangian are 

(2.4) 
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Let A~ be solutions to the above equations which transform as normal Yang-Mills 

gauge fields, and let B~ be quantum fluctuations around those solutions which trans

form in the adjoint representation. To consider one loop effects, we make the sub

stitution[28] (A~ = A~ + B~) inthe Lagrangian and expand the action up to terms 

quadratic in B~: 

- - 1 J.74 a ab b S(A+B) = S-"2 . axBI-'W/LvBv, (2.5) 

where S = S(A). Note that there are no terms linear in B since A is a classical 

solution and hence a saddle point. We choose to work in the background gauge, 

(2.6) 

wherejj~b = 8/Lhab_grbcA~, since it is manifestly covariant and because Pauli-Villars 

regularization takes a particularly simple form in this gauge[29]. By adding a gaug~ 

fixing term of ~ (jjI-'B/L)2 to the Lagrangian, we get: 

wab = _(jj2)abo + 2gjabc pc I-'V /L II /LV , (2.7) 

- a _ -a - ab -b 
where F/L II - 8/L Av - Dv AI-" 

The functional integral needed to calculate the one loop effective potential is given 

by: 

Pauli-Villars regularization can be performed by introducing auxiliary fields B' and 

e' which transform like B~ and ea , but have mass A which will later be allowed to 

become infinite. Because all of the field fluctuations are in the adjoint representation, 

the mass terms A2 B,2 and e' A2e' are gauge invariant. Application of this procedure 

produces the following regulated partition function[29]: 

Z[A]lreg = Z[A]fz'[A, A2] , (2.9) 

where Z' has the same form as eqn. (2.8), except that mass terms are included. Note 

that for convenience we have used the same Pauli-Villars mass A for both the B' and 

e' fields. 
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2.1 Zero Modes 

We assume that the classical solutions depend on p parameters Ii but that the total 

gauge-fixed action is independent of these parameters. There are then p remaining 

zero modes of the Lagrangian given by aA~/ a,i where i runs from 0 to p. Actually, 

any gauge transformation of one of these modes will also be a zero mode, so a more 

general expression for these zero modes is[23]: 

(2.10) 

where the second term is pure gauge and et are gauge functions. By fixing the gauge, 

we have already removed all of the modes which do not satisfy (2.6), so in order to 

determine the remaining zero modes, we need to find specific functions et such that 

iJ~bX~(i) = O. For the cases that we are studying, these zero modes can be made to 

be orthonormal, so we will demand: 

(2.11) 

As a concrete example, consider a soliton solution which is centered around some point 

in space denoted by the vector R. The solution then has the form A~ = A~(T, X - R). 
Since the Lagrangian has no preferred points, a change in R will not change the action 

and therefore represents a zero mode. In this case Ii = Ri, and due to the functional 

form of the solution aA~/aRi = -aiA~. We then choose et = A~ so that 

fJixa(i) = _Fa. V lVj J.I, J.l,t , (2.12) 

and the background gauge requirement (2.6) is trivially satisfied by the equations of 

motion (2.4). The normalization for this mode is then given by: 

(2.13) 

where i is a label which is not summed over. If the soliton is a self-dual solution, 

then[30] 

Ea - F,a 1 Fa - Ba 
i = Oi = -2 fijk jk = i· (2.14) 
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If, in addition, the soliton is spherically symmetric, then the normalization takes the 

remarkably simple form of Ni= -So 

There are infinities due to the functional integration over non-gauge zero modes 

which can be isolated by the collective coordinate method[9, 23]. First, we expand 

an arbitrary field configuration as follows: 

(2.15) 
n 

where bn are orthonormal eigenfunctions of W with positive eigenvalues, and we have 

explicitly included the ,i dependence of A in order to allow for zero mode fluctuations. 

To perform the functional integration, we must find the Jacobian associated with 

expressing the metric in terms of the eigenfunctions. For finite matrices, the Jacobian 

for a transformation from a vector X in one basis to a vector Y in another basis is 

found by calculating det J, where 8X = J8Y. If both bases under consideration, 
.~ 

are orthogonal, then J can always be diagonalized by a unitary transformation J' = 

U JU- 1 so that the determinant is given by det J = I1k J~k' Calculating the length 

element then defines the determinant by isolating the diagonal elements of J': 

(8£)2 = (8X? = (J'U8y)2 = E J~1(8Y? . (2.16) 
k 

Generalizing this technique to field theory and applying it to our problem, we have: 

P 

(8£)2 = J d4x(8A(x))2 = ENi (8,i? + E(8en)2, 
i=l n 

(2.17) 

so that after Gaussian integrations[23), 
p 

Z[A] = ql 1M J d,i)eS det( -j)2)[det '(Wj21l')t 1
/

2 
, 

,=1 
(2.18) 

where det'(Wj21l') means to take the~determinant with respect to the nonzero modes 

of W /27r only. 

Since we are using Pauli-Villars regulators, we will also encounter the operators 

W + A 2, which do not have any zero modes. When taking determinants of these, 

however, it is still convenient to split the results into two factors: 

(2.19) 
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The full regulated expression, therefore becomes: 

where we use the following notation for some operator K: 

det(K) 
det(K)lreg = det(K + A2) . 

(2.20) 

(2.21) 

Note that we have left out the factors of 27T' in the regulated determinants of eqn. 

(2.20), since this expression only involves ratios of determinants, and multiplicative 

constants drop out. For the remainder of this paper we will drop the bars on ..4, [) 

and P except wherethey are needed for clarity, keeping in mind that we are always 

referring to functions of the background field and not of the full field with quantum 

fluctuations included. 

3 CovariantDerivativeExpansion 

Now comes the difficult problem of evaluating the functional determinants. For a few 

select cases, the determinants can be evaluated exactly, but in order to find a general 

expression, some approximation procedure must be used. The most common method 

is to make a covariant ·derivative expansion. There have been many papers written 

suggesting a variety of ways to make such an expansion at zero temperature[27, 31, 

32, 331, but the literature on finite temperature expansions is much more limited[34]. 

Each of the zero temperature methods that deals with a massless theory is forced 

to introduce some form of infrared cutoff mass in order to balance the dimension of 

new derivative terms. In most schemes, this cutoff mass remains unspecified with the 

argument that in a complete calculation of an observable it will drop out anyway. 

Alternatively, D'yakonov et al.[27] proposed a scheme in which the infrared cutoff is 

actually chosen in such a way that it optimizes the accuracy of any desired order of 

derivative expansion. To check their method, they calculated the one loop quantum 

correction to the action of the SU(2) instanton and obtained a result which was within 
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3% of the exact value calculated by 't- Hooft[ll]. It is this method that we have chosen 

to extend to finite temperatures. 

In order to determine the free energy n of some nontrivial background configura-
~ - -. 

tion A, we need to calculate the ratio of the partition function of that configuration 

to the trivial A = 0 configuration: 

Z(A) 
exp( ~n/T) = Z(O) Ireg • 

\ 

(3.1) 

From eqn. (2.20), we can see that the calculation will entail finding ratios of deter

minants of various operators. These ratios can be evaluated by using the following , 

expression for the difference of two logarithms: 

det f{ _ 100 dt. -tK -tKo 
d J( Ireg - exp{- -R(t)Tr(e - e )} 

et 0 0 t 
(3.2) 

where Tr is a functional trace over all indices and coordinates and 

R(t) = 1 _ e-tA2 
• (3.3) 

Note that t is formally of dimension M-2 • As long as ·both of the operators that 

we are interested in (_D2, W) are positive definite, they will have continuous spec

tra of eigenvalues beginning with zero, as do their Vacuum operator ·counterparts 

(-82, ~82). One expects, therefore, that for sufficiently smooth and rapidly falling 

background fields, the integrand of (3.2) will be a rapidly decaying function of t[27]. 

This suggests the possibility of an approximation whereby the infinite upper limit of 

the t integration is replaced by an infrared cutoff 8. In addition to this approxima-

tion, we will make an expansion of the exponential operators in powers of covariant 

derivatives. After integrating with respect to t, the optimum 8 for any given number 

of.terms in this expansion can be determined by finding the extremum in the resulting 

expreSSIOn. 

The functional trace in eqn. (3.2) can be taken relative to any complete set of 

states, so we are free to use plane waves exp(ipaxa). These have the effect of shifting 
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the derivatives: 

where tr is a simple trace over spacetime and color indices. Due to the periodic . . 

temporal boundary conditions, we have replaced the normal zero temperature Po 

integral for a sum over the modes Po = 2mrT. Also the Xo integral in d4x is from 0 

to f3 = liT. A 1 has been included at the end of the equation to emphasize the fact 

that the shifted exp( -Kt) operates on unity; so that, for example, any term in the 

expansion of the exponent with a 00/ all the way to the right will vanish. 

3.1 Ghosts 

We now present the covariant derivative expansion of the ghost determinant. Accord

ing to eqn. (3.4), we have 

The expansion amounts to expressing 

where l~h is comprised of terms involving n covariant derivatives. 18h is simply given 

by the zeroth order term in the t expansion of eqn. (3.5), but is exactly cancelled in 

our calculation by the vacuum contribution seep. in eqn. (3.2). Moreover, any term 

in the expansion with an odd number of DO/'s will vanish upon p integration. 

Thus the first nonzero term in the covariant derivative expansion is given by: 

(3.6) 
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where we have performed the momentum integral by using equations (A.I) and (A.2) 

in Appendix A. We would like to separate the T = 0 and T =1= 0 parts of the above 

expression. This can be done by using equations (A.4) and (A.5) which have been 
- - -

derived from the Poisson summation formula (A.7): 

H 2 2 
gh 1 "" n (n) 

12 = 87r2t L- 4T2t exp - 4T2t ' 
. n 

(3.7) 

where 

HI = tr J d4XD~ = -IN J d4xA~. (3.8) 

Each term in eqn. (3.7) vanishes in the T --? 0 limit. This is reassuring since HI can 

be gauged away in the T = 0 limit. 

Using similar techniques, the next term in the expansion is given by: 

1 n 2 n2 n 2 . 
nh 

= 4871"2 ~ exp( - 4T2t)[~ F2 + (4T2t)(G2 .:... D2) + 2(4T2t? H2], (3.9) 

with the functionals F21 D 2 , Gn and Hn defined in Appendix A. Here the only term 

surviving when T --? 0 is the F2 term2 with n = 0, in agreement with the result of 

d'Yakonovet al. [27]. This expansion can of course be continued, but for our purposes 

we will only need the first two terms. 

To find the determinant, we must integrate over t as in eqn. (3.2). In all of our 

expressions, the zero temperature (n = 0) terms are the only ones with ultraviolet 

divergences. For the rest however, we can immediately let A --? 00 so that R(t) = 1 

and perform the remaining elementary integrals by using the variable u = lit. For 

the case of It we get: 

(3.10) 

2Note that after using the Poisson summation formula, the sum over n is no longer a sum over 

Matsubara frequencies; in fact, n = 0 terms correspond to T = 0, while the n =f:. 0 terms provide the 

temperature corrections 
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where the second equality is found after using the approximate expressions in Ap

pendix A which become exact as 4T28 -+ 00. In this paper, we will only consider 

infrared cutoffs T 28 rv 0(1/90/) with a 2:: O. For a > 0, the approximations used 

are obviously very good at high temperatures, but surprisingly enough, even when 

4T28 = 1, they are accurate to within a few percent. On the other hand, these approx

imations are not valid forT = 0, and consequently many of the following equations 

will not reduce correctly to their zero temperature counterparts in the limit as T -+ o. 
After using eqns. (A.16-A.19) to perform the t integration and high temperature ap

proximations on Jth
, we arrive at the following expression for the regulated ghost 

determinant: 

det( _D2) 
In[ det( -fJ2) ] Ireg 

3.2 Gauge Fields 

For the gauge fields, we must only take the trace over the nonzero modes of exp( - W t). 

If, however, we take the trace over all eigenfunctions of W, p of them will just give 

us a 1. This contribution can be subtracted out by hand, so that we get: 

det'W loo dt 
d W. Ireg = exp{ - -R(t)[Tr(e-tW 

- e-tWO
) - p]}1 

et 0 0 t 
(3.12) 

Since the trace is Ilow over all modes, we can just take it with respect to the functions 

b~ exp(ipO/xO/) , where b~b~ = 8~~. The calculations for gauge fields are similar to the 

ones for ghosts and one finds: 

det(-D2
) 2 

41n[ det( -fJ2) Jlreg + pbE + In(A 8)] 

1 A2 
+ 87r2 h'E - 3.1 + In( 4T2 ) + 4TM]F2 . (3.13) 
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Note that if F2 = P = 0 (as for a constant field), then W/LV = -D28/Lv and the log of 

the gauge determinant is simply 4 times that of the ghosts, since the former involves 

a trace over spacetime indices. 

Fr~m eqn. (2.20), w~ can see that the quantity that we will be interested in wilt" 

be 

(3.14) 

Using the expressions in (3.11) and (3.13), we ca~ optimize the derivative expansion 

by differentiating (3.14) with respect to 8 and finding an extremum. The resulting fJ 

must obey the equation: 

(3.15) 

Plugging in this 8, we get: 

(3.16) 

where 

(3.17) 

3.3 Renormalization 

It is worth noticing that the last term on the first line of (3.13) cancelled the Pauli

Villars ultraviolet regulator (A2) in the prefactor of eqn. (2.20) and replaced it by an 

infrared cutoff mass (1/8) in eqn. (3.16). One might at first suspect this as being an 

anomalous artifact of our derivative expansion, but it is worth noting that in 't Hooft's 

exact one loop instanton calculation, his ultraviolet regulator in the prefactor was also 

replaced by an infrared scale - the size of the instanton (p). Moreover, renormalization 

can alway~ be performed by using counterterms in the original Lagrangian which have 
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the same symmetry as that of the background field at zero temperature. Although the 

gauge of the background field has been fixed, it has not been specified; consequently, 

the counterterms must take the form CF;v, where C is some constant depending on 

A 2 • It is therefore reassuring that the only A 2 dependence comes in the coefficient of 

a term multiplying F2 , so that all ultraviolet divergences can be removed by normal 

counterterms. 

Because the counterterms in the background gauge have the same form as the 

original Lagrangian, one can create a renormalized Lagrangian simply by multiplying 

the original bare Lagrangian by the factor: 

(3.18) 

where 9 now represents the running coupling. At very high temperature, it is most 

convenient to choose the renormalization scale to be Q2 ~ 4T2 exp(3.1 - ,E) rv 50T2 

in order to absorb all of the one loop coefficients of F2 into the definition of the 

renormalized (running) coupling. This running coupling constant is then defined in 

terms of the bare coupling by: 

1 1192 N 4T2 1 
2[1 - 48 2 [3.1 - IE + In( A2 )] = 2 . 
9 W % 

(3.19) 

Just as at zero temperature, the running coupling can be defined in terms of an 

experimentally determined mass scale[35]. We will denote this scale by AQCD even 

for theories other than QeD. The running coupling can then be expressed 

92 12w 
4w = llNln(T2/A~cD) , 

(3.20) 

and the renormalized effective action takes the form: 

If a different renormalization scale Q2 is chosen, the coefficient of F2 in (3.21) will be 

altered by an 0(1) term, and AQCD in (3.20) will be multiplied by a calculable factor. 
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3.4 Constant Background Ao Field 

To test the accuracy of this covariant derivative expansion, we can plug in a constant 

SU(2) background field of A~.= 7], with all other field components vanishing. There 

are no non-gauge zero modes in this configuration, so. p = o. It can also be shown 

that D2 = F2 = Gn = 0 and that 

(3.22) 

where V = f d3 x is an infinite spatial volume. The infrared cutoffs and effective 

action from eqns. (3.15) and (3.21) take the simple forms: 

I 

V[T2( ·)2 T ()3 1 ( )4] 
Seff = - T 3 g7] - V27r3 97] + 127r2 97] • (3.23) 

The exact answer is well-known to be (see Appendix B): 

(3.24) 

where mod 27rT applies to each factor of 97] in Seff. Veff is plotted in figure 3.1. It is 

apparent that no finite number of terms in the derivative expansion outlined above 

will be able to produce a periodic effective potential for the Ao field. Nevertheless, 

if one is interested in field configurations for which Ao '" O(gOtT) with Q' > -1 in 

the T ~ 00 limit, then only the quadratic term in the effective potential will be 

important. Since the derivative expansion correctly reproduces this term (fig. 3.1), 

it is reasonable to use the expansion to describe the above class of configurations. 

It is important to note on the other hand that the derivative expansion is a bad 

approximation for configurations with Q' = -1 even when T ~ 00, because in this 

case the cubic term and periodic nature of Veff become important. For example, one 

should not use this expansion to study configurations in'which the Ao field approaches 

one of the minima at 2n7rT/9. 
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Figure 3.1 The one loop SU(2) Ao effective potential with no fermions (solid), 1 mass
less fermion (dashed), and 2 fermions (dot-dashed). The dot-dot-dashed curve shows 
the lowest order covariant derivative expansion result of eqn. (3.23). 

4 Application to Dyons 

It has been suggested[13] that a plasma of magnetically charged solitons featuring 

Ao ~ O(gT) as r ~ 00 could possibly self-stabilize in the T ~ 00 limit of SU(2), 
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even though there is no O(gT) minimum in the Ao effective potential. The derivative 

expansion can be used to study this idea more carefully. We make the following 

ansatz for' spherically symmetric soliton configurations: 

A~ = TJ Ta f(x) 
r 

(4.1) 

where TJ is the expectation value of IAol at infinity and x = gTJT. With this ansatz, 

the equations of motion (2.4) take the dimensionless form[36]: 

x2 f" + 2xf' - 2f(1 + Xh)2 0 

x2h" + 2xh' - (1 + xh)(2h + xh2 + xf2) - 0, (4.2) 

where the primes denote derivatives with respect to x. Since f, h and x = gTJT are 

dimensionless, any solution of the above equations will have a characteristic length 

scale of O(1jgTJ). 

Note that in ansatz (4.1), the magnitude of the Ao field approaches a nonzero 

constant value as r -+ 00. Rather than compare such configurations to the pertur

bative Ao = 0 vacuum, it is more useful to compare them to a background wit~ a 

constant IAol = TJ field. From the form of Veff in eqn. (3.24), it is apparent that such a 

background has infinitely more free energy (by a volume factor) than the perturbative 

vacuum, but it is possible that the infinite increase of entropy gained by introduc

ing a plasma of solitons will offset the infinite background energy and allow such a 

plasma to self-stabilize. In other words, we would like to determine whether the free 

energy of a plasma of dyons in a constant background field is lower than that of the 

perturbative Ao = 0 vacuum. To do this, we must calculate ZjZT/, where Z is the 

partition ,function for a background dyon configuration and ZT/ is that for a constant 
I 

IAol = TJ background field. All of our previous calculations have been for ZjZo where 

Zoo refers to the perturbative vacuum, so some of our expressions must be modified. 

Fortunately, F2 = D2 = Gn ....:. 0 for both a constant field and theperturbative vac

uum, so only the Hn are different. In fact all of the necessary modifications can be 
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made by simply subtracting from each Hn the value of Hn for a constant field: 

(4.3) 

Much of our discussion will center around-the Prasad-Sommerfield-Julia-Zee (PSJZ) 

dyon, which is a magnetic and electrically charged self-dual solution of the classical 

Euclidean SU(2) Lagrangianfor any value of TJ. It is defined by: 

f(x) = ±(coth(x) -l/x) hex) = ±(csch(x) - l/x) , (4.4) 

where the ± reflects the fact that both dyons and antidyons are solutions to the 

equations of motion, each having a tree level action given by S = -47rTJ/gT [30]. 

In addition to three translational zero modes which were treated previously as an 

example, these dyons each have a global gauge zero mode which is not eliminated 

by the background gauge requirement[37]. To find the prefactor associated with this 

zero mode, it is best to consider t~e monopole in the string gauge. In this gauge, 

Ai) = ba3TJf, and the Ai field has a Dirac string singularity along the -z axis. The 

string gauge form of the solution can be obtained from the spherically symmetric 

form by making a gauge transformation with the following gauge function[19]: 

. U(O,<p) = exp(iU3<P/2) exp(iul)/2) exp(-iu3<P/2) , (4.5) 

where U a are the Pauli matrices. 

Consider the following global gauge transformation: 

\ 

AIL -+ A~ = GA~G-l , (4.6) 

where AI' = U aA~ and G is given by: 

(4.7) 

Treating w as an infinitessimal collective coordinate, we find: 

(4.8) 
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By making a careful choice of the gauge function ()a from eqn. (2.10), we get the 

following zero mode: 

(4.9) 

which satisfies the background gauge requirement (2.6) through the equations of mo

tion (2.4). Like the translational modes, the normalization of this mode is No = -8, 

and the partition function involves an integral over the collective coordinate w. How

ever, unlike the translational modes, w has a finite range of 0 < w < 41r /9T/, as can 

be easily seen by examining the form of G in·eqn. (4.7). The entire prefactor for the 

dyon can now be expressed in terms of the infrared cutoff 8: 

( 4.10) 

where V is the volume of space and Seff is defined by eqn. (3.24) with the replacement 

(4.3). 

As we mentioned in the Introduction, if we assume that identical dyons are nonin-

teracting, then we can approximate the one loop functional integral around two well 

separated dyons bye /2. The factor of 1/2 is included in order to avoid double count

ing when the positions of the identical dyons .are switched. Similarly, for a solution 

with N identical dyons, there will be a symmetry factor of lIN!. A full one loop cal

culation of the partition function should incorporate quadratic fluctuations around 

every single saddle point of the original Lagrangian which has the same boundary 

~onditions at infinity. If we demand that A~ -+ T/ as r -+ 00, then the saddle points 

include any number of dyons and antidyons, as well as a constant background field 

with no dyons: . 

(4.11) 

where the factor of 2 reflects the sum over both dyon and antidyon saddle points, and 

Zo is the partition function of the perturbative vacuum. Using "Veff(T/) from (3.24) 
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and dropping all but the quadratic term, we get the following expression for the free 

energy density of a dyon plasma compared to that of the perturbative vacuum: 

2 321r7] n = -(T/V)lnZ = ~ (g7]T) - g3T82eXp(Beff). ( 4.12) 

The trick of self-stabilization as T -+ 00 is to see if a minimum of n can be found for 

some nonzero value of 7]. 

For the moment, let us assume that as T -+ 00 (g -+ 0) one loop corrections 

are parametrically smaller than the tree level action (i.e. we assume that infrared 

divergences do not destroy this property). We can therefore replace Beff in (4.12) by 

S = -47r7] / gT; Because of the exponential dependence of the second term, we can 

see that the only hope of finding a nontrivial minimum would be for 7] '" O(g"'T) 

with ex ~ i. Furthermo~e, the prefactor of the second term could be of no higher 

order in 9 than g2+2'" since that would be the order of the first term. From the 

discussion in the Introduction, we can see that the density of the plasma would be 

f'V O(g2+2"'T3), while from the discussion after eqn. (4.2), we know that the size of a 

dyon is f'V O(1/g1+"'T). In other words, for ex ~ 1 the dyons would have to be strongly 

overlapping. Furthermore, since the difference in length scales is a parametric one, 

the overlapping would get infinitely worse as 9 -+ O. 

Is this really a problem? If the plasma was comprised only of identical dyons with 

no antidyons, then overlapping might not be a problem since topologically stable, 

overlapping dyon solutions which are classically noninteracting have already been 

found[25]. On the other hand, a dyon and an antidyon can annihilate, so the ap

proximation that we have been using that they are noninteracting would be a very 

bad one for a strongly overlapping plasma of dyons and antidyons. If an overlap

ping neutral plasma did in fact exist, it would have to be strongly interacting and 

consequently very difficult to describe using semi-classical methods. Furthermore, 

as Gross et al.[6] pointed out when making a similar argument about a plaSma of 

Wuo:Yang monopoles, such a plasma, with typical field strengths on the order of gT, 

would be difficult to distinguish from normal fluctuations around the perturbative 
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vacuum. Perhaps the only clue to its existence might be the enhancement of low 

frequency fluctuations[14]. In order to avoid the problem of annihilation, it has been 

suggested that some mechanism could be found which would stabilize large domains 

of dyons and antidyons[38]. Even with such a mechanism, the fact that each dyon has 

zero field strength at the origin would still make a parametrically overlapping plasma 

domain locally very difficult to distinguish from the perturbative vacuum. 

It is interesting to see what value of a would be necessary to make a plasma of 

dyons nonoverlapping in the 9 -+ 0 limit. Suppose that infrared divergences in one 

loop terms miraculously caused them to be of the same order as tree level terms and 

were able to render Seff rv 0(1), even when TJ I'V O(T). The prefactor of the second 

term in eqn. (4.12) would then have to be at most 0(g2) in order to create a nontrivial 
\ . 

minimum. In such a scenario, the typical separation would be rv 1/ g2/3T while the size 

of a dyon would be I'V 1/ gT. Again, the plasma would be parametrically overlapping 

in the 9 ---+ 0 limit. Using similar reasoning, it can be shown that the only hope 

of creating a self-stabilized, nonoverlapping plasma of dyons would be for a ~ -1, 

which is exactly the range.of Q for which the covariant derivative expansion becomes 

unreliable. We can therefore conclude that no weakly interacting, nonoverlapping 

plasma of Prasad-Sommerfield dyons with a > -1 will be able to self-stabilize in the 

9 -+ 0 limit. 

I would like to make a couple of remarks before continuing. It has been suggested 

that by using a Coleman-Weinberg type mechanism[39] to minimize the effective 

action rather than the classical action, one may be able to to find monopole solutions 

with Ao --+ 0(gT)[13]. The idea would be that after combining the one loop effective 

potential with the tree Lagrangian, solutions could be found for which Ai drops off 

like l/x at large distances, but Ao only approaches TJ like exp( -ex). Such a solution 

would not have a long range electric field and would consequently be a magnetic 

monopole rather than a dyon. As we shall show later however, in order to find such 

a monopole, it is necessary that the Ao field approaches a local minimum of the 
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effective potential as r ---+ 00 (see section 7). Unfortunately, no evidence has been 

found for such a rninimum[8], except for the periodic minima at 2mrT / 9 mentioned 

earlier. It is still possible that a plasma of Wu-Yang-type monopoles as suggested in 

[6] or a strongly interacting plasma of dyons could provide a magnetic screening mass 

of "" O(g2T) as 9 ---+ 0, but if so, it is not clear that semiclassical methods would 

be useful in describing these effects. On the other hand, it would be interesting to 

see whether the situation changes at all for dyons with TJ "" OCT/g). To do so, we 

must perform some infinite resummations which will improve our covariant derivative 

expanSIOn. 

5 Improved Expansion 

The periodicity of Veft in eqn. (3.24) is simply a consequence of invariance under 

temporal gauge transformations. To see this, we first note that due to unitarity 

and the temporal boundary conditions at finite temperature, the most general gauge 

transformation for pure gauge SU(2) (see appendix C) is given by: 

(5.1) 

where ()a is periodic in T, na are integers, andu a are the Pauli matrices. Since the 

gauge of the background field is never specified in the background field formalism, any 

effective potential for the Ao field must be gauge independent. The most general gauge 

invariant expressions involving Ao but not Ai are integral powers of the Polyakov line 

trexp[ignua foP A~dT] . 

Thus the most general possible gauge invariant expression for the pure gauge SU(2) 

Ao effective potential is: 

00 P 
"Veff(Ao) = I: an cos(gnua i A~dT). 

n=O 0 
(5.2) 

Because the above effective potential is a general expression which should hold for 

any field configuration, our knowledge of the exact answer for a constant Ao field 
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uniquely determines the coefficients an in the one loop approximation. For SU(2), we 

have: 

ao = -4-5- (5.3) 

which leads to the correct expression (3.24) for A~ = 1]. 

Since the form of eqn. (5.2) is only a result of gauge invariance, ¥eff for all consistent 

higher order calculations must aiso take that form, though the coefficients will of 

course be modified. As a consequence, ¥eff can never feature a linear term at the 

origin (i.e. Ao = 0 must always be an extremum of the potential). This is significant, 

since if one makes a two loop calculation of the effective potential, a linear term does 

appear whiCh seems to create a minimum of O(gT) in the effective potential[7, 12]. 

From the above arguments, however, we know that such a linear term is spurious and 

must vanish in a consistent O{gn) calculation (which does not always coincide with 

a loop expansion). It is therefore not surprising that summing the infrared divergent 

Debye ring diagrams (with more than two loops) in SU(2) gives rise to a linear term 

. which exactly cancels the one foun4 at the two loop order[8]. 

Where is ¥eff hidden in our covariant derivative expansion? . The main problem 

with our expansion is that we are expanding a gauge invariant effective action in terms 

of functionals like Hn and Gn which are gauge dependent. Nevertheless, if we had 

had the patience and fortitude to calculate all terms in the expansion out to infinite 

order, making no approximations and letting 0 -+ 00, we would have arrived at an 

exact and gauge invariant expression for the effective action. In particular for SU(2), 

all of the terms Hn would have summed up to form the effective potential of eqns. 

(5.2) and (5.3). We can therefore improve our approximation of Seff by including the 

known form of ¥eff and dropping all Hn terms. By construction, our effective action 

will then exactly reproduce Vetr{1]) from eqn.{3.24). 

After having resummed th,e Hn terms, the only remaining gauge dependent terms 

are Gn • The main proble~ with these terms is that they do not reflect the equivalence 

between configurations with Ao near the different minima at 2mrT / g. We can solve 
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this problem by introducing new functioIials G~ which do reflect that equivalence: 

G~+l = -2T2tr J crX[Di, [Di, cos(nDo/T)]] . (5.4) 

In particular, for static SU(2) fields with glAol « T, we get: 

G2 = G~ = - 2:2 J d3xalA~ (5.5) 

Thus to the order that we are working, if we replace G2 by G~, we not only reproduce 

the correct behavior for static fields with small magnitudes, we also introduce the 

periodicity necessary to describe configurations withlAol near each of the minima at 

2n7rT. If we wanted to take the derivative expansion to the next order, we would get 

some terms involving G3 • We could then replace G2 and G3 by their primed coun

terparts, choosing coefficients such that the behavior of static fields with glAol « T 

was not altered. In addition, new gauge dependent terms involving more derivatives 

of D~ could be replaced oy terms having the same small IAol behavior, but which 

reflect the equivalence of the Ao minima. In this way, a modified covariant derivative 

expansion for static SU(2) fields can be continued to higher orders with the gauge 

equivalence of the Ao minima manifest at each step. 

Looking back at eqn. (3.15), we can see that after resumming the Hn terms, the 

new 6 is given by: 

(5.6) 

Notice that 6 = 0 for configurations without zero modes. This just means that for 

these configurations, we would need to keep more terms in the derivative expansion 

to get a reliable value for S. However, since we are primarily interested in calculating 

prefactors for configurations with zero modes, the above definition of S is sufficient 

provided that it turns out that S> O. Assuming this, we can write down a partially 

resummed, renormalized effective action.for pure gauge SU(2): 

Seff = 4~ g2 F2 - ! p(-YE - 2) + 48
1
7r2 (D2 - G~) - ~ J d3 xVeff(Ao) , (5.7) 

where Veff is given by eqns. (5.2) and (5.3). Equations (5.6) and (5.7) along with eqn. 

(3.16) are the main results of this paper. 
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6 More Dyons 

We would now like to apply our improved formalism to the case of a PSJZ dyon 

for which IAol ~ 7] = 27rT / 9 as r ~ 00. Since Ao approaches one of the absolute 

minima of the effective potential at infinity, a plasma of these dyons would not have 

to "self-stabilize" its entropy against an infinite background energy, as was the case 

of the dyons considered previously. Since the PSJZ dyon is self dual, 

2 - 2 F2 = 4D2 = 8g S = -647r (6.1) 

The integral for G~ is convergent and can be found to be: 

(6.2) 

Since the dyon has four zero modes, the infrared cutoff can be found from (5.6) to 

be: 

. 1 ( 3 )2 
h = -; llT . (6.3) 

Note that h rv 0(1/(g7])2) just as it was for a constant Ao field. Keeping more terms 

in t~e derivative expansion will not affect the order of h, though it will affect the size 

of the 0(1) coefficient. Looking at eqn. (4.10), we can see that the entire plasma 

prefactor is determined, and we only· need to evaluate Seff in order to determine the 

density of the plasma. 

Here is where we run into problems. We might at first think that we can simply 

replace Seff by S in the exponent of (4.10) because the one loop corrections S!~ are 

down by 0(g2). However, the fact is that for an isolated dyon, S!~ diverges like a 

distance at infinity since Ao only approaches the minimum at 27rT/g like l/x. We 

can see this by cutting off the integral over Veff at some large radius R: 

47l' rR 
T 10 r2drVeff(Ao) ~ 87r2 (27rT R) ; (6.4) 

For a neutral plasma, we could argue that the highest electric multi pole moment at 

infinity would be a dipole and so this divergence would not really occur. Let us assume 
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that this is the case and try to find some sensible procedure for estimating R in the 

9 -+ 0 limit. The simplest guess would be that 21fT R t'V O(g-Ot). For any positive a, 

R would be parametrically larger than the typical size of a dyon t'V O(1/(21fT)). On 

the other hand, as long as a < 2, S will dominate Seff and the density of the plasma 

can be found from (4.10) to be O(iJ-4exp(-87r2/g2)T3). In the 9 -+ 0 limit, one 

would expect R to be of the same order in 9 as the typical separation between dyons, 

but we can see that due to the exponential dependence of the density on 1/g2
, this 

cannot be achieved in the g-+ 0 limit. In fact, trying to find an equivalence between 

R and the typical dyon separation will drive R -+ 00 in the 9 -+ 0 limit. Thus, due 

to one loop effects, PSJZ dyons with TJ = 27rT / 9 will become infinitely heavy and 

decouple from the theory as T -+ 00. 

On the other hand, we should not dismiss these dyons so easily for finite temper

atures, in particular when T -+ AQCD. For a neutral plasma at finite T, it might be 
, 

that a scale could be found for R which would be in qualitative agreement with the 

typical dyon separation which we will hereafter call Rs. In other words, we would like 

to find an R for which: 

(6.5) 

where Rs' depends on R through Seff and Z/Z7j is given by eqns. (4.10) and (4.9). 

It turns out that this equation only starts having solutions for 9 > 4. Obviously at 

this point, we have left the regime of weak coupling, so the one loop approximation 

becomes dubious at best. In addition, it can be shown that the R's which solve (6.5) 

are typically between 1/(41fT) and 1/(27rT) which is the same scale as the size of the 

dyon, so dyons and antidyons would again begin to overlap. 

7 Monopoles 

One way that we could dispose of the troublesome divergence of f ([3XVeff would be 

if we could find a'way to make Ao approach 21fT/g faster than l/x. In the 't Hooft-
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Polyakov monopole, the Higgs field approaches its vacuum expectation value like 

exp( -M x), which is just a consequence of it going to a quadratic minimum. If we 

use the Coleman-Weinberg mechanism[39] to find configurations which minimize Seff 

rather than classical solutions which minimize S, we should be able to achieve the 

desired behavior for Ao -+ 27rT / 9 as r -+ 00 since there is a quadratic minimum in the 

effective potential there. To really use the Coleman-Weinberg mechanism with a clear 

conscience, we should include all orders of the derivative expansion in our expression 

for Seff before we minimize, and we should verify that the configurations that we are 

interested in have no negative eigenmodes associated with them. Nevertheless, we 

shall proceed in the most naive manner, keeping only the effective potential and not 

worrying about negative eigenmodes for the time being. 

For r -+ 00, the extrema of Seff can be found by solving the following equations: 

ab b . 8Veff 
Dil F/lv - Dvo 8Ag = 0 . (7.1) 

These equations are greatly simplified by using the ansatz (4.1) along with the defi

nition: 

f(x) = 1 + F(x) 
x 

hex) =-H(x) - 1 
x 

Equations (7.1) then become[30]: 

_ H(H2 - 1 + (x + F)2) 

1 
- 2(x + F)H2 + 37r2F(F + ~ x)(F + x) , 

(7.2) 

(7.3) 

(7.4) 

where the primes denote derivatives with respect to the variable x = 9TJr, and we have 

assumed that TJ = 27rT / 9. For a monopole configuration, the Ai fields should "drop off 

likeo'-l/x far from the origin. From the definitions of (7.2), then, we expect Hand 

F to be small as x -+ 00. In this limit, the equations of motion become H" = Hand 

F" = F /67r2, so that: -

H -+ Cl exp(-x) (7.5) 

31 



If we try to find a monopole for which Ao asymptotically approaches a value which 

is not a minimum, then we find an equation like F" = ex, which does not feature 

solutions which vanish as x -+ 00. We can conclude that only monopole configurations 

in which the Ao field approaches a minimum of the effective potential have any chance 

of minimizing the effective action. 

7 .1 Negative Modes 

Unfortunately, in deriving Seff for the monopole, we have implicitly integrated over 

negative eigenmodes. To see this, let us look a little more closely at what it means 

to integrate around a configuration which minimizes the effective action rather than 

the classical action. Suppose we have a monopole configuration A~ defined by e,qns. 

(4.1), (7.2) and (7.5). Since A~ is not a classical solution, when we make the replace

ment A~ = A~ + B; there will be terms linear in B;. Nevertheless, by adding an 

appropriate current term J: A~ to the original Lagrangian, the linear terms can be 

exactly cancelled and the monopole configuration becomes a solution to the modified 

equations of motion: 

nabFb - Ja 
/-' /-,11 - It· (7.6) 

/ 

It is now possible to perform gaussian functional integrals over the terms which are 

quadratic in B; as long as none of the operators involved have negative eigenmodes 

(i:e. the configuration is stable). If, on the other hand, there are negative eigenmodes, 

then some of our "gaussian" functional integrals would actually be integrals of the 

type J exp( +ax2)dx which diverge and render the one loop approximation useless. In 

the absense of negative modes, the current J is set equal to zero at the one loop level 

if the original configuration turns out to be an extremum of the effective action[39]. 

In a sense, we have gone about things a bit backwards by first finding a configuration 

which sets J = O. We must now go back and check whether or not the configuration 

was classically stable to begin with. 

Far from the center of the monopole, exponentially falling functions are unim-

32 



portant, so we can approximate the configuration by using (4.1) and (7.2) with 

H = F = O. We can then find an explicit expression for the operator inside the 

ghost determinant: 

- D2 = [-ioo - 27rT (I. r)]2 - 0
2 
-?:.~ +~[J2 - (I· r?] , (7.7) 

or2 r or r2 

where I, Land J are isospin, orbital, and total angular momentum operators given 

by: 

(Ic)ab. - _if.abc 

Li - -if.ijkr jOk 

J I+L. (7.8) 

We are interested to see whether this operator has any negative eigenvalues. For static 

configurations, we can use temporal eigenfunctions of exp( i2n7rTr) and see that the 

first term of _D2 is positive semi-definite by making the replacement -ioo ~ 2n7rT. 

In addition, we can see that the last term is positive definite by noting that (L· r) == 0 

and replacing (I . r) by (J . r). Furthermore, the radial derivative terms are positive 

definite since 
02 2 0 L2 - o~ = -- - -- + -, or2 r or r2 

(7.9) 

is positive definite even when L2 = O. Therefore the whole ghost operator is positive 

definite. 

What about the gauge operator? To begin examining W, we first note that far 

from the monopole, there is no electric field and consequently FOi = O. From eqn. 

(2.7), this implies that WOi = WiD = O. The gauge determinant can then be separated 

into two determinants: 

(7.10) 

where we have already shown that the first is positive definite. Dropping the spatial 

indices on Wjj, we can use techniques similar to those used for the ghosts to write: 

33 



where Sand Kare spin and total angular momenta defined by: 

I+S+L. (7.12) 

The only nonzero commutator among the operators of (7.11) is between S·J{ and S·r. 

Even with this difficuly, however, we can still make W block diagonal by quantizing 

with respect to S2, J{2, m = (I. r), 8 = (S· r) and 1 = J{z. 

The dangerous modes of this operator are when K < 2 and n = m = -8 = ±1. 

For the K.= 0 modes the operator reduces to: 

82 2 8 1 W=-------. 8r2 . r 8r r2 
(7.13) 

In ref. [19], Coleman presented an elegant way to show that operators which take the 

above form far away from the origin always have negative eigenvalues due to their 

attractive centrifugal potential. Consider the following radial function: 

1jJ - ~(Vr-v'R)exp(-r/a), 
r 

- 0, r<R, (7.14) 

where R and a are positive numbers. The expectation value of W from eqn. (7.13) 

for this function is: 

<W> 10
00 

r2dT'lp(W)1jJ 

10
00 

dr[r2( d1jJ / dr)2 - 1jJ2) 

3 
= '-gln(a/ R) + ... (7.15) 

where the triple dots. denote terms that have a finite limit as a --+ 00. For any fixed R, 

this expression becomes negative for sufficiently large a. To get a negative expecta

tion value for some function, there must be eigenfunctions with negative eigenvalues, 

since any function can be formed from linear combinations of eigenfunctions. Fur-

. thermore, since the proof works for arbitrarily large R, no behavior of the fields near 
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the center of the monopole where F and H are nonzero can save W from having 

negative eigenvalues. 

Another way to see that monopole configurations like the one suggested above 

would not be stable is to see that, unlike the normal 't Hooft-Polyakov monopole 

with a Higg's, these monopoles are not protected by topology at infinity. As r -+ 00, 

the Ao field approaches a constant value of 'TJ = 27rT/ 9 which is simply a temporal 

gauge transformation of Ao = O. If Ao -+ 0, it doesn't matter whether it looks like a 

hedgehog or is in a uniform color direction, and consequently topology is lost. There 

is nothing to stop a configuration which has Ao = 0 at both r = 0 and r = 00 from 

reducing Ao to 0 at intermediate values of r in order to minimize its action. This will 

be a general problem with any monopoles in pure gauge Yang-Mills theories: finite 

energy monopole configurations which minimize the effective action will feature the 

Ag fields approaching minima of the effective potential as r -+ 00. These minima, 

however, will be gauge equivalent to Ag = 0, so the monopole configuration will not 

be stable. 

7.2 Generalization to SU(3) with fermions 

To better illustrate these points, I will consider ~U(3). From Appendix B, we know 

that we only 'need consider field configurations in which gAo/(27rT) = VA3 + .J3pAs, 

where Aa are the Gell-Manninatrices. Again using Appendix B, we have plotted 

the effective potential as a function of p for v = 0 in fig. 7.1. The only minima of 

the potential in this direction occur at the points p = 2n/3 which are just gauge 

transformations of p = 0 (see Appendix C). Now let us look in the A3 direction by 

setting p = 0 and plotting Veff as a function of v (fig. 7.1). The absolute minima are 

again gauge transformations of v = 0, but in addition there appear to be local minima 

at v = 2n + 1. By making a contour plot with both v and p (fig. 7.2), however, we 

can see that the apparent "local minimum" at v = 1 is actually just the side of a 

crater which falls to an absolute minimum at (v, p) = (1,1/3). The Ao matrix at this 
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minimum has the same eigenvalues as the minimum, at v = 0 and p = -2/3, so we 

know that it is also agauge transformation of Ao = O. 

SU(3) Effective Potential 

6 . \ .", I . 
I I . \ ,.-.. 

~ \ . \ \ I E--! I \ / I \ 
N '/ 

t::: 4 \ \ I \ N I 
,.-t 

\ I \ 
"-" 
"- 2 i 
:> 

0' 
0 1 2 0 2 4 

p 1/ 

Figure 7.1: The one loop SU(3) effective potential for a constant Ao field with no 
fermions (solid), 2 fermions (dot-dashed), and fermions only (dashed). The left frame 
is for gAo/(27rT) = V3pAs, while the right frame is for gAo/(27rT) = VA3. 

On the other hand, true local minima of the effective potential can be created by 

introducing fermions into the theory and thereby breaking the center symmetry of the 

gauge group (see Appendix C). For example, if one massless fermion is in~roduced into 

SU(2), the absolute minimum at glAol = 27rT is transformed into a local minimum 

(fig. 3.1) [40]. Since there is no longer an allowed gauge transformation which takes 

this minimum to the Ao =,0 configuration, one might be tempted to believe that 

a stable monopole configuration would exist with the IAol -+ 27rT / 9 as r -+ 00. 

Unfortunately; the presence of fermions induces no change in 'the gauge operator 

W, so there are still negative eigenmodes and the monopole is still unstable. It 
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is interesting to note that if a minimum of the effective potential with fermions had 

occured at any point other than one which was an absolute minimum of the pure gauge 

theory, then it would have been possible to create a stable monopole configuration 

which minimized the effective action. 

2 

1.5 

p 
1 

0.5 

o 

Pure Gauge SU(3) 

1 2 

V 
3 4 

Figure 7.2: A contour plot of the one loop pure gauge SU(3) effective potential for a 
constant field given by gAo/(27rT) = VA3 + V3pAs. 
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SU(3) with 2 Fermions 
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Figure 7.3: The SU(3) effective potential as in figure 7.2, but with 2 massless fermions. 

Now we will examine the effect that fermions have on the SU(3) effective potential. 

Figure 7.1 shows this potential as a function of p for v ....:... O. It is not immediately 

obvious by looking at the figure that the local minima with fermions will be positioned 

at exactly 2mrT /3. Nevertheless, this is the case since the absolute minima of the 

gauge part of Veff precisely line up with maxima of the fermionic part (Appendix B). 
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Similarly, each of the local minima of (v, p) shown in fig. 7.3 corresponds exactly to an 

absolute minimum of the pure gauge theory. By the same reasoning used for SU(2) 

then, any monopole configuration with Ao approaching one of these local minima is 

still unstable. 

8 Conclusion 

We have developed a covariant derivative expansion of the one loop SU (N) effective ac

tion at finite temperature. The main use of this expansion is that it self-consistently 

produces an infrared cutoff mass which can be used to determine the density of a 

plasma of solitons in the semiclassical approximation. We have used our technique 

to evaluate suggestions in the literature[12, 13] that magnetically charged solutions 

to pure gauge SU(N) could self-stabilize at finite temperature, providing a nonper

turbative mechanism for screening static magnetic fluctuations. We have found that 

classical dyon solutions have infinite energy at the one loop level unless they form an 

overlapping plasma, in which case they may be difficult to differentiate from thermal 

fluctuations. In addition, we have found finite- energy monopole configurations in 

SU(2) and SU(3) which minimize the effective action but which are unstable. There

fore, at least these two types of semi-classical magnetic configurations do not solve 

the magnetic screening problem in hot QeD. Nevertheless, if stable, localized, finite 

energy solutions to pure gauge SU(N) at T =f. 0 are found in the future, then the meth

ods developed here should be useful for estimating their density at high temperatures. 

Acknowledgements: I am grateful to Miklos Gyulassy, Janos Polonyi, Michael 

Oleszczuk, Mahiko Suzuki and Korkut Bardacki for valuable discussions with regard 

to this work. 
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A Integrals, Sums and Functionals 

In this appendix, we present some of the tools that were used in deriving expressions 

for the effective action. In order to derive eqns. (3.6), (3.7), (3.9) and (3.13), it is 

necessary to use the following integrals and sums: 

1 
(A.l) 

1 
2t( 41rt)3/2 ~ik (A.2) 

00 

T L: exp( -p~t) (AA) 
n:=-oo 

T E p~t exp( -p~t) (A.5) 
n 

The above sums were obtained by using the Poisson summation formula: 

00 00 fo E F(n(3) = va E f(na) , (A.7) 
n:=-oo n=-oo 

where 0.(3 = 27r and F(x) and f(p) are Fourier transforms of each other. The sums 

on the left sides of (AA-A.6) are over Matsubara frequencies, while those on the right 

side are over T = 0 (n = 0) and T =f:. 0 (n =f:. 0) pieces. The latter can be seen by 

noticing that in the limit as T ~ 0, only the n = 0 terms survive. 

In addition, we define the following functionals for notational convenience: 

(A.S) 
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HI ~lN J d4xA~ (A.9) 

F2 - tr J d4X[D~, DII]2 = -l N J d4x(F;II)2 (A.I0) 

D2 - tr J d4x[Dj, DO]2 = _92 N J d4x(F]o? (A.11) 

Gn+l - tr J d4x[Dj, [Dj, D~n]] (A.12) 

G~+I - -2T2trJ d4x[Di' [Di' cos(nDo/T))) , (A.13) 

where the last definition was introduced in eqn. (5.4) while developing the improved 

expansion. For a c~mstant Ag field, all of the above functionals vanish except 

(A.14) 

where we use the matrix notation Ao = r bc Ag. For SU(2) with IAol :...- TJ, we get the 

simple form: 

(A.15) 

The following high temperature approximations were used in deriving eqns. (3.10), 

(3.11) and (3.13): 

00 

L n 2p exp( ~m2) (A.16) 
n=l 

00 1 L 2 exp( _m2
) '" 

n=l n 
(A.17) 

00 

LEi(-m2
) ~ -V7r / t -!lnt+1.55. (A.lS) 

n=l 

The above sums be,come exact in the limit as € -+ 0 and are even good to within a few 

percent when t = 1. We also used ~he following integral to regulate the ultraviolet 

divergences in (3.11) and (3.13): 

(A.19) 

where IE ~ 0.577 is Euler's constant. 
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B Effective Potentials for T =I 0 SU(N) 

The Ao fields in SU(N) can always be expressed in terms of a traceless Hermitian 

N x N matrix by defining Ao = ! Ag}.a where !}.a are the N 2 
- 1 fundamental 

generators of SU(N). Any matrix of this form can be diagonalized by a u'nitary trans

formation. However, making such a unitary transformation is equivalent to making 

a time-independent gauge transformation on Ao. Since the effective potential must 

be invariant .under all gauge transformations, it can only depend on the eigenvalues 

of Ao, so it is sufficient to study configurations in which Ao is diagonal. In Appendix 

D of ref. [6] , Gross et al. evaluate functional determinants for constant fields which 

are diagonal in color. We use their results to write down a general expression for the 

effective potential of any traceless, diagonal Ao matrix. Let 

gAo = 27rTq (B.l) 

where q is a diagonal, real and traceless matrix whose elements are given by 

(B.2) 

The effective potential for this field configuration is given by[6]: 

4 00 N (") N (" k)) 2 4 V. = 2T '" "'{2N (_l)n cos n7rqJ _ '" cos(n7r qJ - q } 7r T 
efT 2 L.J L.J' 4 L.J 4 + 45 . 

7r n=1 j=1 n k=1 n 
(B.3) 

The sums ove.r n can be done by using the following relations: 

(B.4) 

~(_l)ncos(n7rx) = _77r4 7r4( []2_[ ]4) 
~ n4 720 + 48 2 x - x - , (B.5) 

where [x}+ = [x(mod2)} and [x}_ = [(x + 1)mod2) - 1. 

For SU(2), there is only one possible form of traceless diagonal matrix: q = V(13. 

The effective potential then takes the form: 

7r 2T4 7r 2T4 7N 
Veff = 12{2N,(2[v}: - [v}:) + [2v}~([2v}+ - 2?} -1"5(1 + -t) . (B.6) 
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Dropping the constant term at the end, Veff for SU(2) is plotted in fig. 3.1. For 

SU(3), there are two diagonal generators, so an arbitrary diagonal SU(3) matrix can 

be expressed by q = V A3 + V3pAs. The effective potential then takes the form: 

7r 2T4 
- 12{N/(2[v + p]: - [v + p]: + 2[v - p]: - [v- p]: + 2[2p]: - [2p]:) 

+ [2v]~([2v]+ - 2? +[v + 3p]~([v + 3p]+ - 2? + [v - 3p]~([v - 3p]+ - 2)2} 

7r:~4 (8 + 21:/) . (B.7) 

Veff for SU(3) is plotted in figs. 7.1 - 7.3. 

There are more allowed gauge transformations in pure gauge SU(N) than there 

are in SU(N) with fermions (see Appendix C). For this reason, some of the degenerate 

absolute minima of the pure gauge effective potential are no longer absolute minima 

when fermions are included in the theory. Nevertheless, we show here that these 

points remain stationary points of the complete effective potential with fermions. 

A general diagonal SU(N) matrix can always be written as a linear combination of 

matrices having at least one zero on the diagonal and the matrix AN2_1 given by: 

AN2_1 = diag(l, 1, ... , 1 - N)v . (B.8) 

Only this last matrix will feature the minima we seek (see Appendix C), so we only 

need to consider its effective potential: 

2T4 00 1 
-2 L ..... :d2N/(-lt[(N -1)cos(n7rv) + cos(n(N -1)7rv)] 

7r n=l n 
2(N - 1) cos(nN7rv) - (N - 1)2} . (B.9) 

By simple differentiation, it is easy to verify that the minima at v = 2mjN of the 

pure gauge part correspond exactly to maxima of the fermionic part. Consequently, 

for any value of Nfl the full effective potential will always have stationary points at 

v = 2m/N. 
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C . Allowed Gauge Transformations 

Since there are periodic temporal boundary conditions for the fields at finite temper

ature, the only allowed gauge transformations are those which preserve the boundary 

conditions. We would like to determine the most general form of these allowed gauge 

transformations. A general unitary transformation can always be written as an ex-

ponential: 

U = exp[iAafr( r, i)] , (C.1) 

where l Aa are the generators of the group. Let us now perform a gauge transformation 

on Ao = ! AaAg: 
. i 

Ao -+ A~ = UAOU-1 
- -[ooU]U-1 

. 
9 

(C.2) 

As usual, the first term simply rotates Ag in color space, while the second term changes 

its magnitude. Just looking at the second term, we can see that the magnitude of 

A~( r) will only be the same as that of A~( r + (3) if ea ( r, i) takes the form: 

ea(r,i) = jf{r, i) + I;(i)r, (C.3) 

where ff( r + (3, i) = If( r, i). Now if we examine the first term of eqn. (C.2), we can 

see that periodicity for a pure gauge theory also implies: 

U(r+ (3, i) = exp(io)U(r,i) , (C.4) 

where a is a global scalar phase (multiplied by the unit matrix). Taking the determi

nant of each side, and knowing that det(U) = 1, we can see that for SU(N), the only 

allowed values of a are when det[exp(io)] = 1 or a = 2n7rjN, where n is an integer. 

Since If is periodic, only 12 will be able to generate a nonzero o. Furthermore, since 

only discrete values of a are allowed, this implies that there can be no i dependence 

for 12, since such a dependence would be continuous rather than discrete. 

For SU(2), 

(C.5) 
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where Oa = (}all(}al, and it is easy to see that only 12 = na7rT with integer na will sat

isfy eqn. (CA). For SU(N) with N > 2, it is always possible to choose a fundamental 

representation in which all but one of the generators have at least one zero eigenvalue 

(for example the Gell-Mann matrices for SU(3)). The 12 terms corresponding to 

each of the generators with.a zero eigenvalue must be of the form 12 = 2na7rT. The 

remaining generator )'N2-1 is given in its unnormalized form by (B.8) in Appendix B. 

It can be verified that 1f2
-

1 = 2n7rT I N gives rise to allowed gauge transformations. 

The situation changes a bit if there are fermions in the theory. Since fermions 

transform like 'lj; -+ U'lj;, there are no factors of V-I to cancel global phases. Thus 

in order for fermion temporal boundary conditions to remain unaffected by gauge 

transformations, only transformations satisfying eqn. (CA) with a= 0 are permis

sible. In other words, fermions break the center symmetry which is present in pure 

gauge theories. Therefore, the most general form of 12 for SU(N) with fermions is 

12 = 2na7rT. 
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