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Abstract 

A modification is presented of the classical 0( n2 ) algorithm of Trench for the direct solution 
of Toeplitz systems of equations. The Trench algorithm can be guaranteed to be stable only 
for matrices that are (symmetric) positive definite; it is generally unstable otherwise. The 
modification permits extension of the algorithm to compute an approximate inverse in the 
indefinite symmetric case, for which the unmodified algorithm breaks down when principal 
sub matrices are singular. As a preconditioner, this approximate inverse has an advantage that 
only matrix-vector multiplications are required for the solution of a linear system, without 
forward and backward solves. The approximate inverse so obtained can be sufficiently accurate, 
moreover, that, when it is used as a preconditioner for the applications investigated, subsequent 
iteration may not even be necessary. Numerical results are given for several test matrices. The 
perturbation to the original matrix that defines the modification is related to a perturbation in 
a quantity generated in the Trench algorithm; the associated stability of the Trench algorithm 
is discussed. 

Keywords. Indefinite, inverse, Levinson algorithm, matrix, preconditioning, stability, sym
metric, Toeplitz, Trench algorithm 

AMS(MOS) subject classification. 65F05, 65F10, 65U05 
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1 Introduction 

In an earlier paper [10] we report on initial findings in our study of preconditioned iterative methods 
for solving linear systems of equations with an indefinite symmetric Toeplitz coefficient matrix. The 
focus there is on circulant matrix preconditioners. It arose as an extension of work for the positive 
definite symmetric case by Olkin [18] and by Strang [19] (also see [6, 7, 8, 20]). Here we present 
a preconditioner that, in the applications we have investigated, can be sufficiently accurate that 
subsequent iteration is not necessary. It is based on a modification of the O(n2) Trench algorithm 
for direct in version of a nonsingular n x n Toeplitz matrix. Although the Trench algorithm can break 
down or be unstable when the matrix is not (symmetric) positive definite, the modified algorithm 
is successful for indefinite symmetric matrices, for which breakdown would occur when principal 
submatrices are numerically singular. In the modification, the Trench algorithm is carried out on 
a suitably perturbed matrix nearby the original one, to obtain the desired approximate inverse. A 
different approach for the indefinite case is given in [9], in which a look-ahead technique is used to 
avoid singularities. 

In the symmetric positive definite case, an advantage of circulant preconditioning is that the 
resulting clustering of the eigenvalues can yield a preconditioned conjugate gradient method so 
efficient that the total work is O(nln n ), and therefore is a method contending with various elegant 
O(n ln n) direct methods [1, 2, 3]. (The implementation of circulant preconditioning with the 
conjugate gradient method exploits the fact that the solution of a linear system with a circulant 
coefficient matrix is possible in 0( n Inn) operations and that multiplication of a vector by a Toeplitz 
matrix also requires only 0( n Inn) operations.) 

In our earlier paper [10] our goal was to extend circulant preconditioning to indefinite symmetric 
Toeplitz systems. Although in several cases the results were promising, in important ones, such 
as for the discrete Helmholtz equation, the eigenvalues of the preconditioned system could appear 
in both the right and left half planes [10, p. 77], a situation particularly troublesome for iterative 
methods. Additionally, the class of matrices for which circulant preconditioning has been shown 
to yield good eigenvalue clustering is a restrictive one even for positive definite matrices. Here 
we consider a different approach for the indefinite case, which is based on the Trench algorithm. 
Since this is an 0( n2 ) algorithm, the result may not be as efficient asymptotically as the 0( n Inn) 
circulant preconditioning, but clustering of the eigenvalues about unity is, in our experiments, 
substantially superior to that calculated in [10] for circulant preconditioners. 

An outline of the paper is as follows. In the next section we define some basic terms and 
state the Trench algorithm, together with a well-known decomposition that the algorithm yields 
of the given Toeplitz matrix. In the third section we describe the effect of indefiniteness on the 
Trench algorithm and propose a perturbation technique to allow the algorithm to proceed when 
encountering a potential divide by zero. In the subsequent sections we describe a set of test matrices 
and summarize the results of numerical experiments. 

As a supplemental remark, we note that there is a need for the iterative solution of indefinite 
symmetric and nonsymmetric linear systems in applications such as signal processing [17]. Our 
modification technique can apply to nonsymmetric as well as symmetric cases. (Theorem 2 in 
§3.1 uses symmetry, however). For these applications, although the coefficient matrices are rarely 
Toeplitz, Toeplitz matrices often suggest themselves as the basis for preconditioners of the given 
matrices. For example, it might be reasonable to approximate a block tridiagonal matrix A by the 
block submatrices on the diagonal. This yields a block diagonal matrix Q1 whose inverse serves as 
a preconditioner of A (block Jacobi preconditioning). Each block submatrix of Q1 in turn might be 
well approximated by a Toeplitz submatrix, which yields a block Toeplitz matrix Q2. The inverse 
of Q2 may then be obtained by computing the inverse of each Toeplitz submatrix. (There are many 
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ways to get an approximation involving Toeplitz matrices; this suggestion is only illustrative.) 
Finally, using our technique, the inverse of each Toeplitz submatrix may be approximated, which 
yields a matrix C:::::: Q21 that is a preconditionerfor A. · 

There is an important observation to make about such a preconditioner. The fact that C is 
explicitly given is an aid to computing on high performance processors, because in an iterative 
method the preconditioning step would require only the multiplication of the matrix C times a 
vector; none of the forward and backward solves associated with preconditioners such as those 
obtained by incomplete factorization would be necessary. 

2 Toeplitz Matrices 

Let A denote a real symmetric n X n Toeplitz matrix. A Toeplitz matrix is constant along its 
diagonals and thus, in the symmetric case, is determined by the n elements of the first row, 
ao, at, ... , an-b 

ao al an-2 an-1 

al ao a1 an-2 

A= a2 al ao (1) 

at 

an-1 a2 al ao 

Such matrices arise in many areas, such as the theory of Pade approximation and the numerical 
solution of differential and integral equations. They are important also in time series analysis and 
signal processing. 

2.1 The Trench Algorithm 

Our presentation of the Trench algorithm follows the one given in [13, pp. 184ff.). It requires the 
given Toeplitz matrix to have a unit main diagonal, i.e., a 0 = 1. We shall use Tn to denote the 
special case of a symmetric n X n Toeplitz matrix with unit main diagonal, 

1 Tt Tn-2 Tn-1 

Tt 1 TJ Tn-2 

Tn = TJ 1 (2) 

Tn-2 TJ 

Tn-1 Tn-2 TJ 1 

Also, it will be convenient to define r(k) = ( r1 , ... , rk) T. 

A crucial property of Toeplitz matrices is that the inverse of a Toeplitz matrix does not nec
essarily have the constant-diagonal Toeplitz property, but is persymmetric, i.e., symmetric with 
respect to the main cross diagonal. A precise definition uses the exchange matrix. For k ;::: 2, the 
k X k exchange matrix Ek is defined recursively to be 

0 1 
0 

0 

where E1 = 1. A k X k persymmetric matrix B satisfies B = EkBT Ek. 

.•. 
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We now have the necessary algebraic framework and proceed to the Trench algorithm. The 
ingenious discovery of the fundamental idea was first due to Levinson [16], embodied in the Levinson 
algorithm. The Levinson algorithm is often given in terms of the Durbin algorithm [12], which 
solves a Toeplitz linear system for which the right-hand side is a special case, Tky(k) = -r(k), 

collectively called the Yule-Walker equations. Accordingly, we shall refer to this as the Levinson
Durbin algorithm. The Trench algorithm builds upon the Levinson-Durbin algorithm to compute 
the inverse of the given (unit diagonal) Toeplitz matrix. The customarily used Zohar variant [21] 
of the Trench algorithm, which is the one considered here, improves the efficiency. 

At step k, the algorithm builds the inverse of Tk+l from the inverse of Tk by using the solution of 
the Yule-Walker equations. In turn, the Levinson-Durbin algorithm uses the persymmetry property 
of the inverse of a Toeplitz matrix to obtain the solution of the Yule-Walker equations with only 
O(k) operations. A complete derivation is given in [13]. A statement of the Trench algorithm is as 
follows: 

Statement of the Algorithm. 

Assume Tn is a given unit-main-diagonal Toeplitz matrix, as in (2). 

1. Set y(l) := -r1. 

2. Set /lt := 1- ri. 
3. 

4. For k = 2 : n - 1 

(a) Set 

-1 1 [ 1 y(1) ] 
Form T2 := /3

1 
y(l) 1 . . 

(b) Set z(k- 1) := y(k- 1) + ak-tEk-tY(k-t). 

(c) Set y(k)T := (z(k-l)T,ak-t)T. 

(d) Set 

(3) 

(4) 

{The previous steps (a), ... , (d) constitute the Levinson-Durbin algorithm for the solu
tion of the Yule-Walker equations Tky(k) = -r<k). } 

(e) 

Form (5) 

5. End 

The matrix T;; 1 thus obtained is the computed inverse of Tn. 

REMARK 1. Persymmetry of the inverse can be exploited to increase the efficiency of step (e). See 
[13, p. 190). 

. 
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2.2 Decomposition of the Matrix Inverse 

The Levinson-Durbin algorithm for the Yule-Walker equations generates an LDL T decomposition 
of rk;1 [11, p. 308], 

where 

1 0 
1 

yk+1 = 

y(k) y(k-1) 

T -1 v A-1 y;T 
k+1 = ~ k+1 k+1 k+1' 

0 
0 

yU>= 

1 0 
y(l) 1 

and Ak+I is the diagonal matrix Ak+1 = diag [Pb ... , !31! 1]. 

Y1i) 

y~i) 
' 1 ::; j ::; k, 

Y~;r 

Some facts about positive definite Toeplitz matrices follow from this decomposition. 

THEOREM 1. Assume Tn is symmetr·ic. The following statements are equivalent: 

1. Tn is positive definite. 

2. f3k > 0, fo1· 1 ::; k ::; n - 1. 

3. 1 - a~ > 0, for 1 ::; k ::; n - 2. 

(6) 

(7) 

Proof: (Also see [13].) From (6), it follows that Ak+I is positive definite if and only if Tk+1 is 
positive definite. Since the diagonal of Ak+I is (f3k, ... ,{31), we have (2.). The equivalence of (3.) 
follows from step (4d) of the Trench algorithm. 0 

If the inverse were known, its LDL T decomposition could be computed from a standard LDL T 

decomposition algorithm. The Trench algorithm does this, but with a different ordering of the elim
ination operations in which multiples of columns n, n- 1, ... , 2 are added to appropriate columns 
so as to eliminate columns under the diagonal. The Trench algorithm does more than compute a 
decomposition, of course, since it also computes the explicit inverse. Some insight into the organi
zation of the algorithm comes from the observation that the columns of the LDL T decomposition 
result from the computation of polynomials orthogonal with respect to the bilinear form defined 
by Tn [14, 15]. 

3 · Indefiniteness 

There are two notable studies of stability of the Levinson-Durbin algorithm and the Trench algo
rithm [4, 11]. In [11] G, Cybenko shows that if Tn is symmetric positive definite, then the errors 
resulting from roundoff in the Levinson-Durbin algorithm are no worse than for Gaussian elimi
nation, which is a known stable algorithm. To be precise, in [5] J. Bunch defines weakly stable 
algorithms and states that Cybenko proves the Trench algorithm is weakly stable in the case of 
symmetric positive definite Tn· In [4] Bunch discusses the causes and consequences of failure when· 
Tn is not symmetric positive definite. 

We see that the Trench algorithm fails at step j if !3i = 0. From (6), this occurs if and only if 
T;+I is singular. If !3; =/:- 0 is of small magnitude, Bunch makes the wry observation [4, p. 357] that 
this situation is worse, since the algorithm may not fail, depending on the magnitude, but could 
give incorrect results. We observe that if the results are incorrect, then it is possible to improve 
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accuracy, if desired, by invoking an iterative method. This is our approach, which we describe 
. below in the event that there is a singular principal submatrix of Tn. 

If there exists a singular principal submatrix Tj+I for j ~ n- 2 and the principal submatrices Ti, 
1 ~ i::; j, are nonsingular, then the Trench algorithm may be carried out until Tj+1 is encountered, 
i.e., until !3i = 0. From ( 4) it follows that a~_ 1 = 1. This difficulty may be interpreted as resulting 
from the newly introduced element ri of Tj+b in the expression for Ctj-1 in (3). Our approach now 
is to perturb Tj by subtracting a small quantity 6, which yields a non-zero {3j, thereby allowing the 
algorithm to proceed, albeit with only approximate results. (The procedure could be developed, 
alternatively, as one in which parameters within the algorithm, such as a or f3 in (3, 4), are 
perturbed; we follow the approach of perturbing the matrix elements for the numerical experiments · 
discussed here.) 

In selecting 6, a balance needs to be maintained between a value small enough so that the 
perturbed matrix is close to the original one and large enough so that the Trench algorithm will 
not suffer undue loss of significance resulting from finite machine precision. As the Trench algorithm 
may require the computation of quantities involving the sum of terms of order unity and order 62 

when submatrices are nearly singular, a value of 6 somewhat larger than the order of Fro, where 
fm is the machine floating point relative accuracy, suggests itself, particularly for matrices having 
several singular submatrices. These questions and those of scaling, in general, will be pursued 
further in a subsequent study. . 

A simple example illustrates the effects of a perturbation. Let 

A=[~~]· 
The principal submatrix (i.e., 0) is singular. Thus, it is necessary to perturb the diagonal, which 
yields the perturbed matrix 

-0 
1 

1 
-0 l . 

Scaling gives a unit diagonal Toeplitz matrix, · 

1 
] = -6T. 

The Trench algorithm computes the inverse of the unit diagonal Toeplitz matrix in (8), 

-1--- 5 62 [ 1 1 l 
T - 62 - 1 } 1 ' 

from which one obtains 

The true inverse is 

Therefore, 

(8) 
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--1 1 [ 1 6] A A = 1 - 62 6 1 = I+ 0( 6), 

and 
III- A-1 Alloo = 161 + 0(62). 

Considering A - 1 as a precmi.ditioner for solving linear systems with coeffici~nt matrix A, one has 
that the eigenvalues of the preconditioned system matrix A-1 A are then 1 ± o + 0(62). 

It may be helpful to explain our points about accuracy in the Trench algorithm by means of a 
more familiar model. Let us consider Gaussian elimination with no pivoting to see how it is possible 
to recover some level of accuracy from the unstable floating point computation considered above. 
Since A-1 =A, we take A as a perturbation of A-1 and carry out the LU decomposition of T-t, 
which is equivalent to the Trench algorithm, to obtain 

k' ~ 1 ~ 6' [ i ~ l u -·~·' l· 
(To be precise, the decomposition is the LU = L(DLT) decomposition.) In the Trench algorithm, 
the inverse is formed from the elements of the LDLT factors of the inverse. If Tis well-conditioned, 
as it is in this example, then the elements of T- 1 are comparable in magnitude to those ofT. To 
obtain these quantities, the large quantities from the algorithm must be collapsed in the final stages 
of the algorithm, which is the vulnerable step where accuracy is lost. The product is 

--1 . 1 [ 6 1 l 
A = 1 - 02 1 !- - 1-t . (9) 

For the (2, 2) element, where subtraction collapses large quantities to smaller ones, if 161 is larger 
than Fro, some accuracy is, nevertheless, retained in floating point arithmetic. For example, for a 
value of 6 of about 10Frn, there are approximately two digits of accuracy in the (2, 2) element. 

3.1 Perturbation Bounds 

In our numerical experiments to be described, we investigate the effect of perturbing the elements 
along a diagonal of the given matrix A. It is known a priori where to make the perturbation for 
the test matrices. In order to develop perturbation strategies for a general, dynamic algorithm it 
is necessary to work with the Trench parameters. In such an algorithm, one might monitor these 
parameters and control them by perturbations to avert an impending singularity or near-singularity. 
Of the two parameters a and {3, related by ( 4), a is the more convenient to consider, as it is so 
nicely scaled near a singularity, where lal = 1. We consider now a scaled matrix Tn having unit 
main diagonal, as required for the Trench algorithm. We obtain an estimate relating the change in 
Tn to a change in a. 

Suppose a principal submatrix Tj+I, 0 ~ j ~ n - 2, is singular or nearly singular. Singularity 
of Tj+1 is equivalent to 

/3j = /3j-1(1- a]_1) = 0, 

i.e., a;_1 = 1. For near-singularity there holds lai-11 = 1- JL, with IJLI ~ 1. Suppose we perturb 
aj-1 to distance it further in absolute value from 1 so that tij-1! the perturbed aj-1 , satisfies 
lij-1 = aj-I- 'T}, where ITJI ~ 1 and also ITJI ~ IJLI· Denote the corresponding perturbed value of Tj 

by Tj- 6. 
In the following theorem relating 6 and 'TJ we use the 1-norm. In particular, for a matrix M, the 

conditionnumber with respect to the 1-norm is cond(M) = I1MII1\IM-1Ih· 
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THEOREM 2. Let 6, 7], and JL be as above. Then 

181 = J( I7JI [1 + 0(7J)], {10) 

where K 2: 0 satisfies 

(11) 

Proof. From (3) one obtains 
-6 

7J = llj-1 - &j-1 = -(3. . 
J-1 

Let </>denote the numerator of a;_1 in (3). Then 

1<1>1 1<1>1 lf3i-11 = -1 -1 = -1-. llj-1 - JL 

There follows 

(12) 

Now consider the terms in 

Since E;-1 is orthogonal and y<i-1) = - T;-:..\ rU-1), it follows that 

But, from simple properties of a Toeplitz matrix, 

and 

Therefore, 

llrU-1>1l 2 IIT;-:..\11 ~ [ ( 1 + 111z=:lll) cond(T3-1)] (IITnll-1). (13) 

Since lr;l ~ l!Tnll - 1, there holds 

1¢1 ,; I•; I + lr!HlT E;_,yU-tll ,; [ 1 + ( 1 + l:t:\1) cond(T;-t)l (liT. II- 1), 

from which (10, 11) follow. 0 

REMARK 2. If Tj-1 is well conditioned, then the bound for the relative change 181/IITnll in Tn is 
comparable with I7JI, but if Tj_ 1 is poorly conditioned, then the relative change might be much 
larger. 



9 

3.2 Effect of the Perturbation on the Algorithm 

We shall use an example of Bunch [4, p. 353] to consider further the effect of a·perturbation on the 
Trench algorithm. Our concern is that the algorithm should not only proceed to completion but 
also that the matrix it yields be a reasonable approximation to the inverse of the given Toepltiz 
matrix. Let 

T,= u ~ n (14) 

The given Toeplitz matrix Ta is well-conditioned; its condition number with respect to the It-norm 
. is 9. However, since T3 is indefinite, it is possible that the principal submatrix, 

is singular, which, indeed, is the case. A perturbation yields the matrix 

[ 

1 1-6 0 l t3 = 1 - 0 1 1 - 0 . 
0 1-0 1 

For small 1<51 the principal submatrix 'i'2 of T3 is merely badly conditioned, rather than singular. 
Normally this is still regarded as an alarming fact, but we shall consider how it is possible for the 
Trench algorithm to proceed, nevertheless, to a satisfactory result. 

The Trench algorithm yields {31(6) = 6(2- 6) and 

--1 1 [· 1 -(1-6)] 
T2 = 6(2 - c) -(1 - S) 1 ' 

for which the condition is approximately 1/ <5. This matrix is used in the Trench algorithm to 
form the 2 X 2 principal submatrix of 'i'3-l, which we shall denote by M. As is given by (5), the 
expression for M is 

(15) 

Here {32(6) = 4~5 1 + 0(6) is of large magnitude, which contributes to the well-conditioning of M, 
constructed from the badly conditioned inverse of T2• Since the elements of M are approximately 
9 times larger than those of T2 , the elements of 'i'.;1 , which are of magnitude O(c-1), must cancel 
with the roughly equal magnitude elements of E2y(2)(E2y(2))T in order to collapse to the small 
magnitude elements of M. Indeed, this can be seen from the (1, 1) element of {32(S)M, which is 
equal to 1, although it is the difference of two te~ms, each of which is 0(1/62 ). 

4 Test Matrices 

For our test matrices, we use (nonsingular) indefinite symmetric Toeplitz matrices A constructed 
so that the Trench algorithm will break down because a principal submatrix is singular. The first 
test matrices are obtained from those used in [10] by applying diagonal shifts so that successive 
submatrices become singular. The second group of test matrices is one for which the nonzero 
elements are a unit main diagonal and an additional unit off-diagonal band, symmetrically placed 
above and below the main diagonal. For the third group, matrices with zero diagonal are considered, 
with unit off-diagonal bands as in the second group. As in [10], we taken= 16 for all the tests. 
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The first test matrices are taken from positive definite examples used in [8], which are then 
shifted by a constant diagonal matrix to make some of the eigenvalues negative. All of the original 
matrices have distinct eigenvalues. If A denotes the original positive definite matrix, then the 
indefinite one A for these examples is obtained by A = A- al, where a is the average of the fifth 
and sixth eigenvalues of A, ordered increasingly. The test matrices A used here are then obtained 
by the set of shifts A = A(l) = A- ctl, f = 1, 2, ... , n- 2, where Ct is the number of smallest 
magnitude so that the (£ + 1) X(£+ 1) principal submatrix of A(l) will have a zero eigenvalue. 

The underlying positive definite matrices A, before shifting, are the following. 

1. ak = (!/, k = 0, 1, ... ,n- 1. For this case a~ 0.4320, and ao ~ 0.5680. 

2. ak = 1/(k + 1), k = 0, 1, ... , n- 1. For this case a~ 0.4582, and ao ~ 0.5418. 

3. ak = k~~, k = 0, 1, ... , n- 1. For this case a~ 0.5878, and ao ~ 0.4122. 

4. ao = 2, a1 = -1, a2 = a3 = · · · = an-t = 0. For this case a ~ 0.9516, and ao ~ 1.0484. 

For cases (1), (2), and (3), all principal submatrices of the A(t), except the(£+ 1) X(£+ 1) one, 
are nonsingular. For case (4) several principal submatrices of A(l) other than the (l + 1) X(£+ 1) 
one may be singular. 

The second group of test matrices is given by 

{ 

1, k = 0 
Uk = 1, k = j 

0, otherwise, 

where the value j is such that 1 ~ j ~ n- 2. Fork< j, the principal (k + 1) X (k + 1) submatrices 
are nonsingular (they are simply identity matrices); the (j + 1) X (j + 1) principal sub matrix 

1 0 

0 1 0 

0 1 

0 

0 0 
1 0 

1 0 
0 1 

is singular. The subsequent submatrices for j < k < n- 1 and the entire n X n matrix A may or 
may not be singular. We take j = 1, 4, and 5, which are the cases for which A is nonsingular. For 
these cases A is indefinite, and generally there are several singular principal submatrices. 

For the final test matrices, we consider ones with zero on the diagonal. They are obtained from 
the second group by setting the main diagonal to zeros instead of ones, 

{ 
1, k = j 

ak = 0, otherwise. 

In this case the matrices that are nonsingular, the ones taken for our tests, are for j = 1, 2, 4, and 
8. They are all indefinite, with eight positive and eight negative eigenvalues, and have numerous 
singular principal submatrices, eight for the j = 1 case to fifteen for the j = 8 case. The inverses 
can be expressed simply; for example the inverse of the j = 2 matrix is the block Toeplitz matrix 

-E E 
D -E 

-ET D 
ET -E 

-~ l 
-E ' 

D 

, 



•. 

where D and E are the Toeplitz matrices 

[

0 0 1 

D = 0 0 0 
1 0 0 
0 1 0 

[

0 0 

E = 0 0 
0 0 
0 0 

11 

The matrix D, which is the block diagonal of the original matrix, has the property that D = n-1 . 

Inverses of the other matrices in the third group can be expressed in a similar fashion. For 
j = 8 there holds simply that A= A-1 • The inverses of the (nonsingular) test matrices from the 
second group, and of A(t) = A(4) = A(7) = A(to) = A(13) of case (4) for the first group, for which 
c.e = 1, can be expressed also as patterns of O's, l's, and -l's. 

5 Numerical Results 

In conducting our numerical experiments, our procedure was as follows. If a test matrix A had a 
singular (j + 1) X (j + 1) principal submatrix and nonsingular ( k + 1) X ( k + 1) principal sub matrices 
for 0::; k < j, then we perturbed the elements ai of A by an amount -o along diagonal j + 1. This 
yielded a perturbed matrix A, for which the elements on diagonal j + 1 became ai - o. 

For the experiments reported here, we selected as the value of primary interest o = 10-7 , which 
is approximately lOy'€; for the computer on which the calculations were carried out (in double 
precision). We then compared the results with those foro= 10-8 and o = 10-6 . 

The inverse C of the perturbed matrix A was computed by the Trench algorithm using MATLAB, 
with the ordering of operations as given in (4·, pp. 356-357]. (The matrix A was scaled to have unit 
diagonal prior to entering the Trench algorithm, and then the matrix obtained was scaled back, 
to yield a computed inverse to the original A.) In all cases, except for matrices in the final group 
with o = 10-8 , the algorithm completed successfully. In those cases for which subsequent principal 
submatrices of the unperturbed matrix were singular, the second and third groups and example (4) 
of the first group, perturbation of the earlier elements removed the later singularities as well. In 
this connection, we note that for the matrices in the third group, the perturbations resulted simply 
in replacement of the zero diagonal elements with -0. 

For o = w-7 , the computed eigenvalues of the preconditioned matrix C A for the first and 
second group of test matrices were all equal to unity to MATLAB short precision format (four 
decimal places), as indicated in the Table. Thus, for these test problems, C can be considered 
as an excellent preconditioner for solving a system of equations, approximating A -I so well that 
iteration may not even be necessary. For this S, agreement with unity of the eigenvalues of CA, a 
measure of the accuracy in carrying out the Trench algorithm, was several decimal places better 
for the first group of test matrices and one or two places better for the second group. Comparison 
with the computations for o = w-s and o = I0-6 show that for the smaller o the Trench algorithm 
accuracy was less and for the larger o greater. For example, for S = 10-6 the eigenvalues of C A 
were unity to eight decimal places or more and for o = w-8 to about six places or more. For 
o = 10-8 , there was a reasonable balance between the errors committed by the perturbation and 
rounding errors in the Trench algorithm .for the first and second group of test problems. Except 
for a few places in the last digit for the first group for 0 = w-6 ' all three values of 0 yielded the 
overall result that for the first and second group of test problems C A was the identity matrix to 
MATLAB short precision format. 

For the final group of test matrices, the loss of significance within the Trench algorithm was 
generally greater. As mentioned above, for o = 10-8 significance was lost altogether for j = 1, 2, 
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' 

Table 

Accuracy of the Calculated Trench Inverse 

Max 11 - I eigenvalues of CAll Max 11 - !eigenvalues of CAll 

0 10-6 w-7 10-8 10-6 w-7 10-8 

First Group 

1. 1.6E-4 1.6E-5 1.7E-6 1.7E-9 1.4E-8 3.3E-7 

2. 1.9E-4 1.9E-5 1.9E-6 4.4E-9 1.4E-8 9.5E-8 

3. 3.9E-4 3.9E-5 1.1E-6 2.1E-9 1.7E-7 2.7E-6 

4. 1.9E-5 1.9E-6 2.6E-7 1.3E-9 2.7E-8 2.6E-7 

Second Group 

j~1 8.2E-6 8.4E-7 1.5E-7 7.4E-10 2.0E-8 6.7E-8 

j=4 2.6E-6 2.6E-7 2.7E-8 1.5E-10 3.5E-9 2.4E-9 

j=5 3.4E-6 3.4E-7 3.6E-8 1.5E-10 3.5E-9 2.4E-9 

Third Group 

j=1 2.5E-4 1.2E-2 NaN 2.5E-4 1.2E-2 NaN 

j=2 9.5E-5 8.5E-3 NaN 9.5E-5 8.5E-3 NaN 

j=4 6.7E-5 5.8E-3 NaN 6.6E-5 5.8E-3 NaN 

j=8 l.OE-6 1.0E-7 l.OE-8 0 0 1.1E-16 
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and 4; the· algorithm stopped on an attempted divide by zero in computing {3. However, for larger 6 
the results were satisfactory. The eigenvalues of C A were unity to two decimal places or better for 
6 = w-7 and to four decimal places or better for {J = 10-6 , except possibly for one or two places in 
the last digit. For o = w-6 , the eigenvalues of C times A were unity to the same number of places 
as C ti~es the unperturbed A. The problem for j = 8 is a special case for which the computations 
are robust with respect to rounding errors. 

6 Conclusions and Future Work 

In this paper, we have presented preliminary results on an O(n2 ) technique to compute an approxi
mate inverse to a symmetric indefinite Toeplitz matrix. Our approach, which preserves the Toeplitz 
structure, is simply to perturb the given Toeplitz matrix so as to allow the Trench algorithm to 
proceed. Our experiments show that the perturbation results in only small errors for the test 
problems. We give a relationship between the magnitude of the perturbation and the magnitude 
of perturbed quantities in the algorithm that relate to the condition number. A topic for future 
research is a dynamic algorithm to determine the magnitude of the perturbation so as to balance 
p_erturbation and resulting rounding errors. Some issues that relate to this topic overlap with those 
treated in [9]. 
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