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Abstract 

Conformal field theories comprise a vast class of exactly solvable two 

dimensional quantum field theories. Conformal theories with an enlarged 

symmetry group, the current algebra symmetry, are a key ingredient to 

possible string compactification models. The following work explores a 

Lagrangian approach to these theories. 

In the first part of this thesis, a large class of conformal theories, the 

so-called coset models, are derived semi-classically from a gauged version 

of the Wess-Zumino-Witten functional. A non-local field transformation 
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to the parafermionic field description is employed in the quantization pro

cedure. Classically, these parafermionic fields satisfy non-trivial Poisson 

brackets, providing insight into. the fractional spin nature of the confor

mal theory. The W -algebra symmetry is shown to appear naturally in 

this approach. 

In the second part of this thesis, the connection between the fusion 

algebra structure of Wess-Zumino-Witten models and the quantization 

of the Chern-Simoris action on the torus is made explicit. The modular 

properties of the conformal model are also derived in this context, giv

ing a natural demonstration of the Verlinde conjecture. The effects of 

background gauge fields and monopoles are also discussed. 
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1 Introduction 

The central mathematical apparatus employed in describing modern particle 

physics is the quantum field theory "QFT." As an axiomatic system, QFT is 

laden with ambiguities. Even in its linearized, or perturbative form, unitarily 

inequivalent canonical coordinates exist, renormalization procedures must be 

prescribed, and often the resulting series is only asymptotic. From .this view

point, we have barely scratched the surface of the richness inherent in the full 
I 

non-linear field theory consistently combined with the quantum theory. 

The complexities of a full non:.. linear theory can be observed at the classical 

level as. well. A relevant example of such a theory is Einstein's theory of general 

relativity. Taken perturbatively, this theory correctly describes large scale phe
nomenasuch as the perihelion advance of Mercury, overcoming the shortcomings 

of Newton's theory of gravity. Taken as a full non-linear theory, however, ex

act solutions exist only for trivial systems, and very little is known concerning 

solutions to the Cauchy problem with non-trivial energy-momentum tensor. 
I • 

In the last two decades, much attempt has been made at probing the inher-

ent non..,linear, or nonperturbative effects of a given QFT. In 1984, in the pio

neering work of Belevin, et al. [14], a large class of non-trivial QFTs was shown 

to be completely solvable. These theories were a subclass of two-dimensional 

QFTs carrying a conformal symmetry. These theories were solvable in the sense 

that all field operators could be characterized, and in principle the correlators 

of these fields were finite and could be computed exactly. Thus began the age 
of conformal field theory "CFT." 

Besides being an important class of solvable QFTs, conformal field theories 

arise naturally in string theory and the critical behavior of statistical systems. 

For this reason understanding the structure of CFTs and possibly classifying 

the space of rational CFTs (rationality is a technical. point, implying a finite set 

of primary fields) has become a major endeavor of modern particle theorists. 

An important class of conformal field theories, carrying an enlarg~d sym

metry group, the current algebr~ symmetry, plays a key role in string compa.ct

ification models. These conformal models have been shown by Witten [58] to 

be derived from a. sigma model type Lagrangian, containing a ~opological Wess

Zumino term. These are the Wess-Zumino-Witten (or WZW) models. Gauging 
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the WZW action gives a wide class of conformal models, the so-called coset mod

els. This follows a long history beginning with Witten's work on the skyrmion 

model (57]. 

The conformal symmetry group in two dimensions gives rise to an infinite 

dimensional algebra, the Virasoro algebra, admitting a non-trivial central ele

ment. Thus, the Hilbert space of a CFT can be defined by its decomposition 

under this algebra. The Hilbert space of a WZW model can further be decom

posed under the action of the current algebra symmetry; this algebra is described 

as the semi-direct product of the Virasoro algebra with the corresponding affine 

Lie algebra. This characterization also provides a simple description of the op

erator product expansions of-the field variables. Classifying the allowable fusion 

algebras by employing general consistency requirements is one intriguing classi

fication scheme under investigation [20]. 

The following work can be divided into two parts. The first is a thorough 

investigation of the WZW action functional and its application to conformal 

field theories. The construction of the WZW model is described, followed by a 

description of the gauging prescription. The parafermionic' fields are introduced, 
and their classical Poisson bracket relations are investigated. A semi-classical 

treatment of these relations is shown to be consistent with known relations of 

the coset models. Finally, the recently discovered W-algebra symmetry is shown 

to arise naturally in this approach. 

The second part of this thesis concerns the fascinating connection between 

the WZW models and the quantization of a three-dimensional "topological" 

(topological in the sense that the action is independent of the spacetime metric) 

action functional called the Chern-Simons action. Although much of the infor

mation of the conformal model is not explicitly present ( eg. descendent field 

structure, correlation functions, etc.), the Chern-Simons theory gives a simple 

description of the fusion algebra, leading to a new demonstration of the Verlinde 

conjecture (that the modular transformation S : r--. -1/r diagonalizes the fu

sion rules). Finally, the Chern-Simons view is considered in solving some open 

questions concerning the existence and uniqueness of coset models containing 
so-called fixed points. 

The original work embodied in this thesis has appeared previously in three 

published articles. The work on the non-abelian gauged WZW model and the 
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observance of theW-algebra symmetry was co-authored by my advisor K. Bar

dakci, my fellow graduate student, Michael Crescim~no, and myself (10, 11]. 

The work on Chern-Simons theory was co-authored by Michael Crescimanno 

and myself (23]. I would like to thank them for allowing me to reproduce these 

results in thesis form. 
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Part I 

Parafermions and Conformal 

Field Theory 

2 Lagrangian Models in Conformal Field Theories 

The first constructions of conformally invariant field theories were algebraic in 

nature [7, 14, 30, 34, 49]. If these models are to be useful in constructing physical 

models it is desirable that they be given a classical or Lagrangian foundation. 

One obvious example of this is in the application of conformal field theories to 

string compactification models. In a seminal paper [58) Witten showed that 

the quantization of the Wess-Zumino-Witten (WZW) Lagrangian gives rise to a 

conformally invariant theory, correctly implementing the Sugawara construction 

and the underlying affine current algebra. The coset constructions, which can be 

thought of as a generalization of the Sugawara constructions, were then shown 

to follow from a "gauged" version of the WZW Lagrangian. In fact, the gauged 

field is not dynamical, but acts as a Lagrange multiplier to project out the 

currents belonging to a particular subalgebra. 

In the non-gauged WZW model it is convenient to formulate the model in 

terms of conserved currents. As a consequence of conformal invariance in two 

dimensions there exists two sets of conserved currents. In light-cone coordinates, 

we have one set of conserved currents independent of the x+ coordinate and one 

set independent of the x_ coordinate. The connection to CFT is made when a 

careful analysis reveals that these currents form a representation of the affine 

Lie algebra corresponding to the group in which the classical field takes its val

ues. When constructed in the gauged WZW model, these local currents will be 

gauge dependent, and therefore only covariantly conserved. The fundamental 

idea of the following work is to construct a new set of gauge invariant currents 

by attaching Wilson lines to th~ original gauge dependent currents. These new 

currents are gauge invariant as well as conserved classically, at the cost of being 

non-local. We will call these new currents the "classical parafermionic currents" 

in that they are reminiscent of the parafermionic fields introduced by Zamolod-
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chikov [61). 

To construct the quantum theory in terms of the parafermionic currents, the 

commutation relations between them must be computed. Because the currents 

are non-local, equal:..time commutation relations are ill-defined. Instead we first 

compute the classical Poisson brackets of the parafermionic currents, which are 

the classical analogue of the operator product expansion. For abelian coset 

models (that is, the gauged subalgebra is abelian) the resulting Poisson bracket 

is quite simple, although the calculation is somewhat laborious. For non-abelian 

cosets however, a number of difficulties arise. Because of complicated base point 

contributions, the Possion brackets do not close for non-abelian cosets. These 

base ~oint contributions are gauge artifacts, and we show .that the PBs close 

among gauge invariant currents (color singlets). Also in the non-ablian coset 

models, an interesting problem concerning the independence of axial and gauge 

transformations is addressed. 

The fact that the Possion bracket closes for color singlet products of cur

rents, but not for the individual parafermionic currents, gives rise to an interest

ing interpretation. These color singlet composite fields are the classical analogue 

of the primary fields. In this sense, the parafermionic currents are analogous to 

"quark" fields and the primary fields are the composite fields formed from the 

"quarks". In computing the Poisson bracket of primary fields from that of its 

constituent "quark" fields, it is observed that the base point dependent terms 

cancel. It is natural then to consider the Poisson algebra of the "quark" fields 

without the base point dependent terms. This algebra can be considered to be 

the generating algebra of the Poisson algebra of the primary fields. Because the 

base point dependent terms have been dropped, this algebra no longer satis

fies the Jacobi identity; that is, the algebra is no longer associative. (The loss 

of associativity is true only for non-abelian cosets). In a natural way then, we 

have seen how non-associative algebras may play a role in conformal field theory. 

Compare this to the quasi-Hopf algebra structure of conformal field theory, in 

which the tensor product operation on algebra rep~esentations is non-associative 

[27]. 

Certain conformal field theories derived from the coset construction are 

known to carry an enlarged symmetry algebra called a W algebra [4, 5, 15, 29, 55, 

56, 60). TheW algebra can be viewed as a natural generalization of the Virasoro 
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algebra. It is not surprising then that the classical limit of the W algebra can 

be derived from the Poisson algebra discussed above. We demonstrate this 

connection, and introduce a natural generalization of these classical W algebras 

by considering the Poisson algebra of multilocal fields. 

After developing these classical Poisson algebras, we present a realization of 

the parafermion fields which we call the free current construction. For abelian 

coset models, the realization in free fields has been known for some time [16, 53]. 

The free current construction is a generalization of this construction in which 

the· free· fields are replaced by currents satisfying the affine Lie algebra. · This 

structure can be inferred by thinking of the Wilson lines attached to the local 

currents as path ordered exponentials of free fields. 

The free current construction suggests a natural method of quantization. 

We wish to replace the classical free currents satisfying the affine Possion bracket 

algebra by operators which satisfy the corresponding commutator algebra. This 

process leads to difficult problems concerning operator renormalization. As a 

conclusion we discuss some of the many open questions remaining concerning 

the full quantum theory. 

3 Review of the Wess-Zumino-Witten Model 

We begin with the Wess-Zumino-Witten action, 

(1) 

where X± = Xo ± X1, 8± = ~(<Jo ± 81), g(x) is a field defined over some two
manifold taking values in a Lie group G, and the trace is taken in some represen

tation of g, the Lie algebra of G. We normalize the trace so that Tr( rarb) = 28ab. 

In computing the second integral, we treat the two dimensional space-time man

ifold as the boundary of a three-sphere, extending the field g( x) smoothly. The 

field g(x) may be extended in topologically distinct ways. The space of topo

logical classes of smooth extensions of the field g(x) is isomorphic to Z, the 

integers, and thus a given extension ·may be labelled by an integral winding 

number [25, 26]. The coefficient of the Chern-Simons term has been chosen so 

that under a change of winding number 1, the action changes by a factor of 21rk, 

and thus the contribution to the path integral is unchanged if and only if k is 
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an integer. Therefore, for the path integral to be well-defined, it is necessary 

that k satisfy the quantization condition k E Z. The constraint leading to the 

coefficient of the first term concerns the anticipated equations of motion and is 

discussed next. 

The variation of lwzw is a local functional of the two-manifold. In fact, 

under 9 ~ 9 + 09 we have, 

olwzw = 
2
k j JlxTr(9-1898p.(9-18p.9))-

2
: j JlxTr(9-189e.P."'8p.(9-18v9)). 

~ (2) 

Thus the variational equations are given by, 

(3) 

Defining the currents, 

. ik _18 . ik (a ) 1 
J+ = -9 +91 J- = -- -9 9- ' 

~ ~ 
(4) 

gives the desired result, 

8_j+ = 0. (5) 

Note that the following ideptity (which holds for arbitrary field g(x)), 

(6) 

along with the above equation of motion gives rise to the partner, 

(7) 

We will see how these equations are modified in the ga~ged Wess-Zumino-Witten 

model. 

4 The Gauged Wess-Zumino-Witten Model 

We would like to add a term to the WZW action that will remove components 

of the currents corresponding to some subgroup H C G. To this end, we will 

introduce a gauge field Ap., that will act as a non-dynamical Lagrange multiplier. 

We have, 
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Note that the last term has been added to ensure that the entire action is gauge 

invariant, that is, that the action is invariant under the transformation: 

g(x) 

All(x) 

-.. B-1 (x)g(x)B(x), 

-.. B-1(x)Aix)B(x) + iB-1(x)81lB(x), 
(9) 

B ( x) E G. The currents generating these transformations are the covariant ver

sions of the currents of the WZW model, 

ik 1 ik ) 1 J+ = -g- D+9i J_ = --(D_g g- . 
7r ' 7r 

(10) 

Where the covariant derivative Dll is defined by, 

(11) 

lnvariance of the action under an arbitrary variation of A+ and A_ gives the 

desired constraint equations: 

(12) 

Where h is the Lie algebra of H (a subalgebra of g). These equations may be 

inverted, providing a description of the Lagrange multiplier A( x) in terms of the 

dynamical field g( x): 

(13) 

Where 1 is the identity matrix. 

The variation of the action under the change g -.. 8g is given by, 

8! = ;i j cfxTr(g-18g(D_J+- ~F)). (14) 

Where the field strength F is defined by, 

(15) 

Since the gauge field A( x) takes values only in the subalgebra h, the same must 

be true for F(x). From eq.(12), we see that the covadant current J+ takes values 

in the coset g- hand therefore so does the expression D_J+· Thus, asking that 
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the variation of I vanishes implies the separate cancellation ofF and D_J+. We 

have, 

(16) 

Similar to the ungauged model, we have the following general identity, 

(17) 

Which gives rise to the equation of motion, 

(18) 

5 The Parafermionic Currents 

In order to simplify the quantization procedure, we would like to characterize 

the observable quantities of the theory in terms of chirally conserved currents. 

We may expect also that these currents take values only in the coset g - h, and 

not in the subalgebra h. To this end, we introduce the parafermionic currents, 

(19) 

with, 

(20) 

Pc represents "path ordering" the exponential along a curve C which connects , 

the base point x0 to x. In constructing Poisson brackets, we will identify x+ 

with the time coordinate and x_ with a space coordinate. We will concentrate 

on the space component of 'l/J, and define, 

'!f;(x) = 'lj;_(x) = -U-1(x,xo)J-(x)U(x,xo), (21) 

where the integration of the path ordered exponentials is carried out at fixed 

time (x+)· Note that U(x,y) satisfies the following important properties, 

I U(x,y)U(y,z) = U(x,z), 

II 8a:U(x,y) = iA_(x)U(x,y); 8yU(x,y)- -iU(x,y)A_(y), (22) 
III 8tU(x,y) = J;dzU(x,z)i8tA-(z)U(z,y), 
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where in the last identity, t refers to the time coordinate, and x, y and z refer 

to space coordinates. 

From the equations of motion {eq.{12)) and the fact that 1f; is the conju-

gation of a coset valued current by an element of the subgroup H, we have the 

desired properties, 
Tr(ho.,p) = 0 \1 ha E h, 

8+'t/;=0. 

'; 

{23) 

Physical observables are not dependent on the base point xo. A complete 

set of such variables constructed from the local parafermions is given by the 

following set of "multilocal" observables, 

O{x17 x2, ... , Xn) = Tr('t/;{xt)t/J{x2) · · · 't/;(xn)) 
= ( -l)nTr(J_(xt)U(x17x2)J-{x2) · · · J(xn)U(xn, Xt)). 

{24) 
The term "multilocal" is used in the following sense: the local parafermion has 

a non-abelian tail, analogous to the Dirac tail of the electromagnetic monopole. 

When we "tie" these tails together in a gauge invariant manner, as shown 

above, we remove this non-local dependence. If we were to reinstate the full 

two-dimensional freedom of these objects, we would find that non-overlapping 

observables 0 1 and 0 2 would satisfy Bose statistics with respect to one another. 

Truly local observables can also be extracted from these observables by 

letting the space variables approach each other and expanding in the differences 

(xi- Xj)· When we quantize, this procedure will give us the operator product 

expansion, the ~effiecients of this expansion being identified as the primary 

fields. In analogy to the quark model, the parafermionic currents are treated as 

the building blocks of the physical observables. 

6 The Poisson Bracket of the Parafermionic Currents 

In order to quantize the theory, treating the parafermionic currents as local 

observables, we will need to first compute their classical Poisson bracket. The 

details of this calculation for the case of abelian cosets is given in ref. [9]. 

In the case of non-abelian cosets {that is, the subgroup His non-abelian), 

two important complications arise. The first concerns base-point dependent 

10 



terms. These terms result in complicated expressions for the Poisson bracket 

of the parafermionic currents, which detract from a clear understanding of the 

algebraic structure. Observable quantities should be independent of the base

point and, inretrospect, the base-point dependent terms can be dropped in the 

intermediate calculation. When these terms are dropped, the resulting Poisson 

algebra for the parafermionic currents is non-associative, associativity being 

restored only after projecting onto the "multilocal" observables discussed earlier. 

The second difficulty concerns the linear independence of the components of the 

field strength tensor on shell. This technical matter can be considered from a 

purely group theoretic viewpoint and is considered below. 

We begin by reviewing the computation of Poisson brackets for Lagrangians 

linear in time derivatives of the field variable. Let, 

J d¢· 
I= dtAi(¢)-'. 

dt 

The variation of I is given by, 

with, 

J d¢· 
61 = dt6~·F.. ·-3 

.,.,, ' 3 dt ' 

_ 8Ai 8A; 
Fi; = 8A... - 8A.. . • 

. '1-'3 .'/-'t 

In terms of the variation 6¢i, the Poisson bracket is given by, 

More generally, the following variation in the action, 

gives the Poisson bracket, 

(25) 

(26) 

(27) 

(28) 

(29) 

. (30) 

If the tensor E is not invertible, constraints must be imposed on the dyriamical 

fields. For our action (eq.(8)), invertibility is achieved through gauge fixing. The 

detailed form of this constraint is not important here since we will be dealing 
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only with gauge invariant quantities (up to surface terms at the base point). For 

example, we will write, 

f(x) = u-1(x, xo)g(x)U(x, xo), (31) 
/ 

giving, 

(32) 

At this point, we need to rewrite the variation of the action in a convenient 

form and one which will involve only gauge invariant quantities. During the 

following calculation, the gauge field AIL and the corresponding field strength 

tensor F, will be treated as functions of g(x) (see eq.(13) and eq.(15).) Define 

the following variation, 

(33) 

Note that As is simply A+ with o+g replaced by 8g. Recalling our earlier 

expression for the variation of the action (eq.(14)), we can rewrite the second 

term in the following way, 

Tr(g-18gF) = -iTr(As(F- gFg-1
)). (34) 

The identity given in eq.(17), along with the fact that the currents J+ and J_ 

take values only in the coset, gives1 

We have then, 

At this point we make the following gauge transformation, 

g(x)-+ J(x) = u-1 (x,x0 )g(x)U(x,x0 ), 

with U(x, x0 ) defined in eq.(20). Defining, 

H+(x) =- Iz: dx'U(xo,x')F(x')U(x',x0 ), 

Hs(x) = - rz: dx'U(xo, x')Fs(x')U(x', Xo). 

12 
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Where F6(x) is derived from F(x) by replacing 8+g(x) with og(x). The variation 

of the action can be rewritten, 

81 = ~ j J2xTr[f-1(8f- i[Hs, j])8_(J-1(8+f- i[H+, f])]. (39) 
21r 

This variation takes the form of eq.(29). Defining, 

we have the Poisson bracket, 

where €( x - y) is defined by, 

€(X- y) = {. +11 X> y 
x<y 

Consider the axial transformation, 

(40) 

(41) 

(42) 

(43) 

(Here [, ]+ refers to the anti-commutator.) Using eq.(8) and eq.(17), w~ have, 

(44) 

which gives the Poisson bracket, 

(45) 

These two Poisson brackets (eq.(41) and eq.(45)) will, after some algebraic ma

nipulation, provide us with the Poisson bracket of the parafermionic currents. 

Following Witten [58], we work with an index free notation by defining, 

'lj;p = j dxTr(P(x)o'l/;(x)), P(x) E g- h. (46) 

Using eqs.(32,40), we can rewrite tf;p as, 

'lj;p = ~ f dxTr(P(x)f8_(j-18f)f-1) 

= -~ fdxTr(f- 18f8_(J-1Pf)) (47) 

= -~ fdxTr(R8_(J- 1Pf) +if-1[Hs,f]8-(f-1Pj)), 

13 



We can break up the Poisson bracket of the parafermionic currents into two 

parts, 

(48) 

where we have defined, 

(3 = -~ fdxdy{Tr(R(x)fL(f- 1 P J)),Tr(R(y)8_(J-1Qf))}, 

1 = -!~ Jdxdy{Tr[(R+ ~f-1 [H5,j])8_(f-1Pf)], (49) 
Tr[if-1 [Hs,f]8_(f- 1Qf)]}. 

Using eq.(41) we can readily compute (3, we have, 

f3 - - ~ Lha,hbeg-h J dxdy(8_(f-1 P f))a(8-(f-1Qf))b{~(x), H'(y)} 

- - ~ Lh4 Eg-h J dx(J-1 P f)alL(f- 1Qf)a 
- ~ J dxTr(f-1QJ)8_(J-1 P f)) 

-~ Lh .. Eh J dxTr(ha f- 1Qf)Tr(ha8_(J-1P f)) 
- ~ J dxTr( Q8_P) + 2i J dxTr([ P, Q]t/J) 

-~ Lhaeh J dxTr(ha f- 1Qj)Tr(ha8_(f-1 P f)). 
(50) 

To compute 1, we rewrite the left-hand side of the Poisson bracket as, 

(51) 

Employing the equality, 

Hs(x) = u-1(x, xo)As(x)U(x, xo) + iU-1(x, xo)8U(x, xo), (52) 

we have the following expression for the left hand side of 1 under the axial 

transformation of eq. ( 43), 

Tr[(f-18f- ~f-1 [H5 ,J])8_(J-1 P f)]= Tr( -(~f-1 [f, u-thaU]+dea 

-~f-1 [U-1oU, f]- ~f-1 [U-1 AsU, f]). (53) 

The last two terms of this expression have a relative sign opposite of the two 

terms of the right hand side of I· This relative sign, after antisymmetrizing, 

results in cM.cellation. This leaves, 

1 = -~ f dxdy{Tr( -~f-1 [f,U-1hau]+deaa_(f-1 p f)), 

Tr( -iHslL(J-1Qf)- !fHs[t/J, Q])}. 

14 
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We require the Poisson bracket of d0a with H~, which follows from eq.(45), we 

have, 

{ d0a(x), H~(y)} = :k Tr(U-1 haUhb)€(x- y). (55) 

Combining these gives, after some algebraic manipulation, 

''t = ~ Lhaehf dxTr(ha f- 1Qf)Tr(ha[j_(f-1 P f)) 

+~ Lhaeh J dxdyTr([ha, P].,P )€(X- y )Tr([ha, Q].,P ). 
(56) 

The first term cancels with the third term of f3, and finally, 

{.,Pp,'ljlq} = 2
: JTr(Qo_P) +2ifTr([P,Q]'I/J) 
+2: Lh"ehf dxdyTr([ha,P]1jJ)€(x- y)Tr([ha,Q].,P). 

(57) 

7 The Poisson Algebra and Multilocal Observables 

The Poisson algebra of the Parafermionic currents derived in the previous section 

is remarkably simple, considering the lengthy derivation. In this section, we Will 
consider the structure of this algebra and its extension to multilocal observables. 

The Poisson algebra presented in eq.(57) should satisfy the Jacobi identity, 

2: {{'ljlp1 (xi),'Ijlp2 (x2)},'ljlp3 (x3)} = 0, (58) 
cyclic 

the sum being taken over cyclic permutations of the three currents. This follows 

from the fact that the Jacobi identity is preserved under canonical transforma

tions. Under direct calculation, however, we find that the identity is not satisfied 

in general for the case of non-abelian subgroup H. The error in our calculation 

can be traced back to the derivation of eq.(45) from eq.(44). This step is valid if 

· and only if the components ofF are linearly independent, that is, only if there 

is no linear constraint of the form, 

2: Fa(x)Ca(g(x)) = 0. (59) 
a 

Note that Ca may depend on g(x) but not Otg(x). If such relations exist, we 

have a constrained system, and the right hand side of eq. ( 45) must be modified 

to, 

(60) 
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where pab is the projection of the unit operator 8ab in the subspace orthogonal 

to the constraints. The existence of such a constraint can be seen from a purely 

group theoretical point of view. In addition to the axial transformations of 

eq.(43), consider the infinitesimal vector (gauge) transformations, 

(61) 

The existence of a linear relation between 8vg and 8 A9 would imply that a certain 

linear combination of axial transformations is equivalent to a gauge transforma

tiqn, which leaves the action unchanged. Since de is arbitrary, this implies a 

linear relation on F of the form eq.(59). If his the Cartan subalgebra of g then 

no such relations exist, and eq.(45) is unchanged. This can be proved simply by 

diagonalizing hand writing out such a linear relation on components. However, 

if h is non-abelian the situation is quite different. We consid~r ·the case: G = 

SU(2) ® SU(2), and H = SU(2) (diagonal subgroup). If we take SU(2) in the 

fundamental representation, we can parameterize (g1 , 92 ) in the following way, 

• 

91 = ao/1 +iii· a1 ; 92 = bo/2 + ib · a2, 
with (ao)2 + (ii)2 = 1 ; (bo)2 + (b)2 = 1. 

(62) 

Here u represents the Pauli mat:dces and I the unit matrix. In this notation, 

we can parameterize the subalgebra h by, 

(63) 

The desired linear relation is given by, 

. (64) 

It follows· that, 

(65) 

The existence of linear relations of this type, in many cases, follow from simple 

counting arguments. For example, consider the coset SU(5)/SU(4). The dimen

sion of SU(5) is 24, while· for generic g the rank of 8A and 8v are 15 and 12 
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respectively. Since 15 + 12 > 24, linear relations must exist. It is not true that 

such degeneracies exist for all non-abelian cosets; however, they were found in 

most of the cases we studied. 

The modification of the Poisson bracket of d0 and F changes the computa

tion of the Poisson bracket of the parafermions in a subtle way. This modification 

tells us that a subset of chiral transformations is made up of gauge transforma

tions, and we are instructed to project out these variations in the Poisson bracket 

relations. Such a projection is unnecessary when computing Poisson brackets 

between gauge invariant quantities. For example, both R and Hs are formally 

gauge-invariant. When we compute the Poisson bracket of R and Hs with F, 

we isolate the part of R and Hs corresponding to chiral variations d0. However, 

if those chiral variations are along a gauge direction, then the corresponding 

variation· of R and Hs is zero by gauge in variance. This would seem to indicate 

that the naive calculation based on eq.(45) was correct. However R,Hs and 1/; 
are not completely gauge invariant; rather, there is gauge dependence at the 

base point x0 • When computing the Poisson bracket, base point contributions 

arise that depend on the projection operator P of eq.(60). We do not compute 

these extra terms explicitly, however, since the advantage of working solely with 

the one-body 'lj;s is lost. 

We can avoid these complications by recalling that ultimately we are inter- · 

ested only in the truly gauge invariant observables of eq.(24). In computing the 

Poisson bracket of two such observables, the base point contributions cancel. It 

follows that although eq.(57) is not correct as it stands for non-abelian c6sets, 

it is still perfectly all right to use it as an intermediate step in computing the 

Poisson bracket of gauge invariant quantities, su~h as those given in eq.(24). 

To conclude this section, ·we verify that· the Jacobi identity is satisfied for 

the multilocal observables defined in eq.(24). \Vhen we substitute the Poisson 

bracket of eq.(57) into eq.(58), we get an expansion in ki, where i takes values 

in the set, i E { -2, -1, 0, 1, 2}. It is not difficult to show that all these terms 

cancel, with the exception of i = 0 and i = -2. The term independent of k 

(i = 0) has two contributions: one term where the k-independent term of the 

Poisson bracket is used twice and one where the non-local term proportional to 

£( x - y) is in the inner Poison bracket and the "central charge" term is in the 

outer Poisson bracket. These terms combine to give a restatement of the Jacobi 
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identity for the underlying semi-simple Lie algebra, and in this manner give a 

non-trivial restriction on the coefficients of the Poisson bracket of eq.(57). If we 

label the coefficients of the three terms of eq.(57) as a, band c respectively, this 

restriction takes the form, 

(66) 

which is indeed satisfied. Letting this expression fix c in terms of a and b, we can 

arbitrarily scale the parafermions t/J to fix b. This leaves an overall normalization 

constant .for the right hand side of the Poisson algebra. We now concentrate on 

the leading term (i = -2) and work with the truncated algebra, 

{ t/Jp(x ), 1/Jq(y)} = j dxdy€(x- y) ~ Tr(P(x)[ha, t/J(x)])Tr(Q(y)[ha, t/J(y )]), 

· C6n 
the Sum being carried out over the subalgebra h. With O(x) = O(xbx2, ... ,xn) 
defined in eq.(24), we wish to show that, · 

I: { {Ot(x),02(y)},Oa(z)} = 0. (68) 
• cyclic 

Define, 

Xf = Tr(t/J(xt) · · · [ha, t/J(xi)] · · · t/J(xn)), (69) 

x~~ = { Tr(t/J(Xt···[ha,t/J(xi)]···[hb,t/J(xj)]···t/J(xn)) i#-j, (70) 
~3 - Tr(t/J(xt)···[ha,[hb,t/J(xi)]]···t/J(xn))i=j, 

and similarly for Y and Z. Note that Xf/ satisfies the identity, 

Xf/- Xj; = hii!abcXf; ([ha, hb] = !abchc). 

We have, 

(71) 

(72) 

where the index "a" is summed over the subalgebra h, and the indices· "i" and 

"j" are summed over the multivariable index range of "x" and "y" respectively. 

Taking the bracket with 0 3 (z) gives, 

{Ot(x), 02(y)},Oa(z)} = €(Xi- Yi)(XizbYfZt€(xz- Xk) + x;"Y~tzt€(Yl- Zk)). 
' (73) 
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Since we are summing over permutations, we are free to permute the second term 

of eq.(73) twice in (x, y, z). After rearranging dummy indices and employing eq. 

(71), this expression reduces to, 

We sum permutations and rewrite dummy indices to arrive at, 

L:cyclic{{OI(x),02(Y)},03(z)} = fabcXfY/Zk(e:(xi- Y;)e:(xi- Zk) 
+e:(yj- Zk)e;(yj- Xi)+ e:(zk- Xi)E(Zk- y;))o 

Employing the identity, 

(74) 

(75) 

e:(x-y)£(x-z)+e:(y-z)e:(y-x)+e:(z-x)e:(z-y) = 1 Vx,y,z E R, (76) 

gives, 

2: {{OI(x),02(y)},03(z)} = 'L:fabcXfYlZk = 'L:fabcYlZk 'L:Xf. (77) 
cyclic i,j,k j,k i 

By color neutrality, the sum over "i" oil the right hand side of eq.(77) vanishes, 

giving the desired result. Notice that for the Jacobi identity to be satisfied, it 

is only necessary that at least one of the observables be a color singlet. 

8 The Classical W Algebras 

We wish to generalize this procedure to incl:ude coset g/h models of a very 

particular tjpe: we take g to be the direct sum of two copies of an affine Lie 

algebra with arbitrary central charges k1 and k2 and take h to be the diagonal 

subalgebra, 

(78) 

This choice is dictated solely by the fact that these cosets have been discussed 

at length in many previous works [4, 5, 6, 17). Much of this section can be 

easily generalized to other types of coset models. · The gauged WZW action 
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corresponding to the coset of eq.(78) is, 

I = It + I2 + I1,2 

It=~ I JlxTr(8+g110-9t) +ft.; JTr(d9t91 1
)
3

, 

I2 = ~I JlxTr(8+g210-92) + f;;; f Tr(d9292 1 
)
3

, 

/1,2 = 8~ I JlxTr(iA.t(kt(0-9t)911 + k2(8-92)921) 

-iA_(kt911(8+91) + k2921(8+g2))- ktA+91A-911 

-k2A+92A-g21 
- (kt + k2)A+A-). 

(79) 

Note that the gauge field A~-' takes values in the diagonal subalgebra h. The 

currents of the model are given by, 

J+ = ~911 
D+9t + ~921 

D+92, 

J_ = -~(D-9t)911 - ~(D-92)921 , 
(80) 

with D~-', the covariant derivative, as defined in eq.(ll). As before, these currents 

are not chirally conserved. We define, 

1/; = t/J- = -U-1(x,x0 )J_(x)U(x,xo), (81) 

with U(x,x0 ), the Wilson line, defined as in eq.(20). The parafermionic current 

1/;(x) is chirally conserved (8+'¢ = 0) and gauge invariant up to base point 

dependent terms. The computation of the Poisson bracket of the parafermionic 

currents is similar to the derivation given in Section 6, and we will simply present 

the result, 

{ tPa (X), 1/.Jb(y)} = - 1r(~:~~2 ) 01 (X - Y) + ~~l;::l 0 (X - Y) !abctPc( X) 

- (k
1
4_;k

2
)€(x - Y )fadcfbectPd(x )t/Je(y) · 

Where we have defined, 

(82) 

As in our earlier calculation, dropping base point dependent terms has ren

dered this algebra non-associative (that is, the Jacobi identity is not satisfied), 

a property which is restored only after projecting onto color-singlet observables. 

The simplest neutral combination one can form is obtained by taking the 

trace of an arbitrary power of t/J. Compactifying to the circle and scaling appro

priately to conform to the literature we define, 

w~> = ~ {2
1r dx exp(imx)Tr(t/J8 (x)). 

wslo 
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Where we have defined the constant, 

(85) 

For concreteness we take g = SU(N). We compute the Poisson brackets of the 

operators in eq. ( 84) using eq. ( 82), 

{WJ:>, wJt>} = (m(t -1)- n(s- 1))W~t!-2> 
_ ia{s;!W-1) l:j jW~:]>w~~jl). (86) 

In the limit N ~ oo only the first term· survives and we have the SU ( oo) 

classical W algebra, 

(87) 

(88) 

(89) 

valid for traceless 3 X 3 matrices. We therefore find the closed algebra, 

{W<2> w<2>} = (m- n)W<2
> 

m ' n . m+n' 

{ W<2> W<3>} = (2m - n)W<3
> 

m '· n m+n' (90) 
{ W(3) W(3)} = ia (m- n)""' w<2) W(2) 

m ' n 611' L...Jl m-l n+l• 

This agrees with the classical limit of the quantum Ws algebra in which one 

retains only the term with the least singular short-distance behavior. Similarly, 

closed algebras can be deduced for WN, N > 3. We note that these algebras 

have the simple universal form given in ref. [15]. For finite N, we see that the 

WN algebra is nonlinear. This.is simply due to structure constant identities used 

to reduce algebra elements w<s>, for s > N. It is interesting to note that these 

algebras are insensitive to the second two terms of the a.Igebra given in eq:(82). 

We now turn to a generalized algebra without this property. 
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We discuss a generalization of W algebras that is suggested by analyzing 

WZW models in terms of paraferrnionic currents. As before, the Poisson alge-. 

bra of eq.(82) may be used to compute the Poisson bracket of gauge invariant, 

multilocal observables. In an effort to simplify the resulting algebra, we define 

a new basis for the multilocal observables (compare eq.(24)), 

This is a natural generalization of eq.(84). 

We now illustrate this non-local algebra with a simple example. Consider 

the coset g = (SU(2)k1 XSU(2)k2 )/SU(2)k1 +k2 • In this case, the algebra closes 

on the first two observables, 

W(xllx2) = Tr(,P(xtt/J(x2)), 

W(x1,x2,x3) = Tr(t/J(xt(t/J(x2)t/J(x3)]). 

We have the following algebra, 

{W(xt,x2), W(yt,y2)} = -a61(xt- Yt)W(x2,Y2) +perm. 

(92) 

-ib6(xt- Yt)W(xt,x2, y2) +perm. (93) 

+2c0(xt, x2; Yb Y2) W(xt, x2, Yb Y2), 

{W(x1,x2), W(YbY2,y3)} = -a6'(xt- Yt)W(x2,Y2,Y3) +perm. 

-ib6(xt- Yt)W(xt, x2, Y2, y3) +perm. 

+2c0(xbx2; Yb Y3)W(xt, x2, Yll Y2, Y3) 

+2c0(xl! x2; Y2, Y3)W(xt, x2, Y2, y3, Yt), 

(94) 

{W(xbx2,xa), W(yt,Y2,y3)} = -a6'(xt- Yt)W(x2,x3,Y2,Y3) +perm. 

-ibb(xt- Yt)W(x2,x3,Yt,Y2,Ya) +perm. 

+2c0(xt, x3; Yt,Y3)W(x3,x2,xb Yl! Y2,Ya) 

+2c0(x2,xa; Yt, y3)W(x2, xa,Xt, Yll Y2, Ya) 

+2d~(xt, xa; Y2, Ya)W(x3, x2, Xt, Y2, Ya, Yt) 

+2c0(x2, x3; Y2, y3)W(x2, xa, Xt, Y2, Ya, Yt). 
(95) 

We have defined for convenience the constants, 

(96) 
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and have indicated by "perm." the terms obtained by symmetrizing or anti

symmetrizing with respect to the arguments in the ~ppropriate way. Note that 

W(x1,x2) is symmetric in x1 and x2 and that W(x1,x2,xa) is antisymmetric in 

Xt, x 2 , and x 3 • The() function is defined by, 

2B(xt, x2; y~, Y2) = t:(xl - Yl) + t:(x2- Y2) 

-t:(xi- Y2)- t:(x2- YI), 
(97) 

and it measures the overlap between the intervals (xi! x2 ) and (yb y2). If one 

interval contains the other or they are disjoint, it vanishes. If they overlap, it 

is ±1 depending on the sense of the overlap. It is simple to extract a truly 

local algebra from the multilocal observables by expanding in power series in 

the differences of arguments, as in the operator product expansion. 

Finally, we need to show that the functions appearing on the right hand 

side of eqs.(93-95) can be written in terms of the functions given in eq.(92). This 

follows from elementary identities between SU(2) structure constants. We need, 

W(x 17 x2,xa,x4)= ~W(x2,xa)W(xt,x4) 
-~W(x1,xa)W(x2,x4), 

W(x1,:z;2,xa,x4,xs) = ~W(x3,x4)W(x2,xs,x1) 
-~W(x3,xs)W(x2,_x4,x1), 

W(xt,x2,x3,x4,xs,x6) = iW(x~,x3)W(x4,x6)W(x2,xs) 

+i W(x2, xa)W(x4, xs)W(xb x6) 

-iW(x2, x6)W(x4, xs)W(xi, x3) 
.-iW(xt,xs)W(x4,x6)W(x2,x3)· 

(98) 

(99) 

(100) 

Using these equalities it is possible to express eqs.(93-95) as a closed algebra. 

It should not be difficult to write down similar algebras for coset models based 

on other groups. These algebras (like their local counterparts) take on their 

complicated, nonlinear structure due to these types of reduction identities. 

9 "Free Current" Realization of Parafermion Algebra 

We would like to realize the classical algebras given in eq.(57) in terms of free 

fields. We will do this in a two step process. First, we will realize these algebras 
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in terms of a free current algebra, or affine algebra. The second step is the 

well-known realization of affine Lie algebras by free fields (16, 53): that is, we 

give an explicit construction of the currents of the coset models in terms of the 

currents of the ungauged WZW model. This construction is very simple, and it 

opens the way for the construction of the full quantum theory [12, 13]. 

We want to find an explicit construction for 1/J in terms of fields that satisfy 

simple, local commutation relations (or Poisson brackets). We mimic eq.(19) by 

writing, 

'1/J(x) = v-1(x,x0 )E(x)V(x,xo), (101) 

where V replaces U and E replaces J. V is a bilocal field valued ifl:. the subgroup 

H, defined as a path ordered product, just as in eq.(20), 

V(x,x0 ) = Pcexp (i 1: dx'B(x')). (102) 

We will require Band E to have local commutation relations. The non-locality 

of eq.(57) will be entirely due to the non-locality of the Wilson line V. 

It is possible to avoid path-dependent terms in the commutation relations of 

the parafermions expressed in eq.(101) if we require Band E to satisfy an affine 

algebra with correctly chosen central charge. We introduce the free current, 

(103) 

with the following commutation relations, 

Define, 

T(h) = Taha, ha E h j T(c) = T 1r 1 
, r 1 E g- h. (105) 

With these currents defined, we identify, 

B = f3T(h) ; E = IT( c), (106) 

with the constants a, (3 and 1 to be determined. Upon computing the com

mutation relations of the parafermions defined in eq.(101), many base point 

dependent terms will arise. As before, these terms vanish when projected onto 
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color singlet observables, and we ignore them. After some calculation we have 

the result, 

[1/Jp(x), 1/Jq(y)] = 12a f dxTr(Q(x)8xP(x)- i1 f dxTr([P(x), Q(x)]¢(x)) 
+ 4~ f dxdyt(x- y)Tr([ha, P(x)]¢(x))Tr([ha, Q(y)]¢(y)), 

(107) 

with the important constraint a,B = 1. Taking a= k/27r and 1 = -2, we have 

complete agreement with eq.(57). Note that the central charge of the affine 

Lie algebra eq.(104) is the usual quantized value k/27r, k E Z, as required by 

unitarity. Also note that this construction can easily be extended to the model 

defined in eq.(79) by employing the tensor sum of two commuting affine Lie 

algebras [10]. 

, In closing this section, we check two simple consequences of our construc

tion. Consider the· gauge invariant quantity, 

O(x,y) = Tr(¢(x),P(y)) = 4Tr(T(c)(x)V(x,y)T(c)(Y)V(y,x)). (108) 

In an earlier work [9], it was shown that the classical stress tensor should be 

recovered from O(x,y) in the limit x-+ y. This is the classical analogue of the 

leading term in the operator product expansion. From eq.(101), we have, 

(109) 
l E ccset 

Up to an overall normalization constant, this is the classical analogue of the 

Sugawara construction for the coset model. 

One other check is to verify that all gauge invariant observables lie in the 

coset. In an operator language, they should commute with currents that belong 

to the subgroup H. The classical analogue is the following relation, 

{O(x, y), T(h)(z)} = 0. (110) 

This can easily be shown to hold and in a straightforward way can be generalized 

to all observables O(x1 , ••• xn) defined in eq.{24). 

10 Quantization of the Parafermionic Current Algebra 

To make a direct connection with previous work in the theory of two-dimensional 

coset models, we would like to find a consistent quantum generalization of the 
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classical Poisson bracket algebra derived in Section 6. Furthermore, we would 

like to outline a scheme in which the known spectrum of primary fields may be 

reproduced, as well as their conformal dimensions and fusion algebra. 

Work in this direction has led to many interesting questions concerning 

braid statistics and quasi-Hopf algebras; see ref.[12, 13] for recent progress in. 

this direction. The full primary field spectrum remains illusory, however. A 

completion of this scheme holds many rewards, one of which I will now discuss. 

In the second part of this thesis, a scheme is outlined whereby one may com

pute the fusion algebra for the WZW model by employing symmetry properties 

of the Chern-Simons Hilbert space. Another unsolved problem is the complete 

extension of these methods to coset models. There exists a class of coset mod

els, those with "fixed points," which have resisted this calculation scheme. In 

fact, it appears that from this point of view these models allow some freedom 

in computing the primary field spectrum. If completed, the quantization of the 

parafermionic current algebra could solve this important mystery. 
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Part II 

The Chern-Sirnons Functional 

and Conforn1al Field Theory 

11 2D Conformal Field Theory and Topological Field 

Theory 

The axiomatic approach to 2D Conformal Field Theory, pioneered by Belavin, 

et. al. [14], has led to a rich system of constraints through which we define a 

rational conformal field theory (RCFT). One interesting aspect of this structure 

concerns the monodromy, or braiding, constraints of the n-point functions. A 

connection between these constraints and the defining relations of knot invari

ants was noticed early on. Knot invariants are purely topological quantities 

ascribed to objects living in three dimensions. A natural question then, posed 

and finally solved by Witten [59]; what is the connection between RCFTs and 

topological field theories? 

In finding this connection, it is necessary to choose a topological, gauge 

invariant action. A likely candidate, the Chern-Simons functional, had recently 
been studied in detail because of its importance in the Lagrangian formulation 

of the Wess-Zumino-Witten model discussed in part I of this thesis. Finding 

a topological classical action, however, is not enough. In quantizing a classical 

action it is necessary to prescribe a regularization scheme, which iiwolves choos

ing a Riemannian metric for the space-time, thus possibly ruining the general 

covariance of the theory. It is necessary to show that the regularized quanti

ties, that is, the relevant determinants, are in fact topological invariants. In the 

weak-field limit of the quantum theory, we can concentrate on the path integral 

about the classical field equation solutions, or in this case the fiat gauge con

nections. In this limit, with a natural choiee of regularization scheme, Schwarz 

showed that the path integral gives rise to the Ray-Singer analytic torsion of the 

flat connection being expanded about (48, 59]. The Ray-Singer torsion of a fiat 

gauge connection is a known topological invariant, and thus in the weak field 
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limit the existence of a true topological quantum field theory is demonstrated. 

At finite coupling, the use of quantum field theory techniques to show that 

topological invariants exist is more subtle. Hence a large effort from both the 

mathematics and physics communities has been made in putting this process 

on firmer ground. Aside from bringing together researchers from these often 

distant branches, a great development has been seen in the ·fields of integrable 

models and quantum groups, as well as axiomatic topological quantum field 

theory. This work has culminated in a direct connection between the existence 

of: a certain class of quantum groups, the "ribbon Hopf algebras," and the knot 

invariants found by Witten. Thus the ambiguities of the quantum field theory 

have been circumvented, or more precisely, they have been axiomatized in the 

language of Hopf algebras. 

The connection between the Chern-Simons quantum theory and RCFTs 

appears also in the structure of the Chern-Simons Hilbert space without sources 

[18, 19, 28, 41, 42) (that is, without knots present.) In the following section of 

this thesis, we demonstrate that the Hilbert space of Chern-Simons theory with 

space-time manifold :E 0 R (E being the two-torus and R the real line) provides 
the fusion rules of the corresponding Wess-Zumino-Witten model, as well as an 

efficient method of explicitly calculating the modular transformations on the 

primary fields. The effect of monopole background charges is also considered in 

detail. The mathematical structure is surprisingly intricate and allows a clear 

grometric description. 

12 The Chern-Simons .. Action Functional 

Let M be a 3-manifold. The gauge field A~-' is a one-form on M taking values 

in g, the Lie algebra of some semi-simple group G. The Chern-Simons action 
functional is given by, 

' 
Acs = 4':fMTr(AAdA+ ~AAAAA) 

= 4: JMcf3xc;l-ivPTr(AJ.i8vAp + ~A~-'AvAp)· (111) 

The Chern-Simons functional has a number of important properties. First, 

it is independent of thC1 space-time metric. This will ensure that observable 

quantities will be generally covariant. A second property concerns its gauge 
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invariance. Because the homotopy group ?rs of a simple Lie group G satisfies: 

1r3 (G) ~. Z, the set of gauge transformations is a disconnected set where each 

component can be labelled by an integer m, called the winding number. The 

Chern-Simons functional is invariant under gauge transformations connected to 

the identity (winding number zero) and changes by, 

Acs -+ Acs + constant · m (112) 

under a general gauge transformation. The constant depends linearly on the 

normalization of the trace and on the overall constant k. We will normalize the 

trace so that the constant is given by 2rr · k. When computing the path integral, 

the contribution exp( i · Acs) will be invariant under a general gauge transfor

mation if and only if k E Z, thus providing an argument for the quantization of 

k. 

The Euler-Lagrange equations of motion give, 

IJ.VPF, _ 0 e vp- ' (113) 

where Fvp is the field strength tensor. In other words, the field equations are 

satisfied if and only if the field strength vanishes. 

13 Quantization of the Chern-Simons Action 

We study the quantization of the Chern-Simons action functional restricted 

to the case where the 3-manifold, M, is diffeomorphic to the product of a 2-

torus, E, and the real line. With appropriately quantized k, the action is gauge 

invariant, and we choose the axial (i.e. physical) gauge At= 0 (with t defining 

the coordinate along the real line in M). After integrating by parts the action 

reduces to, 

los= 
2
k f d3 xTr(A1otA2), 
7r }M . (114) 

with the constraint (the equation of motion derived from varying At,) 

(115) 

Instead of first quantizing the system and then imposing the constraints as 

a projection on the Hilbert space, we will first determine classically the space of 
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solutions to the constraint eq.(115) and quantize this simpler (finite dimensional) 

space. 

The constraint Fp.v = 0 requires that the connection be flat. The space 

of flat connections on a Riemann surface I:, modulo gauge .transformations, is 

isomorphic to the space of maps, 

¢: 7rt(E) --+ G, (116) 

modulo a global gauge transformation at the base point. Here 1r1 (I:) is the 

fundamental group of the manifold I:. In our case I: is the torus, and we can 

present 1r1 (E) as, 

(117) 

We represent the generators A and B 'as the holonomies of the gauge field Ap. 

about the two non-contractible loops C1 and C2 (see Figure 1) of the torus, 

A = Pexp f01 Ap.dxP., 

B = Pexp f02 Ap.dxP.. 
(118) 

In other words, the resulting classical phase space is given. by the arbitrary 

embedding of A and B into the group G, subject to the constraint AB = BA 

and the global gauge transformation at the base point of C1 and C2 • Since A and 

B commute, we can use this global gauge transformation to put them both in the 

maximal torus of G. Given that any two fiat gauge configurations with the same 

holonomies are equivalent up to gauge transformations, one can conveniently 

choose gauge field representations of a given class (or holonomy) to be constant 

over the torus. Also, since A and B are in the maximal torus of G one can 

require that the constant gauge field Ap. take values in the Cartan subalgebra 

of g. Thus, the path-ordered exponentials reduce to ordinary exponentials, and 

so, 
A = exp f01 Ap.dxP. = eia(t), 

B = exp f02 Ap.dxJ.L = eib(t), 
(119) . 

implicitly defining a(t) and b(t) as functions of the "time" variable taking values 

in the Cartan subalgebra of g. 

Substituting these identifications into the functional eq.(lll), and letting 

the coordinate Xt define the position on the torus along C1, X2 the position along 
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C2 , we perform the integral over :E. We have overlooked. a possible change in 

the measure associated with the Jacobian arising from the change of variables 

AIL to A, B. This is discussed in ref.[3, 21, 22, 28, 40, 41, 42, 59], where it is 

shown that the Jacobian simply shifts the coupling k to k+c where cis the dual 

Coxeter number of the Lie algebra (in our normalization we have c = N for g = 

SU(N).) With this shift we have, 

k+cj Ics = -~ dtTr(a(t)8tb(t)). (120) 

At this point, we must choose a basis for the Cartan subalgebra of g. The 

classical observables A and B are periodic under certain shifts in a(t) and b(t). 

We would like to choose a basis which gives a primitive cell with respect to this 

periodicity. To ensure this, we choose the simple roots as our basis, 

(121) 

The vi are the simple roots. Once we have chosen a basis, we can perform the 

trace, where we define, 

(122) 

If g is simply-laced we can normalize the trace so that Cii is equal to the 

Cartan matrix. If g is not simply-laced, the above trace is not proportional to 

the Cartan matrix. For these algebras, Cii will be defined by eq.(122) where 

the normalization is determined by requiring that Tr(v1v1 ) = 2, and v1 is a 

longer root. As an example of the simply-laced case, consider G = SU(3). In 

the fundamental representation we have, 

( 

1 0 

v' = ~ ~~ 

( 

0 0 0 ) 
v

2 
=. 0 1 0 

0 0 -1 

(123) 

And we see that it is natural to scale the trace by a factor of 2 to get the 

Cartan matrix from eq.(122). Note that choosing the simple roots in a different 
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representation would result only in a different scaling. Therefore, from this point 

on we will work with the effective action, 

k+cj .. Ics = --- dtai(t)C'38tb;(t), 
21T" 

(124) 

where Cii is equal to the Cartan matrix for simply-laced g and given by eq.(122) 

for non-simply-laced g (with the normalization prescription discussed below 

eq.(122).) 

The action given in eq.(124) is linear in time derivatives, and thus canonical 

quantization gives the following commutation relations: 

[ai,b;] = -~~~(C-1 )ij, 
[ ai, a;] == 0, 

[bi,b;] = 0. 

We define the quantum operators, 

A . _ eia; B· _ eib; 
I- l I- • 

(125) 

(126) 

As an example, consider G = SU{3) in the fundamental representation. {The 
simple roots were given above.) We have, 

A = ( ~1 A1~ A2 ~ ) , B = ( ~1 

0 0 A21 0 

0 
0 ) 0 . 

B;t. 
{127) 

The commutation relations of eq.{125) imply, 

A. B A-tB· -t ( 21ri (C-1) ) 
i j i j = exp k+c ij ' 

AiA; = A;Ai, {128) 

BiB;= B;Bi. 

We realize these commutation relations on a finite dimensional Hilbert 

space. For simplicity of exposition, we Will work out the details for G = SU(N). 
For the simply-laced case, Cii is just the Cartan matrix. The column vectors of 

the inverse of the ccti-tan matrix define the fundamental weight vectors of the 

Lie algebra. We diagonalize the Ai operators (they commute with each other) 

and define the eigenstates, 

Ait/Ja=TJu;tPa, where ry=exp(N(:~N))· (129) 
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In this basis, the Bi operators act as raising operators along the fundamental 

weight vectors. We have, 

(130) 

where Wi are the weight vectors. To see this explicitly, consider the example 

N=3, k=l. We have, 
A1 '1/Ji; = TJi'I/Ji;, 

A2'1/Ji; = TJi '1/Jii, 
BI'I/Jij = 1/Ji+2,j+b 

B2'1/Ji; = 1/Ji+I.i+2, 

'f/12 = 1. 

(131) 

(132) 

If we start at the state i=O, j=O, we can raise to any state such that i + j=O 

(mod 3). We call this restricted subspace the state space. Note that two states 

'1/Jii and tPkl are equivalent if and only if i = k (mod 12) and j = l (mod 12). 

In Figure 2 we have plotted these states. Note that the states (3,0) and (0,3) 

lie along the simple root vectors, and the states (2,1) arid (1,2) lie along the 

primitive weight vectors. 

Finally, we need to understand the residual gauge symmetry, Weyl invari

ance. It is clear how the Weyl refl~ctions act on this state space (that is, by the 

usual action on the weight lattice). Vectors in this state space fall into various 

Weyl orbits. For our example, the result is shown in Figure 3. We see that for 

a simply-laced gauge group, the Hilbert space is, 

·H= Aw 
(k+c)ARI>W' 

(133) 

with Aw the weight lattice, AR the root lattice and W the Weyl group. Also, 

1> implies the semi-direct product. Note that in the case of g non-simply-laced, 

this expression must be altered (see ref. [28] and the note below eq.(122).) The 

general result, consistent with the normalization discussed, is given by, 

H= Aw 
2(k+c)Ari>W' 

(134) 

Ar is the dual-root lattice, defined by the basis vectors ai/lail2 ,ai being the 

simple roots . 
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14 Modular Tranformations 

In the variables defined in Section 13, the modular transformations act in the 

following way, 

T: (a, b)---+ (a, b ~a), S: (a, b)---+ (b, -a). (135) 

We want to show that these transformations act on the operators Ai and Bi in a 

well defined, representation independent way. We start with the T transforma

tion. For the purpose of exposition consider the case SU(3) in the fundamental 

representation. Using eq.(125) we have, 

(136) 

R, A, and B are diagonal matrices in the Lie algebra space. For a general repre

sentation R will contain different phases along the diagonal. In the fundamental 

representation, eq.(123) and eq.(127), we have, 

C' 
0 

0 ) a= awi = ~ -a1+a2 0 ' 
0 -a2 

C' 
0· 

~ )· (137) 

b= bwi = ~ -b1+~ 

0 -~ 
R = 1J-1J. 

The transformation eq.(135) can be realized with the operators Ai and Bi in the. 

following way (see eq.(128) and eq.(129),) 

T(Ai) = Ai, 
T(Bi) = 17-1 BiAi1

• 
(138) 

In Section 17 it is shown that the transformation given in eq.(138) is consis

tent with eq.(136) for any representation. It is also shown how this argument 

generalizes to arbitrary g. 

The S transformation is simpler, and it is easy to verify that the following 

transformations are consistent with eq.(135): 

S(Ai) = Bi, 
S(Bi) = ~-1 . 
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At this point, we need to realize these transformations on the state space. 

For the purpose of exposition we restrict to the case G = SU (N). It is not difficult 

to verify that these relations are satisfied by the identifications, 

Ta,il = 8a,iJ'T/(i1), with t(i1) = 2~uT Ai1, (140) 

S 
1 8 (~ ~) • h (~ ;;"'~ 1 ~A~ (14 ) a,il = _ I 7J u, v , w~t s u, v J = Nu v, 1 

yN(k+N)2 

where A is the Cartan matrix of SU(N). The·normalization factor in front of S 
ensures that S is hermitian. It can be easily shown that S and T commute with 

Weyl reflections in this state space as required by gauge invariance. 

At this point, we _consider the shift of the vacuum by p. (pis one-half the 

sum of the positive roots (see ref.[28]) ). We notice that for SU(3), the number of 

maximal Weyl orbits at a given level k (an orbit is maximal if its order is equal 

. to the order of the Weyl group) is equal to the number of primary fields in the 
' 

corresponding conformal field theory. Also, if we shift the vacuum by p, we see 

that each maximal orbit has a representative state equal to the highest weight 

of one of the integral representations (see Figure 4). For each maximal Weyl 

orbit, define a state tPa in the state space, which is an eigenstate of the Weyl 

reflections corresponding to simple roots, with eigenvalue -1. We make the fol

lowing conjecture: for a given semi-simple gauge group G, the collection of states 

'1/Ja defined above is in one-to-one correspondence with the primary fields of the 

corresponding WZW model. Furthermore, when the modular transformations 

SandT, defined above for the state space, are projected onto this collection of 

states, the resulting transformations S', T' are equal to those calculated by Kac 
[37] (see also ref.[38, 45]) forthe corresponding WZW model. In Section 17 we 

prove equivalence of these S matrices for the case G = SU (N) at arbitrary level 

k. 

15 Fusion Rules and the Verlinde Conjecture 

The fusion rules of the WZW model can now be easily understood in terms of 

Chern-Simons theory. We define the folowing gauge invariant operator: 

(142) 
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The subscript "R" labels a given representation of g, defining the representation 

in which the trace is to be taken. The operators Bi act as raising operators in 

the state space defined in Section 13. For all examples we have checked, the 

operator 0R consistently projects onto the "primary field" states 1/la, and gives 

the correct fusion algebra. That is, let P be a representation and 1/Jp be the 

state associated with that representation. We find that, 

(143) 

where Nfip are the fusion coefficients. To see this ~xplicitly, consider the case G 

= SU(3). Letting R be the fundamental representation we have, 

(144) 

. In Figure 5 we demonstrate h<;>w this operator is used to derive the fusion rule 

3®8 = 3$6 for SU(3) level2. Note the strong similarity between this technique' 

and that of Walton [54]. 

To further motivate eq.(143) note that since the Bis commute among them

selves (see eq.(128)) 0R1 • 0R2 = 0R-.! · 0R1 • lt is more difficult to show that 

N'jp = N~R directly from eq.(143), but the commutativity and associativity of 

the .N'i_ps indicates that they are likely candidates for the fusion coefficients. 

Further, computation of Nfip via eq.(143) in many particular cases reproduces 

the known results [31]. We see that the fusion algebra is generated by Weyl

invariant combinations of the operators Bi. In Section 2, it was shown that the 

modular transformations S maps B into A.-t and that, on the state .space A is 

diagonal. Thus S diagonalizes B, and subsequently S diagonalizes the fusion 

algebra. This is the celebrated Verline conjecture [51, 52]. 

16 Background Gauge Fields and Monopoles 

Having developed the quantization of Chern-Simons theory to the point where 

the structure of the underlying conformal field theory emerges clearly and explic

itly, we now generalize our construction to include classical (I.e., background) 

field configurations. The notion of coupling the degrees of freedom of a confor

mal model to background gauge fields is an old one [1, 2, 8, 35, 39, 50]. In this 
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section, we study Chern-Si~ons theory with background gauge fields, particu

larly focusing on the twisted sectors and the modular properties of these sectors 

in the presence of a monopole. 

To begin with, again consider taking the gauge At = 0 and satisfying the 

flatness condition F12 = 0 on a torus with a point removed, E. We do not 

consider the holonomy around this point removed to be an additional quantum 

degree of freedom but instead specify the holonolmy about the hole entirely 

in terms of the classical part of the gauge field. By the monopole quantiza

tion condition we learn that the moduli space of flat connections modulo gauge 

transformations on E is again 2R-dimensional (R is the rank of G). An excellent 

review of monopoles is ref.[24]. As before, a nonsingular gauge transformation 

may be used to put the gauge field entirely into the Cartan subalgebra. We then 

have the following decomposition: 

(145) 

Here A~q) is the quantum fluctuation about At> which may have both monopole 

and nontrivial holonomy about the canonical cycles of the torus (we imagine the 

monopoles as having all their flux concentrated at the point removed.) Since A~c) 

is a background field, it is time-independent and so, putting the decomposition 

eq.(145) into the action of eq.(111), we find the Poisson bracket (and thus the 

commutator) for Aiq) is as before (eq.(125)). 

The classical holonomy pieces "twist" the theory whereas the monopole 

pieces of A~c) simply changes the modular properties of the theory. We discuss 

these points in turn below. 

As before, quantization consists of representing the operators A = Pexp J A 

as unitary operators on a vector space. Using the full A~-' of eq.(145) we see 

that the classical holonomy pieces of A~c) correspond to choices of boundary 

conditions for the vectors in the Hilbert space if viewed in terms of the operator 
A= Pexpf A(q): 

(146) 

Here the Ais are, as described before, components of the full Pexp J A and 
I 

thus correspondto transport of the 1/Js under Aw . Along the chosen cycle (here 

cl, in a two-dimensional sense, is along the "time" direction), the individual 
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A's c correspond to components of g(O)g-1 (211"), and so requiring ZN boundary 

conditions for g is implemented by the /iS being nontrivial phases. Following 

ref.[33), first implement the twisting along the cl cycle and then use modular 

transformations to build up the remaining shifted sectors. One may furthermore 

compute the fusion rules by following the procedure described in Section 15. 

It was shown in ref. [8) that the modular properties of the theory on the torus 

depend on the topological type of the gauge field A~). One way to understand 

this result heuristically is as follows: instead of concentrating the flux in a single · 

point, imagine spreading it out evenly over the entire torus. Then S simply 

interchanges the cycles whereas T actually combines the cycles, as seen in Figure 

6. The new cycle so generated ( C~) is homotopically equivalent to C}1C2 but 

the path ordered exponential of AJ.L along these cycles differ due to the fact 

that·the triangle bounding them contains 1/2 the flux of the monopole. This 

is the simple explanation of a more rigorous calculation in which one considers 

arbitrary flux distributions. Thus, in the presence of a monopole background of 

charge n, the T matrix of eq.(138) is modified, 

(147) 

where Sj,n is an additional phase that is a solution to eq.(170 of Section 17 

and all other variables are as before (compare with eq.(138) of Section 14.) In 

Section 17 it is shown that for SU(N)/ZN, Sj,n = ain where aN= 1. As before, 

in the sector without a monopole (n=O), the Tn (n =j:. 0) matrix may be found 

by studying eq. ( 14 7) on the untwisted sector. This matrix is then also used to 

study the modular properties of the twisted sectors. 

Below is a brief summary of the effect of including nontrivial background 

gauge fields in Chern-Simons quantum mechanics on the torus: 

1. Fusion Algebra of Twisted Sector. States in the twisted sector of eq.(146) 

and the untwisted sector may be fused as described in Section 15. One 

finds that the twisted representations behave as phased relabellings of the 

untwisted representations. The familiar example of SU(2)2/Z2 is given 

below in Figure 7. 

2. Shifted Sectors. Shifted sectors are found in the usual fashion [33) by ap

plying modular transformations to the untwisted and twisted sectors. We 
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thus generate a modular covariant set of sectors. This may or may not 

lead to an irreducible representation of the modular group. For exam

ple, in SU(2)k/Z2 , letting(+,+) represent the untwisted sector and(-,+) 

represent the twisted sector, one finds using the above S and T: 

T: (+,+)invariant,(-,+)#(-,-), 

S: (+,+)invariant,(-,+)#(+,-). 
(148) 

3. Monopoles and the Modular Properties of the Twisted Sector. Including 

monopole backgrounds in the theory causes T to change. With this mod

ified T matrix, one may find modular properties of the theory in higher 

genus. Continuing with our example SU(2)k/Z2 and using the procedure 

described above, we find that T1 given by eq.(147) yields, 

Tt: (+,+)#(+,-),(-,+)invariant, (149) 

and thus we see that, combined with eq.(148), the representation of the 

modular group on the four "spin connections" is irreducible. 

4. Monopoles and Projective Representations of the Modular Group. Al

though the Tn of eq.(147) do satisfy (STn) 3 = 1 as abstract group ele

ments on the Ais and Bis, one discovers that as matrices on the Hilbert 

space constructed above (STn)3 = 6(k,n) ·I where 6(k,n) is a phase that 

depends on the level and the monopole charge. Note that 6(k, 0) = 1 V k 

but that for n =f. 0 this phase is not one and cannot be removed by unitary 

transformations. (Of course, trying to redefine Tn by a phase would mean 

that as abstract generators S and Tn would no longer satisfy the defining 

relations of the modular group.) For the example above one finds, 

(150) 

Therefore including monopole backgrounds compels one to consider only 

projective representations of the modular group. This is expected for the 

representation of the modular group at higher genus. 

17 Three Necessary Calculations 

1} Representation Dependence of A1odular Transformation 
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Recall that the modular transformation T maps, 

T(B) = e~[a,b]BA- 1 • (151) 

This is a representation dependent statement, since a and b, as well as A and 

Bare expanded in some representation (see eq.(120) and eq.(122).) We want to 

show that eq.(151) can be projected consistently onto a modular transformation 

of the operators Bi. That is, we ask that there exist a consistent mapping, 

(152) 

for some set of phases R;_ and such that eq.{151) will hold for any representation. 

Let P be such a representation and let w be the j-th weight in this representation 

(in some arbitrary ordering). This weight can be expanded in the weight basis 

as, 

{153) 

with Ai the primitive weight vectors and ni a set of integers. Then the cor

responding diagonal element of vi in the expansion of eq.{121) is given by the 

coefficient ni. The consistency check thus reduces to a check for any given weight 

in the weight lattice. Letting (T(B)); correspond to the j-th diagonal element 

of T(B), we require, 

(T(B)); = Il(T(Bi)t'. 
i 

Inserting eq.{151) and eq.(152), we have, 

(e~[a,bl)j(B);(A-1 )i = Il(riBiAi1t'. 
' 

Which can be further expanded to, 

e~[n;a;n;b;] IT Bf' IT Ain; = rr ri' rr (BiAil )n'. 
i i i i . 

{154) 

(155) 

(156) 

On the right side, we can commute the Bi factors through to the left by using the 

commutation relations of eq.(128). Also, the commutator on the left side can be 

computed using eq.(125). When this is done, the operator content is identical 

on both sides of the equation and so we need compare only the resulting phases. 

Equality demands, 

(3--~ L:o,j n;(C-l);;n; = rr rfi rr (3-(C-1);; n;(nrl) rr (3-(c-l);;n;n;' (157) 
i i i<j 
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where we have defined, 

( 
27ri ) /3= exp -- . 
k+c 

(158) 

We can satisfy eq.(157) for arbitrary integers ni, and therefore arbitrary repre

sentations, simply by letting, 

(159) 

2} Equivalence of Modular TransformationS from Chern-Simons Theory with 

I<ac Formula for SU(N) Models 

We prove that the formalism outlined in Sections 13 and 14 correctly gen

erates the modular tansformation S for the case G = SU (N), level k. We start 

by defining a map </> from the root-space of g into an N-dimensional vector space 

v. 
(160) 

.... 
where the ais are the N-1 simple roots, a faithful basis of the root-space. In V, 
the action of the Weyl group is simply permutation of coefficients of the vector. 

To see this simply consider the action of the Weyl reflections corresponding to 

simple roots acting on this basis, 

Z=J 

li- il = 1 . 

li- il > 1 

(161) 

In V, Wi acts by permuting the ith and i +1st coefficients. Consistency is easily 

checked. Let <I> be the realization of</> in the simple-root basis. Define the matrix 

I<, 

(162) 

where A is the Cartan matrix for SU(N). At this point, we note that the matrix 

I< is exactly the mapping appearing in the formula of Kac [37] for the S matrix of 

SU(N), taking the Dynkin coefficients (at, ... , aN-t) into the vector(¢~, ... , </>N-t) 
with the appropriate shift p = (1, ... , 1). 

Our prescription for S outlined in Sections 13 and 14 gives, 

Sv.,v = L( -1 )sign(w)T}uAw(v))/N, (163) 
w 
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where TJN(k+N) = 1; w is summed over the Weyl group; and sign(w) is +1 (-

1) if w is expressible as an even (odd) product of simple-root Weyl reflections. 

Note also that u,v are vectors in the root basis, not in· the weight basis. After 

changing basis, employing eq.(162), and noting that w acts by a permutation 

matrix in the correct basis (defined above), we can write, 

S . ~( )sign(w) { 27ri -1..T( n )"' } 
a,b = L.J -1 exp N + J('Pa rw <pb • 

tiJ 

(H_i4) 

This expression involves a sum over permutations. \Vith the correct signs ob

served, this is simply a determinant. We have, 

Sa,b = det( A1) , (165) 

where M is given by, 

M(a,b)ij = exp{:~ k</>i(a)</>j(b)}. (166) 

This is the Kac formula (36, 37). 

3) Representation Independent Computation of Tn 

We show that for the Tn of eq.(147) which represents the action of the T 

transformation on the Ai and Bis in the presence of a monopole charge n, the 

si,n are independent of the representation chosen for the monopole field. 

Whatever representation one chooses for the monopole background, one 

knows that Tn is still a diagonal inatrix on the Hilbert space and that, as de

scribed in the text, Tn can, at most, pick up an additional phase Si,n· Further

more, whatever representation one chooses for the monopole, the resulting Tn 

matrix must be gauge invariant. We ~ave found that in some cases the im

position of gauge invariance is also a sufficient condition to ascertain all the 

monopole contributions to the theory. In our construction we have locally fixed 

the gauge but, as described in the text, one must impose gauge invariance with 

repect to large gauge transformations, i.e., the Weyl transformations. Thus one 

reqmres, 

(167) 

where W is the Weyl group. Recall that, in any representation Pexp J A will 
have components of the form Tii At where the dis are the dynkin indices of 
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the particular representation and Ais are, for example, as in eq.(126). We now 

study the individual Ais (and Bis) abstractly without reference to any particular 

representation and see for example how they transform under Tn and W. In 

general, then, 

(168) 

where the ri, 1 < i <rank( G) are some phases. For the Weyl reflection about 

the plane orthogonal to the zth root we have, 

(169) 

as well as a similar equation for the Bis under Wt. Note that the necessary 

condition (w1)2 =I follows from c:;: = 2 V m. 

Now we simply use eq.(168) and eq.(169) in eq.(167) and ask what the list. 

of acceptable rjs is. We find that gauge invariance of Tn (eq.(167)) implies the 

following general condition on the rjs, 

where (ij are phases defined by, 

For example, for SU(N) using eq.(157) as a starting point, 

r. - s. a-~(C'""l)ii 
J - J,nfJ ' 

(170) 

(171) 

(172) 

where the Sj,n represent additional phases due to the presence of the monopole. 

Then, using eq.(172) in eq.(170) we find that all k-dependence cancels and one 

has, 

s[2 II s~0i' = 1 V l, (173) 
m¢l 

where we have suppressed then index (same for all the SjS above.) For SU(N) 

eq.(173) readily admits the solution Sj,n = aJn where a is a primitive Nth root 

of unity. 
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Fusion rules : 

Figure 6 

0 1/2 1 1' 1/2' 0' 

I I I I I I I I 
0 2 4 6 8 

t t 1' 1' 1' j 

0 X S = S for .all S 
0' X S = S' for .all S (note (S')' = S) 

1/2 X 1/2 = 0 + 1 
1/2 X 1 = 1/2 
1 X 1 = 0 

1/2 X 1/2' = 0' + 1 ' 
1/2 X 1 ' = 1 /2' 
1/2' X 1 = 1 /2' 
1 X 1' = 0' 

1/2' X 1 /2' = 0 + 1 
1/2' X 1 '= 1 /2 
1'X1'=0 

Figure 7 -- In G = SU(2) there is one twisted sector. The com
bined fusion rules ere shown. These can be derived by defining 
the Verlinde operators of the primed fields as Tr(B), where the 
trace is taken in the spin 2, 5/2 and 3 representations for 
states 1', 1 /2' and o· respectively. 
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