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1. Introduction 

In thi~ lecture I shall discuss some recent attempts to revive some 
old ideas to address the problem of solving QCD. I believe that it is 
timely to return to this problem which has been woefully neglected for 
the last decade. QCD is a permanent part of the theoretical landscape 
and eventually we will have to develop analytic tools for dealing with 
the theory in the infra-red. Lattice techniques are useful but they have 
not yet lived up to their promise. Even if one manages to derive the 
hadronic spectrum numerically, to an accuracy of 10% or even 1%, we 
will not be truly satisfied unless we have some analytic understanding 
of the results. Also, lattice Monte-Carlo methods can only be used to 
answer a small set of questions. Many issues of great conceptual and 
practical interest-in particular the calculation of scattering amplitudes, 
are thus far beyond lattice control. Any progress in controlling QCD in 
an explicit analyticJashion would be of great conceptual value. It would 
also be of great practical aid to experimentalists, who must use rather 
ad-hoc and primitive models of QCD scattering amplitudes to estimate 
the backgrounds to interesting new physics. 

I will discuss an attempt to derive a string representation of QCD 
and a revival of the large N approach to QCD. Both of these ideas have 
a long history, many theorist-years have been devoted to their pursuit
so far with little success. I believe that it is time to try again. In part 
this is because of the progress in the laSt few years in . string theory. 
Our increased understanding of string theory should make the attempt 
to discover a stringy representation of QCD easier, and the methods 
explored in matrix models might be employed to study the large N limit 
of QCD. For both political and intellectual reasons I fervently urge string 
theorists to try their hand at these tasks . 

. 2. QCD as a String Theory 

It is an old idea that QCD might be represented as a string the
ory. This· notion dates back even before the development of QCD. In
deed, string theory itself was stumbled on in an attempt to guess sim
ple mathematical representations of strong interaction scattering ampli
tudes which embodied some of .the features gleamed from the experi
ments of the 1960's. Many of the properties of hadrons are understand
able if we picture the hadrons as string-like flux tubes. This picture 
is consistent with linear confinement, with the remarkably linear Regge 
trajectories and with the approximate duality of hadronic scattering 
amplitudes. 

Within QCD itself there is internal, theoretical support for this idea. 
First, the 1 expansion of weak coupling perturbation theory can be 
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interpreted as corresponding to an expansion of an equivalent str.ing 
theory in which the string coupling is given by Jr . This is the famous 
result of 't-Hooft's analysis of the -Jr expansion of perturbative QCD 
[1]. The same is true for any matrix model-i.e. a model invariant under 
SU(N) or U(N), in which the basic dynamical variable is a matrix /'1, 
in the adjoint representation of the group. The Feynman graphs in 
such a theory can be represented as triangulations of a two dimensional tit 
surface. This is achieved by writing the gluon propagator as a double 
index line and tiling the graph with plaquettes that cover the closed 
index loops. 't-Hooft's principal result was that one can use 1 to pick 
out the topology, i.e. the genus=number of handles, of the su.rface, since 
a diagram which corresponds to a genus G Riemann surface is weighted 
by ( Jr )2G-2. The leading order in the expansion of the free energy in 
powers of 1 is proportional to N 2 (reasonable since there are N 2 gluons, 
and is given by the planar graphs of the theory. 

Another bit of evidence comes from the strong coupling lattice for
mulation of the theory. The strong coupling expansion of the free energy 
can indeed be represented as a sum over surfaces [5]. Again there is a 
natural.large N expansion which picks out definite topologies for these 
surfaces. This result is an existence proof for a string formulation of 
QCD. However, the weights of the surf~es are extremely complicated 
and it is not at all clear how to take the continuum limit~ 

From quite general considerations we expect that the large N limit 
of QCD is quite smooth, and should exhibit almost all of the qualitative 
.features of theory. Thus an expansion in powers of l or (!)2 might 
be quite good. The longstanding hope has bee:r;J. to find an equivalent 
(dual) description of QCD as some kind of string theory, which woUld 
be useful in to calculate properties of the theory in the infrared. 

The problems with this approach are many. First, if QCD is de
scribable as a string theory it is not as simple a theory as that employed 
for critical strings. It appears to be easier to guess the string theory 
of everything than to guess the string theory of QCD. Most likely the 
weights of the. surfaces that one would have to sum over will depend 
on the extrinsic geometry of the surface and not only its intrinsic ge
ometry. We know very little about such string theories. Also there are 
reasons to believe that a string formulation would require many (per
haps an infinite) new degrees of freedom in addition to the coordinates 
of the string. Finally, there is the important conceptual problem-how 

* There is also the problem that for large N there is typically a phase transition 
between the strong and weak coupling regimes [2]. 
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do strings manage to look like particles at short distances. The. one 
thing we know for sure about QCD is that at large momentum transfer 

· hadronic scattering amplitudes have canonical powerlike behavior in the 
momenta, up to calculable logarithmic corrections. String scattering, on 
the other hand, is remarkably soft. Critical string scattering amplitudes 
·have, for large momentum transfer, Gaussian fall-off [3]. How do QCD 

. ) 

strings avoid this? t · 

3. Two Dimensional QCD 

Two dimensional QCD ( QCD2) is the perfect testing ground for the 
idea that gauge theories can be equivalent to string theory. First, many 
features· of the theory are stringier in two than in four dimensions. For 
example, linear confinement is a perturbative feature which is exact at 
all distances. Most important is that the theory is exactly solvable. 
This is essentially because in two dimensions gluons have no physical, 
propagating degrees of freedom, there being no transverse. dimensions. 
In fact QCD2 is the next best thing to a topological field theory. The 
correlation functions in this theory will depend, as we shall see, only on 
the topology of the manifold on which formulate the theory and on its 
area. For this reason we will be able to solve the theory very easily and 
explicitly. 

Consider for example the expectation value of the Wilson loop for 
pure QCD2 , TrRPefcA,..dx"', for any contour, C, which does not inter
sect itself. Choose an axial gauge, say A1 = 0, then the Lagrangian is 
quadratic, given by i Tr E 2, where E · 81Ao is the electric field. The 
Wilson loop describes a pair of charged particles propagating in time. 
This source produces, in two dimensions, a constant electric field. The 
Wilson loop is then given by the exponential of the constant energy of· 
the pair integrated over space and time. This yields, 

(3.1) 

where g is the gauge coupling, C2(R) the quadratic Casimir operator for 
representation R and A the area enclosed by the loop. The expectation 
value of more complicated Wilson loops that do self intersect can also be 

t Recently there have been some interesting speculations regarding this problem 
[4]. 
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calculated. Kazakov and Kostov worked out a set of rules for such loops 
in the large N limit [6]. They are quite complicated. QCD2 with quarks 
is also soluble, at least in the large N limit. The meson spectrum was 
solved for N ~ oo by 't Hooft. It consists of an infinite set of confined 
mesons with masses mn that increase as m; ~ n. This provides one /\ 
with a quite realistic and very instructive model of quark confinement 
w,m. ~ 

Is QCD2 describable as a string theory? The answer is not known, 
although there is much evidence that the answer is yes. I shall describe 
below a study that I have carried out to investigate this issue [8]. 

To simplify matters I shall discard the quarks and consider the pure 
gauge theory. This would correspond to a theory of closed strings only, 
quarks are attached to the ends of open strings. We shall consider the 
partition function for a U(N) or SU(N) gauge theory, on an arbitrary 
Euclidean manifold. M, 

ZM = J[TJAI']e-~ JMtf'x..j9TrF""F,.. . (3.2) 

One might think that in the absence of quarks the theory is totally 
trivial, since in two dimensions there are no physical gluon degrees of 
freedom. This is almost true, however th~ ·free energy of the gluons will 
depend non-trivially on the manifold on which they live. In fact, one 
cannot simply gauge the gluons ·away. If, for example, M contains a 
non-contractible loop C, then if Tr PefcA~'dx~' =f:. 1, one can not gauge 
Ap to zero along C. Thus, the partition function will be sensitive to the 
topology of M. 

Although non-trivial the theory is extremely simple, almost as sim
ple as a topological theory. It is easy to see that the partition function 
will only depend on the topology and on the area of the manifold M. 
This is because the theory is invariant under all area preserving diffeo
morphisms. To demonstrate this note that the two-dimensional field 
strength can be written as Fp.v = Ep.vf, where Ep.v is the anti-symmetric (\ 
tensor and f a scalar field. Thus the action is S = J Tr f 2dp,, where 
dp, = vgd2x is the volume form on the manifold. This action is inde- "' 
pendent of the metric, except insofar as it appears in the volume form. 
Therefore the theory is invariant under area preserving diffeomorphisms 
(W 00). The partition function can thus only depend on the topology 
and on the area of the manifold M, 

(3.3) 

where G is the genus of M. 
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Now we can state the conjecture that the logarithm of this partition 
function, the free energy, is identical to the partition function on some 
string theory, with target space M, where we would identify the string 
coupling with 1 and the string tension with g2 N, 

In ( Z[ G, g2 A, N]) = zi~;e1spa.ce M [9st = ~, o:' = g2 N] . (3.4) 

- As a candidate for the type of string theory I am thinking of consider 
the N ambu action, wherein 

zttring = ,L (9st)2h-2 J Vx~'(e)ef rl'-{,;g , 
h=genus 

(3.5) 

where g is the determinant of the induced metric 

(3.6) 

and Gp,v(x) is the metric on the manifold M. This string theory, when 
the target space is two-:dimensional, is indeed invariant under area pre
serving diffeomorphisms of the target space. To see this -note. that 
..J9 = 1§~: IVG, which is obviously unchanged by a map xP. ~ x'P-

a ~~- * -as long as I 8~., I = 1. Unfortunately the only way we know to quan-
tize this theory is to transform it into the Polyakov action, which upon 
quantization yields the standard non- critical string [10]. This is not 
what we want to do here, since the resulting theory is not even Lorentz 
invariant. Is there another quantization of the N ambu string that differs 
from the Polyakov quantization in two- dimensions? The answer is not 
known. 

* Actually the Polyakov action with a two-dimensional target space also has a 
W 00 symmetry, although is is realized in a very nonlinear fashion. One might 
speculate that this is related to the well known W 00 symmetry of the c = 1 
string theory [9]. 
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3 .1. Evaluation of the Partition Function 

The partition function for QCD2 can easily be evaluated by means 
of the following idea, originally due to Migdal [11]. The trick is to 
use a particular lattice regularization of the theory which is both exact " fl 
and additive. For the lattice we take an arbitrary triangulation of the 
ma:hifold and define the partition function as t; 

• 

ZM =!II dUL II Zp[Up] ' 
L plaq. 

(3.7) 

where Up = I1Leplaq. UL, and Zp[Up] is some appropriate lattice ac
tion. Any action will do as long as it reduces in the continuum limit 
to the usual continuum action. Instead of the Wilson action, Z p(U) = 

-
1 Tr(U+Ut) · e ~· , we shall choose the ·heat kernel actwn, 

Zp = L dR XR(Up )e-g
2
C2 (R)Ap , 

R 

(3.8) 

where the sum r~s over representations R of SU(N) (or U(N)), dR is 
the dimension of R, XR (Up) the character of Up in this representation, 
C2(R) the quadratic Casimir operator of R and Ap the area of the 
plaquette. 

It is easy to see, using the completeness of the characters to ex-
UL-+l+iApdx~' . 

pand about Zp ~ 'ER dRXR(Up) = 8(Up- 1) + ... ,that In 
the continuum limit of this theory reduces to ordinary Yang-Mills the
ory. What is special about the heat kernel action is that it is additive. 
Namely, we can integrate over each link on the triangulation, say U1, l\ 
which appears in precisely two triangles, using the orthogonality of the 
characters, J dVxa(XV)xb(VtY) .~ -t-xa(XY), and obtain, 

This formula expresses the unitarity of the action, since in fact Zp(U) = 
(Ule-9

2 
AAil), where /:::,. is the Laplacian on the group. 
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We can use this remarkable property of the heat kernel action to 
argue that the lattice representation is exact and independent of the 
triangulation. This is because we can use (3.9) in reverse to add as 
many triangles as desired, thus going to the continuum limit. On the 
other hand we can use (3.9) to reduce the number of triangles to the bare 
minimum necessary to capture the topology of MG. A two- dimensional 
manifold of genus G can be described by a 4G-gon with identified sides: 
a1b1a!1b!1 ... aGbGa(/b(/. The partition function can be written using 
this triangulation as, 

z .MG = :E d Re -u"c.(R)A J IT VU; VV;xR[Ur VI ut Vrt . ' . UG VGU:l, vJ] . 
R 

(3.10) 
We can now evaluate the partition function using the orthogonality of 
the characters and the relation, JVUxa[AUBUt] = Jaxa[A]xa[B], to 
obtain [12], [13],_ 

Z _ ~ d2-2G - 'i:C2(R) 
Mo-~ R e ' (3.11) 

R 

where A = g2 N is kept fixed. Thus we ~ave an explicit expression for 
the partition function. It depends, as expected, only ~n the genus and 
the area of the manifold. 

3.2. The LargeN expansion 

The formula (3.11) for the partition function is quite complicated, 
being written as a sum over all representations of SU(N). The repre
sentations of SU(N) or U(N) are labeled by the Young diagrams, with 
m boxes of length n1 > n2 > n3 > ... nm > 0. Such a representation 
has, 

m m 

C2(R) = NLni + L(ni + 1- 2i); 
i=l i=l 

dR = :(~j)' h.;= N + n;- 1, h? = N- i 

b.( h)= IT (hi- hj) . 

15,i<j5,N 

(3.12) 

Thus we have a very explicit sum and one can, in principle, expand each 
term in powers of J\r and evaluate the sum. 
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What do we expect if the string conjecture is correct? Consider the 
expa:nsio~ in powers of 1 of the free energy, 

(3.13) 

IT this were given by a sum over maps of a two-dimensional surface of 
ge~us g onto a two-dimensional surface of dimension G we would expect 
that Jff(AA) "'¥ (1 )29_;2e->.An, where n is the winding number of the 
map, i.e. the topological index that tells us how many times the map 
x(~) covers M. This is the integral of the Jacobian of the map~~ x, 
J d2~ det[~~:], which differs from the Nambu area, J d2~1 det[~~:]l, since 
the surface .can fold. over itself~ 

Now there is a minimum value that G can take, given the genus G 
of the target space and the winding number n. Thus for example there 
are no smooth maps of a sphere onto a torus .or a torus onto a genus two · 
surface. Similarly there are no smooth maps of a genus g surface onto 
a genus g surface that wind around it more than once. To get an idea 
of the bound consider holomorphic maps, in which case the Riemann
Hurwitz theorem state states that 2(g -1) = 2n( G - 1) + B, where B 
is the total branching number. In the case of smooth maps there seems 
to be the following bound. [14], · 

2(g-1)>2n(G-1). (3.14) 

Thus if QCD2 is described by a string theory we ,would expect that 

G AA = "'{0 if(g-_1) <n(G-1) 
fg ( ) L.i e-n>.Awn(A) otherwise 

n g 
(3.15) 

We can use these inequalities as tests of whether our conjecture is cor
rect. To do this we need to expand (3.11) in powers of 1 ~ 

The hardest case is that of the sphere ( G = 0), since the sum over 
representations blow up rapidly and it is not even evident that there ex
ists a tamed large N expansion. We can break up the sum in (3.11) into 
a sum over representations with n boxes in the Young tabl~aux since, 

for large N, C(Rn) N~oo N Li ni = Nn. Thus, 

10 
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ZG=O = L d~e->-;c2(R) N~oo L L dt e-n;\A(1 + ... ) . (3.16) 
R n Rn 

To evaluate this we need to evaluate the following sum, L.Rn dt. This 
(\ ~an be done using a method of discrete orthogonal polynomials [8], yield

Ing, 

\1 
( \ 

(3.17) 

Then it follows that, 

2-AAe-2;\A 
ZG=O ~ exp(-N2 [ln(l- e-;\A) + (

1
- e-;\A)2 + ... ]+O(Nl) + ... ] · 

. (3.18) 
Here there are no constraints implied by the inequality (3.15) , but the 
structure of the expansion is very interesting. 

The case of the torus, ( G = 1), is some what simpler. One can easily 
derive that (for SU(N)) [8], 

ZG=1 = L e-).;c2 (R) ~ exp[-.NO In TJ( -e-;\A)+ 
R 
00 

.A A """ -n;\A [ """ 2 """ J ] N2 L.Je L.J a b+ L.J ac + ... , 
· · n=1 · ob=n ab+cd=n 

(3.19) 

where TJ(x) = TI: 1(1-xn)-1. This is totally consistent with the bouiid 
g > 1. 

Most interesting is the case of G > 1, where the inequalities are 
quite stringent. In this case one can easily derive [8], 

zG-+ L(~)2n(G-l)e-n.XA L [~]2(G-l) , 

n r=rep ofSn 

(3.20) 

where the sum is over representations of the symmetric group Sn and dr 
is the dimension of the rth representation of Sn. Not only is this in total 
accord with our expectations, but one can also show that w;(A) =,for 
g = 1 + n( G - 1), is precisely the number of topologically inequivalent 
maps on the genus g manifold onto the genus G manifold with winding 
number n[15]. 

11 
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So the large N expansion of QCD2 looks precisely like what we would 
expect from string considerations: What remains to be understood are 
the all the rational numbers that appear as coefficients of the powers 
of e-.AA and of 1 in terms of the counting of maps of M 9 onto MG. 
Some of these are understood, but not all. Then it remains to construct (\ 
a string action that reproduces these counting rules. 

4. Induced QCD 

4.1. The LargeN Limit of QCD 

QCD is hard to solve since it is a theory With no free, adjustable 
or small parameters. In pure QCD (no quarks) the only parameter we 
can adjust is the number of colors, N. Luckily, in the large IV limit 
QCD simplifies enormously, and this limit remains the best hope to 
yield an exact or controllable treatment ofthe theory. We know that 
as N = oo only planar graphs survive. More generally we know that in 
terms of the appropriate variables the large N limit of gauge invariant 
observables is given, for N = oo by the master field, namely a solution 
of an appropriate classical equation of motion [16]. The large N limit is 
in the nature of a semi-classical expansion, with N playing the role of 
Planck's constant. Unlike the running cqupling N does not vary with 
momentum and we expect the large N lifnit to be qualitatively correct 
for all momenta, to correctly capture the small distance asymptotic 
freedom of the theory as well as exhibit confinement at large distances. 
In the N = oo .we should have an infinite spectrum of stable mesons 
.and glueballs. Even baryons, bound states of N quarks, are describable, 
in this limit, as solitons of the effective Lagrangian for the master field 
[17]. Thus the hope has survived that we could find an exact solution_of 
QCD for N = oo, which would yield the hadronic spectrum, and would 
be the starting point for a systematic large N expansion which could 
allow us to calculate scattering amplitudes. 

The standard method of solving a theory in the large N limit is 
to find an appropriate saddlepoint for the partition function. In the r~ 
case of QCD this is difficult. Consider the standard (Wilson) lattice 
formulation of the theory, '" 

Zqcn = J n VULe- L:pl..,. );".) Tr[IIL UL+h.c.] • (4.1) 
L , . 

The integrand behaves as the exponential of an action that is of order 
N 2, thus one might hope to evaluate it by saddlepoint techniques. How-
ever, the measure is also of order c'¥2 

and therefore one must somehow 
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get rid of N 2 degrees of integration before this can be done .. The reason 
QCD is not yet solved in the large N limit is that no one knows how to 
reduce the theory to N variables per site. 

Another theory which is also insoluble in the large N limit is the 
non-critical string with c > 1. Following the recent success of the matrix 
model solutions of string theory [18], we can construct such strings if 
we could deal with the large N limit of a scalar matrix model in D 
dimensions, say · 

/ 

Z string _ J IlV"" -NL,. TrU(<h)+NL,. _1 D Tr(</>i<l>i+~) D - 'f'ie • ··~- ... , 

i 

(4.2) 

which describes a scalar field on a D- dimensional lattice. The connec
tion with string theory is made in the usual way, the Feynman diagrams 
of the perturbative expansion of (4.2) correspond, in an expansion in 
powers of 1 , to triangulations of two-dimensional surfaces. The scalar 
fields correspond to matter on this surface and thus, ( 4.2) , could yield, 
at the appropriate critical point where the mean number of triangles 
diverges, a c = D string theory. The st~ndard approach to the large 
N-limit of such a theory is to diagonalize'"the matrices</>, i.e. to pass to 
radial coordinates, </>i = Qi.Aiilj, where Ai is diagonal. In terms of these 
variables, 

where Yij = ns2} and .6.(</>) = Ili<j(</>i- </>j)· 

The next step is to integrate out the diagonalization matrices, ni. 
We can change variables from the n~s,defined on the sites to the Yij's, 
defined on the links Ili vni = TI<ij> V\lij Ilplaq. 8(1 -TIL l/ij)· The 
constraints arise since the Vij's are pure gauge fields. If not for the 
constraints we could perform the integral over the Vii's and reduce the 
integral- to one over N variables per site that could be evaluated by 
saddlepoint techniques. It is these constraints that have prevented the 
construction of strings with c > 1. 

Now let us combine these two models to consider QCD with adjoint 
scalar matter, 

13 
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z~do = J II VUL II V</>;e-NZ.:,, TrU(<I>•)+Nl.:,,,.=l ... D Tr(.p,U,</>i+pUJ) 
- L i 

e- g~a) L:plaq. [Tr(flL ~L+h.c.)] .. 
{4.4) h 

Tfs theory is invar;ant under standard gauge transformations, </>i ~ t4' 
Vicf>i Vi ; Up.~ Vi Up. Vi+P.'which allow us to diagonalize the </>'s. However 
the presence of the Wilson action prevents us from handling this theory 
for large N. If set the gauge coupling to zero, we recover the previous 
model, since in this limit we can drop the Wilson action term, as long as 
we enforce the constraints, tr(Up] = 1. However if we take the opposite 
limit, i.e. set g = oo, then we can simply drop the Wilson action and 
the model will be soluble in the large N limit. This is induced QCD 
[19]. 

Induced QCD has the one great advantage of being soluble, or at 
least, reducible to .a well defined master field equation. This is because. 
the integral.over the link matrices can now be performed. This is the 
famous Itzykson- Zuber integral [20]; 

I("' x) = jvueNTr[<t>uxutl = det[eN4>iXJ] {4.5) 
'f'' . ~( cf> )~(x) . 

This formula is very profound, underlies all the analysis of the c = 1, 
matrix model, and can be derived in many ways. One is the demonstra
tion that the integral is given exactly by the WKB approximation, and 
the answer is simply the sum over the N! saddlepoints, for which are 
the U are permutation matrices. 

Although soluble this model appears to be very far from QCD, since 
asymptotic freedom instructs us to set the lattice coupling to zero, not 
infinity, in the continuum limit. However, Kazakov and Migdal argued 
that even though there is no kinetic term for the gauge field, it could 
be induced at large distances [19]. They argued that if one integrates 
out the scalar mesons (even in the case of noninteracting scalars with 
U(<I>) = !m2 <I>2), then at distances large compared to a, one would 
induce in four dimensions an effective gauge interaction, 

Betr(U)'"' 
96

N 2 In( ; 2 ) Tr F;v +finite as a ~- 0 . 
1r m a 

(4.6) . 

This is simply the one loop vacuum graph for the scalars in a background 
gauge field, which is logarithmically divergent in four dimension. Now 
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this looks very much like the ordinary Yang-Mills action, 92la) tr Fp.vFJ.£V, 

if we recall that asymptotic freedom tell us th.at 92(a) = l~~ ln(M!a2 ), 

where M9 is a mass scale for QCD, say the glueball mass. We can there
fore identify these two (the fact that there are N 2 scalars is crucial, as 
is the sign of the effective action which is due to the non-asymptotic 
freedom of the scalars.) H we do so then we find that, Mi = m ~~a i2. 

· Thus in the continuum limit the adjoint scalars become infinitely mas
sive and decouple, but not before they have drive -J;: up, from zero at 

distance a to the large QCD value atdistance ~, where .a} > > -~ > > a. 
- 9 

The basic idea is that the infrared slavery of the scalars, at the size of 
the lattice spacing, produces an effective gauge theory at a larger scale 
(much larger than the inverse scalar mass), which then produces the 
usual asymptotically free fixed point theory. 

There are many problems with this idea. For one the hard gluons 
. are not absent and their contribution will overwhelm that of the scalars 
at short distan,ces. Their asymptotic freedom is more powerful than 
the infrared slavery of scalars. Another issue is that the above theory 
possesses a much larger symmetry than the SU(N) gauge symmetry of 
the usual lattice action. It is· not difficult to see that, in D dimensions, 
it is invariant under ( D - 1) x ( N - 1) extra local U ( 1 )-gauge symme-

tries. This is because the transformation Up.(x)~ vJ (x)Up.(x)Vp.(x+JLa), 
leaves the action invariant as long as Vp. ( x) is a unitary matrix that com
mutes with <P(x). If VJ.L(x) were independent of JL then this would be the 
ordinary gauge invariance. Thus we have D - 1 new gauge symmetries, 
which are of course isomorphic to the special unitary transformations 
that commute with <P [21]. Thus VIL(x) = DJ.L(x)n(x), where n(x) is the 
unitary matrix that diagonalizes {P and D J.L ( x} is- diagonal. 

A subset of this symmetry is the, field independent, local ZN sym-
metry, UIL(x)~ ZJ.LUJ.L(x)Z~, where ZJ.L is an element of the center of the 
group. This symmetry alone prevents the Wilson loop from acquiring 
an expectation value. A Wilson loop contains different links, and thus 
W(C) = {I1Lec UL} ~ (ITL ZJ.L)W(C) =? W(C) = 0. This symme
try must be broken if we are to recover the QCD fixed point from this 
formulation [22]. 

Finally, as we shall see, the simple Gaussian model is soluble and 
the answer is very simple and not equivalent to QCD [21]. However, 
there are interesting attempts to save the model and furthermore even 
if it does not yield a solution of QCD it might provide some interesting 
soluble matrix models which could yield new solutions of new string 
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theories. Induced QCD is a matrix model and thus it corresponds to 
some kind of sum over surfaces. If we look at the Itzykson-Zuber integral 
we note that it could be expressed as, 

b 
I(¢,x) = exp[~Tr¢2 Trx2 +aTr¢4 Trx4 + N2(Tr¢2

)
2(Trx2

)
2 + ... ] . 

(4.7) 
These terms will affect the structure of the large N expansion of the 
Feynman diagrams, and can be interpreted as yielding extra weights 
when the twcrdimensional surfaces intersect [23]. Thus this model corre
sponds, perhaps, to some kind of string theory with weights that depend 
on the extrinsic geometry. 

4.2. Solution of the Gaussian model 

·To try to solve the model of induced QCD we first integrate out he 
U L 's, then look for extrema of the effective action, 

S[¢i] = N2 [~ Tr L U(</>i)+ ~2 :ElnJ(¢i,¢i+JL)+ }p Lln~2(¢i)] . 
i i,JL i 

i (4.~ 
In the large N limit the integral will be dominated by a translation
ally invariant saddlepoint for the density of eigenvalues of the matrices 
q>i, p(x) = 1 2:,;: 1 6(x - ¢a)· Migdal has derived the master field 
·equation for the saddlepoint, using the Schwinger-Dyson equations that 
are satisfied by I(¢, x) [24]. These are consequences of the fact that 
I satisfies tr[(.,kr 8~;)k]I = tr(x)k I. The net result i~ that one derives-

an equation for the function F ( z) · = J dz ~~2, whose imaginary part is 
ImF(v) = -1rp(v), 

( ). J dv 
1 

[A- 2bU'(v)- DDl ReF(v) + i1rp(v)] 
ReFA=P -.n . 

27ft A- 2bU'(v)- D£1ReF(v)- i1rp(v) 
(4.9) 

·This equation is much more complicated than the usual Riemann-Hilbert 
problem that one obtains for simple matrix models. It is sufficiently 
non-linear and complex that one might imagine that it describes QCD. 

The master field equation simplifies dramatically for D = 1. This is 
because in one dimension the gauge field can be gauged away completely, 
thus the model is equivalent to a scalar field on a one-dimensional lattice. 
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The large N limit of this model describes the c = 1 string.on a discrete 
target space, a model which has been solved in the double- scaling limit 
for small lattice spacing [25]. It undergoes a phase transition at a finite 
lattice spacing and it might be very instructive to use ( 4.9) to explore 
this phenomenon. 

(1 In particular for the quadratic potential the path integral is Gaus-
sian, 

Z = j IT 'Diflne-N'L. Tr{'",2W~-w.w.+•} . 

n 

( 4.10) 

Thus the eigenvalues of~ will be given by the semi-circular distribution, 

namely 1r p( v) = V J.L - IL;2 
, where J.L is determined by the mean of the 

squares of the eigenvalues, ( ){ Tr( ~2)) = fL. It is therefore sufficient to 

calculate the expectation value of 'k Tr( ~2), which is given by the one 
loop integral, 

(4.11) 

It is easy to verify that this solves ( 4.9), using the fact that 

J.LZ. ~ 
F(z) = 2- y 4-

4
--- J.L J.L; ReF(v) = !J.Lv, ( 4.12) 

However, if we return to (3.8), we see that the integral involved is of the 
same form for any D, as long as ~V'(v) is linear in v. This suggests 
that we can find a solution of ( 4.9) with a semi-circular distribution of 
eigenvalues for a quadratic potential in any dimension [21]. 

Indeed, one can see that a semi-circular distribution of eigenvalues 
satisfies ( 4.9) for any D as long as, 

m2(D- 1) ± DJm4 - 4(2D- 1) 
J.L±(D) = 2D- 1 . ( 4.13) 

This solution is much too trivial to describe QCD. In particular, for 
D > 1 there is no sensible continuum limit of the model. 
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Is the solution unique? To see that it is note that in the master 
field equation the dimension of space-time enters only via the number of 
nearest neighbors of a given site, the coordination number of the lattice~ 
The translationally invariant background scalar field is the same for any 
lattice with the same coordination number. The observables, say the h 
scalar propagator, will of course depend ori the full structure of the 
lattice, but not he background field. Therefore we can choose another ~ 
simpler lattice with the same coordination number, say a Bethe lattice, · 
which contains no closed loops. For such a lattice, as in the case of the 
D = 1 model, the gauge field can be eliminated completely, and the 
model is equivalent to, 

ZBetheLattice = J 'Dt/>; e-N L,, Tr "'.
2 

4>hN 'L.<u> Tr[4>;4>;] · ( 4.14) 

This model is easily soluble. We define Z(</>) to be the partition function 
of a branch. of the Bethe lattice with coordination number 2D, so that 

2 

Z = J V</>Z ( ¢> )2D e-~ N Tr 4>
2

• Z ( </>) satisfies the equation, 

Z( if>) = j Vif>' Z(if>')2D-le- "'.
2 

NTr4>"+NTr(#'l (4.15) 

These equations are easily soluble. Take iz ( </>) to have the form Z ( </>) = 
-N~ Tr¢2 • -m2±ym4-4(2D-1) 

ce 2 , then (4.15) determines a to equal a= 2(2D-l) . 

Then ( 4.14) can be used to determine 1 Tr </>2 = m 2.J2aD, which agrees 

precisely with ~ as given by ( 4.13). 

4.3. Prospects 

The simplest Gaussian model fails, but all hope is not lost. It is 
certainly possible to induce QCD if one introduces enough flavors of 
matter. The problem is that one then loses solubility. It might be that 
the self interactions of the scalars could be adjusted to drive the theory 
towards the asymptotically free :fixed point. This hope has been pursued 
with great vigor by Migdal, who has also considered adding fermions, 
not too many so that the model remains soluble, so as to break the 
Z N symmetry [26]. Time will tell whether this will succeed. Even if 
it does not these model might yield a new class of interesting soluble 
matrix models which could teach tis something about new classes of 
strings, perhaps strings that depend on extrinsic geometry. For this 
reason alone it is worth studying these models. 

* I thank C. Bachas, for emphasizing this point to me. 
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