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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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Longitudinal Instability of an Induction Linac with Acceleration* 

Lloyd Smith and Edward P. Lee 
Lawrence Berkeley Laboratory 

Berkeley, California 94720 USA 

Abstract 

The question arises as to what effect acceleration, which 
so far has been ignored, has on the longitudinal instability of 
an induction linac. The answer is not much for the 
anticipated acceleration rate (1 -' 2 MeV lm) and minimum e
folding distance for the instability (50 - 500 m~ters). 
However, total unstable growth is significantly reduced over 
distances which are long enough for appreciable acceleration 
to occur. The purpose of this note is to record a calculation of 
the instability, including a constant acceleration rate. Some 
interesting features emerge - for exampl~. the velocity of the 
head is a more convenient independent variable than axial 
position and; for an initial sinusoidal perturbation of velocity 
in time, the number of oscillations along the pulse is constant.; 
as the pulse shortens in time the frequency increases. 

I. BASIC EQUATIONS AND UNPERTURBED 
SOLUTION· 

We start, as in previous work, with the one-dimensional 
cold fluid equations, neglecting the space charge force, and 
adopting a parallel R-C circuit for the perturbed electric field 
from the induction modules: 

where a is the constant acceleration and vi is the head velocity 
at z = 0, where the initial perturbation occurs. 

We change the independent variables (z, t) . to 
z = z and: 

(5) 

Eliminating A, the fluid equations become: 

~ (_!_ - - 1
-) I + ~ = 0 (1') 

di. v VH (Tz . 

v (.!. - -1
-) a~ · + v ~ = E

0 
+ E . (2') 

v VH di. (Tz 

dE E 
- + = 
at ' 

e£11 
mC 

II. CA,SEOF INCREASING CURRENT 

(3') 

o.U at + Cli I az = 0 (1) For the unperturbed pulse, we take I = vH Ii I vi • 

independent of time during the pulse and lasting for a time, 

ov I at . + vov I az = E0 + E (2) T= v; T; I vH . The velocity during the pulse is given by 

oE I at + E I -r = -e ill I mC , (3) 

where £ 0 is the applied field (multiplied by elm), C is the 
circuit capacity and 't = RC: The circuit parameters, R and C, 
might in general depend on axial position. E and l1I are the 
perturbed components of electric field and beam current, 
while I, A, and v are total beam current line charge and 
velocity. 

The velocity of the head is given by: 

v2H = v~ + 2az 
1 ' (4) 

*This work supported by the Director, Office of Energy 
Research, Office of Fusion Energy, of the U.S. Department of 
Energy under Contract No. DE-AC03-76SF00098. 

(1'): 

v = . (6) 

Note that aTivH is the velocity tilt t:l~/~. In the GeV energy 
range, this quantity is quite small. The required voltage wave 
shape as a function of z and tis given by (2'): 

(7) 

III. INSTABILITY 

The next step is to find equations for a linearized 
perturbation of the unperturbed quantities. This process is 
rather messy because the unperturbed quantities also depend 



on z and t. However, the equations are greatly simplified by 
replacing z and t by VH and a scaled time: 

and taking the perturbed quantities to be of the form: 

( 
at) A 11v = I - vH v 

The equations for u, v, and E are: 

()V .!_E = . 
dyH a 

av; ·)
3 

A -t v 
v2 

H 

dE ..l .E 
- k 2 v~ u - + - = . 

dt.' I 
VH 'l" 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

These equations are of.the same form as those for the 
unaccelerated case except for the cubed parenthesis in (I 0) 
and the factor, ViiVH in (12). The equations are exact in the 
sense that at/v is not yet assumed to be small. The duration in 
t' is: 

T = ~T = T 
I 

which means that a disturbance maintains the same relative 
position in time as the pulse shqrtens and the rate of change in 
real time increases. In particular, a sinusoidal perturbation 
would retain the same number of cycles over the pulse 
duration, as mentioned above. 

Equation (12) is simplified if we assume that the gap 
capacity is independent of position but that the matched 
resistance is inversely proportional to the current (directly 
proportional to pulse duration). Equation (12) is then: 

dE I dt.' + E I 'l"· = - k2 v3 u . I I 

where 'ti is the time constant at z = 0. 

Furthermore, the extra terms in the cubed parenthesis in 
(10) appear to give corrections of 9rder ..:i~/~ and can be 
neglected. The equations then have the same form as for the 
unaccelerated case; if the initial perturbation is : 

v (z = 0) = &ioot ' 

a particular solution for v is: 

'llX' [kV· v = 8e1 cos - 1 

. a 
im-r; ( )] 

-1 -+---'iC0'--1'-; V H - Vi 

(14) 

· im.!lii: [ = 8 e ·• cos kz 
1 + imr; 

For a = 0, we have vi = v and the e-folding rate with z is 

the imaginary pan of ...)im-r I (1. + im-r) k. The maximum 

growth rate is k118 , which occurs when (l)'t = 1/fJ . For a :;e 

0 and Z large, VH - y2az and the perturbation only grows 

exponentially with z~ 12 . However, if k- (50 metersrl. the 
accelerating gradient- I MeVImeter and a perturbation occurs 
at - 1 GeV, there are many e-foldings before VH is 
significantly greater than Vi. The coasting beams assumption 
is then good enough to show the nature of the problem, 
however it is of interest to examine the breakdown of this 
approximation over long distances . 

IV. CASE OF CONSTANT CURRENT 

So far we have computed the instability growth rate for a 
pulse where the current increases proportional to vH(z), i.e. 

approximately fixed pulse length in meters. It is also of 
interest to compute growth for the case of constant current, 
where pulse length increases proportional to vH but pulse 

duration T is constant. This could be the preferred approach 
at high energy if a practical lower limit on pulse duration for 
the synthesis of acceleration waveforms is observed (say T > 
100 ns). In this case the unperturbed velocity of the entire 

pulse is v( z) = vrl.. z) = ,j vr + 2az . and in place of eqns. 

(1')- (3') we have for the perturbed components liv, !1I, E: 

(1") 

d(vAv)l Oz. = E (2") 

(}E I df. + E I r = - ell. II rn C (3") 

Since E0 and I are both constant it is reasonable to 
assume R and C are separately constant, since for efficient 
energy tritnsfer we scale 

Roc EJi and RC = 1: ex: T ex: r-1 
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With these assumptions eqns. (1" - 3") yield an equation for 
ll.v: 

( a 1) ;P ei 1 a -+- - 2 (vll.v)=-- -- (vll.v) 
di -r ;rz mC v3 di 

Taking an initial perturbation, fl. v = 8 ei(l)t 

with ro real, we have · 

icoz (vv; )3 (v.ll.v) , . 
1 + iCO'X' 

where k is given by eqn. (13). 

(15). 

(16) 

density, and constant current), it is conven'ient to define a 
scale length proportional to Vf: ,-

coastin~ Beam: fl. v oc cos k.ZV 
1 

i~1: . - + lCtYI: 

Current pro.nortional to v: 

fl. v oc cos [kz" I i~1: 2 · l v 1 + lCtYI: 1 + ( 1 + zi4J)1/2 J 

Constant Current: 
In general, eqn. (16) is solved by the bessel functions J2 · 

and N2 of the argwnent x: 
fl. v oc ( 1 }

118 
cos [kz"~ I · i~'t 2 

V . 2v-312 
X= k I(l)'t - 1 (fi- ffi) 

1 +ion a 1 
(17) 

A convenient asymptotic form, obtained by the WKB 
method, is 

(18) 

Again, for small z growth is identical with that of the 
coasting beam. However, for large z a perturbation increases 
exponentially with z114. This reduced .rate of growth reflects 
the dilution of line charge density during acceleration at 
constant current. Note that the number of wavelength within 
the pulse(= roT/27t) remains constant, as before. 

V. SUMMARY 

In order to compare growth forrilulas for the three cases 
we have examined (drifting beam, constant line charge 

1 + zi4:J . v l + 1(1)1: 1 + (1 + zi4J)112 

• _1_+_(_1 -+-:-,-zo-,)1,....,./.....,..4] 

Keeping in mind that z0 will be in the range 100 m -
2000 m, the following table gives the predicted reductions in 
the exponential of growth. 

Note that for short distances of a few hundred meters (z 
s; z0 ) the coasting beam growth rate is an adequate 
approximation. At most, a few e-folds of growth are expected 
in this distance, and feedforward correction might be applied 
to eliminate further growth. However, when long distances (z 
>> Zo) without use of corrections are considered, it is seen 
from Table I that very substantial reductions of total growth 
are predicted. 

V. REFERENCES 

1) Edward Lee, Pioc. 1997 Linear Accelerator Conference at 
Ottawa, Ontario, Canada, AECL-10728, Vol. 2, pg. 591. 

I oc v I= constant 

' ~ l=~l + z 2 4 
Zo Vj 4J (1 + VH/Vj) ( 1 + VH/Vj) ( 1 + {VH/Vj) 

0.00 1.0000 1.0000 1.0000 

0.30 1.1402 0.9345 0.9038 

1.00 1.4142 0.8284 0.8013 

3.00 2.0000 0.6677 0.5523 

10.00 3.3166 0.4633 0.3285 

30.00 5.5678 0.3045 0.1813 

Table I. Reduction of growth wtth acceleration for current proportional to veloclly and 
constant current. The tabulated factor is the reduction of exponential growth rate 
compared with that of a coasting beam. 
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With these assumptions eqns. (1"- 3") yield an equation for 
!J.v: 

( 
() 1 ) a2 . el 1 . () 
-=+- - (v!J.v)=-- - -= (vav) 
di -r ;rz2 mC v3 di 

Taking an initial perturbation, !::. v = 8 eirot . , 

with ro real, we have 

iwr (vvi )3 (vav) ' 
1 + icoT 

where k is given by eqn. (13). 

(15) 

(16) 

In general, eqn. (16) is solved by the bessel functions 12 
and N2 of the argument x: 

~ , 2v-312 
X = k ~~ - 1 (fi- «;) 

1 + lOYC a 1 (17) 

A convenient asymptotic form, obtained by the WKB 
method, is · 

density, and constant current), it is convenient to define a 
scale length proportional to Vf: 

Zo = Vf/2a , VH = Vj Y 1 + 'iJZo 

coasting Beam: ~::. v oc cos kzV 
1 
i~ 
+lOYt 

Current proportional to v: 

Av oc cos [kz..,/ i~ 2 ] 
V 1 + lOYC 1 + (1 + z!Zo)l/2 j 

Constant Current: 

Avoc 2 
{ 1 )1/8 [ 1/ iOYC 1 + ziZo cos kz 1 + iOYC 1 + {1 + z1Zo)ll2 

• I + (1 + ~/zo)l/4] 
Keeping in mind that z0 will be in the range 100 m -

(18) 2000 m, the following table gives the predicted reductions in 
the exponential of growth. 

Again, for small z growth is identical with that of the 
coasting beam. However, for large z a perturbation increases 
exponentially with z114. This reduced rate of growth reflects 
the dilution of line charge density during acceleration at 
constant current. Note that the number of wavelength within 
the pulse(= roT/2rc) remains constant, as before. 

V. SUMMARY 

In order to compare growth formulas for the three cases 
we have examined (drifting beam, constant line charge 

Note that for snort distances of a few hundred meters (z 
:5; z0 ) the coasting beam growth rate is an adequate 
approximation. At most, a few e-folds of growth are expected 
in this distance, and feedforward correction might be applied 
to eliminate further growth. However, when long distances (z 
>> Zo) without use of corrections are considered, it is seen 
from Table I that very substantial reductions of total growth 
are predicted. 

V. REFERENCES 
) 

1) Edward Lee, Proc. 1997 Linear Accelerator Conference at 
Ottawa, Ontario, Canada, AECL-10728, Vol. 2, pg. 591. 

I oc v I= constant 

..z.. y_=-j1+ z 2 4 
Zo Vi . Zo (1 + VH/Vj). ( 1 + VH/Vj} ( 1 + ..fVH/Vj) 

0.00 1.0000 1.0000 1.0000 

0.30 1.1402 0.9345 0.9038 

1.00 1.4142 0.8284 0.8013 

. 
3.00 2.0000 0.6677 0.5523 

10.00 3.3166 0.4633 0.3285 

30.00 5.5678 0.3045 0.1813 

Table I. ReductiOn of growth with acceleration for current proportiOnal to velocity and 
constant current. The tabulated factor is the reduction of exponential growth rate 
compared with that of a coasting beam. 
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