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Abstract 

1 

The transition state region of a neutral bimolecular reaction may be 

experimentally investigated by photoelectron spectroscopy of an appropriate negative 

ion. The photoelectron spectrum provides information on the spectroscopy and 

dynamics of the short lived transition state and may be used to develop model 

potential energy surfaces that are semi-quantitative in this important region. 

The principles of bound ~ bound negative ion photoelectron spectroscopy are 

illustrated by way of an example: a full analysis of the photoelectron bands of CN-, 

Nco- and Ncs-. Transition state photoelectron spectra are presented for the 

following systems Br + HI, Cl + HI, F + HI, F + CH30H, F + C2H50H, F + OH and F 

+ ~- A time dependent framework for the simulation and interpretation of the bound 

~ free transition state photoelectron spectra is subsequently developed and applied 

to the hydrogen transfer reactions Br +HI, F + OH ~ oeP, 1D) + HF and F + ~

The theoretical approach for the simulations is a fully quantum-mechanical wave 

packet propagation on a collinear model reaction potential surface. The connection 

between the wavepacket time evolution and the photoelectron spectrum is given by 

the time autocorrelation function. For the benchmark F +~system, comparisons 

with three-dimensional quantum calculations are made. 
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Each system investigated also reveals information on electronically excited 

potential energy surfaces in addition to the ground reaction surface. Transitions to 

different electronic surfaces may be distinguished and assigned by photoelectron 

anisotropy measurements. Upper potential energy surfaces are evaluated for the 

excited state interactions correlating to oen) + HF and FeP lll) + ~ with reference 

to the OHF- and ~- experimental photoelectron spectra. 
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Chapter 1. Introduction 

1. Spectroscopy of the Transition State 

The fundamental question we wish to address .in this research is the detailed 

description of a chemical reaction, and, in particular, ofthe chemical transition state. 

We undertake this from a microscopic, or molecular, viewpoint trying to uncover the 

forces and interactions experienced by the individual atoms involved in the 

transformation from reactants to products. This research builds upon the wealth of 

work in the field of reaction dynamics, and is essentially a pursuit of a complete 

understanding of chemical mechanism) 

The key to the description of a chemical reaction lies in the transition state. 

For a bimolecular reaction, e.g. A + HB ~ AH + B, this is where bonds are forming 

and being broken at the same time: [A .. H .. B]*. This was recognized by Arrhenius and 

elaborated by Eyring; it has been the linchpin to many theories of chemical reactivity. 

The transition state is the geometrical configuration of the reaction partners where 

there is a bottleneck on the free energy surface describing the reaction. Tl?-erefore, the 

intermolecular forces at play at or around the transition state are the most important 

in the dynamics of the reactive encounter. 

The goal of reaction dynamics is then to characterize precisely the potential 

energy surface(s) governing a reaction particularly in the region of the transition 

state. This should, in turn, lead to a complete understanding of the electronic 

interactions determining the microscopic mechanism for branching and energy 

disposal in a reaction. Unfortunately, the transition state is the hardest part of the 

potential energy surface to characterize because of its very nature as an extremely 
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short lived transient. A kinetics experiment, which determines the reaction rate as 

a function of temperature, provides some information in this respect: the derived 

activation energy gives a crude estimate of the barrier height at the transition state. 

However, much more discriminating experiments are required to uncover quantitative 

information about the potential energy surface. 

This thesis describes the application of photoelectron spectroscopy of negative 

ions to the investigation of the transition state in a chemical reaction. By using 

appropriate negative ions as precursors for our experiment we have developed a 

technique that is a direct spectroscopic probe which is uniquely sensitive to this 

extremely short lived reaction transient species. Thus this work is termed, along with 

others in a new generation of reaction dynamics experiments, "transition state 

spectroscopy". 2• 
3 

The chemical reactions for which this technique proves useful are the so-called 

"elementary" bimolecular reactions - those normally associated with the simplest 

individual steps in a chemical process. As such, these are ubiquitous in chemistry, 

but their study is particularly important in atmospheric and combustion processes. 

Historically, these reactions have been experimentally investigated in the gas phase 

by measuring energy disposal and/or angular distributions among the reaction 

products with various degrees of control over reactant initial conditions.1
• 

4
• 

5
• 

6 

Under single collision conditions these experiments can provide fairly detailed 

evidence for the shapes of the potential surfaces in the interaction region. However, 

their handle on the dynamics is firmly connected to the asymptotic distribution of 

products. More ambitious scattering experiments where rovibrational state resolved 

differential cross sections are measured, either in crossed beam instruments,7 or via 
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laser based vector correlation methods,8 will provide more rigorous tests of the 

potential energy surfaces through comparisons with quantum scattering calculations. 

Vander Waals cluster initiated reactions have more recently introduced a new flavor 

to full collision dynamics experiments,9
• 

10 as have aligned and oriented molecular 

beam experiments.11 

The results of these experiments provide different and complementary pieces 

of information about the important transition state region for the reaction. Although 

the differential cross sections and detailed microscopic state-to-state cross sections are 

sensitive to the entire reaction potential surface, there is not a straightforward or 

intuitive connection between the data and the potential at the transition state. In 

contrast, our technique, being a half collision rather than a full collision experiment, 

probes the transition state region directly. By preparing a negative ion, AHB-, which 

is geometrically similar to the supposed neutral transition state structure [AHB ]*, and 

removing an electron from the ion, we access the transition state region of the 

potential energy surface describing the reaction A+ HB ~ AH +B. The electron 

energy spectrum is a probe of the quantum states at the transition state rather than 

a mapping onto the asymptotic product states. 

As we shall see, photoelectron spectroscopy provides an experimental route 

from which the spectrum of an internally cold, mass-selected species yields detailed 

information on the ground state dynamics of a neutral reaction. The experiment is 

described in Chapter 2. Mass selection is an important feature of our experiment as 

we can be sure that there is no background signal due to other chemical pathways; 

such secondary reactions often make the results of full collision experiments hard to 

interpret. In addition, because the anion precursor is rotationally cold, the dynamics 
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of the half collision are restricted to only a few angular momentum states. This 

facilitates comparison with theory. 

In many respects our half collision technique is conceptually similar to 

molecular beam photodissociation experiments, particularly those that monitor the 

photodissociation cross section as a function of excitation wavelength (action 

spectroscopy).10· 12 However, these latter experiments normally measure the 

photodissociation cross section by detecting products. The closest analog to our 

experimental "transition state" spectrum is the absorption spectrum of a molecule to 

a dissociative upper state, such as the first absorption band of ~0.13 Such 

absorption experiments have not, to date, been recorded in a molecular beam 

environment. The use of negative ions as precursors in our experiments is important 

as this half collision technique is directly applicable to reactions that normally occur 

via bimolecular gas phase collisions (i.e. thermal rather than photochemical 

processes), in contrast to photodissociation studies on neutrals. Thus half collision 

data (the negative ion photoelectron spectrum) and complementary full collision 

kinetic, cross-beam, and product state data may be compared for a. single reaction 

system. This allows, for the first time, something of a full picture for a bimolecular 

reaction to emerge. Many of the advantages of negative ion transition state 

spectroscopy as a probe of the chemical transition state are detailed in a recent review 

paper.14 

Although transition state dissociation occurs on a femtosecond time scale, the 

activated complex can vibrate one or more times before complete fragmentation: it is 

this motion that leads to structure in the observed photoelectron spectrum. In some 

special circumstances long lived states, called scattering resonances, which live for 
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many tens of vibrational periods, may be observed in the photoelectron spectrum. 

Zewail has pioneered efforts to observe the femtosecond dynamics of the transition 

state in real time using femtosecond lasers. 15 The clocking of the dissociation 

dyn8mics by an internal vibration, however, suggests a time domain analysis of our 

photoelectron spectra, and we have indeed pursued this route for an alternate 

understanding of the information revealed in the photoelectron spectra. 

2. Principles of Photoelectron Spectroscopy 

Photoelectron spectroscopy is a well developed branch of molecular 

spectroscopy. The interaction of light with a molecule to form a molecular ion and an 

electron (photoionization) is the most common form of photoelectron spectroscopy. If 

the precursor is instead a negative ion, the process is termed photodetachment and 

a neutral molecule and an electron result. Negative ion photoelectron spectroscopy; 

developed in the last 20 years and made possible by the appearance of high power 

visible and UV lasers, can be represented as follows: 

(1) 

hv is the photon energy, and is constant in this experiment, i.e. the light source has 

a fixed wavelength. Ek, the kinetic energy of the electrons resulting from 

photodetachment, is the experimental observable. n", v", n' and v' describe the 

electronic and vibrational states of the anion and neutral molecule respectively. By 

the relationship 
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Ek = hv - EA ( M) - E' (n 1, v') + E11 (n 11
, v") (2) 

the observed electron kinetic energy distribution, I(Ek), may be associated with the 

internal energies, vibrational and electronic, of the negative ion and neutral. As the 

energy resolution of current electron detection systems(- 5- 10 meV, that is- 40-

80 cm-1
) is inadequate to resolve the rotational spacings of most molecules, the 

rotational state labels are omitted and we shall seldom concern ourselves with the 

rotational behavior of the ion or neutral. 

In our experiments, the negative ions are formed in a free jet expansion. This 

means that they are created with a restricted range of internal energies; typically the 

vast majority of the ions are present in their ground vibrational and electronic state. 

Hence, E" in equation (2) is usually zero. Therefore, the photoelectron spectrum I(Ek) 

is a direct measure of the energy levels of the neutral species M. The peaks in the 

spectrum at highest electron kinetic energy correspond to transitions to neutral 

states with lowest internafenergy. 

If we consider the distribution of electrons in a molecule in terms of a 

molecular orbital model, then Equation (1) implies the removal of an electron from a 

single molecular orbital. This "one-electron" picture is often used in photoelectron 

spectroscopy and characterizes the only electronic selection rule: any transition 

between ion and neutral is allowed that occurs by removal of an electron from a single 

orbital without rearrangement of the electron occupation of the other orbitals. If 

several electronic states of the neutral are accessible energetically from the anion with 

the photon energy employed, those that are related to the anion electronic 

configuration by a one-electron process will be seen in the photoelectron spectrum. 
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The photoelectron process for a diatomic negative ion is illustrated 

schematically in Figure 1-1. The potential energy curve for the anion and for the 

ground and flrst excited states of the neutral are shown. The expected photoelectron 

spectrum is shown on the right hand side. The spectrum shows two bands due to the 

two electronic states ofthe neutral; each band exhibits a vibrational progression. The 

spacings of peaks in the spectrum directly yields the separations of eigenstates in the 

neutral. The length of the progression and the exact intensities of the peaks in each . 

band are governed by the Franck Condon Principle. This principle states that 

electronic transitions are fast compared to nuclear motion;16 for example, a 

photoelectron departs its parent negative ion in - 10"16 s. Therefore, the neutral is 

born on the upper state potential surface in the configuration of the precursoranion. 

Quantum mechanically speaking the resulting distribution of neutral states is given 

by the projection of the anion wave function 'If" over the neutral vibrational wave 

functions 'lf'.17 The intensities are given by the so called Franck Condon Factors 

(FCFs) 

FCF(v1--v11
) = I ( •• / 1·.,") 12 

., "' """ 
(3) 

Therefore, if the anion and neutral have very different equilibrium geometries, there 

is a correspondingly long vibrational progression in the photoelectron spectrum, and 

vice versa. The theoretical evaluation of the Franck Condon factor, for the purposes 

of simulating the photoelectron spectra, is discussed in -detail in Chapter 4. 
\ 

The above description and schematic pertains to case where the upper neutral 

state has a bound potential. Chapter 3, which reports the photoelectron spectra of 
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eN-, Nco- and NCS -, provides a complete example of this bound ~ bound 

spectroscopy and shows the straightforward generalization of the above rules to 

polyatomics.' This chapter lays much of the groundwork and language for the more 

complex transition state spectroscopy results that follows. The bound ~ free 

formalism required to describe the transition state experiments is detailed in 

Chapter 4. 

3. Relationship of the photoelectron spectrum to short time chemical 

dynamics. 

An alternative picture for the interpretation of a photoelectron spectrum is to 

consider the relationship between spectral structure and the short time dynamics of 

the neutral species formed by photodetachment.18 A simple Fourier transformation 

relates the photoelectron spectrum, I(Ek), with the time autocorrelation function, C(t). 

C( t) describes the time evolution of a wave packet prepared on the neutral potential 

surface.19 The time resolution ofthe autocorrelation function constructed in this way 

is given by the overall spectral bandwidth. Likewise, the window in time allowed 

from Fourier transformation of the experimental spectrum depends on the 

instrumental energy resolution. Assuming a typical bandwidth of 1- 2 eV and the 

energy resolution of our spectrometer (ca. 10 me V), the autocorrelation function could 

be constructed with a time resolution of 0.5 fs for a Lorentzian time window with a 

half-width at half-maximum (HWHM) of 66 femtoseconds. 

This time dependent picture is developed in Chapter 4, where a derivation of 

the photoelectron spectrum couched in the time-dependent formulation is also given. 

We will, in the main, use the connection between the time dynamics, expressed by 
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C( t), and the spectrum in the opposite sense, i.e. wave packet propagation will be used 

J to theoretically simulate the dissociation dynamics of the transition state species, and 

the Fourier transformation of the calculated autocorrelation is compared with the 

experimental photoelectron spectrum. The quantum wave packet method is also 

I described in Chapter 4. 

The theoretical simulations will prove invaluable in assigning and interpreting 

\_ I 

the structure in the transition state photoelectron spectra. Once qualitatively 
... 

assigned, we may modify the potential energy surface on which the wave packet 

propagation takes place, to try and improve the fit between theoretical simulation and 

experiment. In most cases ab initio calculations to estimate the properties of the 

anion are necessary as a precursor to the dynamics simulation because data of' 

spectroscopic quality is scarce for negative ions. This, unfortunately, limits the extent 

to which the neutral reaction surface may be fit from the experimental spectrum and 

the simulation process. 

4. Photoelectron Angular Distribution 

The photoelectron departing the neutral molecule carries with it a well defined,, 

quantized, angular momentum. For atomic anion photoelectron spectroscopy the 

I· angular momentum of the leaving electron is restricted by selection rules relating to , 

the orbital angular momentum of the parent ion and detached neutral. The nature 
r \ 

of the allowed angular momentum states of the departing electron, and their mutual 

interference, along with the polarization of the detachment laser, determines the 

angular distribution of electrons in the laboratory frame. If the electron leaves the 

neutral complex as an "s-wave" 0 = 0) only, as for the threshold photodetachment of 
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an electron from a p atomic orbital of a halide ion, the angular distribution is 

isotropic.2° For all other waves, and for a superposition of various waves, the 

distribution · of electrons is anisotropic. To first order, the differential 

photodetachment cross section is given by 

do 0 ttlltll n 3 28 1 - = -(1+..,(-cos --)) 
dC 41t 2 2 

(4) 

where atotal is the total photodetachment cross section and 13 is the asymmetry 
I, / 

parameter (-1 ~ 13 ~ 2, 13 = 0 implies an isotropic distribution) and is a function of 

electron kinetic energy. dQ is the solid angle subtended by an imaginary infinitesimal 

detector and a is the angle the detector position vector makes with the laser 

polarization axis. Notice that the effect of the asymmetry parameter is removed if the 

direction of electron collection is chosen to be at the "magic angle", e = 54.7°. 

For molecular photoelectron spectroscopy, 13 parameters are often hard to 

rigorously relate to the symmetry of the molecular orbital in the ion from which the 

electron was removed.21 However, qualitative information is available from 

polarization measurements. Although 13 may vary weakly over a vibrational ! I 
I 

progression in transitions to a single electronic state of the neutral, transitions to 

different electronic states of the neutral are expected to have quite different 13 values, i 

particularly if the neutral states arise by the removal of an electron from molecular I 
l ' 

orbitals of different symmetry in the anion. Therefore it is often useful, particularly 
r 1 

in cases where the spectrum has overlapping electronic bands, to record photoelectron 

spectra at both extreme laser polarizations (a = oo and a = 90°) to facilitate 

assignment ofpeaks to the different states. The actual value ofj3 for a photoelectron 
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reaction, where to some extent the energy release for the reaction is decided. 

Photod.etachment ofF~-, on the other hand, lands to the entrance valley side of a 

very early barrier, and finally OHF- has an anion geometry which coincides with the 

anticipated saddle point geometry. 

In all cases, the structure in the photoelectron spectra contains information 

about the ground reaction potential energy surface in the vicinity of the transition 

state, or equivalently the femtosecond dynamics of the transition state complex. In 

each of the three chapters we make strong connections with theoretical simulations 

and explore possible electronically excited Born-Oppenheimer surfaces that may also 

contribute to the spectra. The assignment of spectral features to these excited 

electronic surfaces is supported by photoelectron anisotropy measurements. 

6. The Future 

The extension of the technique to reaction systems with much higher molecular 

complexity, e.g. F + ROH, and the success of transition state studies in solvated 

complexes22 is very encouraging. This represents a significant ilew avenue for 

exploration. Diatom-diatom reactions remain an important target, especially as these 

present a challenge to full quantum scattering theory. For the more esoteric goal of 

using our spectroscopic technique to quantitatively determine a reaction's potential 

energy surface, much new work remains to be done but is achievable. 

The negative ions, which provide such a useful springboard to learning about 

the neutral reaction, need to be much zp.ore quantitatively characterized. Although 

ab initio calculations can provide helpful estimates of their properties, full 

spectroscopic investigation of their equilibrium geometries, vibrational energy levels 
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band can often be useful in adding weight to the assignment of that band to a 

particular electronic state.21 This is explored in Appendix A. 

5. Transition state spectro~opy by negative ion photodetachment 

The remaining chapters of this thesis demonstrate the application of negative 

ion photodetachment as a transition state spectroscopy for a number of reaction 

systems. All are hydrogen transfer reactions of the type A + HB ~ AH + B. This is, 

however, a very important class of reaction systems/ in terms of both fundamental 

reaction dynamics interest and in applications such as chemical lasers and 

atmospheric processes. Chapter 5 reports the photoelectron spectra of FHI-, ClHI-

' 
and BrHI-and describes their relationship to the bimolecular reactions X+ HI ~ HX 

+I (X =F, Cl, Br). In Chapter 6 the series of reactions F + OH ~ HF + 0, F + CH30H 

~ HF + CH30 and F + C2H50H ~ HF + C2H50 are investigated. Finally, in Chapter 

7 the benchmark F + ~ reaction is studied by transition state spectroscopy ofF~-. 

The systems featured in the three chapters turn out to illustrate three 

experimental scenarios. Photodetachment of BrHI-, OHF- and F~- accesses 

different parts of their respective ground neutral reaction surface. This is shown 

pictorially in Figure 1-2. Let us divide up the transition state (or interaction) region 

of the potential surface describing a direct reaction arbitrarily into three parts: the 

saddle and the entrance and exit valleys to either side of the saddle. The latter are 

not, however, the same as the asymptotic reactant or product regions. Further, we 

adopt the usual chemical dynamics convention and talk about a reaction proceeding 

from reactants (entrance) to products (exit) in the exothermic direction. In this 

language, we see that BrHI- photodetachment probes the exit valley for the Br + HI 

··~ 
I ' 
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and dissociation energies is urgently required. Using this information, experiments 

that control the region of the neutral potential energy surface probed in the anion 

photodetachment can be devised. In much the same way as collision based 

experiments can use rovibrational state selected reactants to probe higher detail in 

the reactive collision dynamics,6 so may we vibrationally pump the anion prior to 

photodetachment to choose the part of the reaction transition state region we wish to 

learn about. This is not unlike Crim's photodissociation excitation spectroscopy from 

0-H overtone pumped ~0.23 

Figure 1-3 shows this selectivity with a schematic of such an experiment using 

the negative ion BrHI- as an example. The vibrationally excited ion has 

substantially better overlap (lightly shaded) with the saddle point than the ground 

state ion (darker shading). Vibrational excitation of a single quantum in this' 

hydrogen stretching mode v3 requires around 920 cm·1 of energy to be resonantly 

deposited in the ion.24 Two possible optical excitation schemes to achieve this are 

shown in the lower half of Figure 1-3. Tunable infrared sources of radiation, required 

for scheme (i), in this range are few: difference frequency mixing of visible light in 

non-linear media or line tunable C02 lasers are possibilities. Free-electron lasers, 

which can provide tunable, high power, 1 cm·1 bandwidth radiation in this region look 

particularly suitable, and if such a source becomes avallable25 this may well be the 

optimal photon source. Another attractive possibility is stimulated Raman pumping, 

as shown in scheme (ii), using two visible photons from a YAG/ dye or YAG/ 

Ti:sapphire laser system.26 

The results of such an experiment are simulated in the closing section of 

Chapter 5. The simulations indicate that the restriction imposed by the anion 
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equilibrium geometry may be lifted by the proposed vibrational pumping scheme. 

Preliminary experiments to investigate the feasibility of such an approach have 

demonstrated that a line tunable C02 laser, despite its high fluence, is inappropriate 

for two reasons. It is not continuously tunable and the linewidth is too narrow to 

move a large population of rotational substates. Prior to a new effort in this direction, 

the exact gas phase anion fundamental frequency needs to be determined. 

It is perhaps evident that spectroscopic approaches to the characterization of 

reaction transient species are becoming increasingly important in the experimental 

armory of the reaction dynamics field. The recent introduction of commercially 

available femtosecond laser systems will surely bring an explosion of time-domain 

measurements of reaction transients in the gas phase. 15
• 

27 The advance of 

theoretical methods to describe the quantum dynamics of a reaction, and the 

development of electronic structure methods that are accurate enough to compute 

reaction potential energy surfaces to chemical accuracy, are driven by the quality of 

experimental information available. Transition state spectroscopy experiments can 

provide the sort of high quality data on the part of a chemical transformation that 

is most important in this respect. 
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Figure Captions for Chapter 1. 

Figure 1-1. Schematic of the photodetachment'process for a diatomic negative ion. 

The photoelectron spectrum expected for the hypothetical potential 

energy curves is shown on the right hand side of the Figure. 

Figure 1-2• Photodetachment of the anions (a) BrHI-, (b) oHF- and (c) FH2-

access different regions on their respective neutral surface. Contours 

of the neutral potential and the approximate extent of the Franck 

Condon region (shaded) are shown. The region probed is, in all three 

cases, in the three atom interaction region of the potential energy 

surface, however each case is sensitive to a different segment of the 

transition state region. Assumptions for anion and neutral potential 

surfaces for each system detailed in chapters 5, 6 and 7. 

Figure 1-3. Schematic of a vibrationally-pumped photodetachment experiment. 

(Top) BrHI- anion and Br + m ~ HBr + I neutral potential curves 

along an idealized reaction coordinate. The anion v3 = 0 and v3 = 1 

wave functions are shown, and the upward shaded regions indicate the 

section of neutral reaction curve detachment from each vibrational state 

would access. (Bottom) Excitation schemes with anion levels shown in 

solid lines and detachment continuum shaded; (i) direct infra-red 

excitation of negative ion with tunable m laser, (ii) stimulated Raman 

pumping of negative ion with two-color scheme where hv1 is "pump" and 

hv2 "Stokes" laser. 
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Chapter 2. Experimental: modifications and improvements to the negative 

ion photoelectron spectrometer 

The experimental apparatus employed for all work presented in this thesis, a 

pulsed time-of-flight negative ion photoelectron spectrometer, was constructed by Theo 

Kitsopoulos, Ricardo Metz, Alex Weaver and Dan Neumark in 1986-7. The machine 

is described in detail in the Ph. D. thesis of Alex Weaver.1 The computer program 

used to control the apparatus and to perform some of the data ·manipulation is 

likewise described in the thesis of Ricardo Metz.2 A brief description of the apparatus 

appears here and also in each of chapters 3, 5, 6 and 7 with emphasis on the 

particular features important to those individual studies. 

In this chapter, I will describe in detail the major modifications to the 

apparatus hardware and enhancements to the data collection program, that have been 

made in the last few years. A full description of the calibration and background 

subtraction procedures applied to the raw data is given. As these two processes are 

routinely applied as a first step in analyzing virtually all data recorded on the 

photoelectron spectrometer, it seems appropriate to detail their correct usage. 

The apparatus is a dual time-of-flight spectrometer. Ions are created in a free-

jet/ electron impact source of Johnson and Lineberger design.3 The ion for study is 

selected in a Wiley-McLaren type mass spectrometer,4 and the electrons liberated 

from the ion on irradiation with the photodetachment laser are energy analyzed by 

time-of-flight. A schematic of the experimental apparatus is shown in Figure 2-1. The 

experiment relies. heavily on the advances in negative ion sources in recent years. The 

source region is shown on the left hand side. A pulsed molecular beam valve (1) 
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introduces the reagent gases into the source chamber. A free jet expansion ensues 

which, when crossed by a fast electron beam (2), generates cold molecular ions 

suitable for spectroscopic study. The ion source is described in greater detail in 

section 1.2. The negative ions produced in the free jet are injected into a time-of-flight 

mass spectrometer (3) which separates them into packets according to their mass. 

The ion signal can be monitored at the microchannel plate detector (4). The timing 

of a pulsed fixed-frequency laser, which intersects the ion beam at (5), is chosen so 

that only the ion packet corresponding to the mass of interest is photodetached. The 

resulting neutrals can also be monitored at the detector (4) when a retardation field 

is applied to the front of the detector to block undetached ions. 

The polarization of the laser radiation is varied by means of a half wave plate. 

The angle between the electric vector of the radiation field and the direction of 

electron detection, denoted by a, may therefore be controlled. Photodetachment 

produces electrons that travel away from the center of mass over all 41t steradians. 

Only electrons that are released into the small solid angle subtended by the electron 

detector (6) at the end of a 1 meter flight tube are detected. The energy of each 

electron is determined by its flight time in the field-free flight tube (6). The resultant 

electron energy distribution gives information about the vibrational eigenstates, or 

scattering states, of the neutral. 

1. Enhancements to the apparatus 

1.1 Electron Detection 

A simple but significant improvement to the apparatus was the installation, 

in July 1991, of a new electron detector with a set of larger diameter microchannel 
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plates (at position (6) on Figure 2-1). The original40 mm diameter plates (the quoted 

diameter refers to plate active area) were replaced by two new 75 mm diameter plates 

(Galileo), and a new detector mount was constructed. The channel plates are, as 

usual, mounted in chevron configuration. An identical circuit to that used previously 

is employed to bias each of the detector elements.1 The electron collection efficiency 

is improved by a factor of:... 3.5 because of the increased solid angle subtended by the 

electron detector at the laser interaction region. Now about 0.04% of the total 

photoelectrons are collected yielding a three- to four-fold signal-to-noise improvement 

in the photoelectron spectra. One would expect a small degradation in the electron 

energy resolution because of this change; there is now a greatet uncertainty in the 

lab to center-of-mass correction term (see section 2.1 below) for the electron energy 

due to the increased acceptance angle of the detector.5 Calculations indicate an 

expected resolution of 11-12 meV for a 0.65 eV electron, photodetached from I-, with 

thi~ new detector. Indeed, we experimentally observe the peak width ofthe I(2p112) ~ 

I- transition in the 266 nm photoelectron spectrum on-, which occurs at this electron 

kinetic energy, broadens from 8- 9 meV with the 40 mm plates to 12- 13 meV with 

the new plates. 

Despite the increased electron collection efficiency, the background electron 

signal, which is due to electrons released from metal surfaces in the detector chamber 

by scattered light, has been reduced. This has been achieved by new laser bafiles, to 

, reduce the amount of scattered light, and a realignment of the electron bafiles 

(marked (7) on Figure 2-1) in the electron flight tube/ which block many of the 

background electrons. Together, the improvements to the detector and to the bafiling 
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have increased the signal-to-background ratio for 213 nm photoelectron spectra by a 

factor of four. 

These signal collection improvements make a significant difference to the 

experiment in several ways. Clearly, it takes less time to accumulate spectra of 

comparable quality to earlier work, but also it allows spectra to be recorded for 

systems that were impossible before the change. For example, spectra can now be 

recorded for systems at both parallel and perpendicular polarizations of the laser, 

where collecting data on one of the polarizations may have been impossible earlier due 

to very low signal. This is demonstrated in results presented by way of postscripts to 

chapters 5 and 6, and in all the new data in chapter 7. The most persuasive 

demonstration of the power of a "factor of four" is the recent successful observation of 

resonances in the 213 nm photoelectron spectrum of ClHCl-,6 which had eluded us 

in many previous attempts!' 

1.2 Ion Source 

The operation of our ion source is described in Weaver's thesis.1 Synthesis of 

a large variety of negative ions has been achieved in this source. The modifications 

to our basic source, necessary to make various ions, and some of the more 

unconventional modes of operation of the source, are described below. For example, 

a small mixing chamber can be added to the front of the main pulsed valve for the 

purpose of mixing a secondary gas into the expansion. A more complicated version 

of this arrangement involves two pulsed valves. To improve the cooling and clustering 

properties of the pulsed expansion, a piezo-electric valve has been incorporated into 
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our source. An important pi~ce of diagnostic equipment for this work is the Fast Ion 

Gauge8 (FIG) for testing the gas pulses from each valve arrangement. 

The two main components of the source are the pulsed valve, or the device that 

introduces the gaseous sample into the vacuum system, and the electron beam that 

crosses the free jet and induces various fragmentation, ionization and electron capture 

events which in turn generate the; desired negatiwe ions. The continuous electron 
l 

beam, produced from an electron gun of a Tektronix scope, is easy to manipulate; 

consequently this component of our source is seldom altered. The pulsed valve in 

contrast has seen numerous changes. The 'basic' arrangement is a small pulsed 

commercial solenoid valve, a General Valve Series 9 (General Valve Corporation, 

Fairfield N.J.), which is backed by 2- 5 atmospheres of a dilute gas mixture. The 

operation of this valve and the pulsing circuits used to drive it are described in detail 

elsewhere. 1'
9 Synthesis of many of the negative ions described in this thesis have 

been achieved with this basic arrangement. 

Often, a precursor required as a reagent in the jet exists in the liquid state 

under standard conditions. If the liquid is volatile at room temperature, the liquid 

may be entrained into a carrier gas by bubbling the carrier through the liquid and 

then pulsed successfully into the vacuum chamber. All valves will seize up after a 

period of time in this mode of operation , and need some serious maintenance work. 

An advantage of the simple solenoid valve, over a more advanced valve like the piezo-

electric valve, is the General valve has only a few internal parts, which may be 

cleaned, or if necessary, cheaply replaced in a few minutes. Moreover, it is often hard 

to get sufficient liquid entrained into the carrier gas, i.e the liquid does not have a 

sufficiently large vapor pressure at room temperature. The General Valve is robust 
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enough that the liquid sample m.ay be physically dropped into the body of the valve, 

while it is hanging in vacuum, and then the valve pulsed a few times to flow some of 

the liquid over the surfaces inside the valve. Once this initial cycling has been 

completed, a fairly stable beam of the precursor, entrained in the carrier at much 

higher density, can be achieved. This 'short cut' has been employed for the liquids 

benzyl isocyanate, benzyl thioisocyanate, formic acid and methanol to prepare the ions 

Nco-, Ncs-, HC02 - and CH30H .. F- respectively. 

Further experimentation with pulsed nozzle design however has been 

necessitated by the quest for other negative ions. A common requirement is for two 

different reagent gases to be present in an expansion in order to perform the desired 

ion-molecule chemistry in the electron beam interaction region. One gas may be 

required to produce the seed ion, say N20 to produce o-, and the second as the target 

molecule for reaction or clustering, e.g. methane or hydrogen for the processes o- + 

CH4 ~ OH- + CH3 or o- + ~ ~ o-(H2). In many cases, the two gases can be 

premixed thoroughly in a stainless steel cylinder, for example N20 and HCl used in 

the source clustering reaction of o- with HCI. However, in these two examples the 

reagent gases definitely cannot be premixed at high pressure before introduction to 

the pulsed valve. Other such combinations of active gases, e.g. oxidizing and reducing 

agents or acid/ base gaseous mixtures, would often be desirable for producing some 

interesting ions, but are impossible to premix and thus to use with the single valve 

inlet arrangement. Instead, each active gas needs to be introduced separately into the 

jet expansion. Another powerful use of such a double inlet arrangement would be for 

varying the ratio of two active gases at run time; rather than finding the optimal ratio 
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for premixing by trial and error - each trial mix needs to stand for several hours. For 

some of the more exotic AHB-ions (where A:~: B) this would be extremely useful. 

-, 
The basic General valve is ideal for designing hybrid gas inlet assemblies as 

it is small and it is easy to attach add-ons to its flat faceplate. We have experimented 
) 

with both continuous and pulsed secondary gas inlets. The idea is to merge the 

secondary reagent gas with the main pulsed .beam after th~ pulsed valve but prior to 

the free jet expansion. The gas through the main valve carries one reagent and the 

carrier gas for the expansion, and the secondary reagent gas is introduced via a small 

mixing chamber (see Figure 2-2) attached to the exterior of the pulsed nozzle orifice. 

Ideally, the mixing is optimized by creating maximum turbulence in the main flow 

within the mixing chamber. This is how we arrived at the triple-injector design of 

Figure 2-2. A free jet expansion, albeit somewhat weaker than that from the 

unimpeded pulsed valve, then takes place from the front aperture of this mixing 

chamber. This approach has been successful for producing good densities of OH- by 

the reaction ofO-(from N20) with NH3 introduced continuously through the "mixing 

chamber". The flow of ammonia is controlled by a leak valve outside the chamber. 

OH-.is surprisingly difficult to make from any simple dissociative attachment process; 

neither H20 or H20 2 produces OH- in our source! Clusters based on OH-are in fact 

highly desirable targets for future transition state studies in our laboratory. 

A pulsed design for the secondary gas inlet would clearly be advantageous over 

the above continuous scheme so as to reduce the gas load on the pumping system and 

to increase the density of the secondary gas present during the main valve pulse cycle. 

An in-line General Valve (Series 9, two way) has successfully been incorporated into 

the secondary gas supply line to the mixing chamber. Instead of the mix chamber 

I I 
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design of Figure 2-2, we use a similar, but simpler, single injector (0.070" diameter) 

chamber; the central hole, for the main flow, has the same 0.080" diameter as before. 

Unfortunately the secondary gas pulses are notlimited by the in-line valve's open 

time, but rather by the small conductance of the 1/8 " tubing (inner diameter is only 

0.052") attaching the second valve to the mix chamber. Even so, the -2 ms duration 

pulses reduce the pumping load by a factor of ca. 25 when running at 20 Hz, allowing 

much higher concentrations of the secondary gas in the expansion at reasonable total 

source chamber pressures. The yield of FHCl- in the mass spectrometer, when 

running NF3 behind the main valve and 5% HCll He behind the second in-line pulsed 

valve, can be varied over an order of magnitude by adjusting the pulsing delay and 

duration of the in-line valve driving circuit. 

Despite the flexibility of the General valve, the fast ion gauge clearly shows 

that the gas pulses produced by this valve are not limited only by the flow through the 

faceplate aperture ('choke' flow). The internal armature of the valve, which withdraws 

the poppet sealing the valve when the solenoid is activated, does not respond very fast 

compared to the overall pulse duration. This problem is compounded by the wedge 

tip design of the poppet in the General Valve, and so choke flow is achieved only very 

late in the gas pulse. The properties of a free jet expansion that make its use 

attractive to spectroscopists are the high degree ofinternal cooling achieved in the jet 

and the high local molecular densities that accompany this dramatic cooling. Pulsed 

valves are used to reduce the overall load on the vacuum system. Thus a pulsed valve 

that delivers a high gas intensity in a short pulse, with choked flow during the large 

part of that pulse, is optimal. The above two problems of the General valve in this 

respect are mostly removed in the piezo-electric ·valve.8
'
10 This valve has a fast rise 

I I 
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time - the motion of the piezo-electric crystal keeps up with the high voltage driving 

pulse - and uses a flat o-ring, rather than a wedge, seal against the faceplate aperture. 

We have therefore recently built11 and used a piezo-electric valve in our experiments 

on F~- and other clusters. 12 

2. Procedures for improved· data collection 

2.1 Calibration description 

The calibration procedure has been described briefly in the thesis of Alex 

Weaver. 1 Here we outline the procedure in full, detailing several new aspects ofthis 

important part of the photoelectron experiment. The calibration of 213 nm 

. photoelectron spectra is dealt with; hitherto there were no good calibrant ions to 

anchor the electron energy scale for this laser photon energy (5.822 eV) in the region 

of principal use (0.5- 1.5 eV). This ~ork has indicated a more serious problem in the 

calibration process itself. The linear calibration procedure used by our group up until 

now proves inadequate to accurately calibrate over a 2 e V range of electron energies. 

A quadratic scheme, similar to one used in the Zare group for their multiphoton 

ionization photoelectron spectrometer (MPI -PES) apparatus, 13 has been implemented, 

and yields a much more useful and accurate energy scale. This is important for the 

precise determination of electron affinities and electronic state separations from 

spectra recorded on our apparatus. 

Conversion of the electron flight time, t, measured on our apparatus, to the 

electron center-of-mass kinetic energy, Ec- com, is given, in the absence of any electric 

or magnetic fields, by 
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1 12 
E- -ll.E = -m 

• ,aMI 2 • 2 (t-t0 ) 
(1) 

where ~ is the correction term to the electron energy from the laboratory to center-

of-mass frame. For electron detection at right angles to the ion beam, ~ is given by 

(2) 

and me and mion are the mass of the electron and the mass of the ion from which the 

electron was photodetached.1 Vr and Vext are the experimental float and extraction 

voltages, which have been set up in the experiment to yield a stable and focussed ion 

packet at the interaction region for the particular ion of mass mion· The parameters 

l and to, respectively, describe the zero of time and the distance from the laser 

interaction region to microchannel plate detector. To find these parameters, which in 

fact do vary from day to day, it is necessary to record photoelectron spectra of several 

atomic ions, to calibrate the energy scale. The energies for the transitions of these 

calibrant ions are well known to fractions of me V. 

To perform this calibration we invert equation (1) to yield 

t = to + ~ - 1 + --'Y,___ 
~ ~ JE - ll.E E - ll.E 

(3) 

where we have dropped the e-, com label for the electron energy, and we have 

included an extra term, y I (E- t.E), for flexibility. For the moment, we shall assume 

y = 0, however later we will see it is necessary in some cases to include a non-zero y 

to yield a reasonable calibration fit. The introduction of this term physically 

corresponds to recognition that there is some acceleration of the electron over its flight 
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path, and therefore not all fields have been eliminated. One important field that 

should not be neglected is the interaction of the electron with the residual charge 

cloud due to the undetached ions. 

The calibration takes place as follows. A set of photoelectron spectra are 

recorded at the lowest possible ion levels, or at least below. the "space charge limit" 

for that ion. The Coulomb repulsion of the residual ion cloud on the departing 

electron shifts the peaks in the ion's photoelectron spectrum to higher electron kinetic 

energy. The space charge limit is the highest ion density at which the peaks in the 

ion's photoelectron spectrum are unshifted due to this Coulomb repulsion. This 

varies for ion to ion, and to some extent on the nature of the ion's spectrum. For · 

example, a molecular, rather than atomic, calibrant's photoelectron spectrum will have 

broader peaks and so the onset of Coulom}? shifting will seem to appear at a higher 

ion level. For cases where it proves impossible to obtain spectra at the space charge 
' 

limit (usually around 10 mV ion level, with ion detector stack voltage set at 1650 V, 

see Table 2-1), because of signal-to-noise considerations, extrapolation down to "zero-

space-charge" will be necessary. This should occur only for CN-calibration at 213 nm 

because of the high background level for the low electron energy lines. In my 

experience this calibrant ion may be satisfactorily run at 80 m V ion level, and a "zero-

space-charge" extrapolation (of the order of 5 meV for 80 mV CN- ion level), with 

care, can be carried out to good accuracy.111 These more tedious measures are 

ill This assumes that the space charge shift is constant for all peaks in the ion's 

I , 

photoelectron spectrum. Recent work shows that there is a dependence on the 

electron's kinetic energy, but that this is small for overall shifts less than 10 

meV. 



32 

unfortunately necessary as the calibration fit for 213 nm can be poor without lines at 

low electron kinetic energies. 

Table 2-1. Estimated space charge shift (in me V) for calibrant lines, as a function 
of ion level. Ion levels are height of ion peak measured on scope trace 
(in m V) when ion detector stack voltage set at 1650 V. 

Ion Level lOOmV 50mV 30mV lOmV 

Ion mass 

F- 19 4.5 3.0 1.5 0.0 

eN- 26 5.0 3.0 1.5 0.0 

c1- 35 6.0 4.0 2.5 0.0 

Br- 79 4.5 1.0 

I- 127 10.0 4.0 1.0 

For each calibrant photoelectron spectrum, the time-of-flight for each spectral 

line and the extraction and float voltages set while obtaining that ion's spectrum, vext 

and Vr, are recorded. Note, in order to achieve zero-space-charge conditions for each 

calibrant ion the extraction voltage may vary widely. It is therefore important to 

record, to the. nearest 10 V, the extraction voltage used for each ion so as to compute 

accurately the center-of-mass correction, which may be as large as 35 me V (F-) and 

depends on Vext according to Eqn. 2. This set of observed information, along with the 

expected electron energies (Table 2-2 and 2-3) are used to perform a weighted linear 

least squares fit to Eqn. 3. 14 The uncertainties in the time-of-flight for each line are 

the weights input into the fit; for most lines this is the 2.5 ns uncertainty in 

estimating a peak center. This fitting procedure has been simply and conveniently 
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automated*2 in the TENURE data acquisition computer program,2 and should be 

performed at the time of calibrant data collection. The goodness-of-fit, t. a quality 

factor (Q) and any disparities in the fit are displayed, along with an root-mean-square 

(rms) error, in meV. Q is the probability oft, equal to or poorer (higher) than that 

in the fit, occurring by chance.14 Q factors higher than 0.50 (1.00 is perfect fit, 

indicative of a fudge!) and rms errors smaller than 2 me V are usually obtainable, Q 

factors above 0.95 usually indicate that the uncertainties in the time-of-flight 

datapoints have been over-estimated. Because this information is available at run 

time, the operator can go back and re-record specific calibration spectra immediately 

if this is deemed necessary. In this way highly accurate electron energies, with 

quantitative error bars, can be deduced from recorded spectra. This procedure has 

been adopted in the reporting of all spectra in this thesis, and particular attention has 

been paid to this issue in Chapter 3. 

2.1.1 Calibration at 213 nm' 

Whenever a spectrum has peaks over a broad range of electron energies, the 

electron energy scale needs to be calibrated over the entire range. This is generally 

the case for our 213 nm spectra, although it may be true at any other wavelength. 

This causes a particular problem for 213 nm, as the shortest wavelength of our atomic 

calibrant lines (I(2p112) ~ I-) yields electrons with 1.82 eV kinetic energy. New 

calibrant lines to cover smaller electron kinetic energies at this laser wavelength are 

required. No suitable atomic ions have excited states in this region. The CN-

The subroutine that performs the calibration in the TENURE program has 

been completely rewritten and is reproduced in Appendix A. 
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photoelectron spectrum does have several lines spanning this electron kinetic energy 

range/5 and so we choose this diatomic as our calibrant of the 213 nm spectra, along 

with some of the halide ions for the high electron kinetic energy end of the scale. 

Using a diatomic ion has disadvantages; the peaks are broader and peak shapes 

temperature dependent, and so assignment of peak centers have larger uncertainties. 

For 213 nm calibration, and for any other laser wavelength where a large 

energy range is being calibrated, a satisfactory linear calibration of the energy scale -is impossible, and a quadratic fit is needed. Then the factory, called the quadratic 

scale compression factor, is non-zero in Eqn. 3. It is noted that y should always be 

negative and typically has a value in the range of -100 to -130 eV•ns. Once the 

inclusion of this parameter becomes necessary, the conversion of observed flight times 

to electron kinetic energies no longer follows Eq. 1, but instead is given by 

(4) 

where b2 = V2mef. Eq. 4 reduces to Eq. 1 in the limit of y ~ 0, as required. This 

reformulation of the time-of-flight to energy relationship has been included into the 

data acquisition program TENURE. 
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Table 2-2 Calibration lin:es typically used for UV laser wavelengths. 
Electron kinetic energies for atomic and diatomic transitions at 
213, 266, 299 and 355 nm.a 

Transitionb 

CN- CN(A,v=2) 

Mass 213 nm 266nm 299 nmc 

5.822 eV 4.657 eV 4.141 eV 

26 0.391 

355nm 

3.493 eV 

a) All electron kinetic energies correspond to the zero space charge limit. 

b) CN- transitions labelled by neutral electronic (Xe~), Aen)) and vibrational 

state. See Figures 3-1 and 3-2 for sample spectra. 

c) · First Stokes Raman line in ~ using Nd:YAG fourth harmonic (266 nm) as 

pump wavelength. 

Data used to construct table: Nd:YAG fundamental1064.8 nm, (9391 cm·t, 1.164 eV). 

First Stokes Raman scattering in H2 , v = vpump - 0.516 eV. 16 EA(I) = 3.0591 eV/' 

EA(Br) = 3.363590 eV/' EA(Cl) = 3.61269 eV/7 EA(F):;: 3.401190 eV17 and raw 

EA(CN) = 3.861(3) eV.15 Atomic spin orbit splittings: (F, 0.05010;18 Cl, 0.10940;18 Br, 

0.4569;19 and 0.94268 eV/9
). CN electronic and vibrationallevels.16 

I 
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Table 2-3 Calibration lines typically used for near UV and visible laser 
wavelengths. Elect:r,on kinetic energies for atomic and diatomic 
transitions at 355,416, 532 nm.a 

Transitionb Mass 355nm 

3.493 eV 

416 nme 

2.977 eV 

532nm 

2.329 eV 

a) All electron kinetic energies correspond to the zero space charge limit. All 0 2-

transitions are to centers of unresolved spin orbit doublets . 

. b) 0 2 - transitions labeled by neutral electronic (X(3:Eg·), ae.!\g), b(1:Eg+)) and 

vibrational state. See sample spectra in Figure 2-3 and 2-4. 
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Table 2-3 continued 

c) First Stokes Raman line in ~ using Nd:YAG third harmonic (355 nm) as 

pump wavelength. 

d) Spin orbit splitting (20 meV) of anion 0 2- resolved in these transitions. 

Data used to construct table: Nd:YAG fundamental1064.8 nm (9391 em·\ 1.164 eV). 

First Stokes Raman scattering in~, v = vpump- 0.516 eV.16 EA(I) = 3.0591 eV/7 raw 

EA(02) = 0.454(3),20 and 0 2 electronic and vibrational levels from Ref. 16. 
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2.2 Background subtraction 

The background signal, despite improvements described in section 1.1, can still 

be significant for 213 nm photoelectron spectroscopy. We estimate that around one 

background electron is collected every shot at this laser wavelength. This signal must 

be removed to restore the correct intensity distribution in the molecular photoelectron 

spectrum. As the spectrum of background electrons is smooth and does not change 

from day to day, the background signal may be separately averaged, typically for at 

least 120,000 laser shots, and stored. This background spectrum may be filtered to 

remove any high frequency noise, and then scaled and subtracted from the 

photoelectron· spectrum of the ion under study. This procedure is less time consuming 

than background subtraction at run time, where alternately 250 shots, say, of signal 

+ background and then 250 shots of ba~kground are collected and subtracted. 

Additionally, as the signal-averaged background spectrum is filtered before 

subtraction, the overall signal-to-noise for the subtracted data is higher than in the 

"run time" method. 

The method of filtering the background data deserves some discussion. The 

background time-of-flight dataset is fast Fourier transformed.14 A fast Fourier 

transform (FFT) works on a dataset that has 2n data points, i.e. 128,256,512 or 1024 

etc. points. Although padding of the time-of-flight dataset from the usual 800 

channels (0- 4000 ns time-of-flight) with zeroes up to 1024 chanllels works, in practice 

it is better to sample the background spectrum into 1000 channels (i.e. out to 5000 ns) . 
and pad with only 24 zeroes. The power spectrum of the dataset, that is the modulus 

squared of the complex frequency (Fourier) representation of the dataset, has 

approximately the form of a Lorentzian function centered about zero frequency, 
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although it has a non-Lorentzian tail. This is no surprise; the infinitely averaged 

background spectrum varies smoothly, i.e. would have only low frequency components. 

The high 'frequency components of the power spectrum are due to noise in the 

incompletely averaged data. To remove the noise we use optimal (Wiener) filtering . 

. The reader is referred to Ref. 14 for a complete discussion of this technique. 

Essentially, the Fourier spectrum is multiplied by a narrow Lorentzian filter function 

that has approximately the same form, i.e. the same FWHM, as the Fourier dataset 

itself. In this way the high frequency tail is damped out. The user can alter the 

precise value of the filter width so as to control the damping of the high frequency 

components. The product dataset is then reverse Fourier transformed back into the 

time domain by another FFT. The result is a smoothed background time-of-flight 

dataset, which can be truncated to 800 channels (0 - 4000 ns) and saved to disk. 

Comparison of the filtered and original background datasets, by plotting the two files, 

is strongly recommended. 

This Fourier filtering is preferable to simply fitting the background spectrum 

with a polynomial function for two reasons. Firstly, it does a better job at reproducing 

the shape of the background spectrum, and secondly it is a lot less arbitrary as the 

only variable is the Lorentzian filter width. The filtered background is subtracted off 

the summed photoelectron spectrum of the ion under study, after appropriate scaling 

of the background spectrum by the ratio of the total laser shots for which data was 

accumulated for the ion to the total shots for the background. 

We have observed that the background spectrum is slightly different for 

different polarizations of the laser, mostly in the integrated number of counts, but 

there can also be small variations. in the background distribution. Therefore, 
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background spectra should be recorded for each polarization used in the ion 

photoelectron study. The reader is referred to Appendix A for details on the use, and 

source code, of the relevant background filtering and subtraction subroutines in the 

program TENURE. 

' J 
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Figure Captions for Chapter 2. 

Figure 2-1. Experimental apparatus schematic. The photoelectron spectrometer 

contains four differentially pumped chambers. Numbered components 

are described in Figure key and in the text. 

Figure 2-2. Mixing chamber for the continuous introduction of secondary reagent 

gas into the pulsed expansion, to the vacuum side of the main pulsed 

valve. The Figure shows the two component parts of the chamber front

on and in cross section. The· two pieces are assembled (the smaller 

piece fits tightly inside the larger donut), and bolted to the faceplate of 

the General Valve by the four bolt holes. The overall dimensions of the 

assembled chamber is 1.330" diameter by 0.394" thick. 

Figure 2-3. Raw time-of-flight photoelectron spectrum for 0 2- recorded at 355 nm. 

Peaks labelled according to transitions denoted in Table 2-3. The 

positions of unlabelled peaks (x5, aO) are typically too poorly 

determined without lengthy signal averaging, and are not therefore 

used in the calibration. 

Figure 2-4. Raw time-of-flight photoelectron spectrum for 0 2- recorded at 532 nm. 

Peaks labelled according to transitions denoted in Table 2-3. The spin 

orbit splitting in the 0 2- ion (20 meV) can often be resolved in the al 

and a2 peaks; 

,_ 
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~. 
Gas #2 in 

Front View Side View 

Notes: Center hole has 0.080" dia. 
Three feeder holes for second gas have inner dia. of 0.01 0" 
Material Aluminum 

\ 

Chamber bolts to General Valve Faceplate 
Second gas introduced through 0.0625" stainless steel tubing 

which mates at indicated point by a 1-72 NF fitting. 

Figure 2-2 
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Chapter 3. Photoelectron spectroscopy of CN-, Nco-, and NCS- • 

Abstract 

The 266 nm photoelectron spectra of CN-, Nco- and Ncs- have been 

recorded with a pulsed time-of-flight photoelectron spectrometer. The photoelectron 

spectrum of CN- has also been recorded at 213 nm revealing transitions to the A2n 

state as well as the ground X2:E+ state of the CN radical. The following adiabatic 

electron affinities (EAs) are determined: EA(CN) = 3.862 ::t 0.004 eV, EA(NCO) = 

3.609 ::t 0.005 eV and EA(NCS) = 3.537 :t 0.005 eV. The adiabatic electron affinity of 

cyanide is in disagreement with the currently accepted literature value. Our 

measurement of the electron affinity ofNCS confirms recent theoretical estimates that 

dispute the literature experimental value. By Franck Condon analysis of the 

vibrational progressions observed in each spectrum, the change in bond lengths 

between anion and neutral are also determined. For NCO-this yields Ro(C-N) = 1.17 

:!:: 0.01 A and Ro<C-0) = 1.26:!:: 0.01 A, and for eN- the equilibrium bond length is 

found to be Re(C-N) = 1.177 :!:: 0.004 A. The gas phase fundamental for eN- is 

determined for the first time: v = 2035 :t 40 cm·1
• 

1. Introduction 

The CN-, Nco-, and Ncs- anions are of considerable interest in both solution 

phase and gas phase chemistry. The three anions are "pseudohalides" in that they are 

closed shell species with relatively high electron binding energies. On the other hand, 

there are important chemical differences in comparison to the halide ions; in 

*J. Chem. Phys., in press (1993) 
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transition metal complexes, for example, the halide and cyanide anions are at opposite · 

ends of the spectrochemical series. A number of experimental and theoretical studies 

of the spectroscopy and thermochemistry of these anions have been performed in 

recent years. However, several quantities, particularly the electron affinities ofthe 

NCO and NCS radicals, are not well-determined. In order to address this, we have 

measured the ultraviolet photoelectron spectra of the three anions. The spectra yield 

accurate values of the radical electron affinities, as well as some anion vibrational 

frequencies and bond lengths. 

The spectroscopy of the CN radical has been thoroughly studied, 1 but, while 

CN- has been investigated in various condensed phase environments,2.a'4'
5 eN- has 

not been fully characterized in the gas phase. Neither the bond length nor the 

vibrational frequency for gas phase CN- have been experimentally determined, 

although there has been very high quality ab initio theory performed to describe the 

ion.6
•
7 The CN electron affinity (EA) has been measured by Leone and coworkers,8 

whose value of3.821 ± 0.004 was in good agreement with the previous experimental 

measurement of Berkowitz (3.82 ± 0.02 eV).9 eN- has a higher reported electron 

binding energy than any atomic or other diatomic species, and is therefore a desirable 

calibration standard for our photoelectron spectrometer. However, our photoelectron 

spectra show the CN electron affinity to be slightly but significantly higher than the 

currently accepted value of Leone. In addition, we observe a 'hot band' from 

vibrationally excited CN-, yielding the gas phase vibrational frequency, and we obtain 

the CN- bond length from a Franck-Condon analysis. 

Despite the well characterized spectroscopy of the radicals NCO and NCS,10 

the electron affinities for these species have not been accurately determined; 
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currently the EA's listed in the compilation of Lias et al. 11 are 3.59 :t 0.36 and 2.15 

:t 0.02 eV for NCO and NCS respectively. The value for the electron affinity ofNCS, 

obtained from Page's magnetron experiments, 12 is particularly suspect. Not only 

does it seem inconsistent with the other CN containing molecules, it is also 

considerably lower than theoretical estimates of this quantity.13 We note that Page's 

accompanying result for EA(CN), 2.80 e V, is similarly too low.12 Dillard and Franklin 

derived EA(NCS) = 3.51 eV from measured heats of formation ofNCS and NCS-in 

ion molecule reactions;14 the most recent theoretical work supports this value with 

a calculated EA "Of 3.45 e V. 13 We show that the true electron affinity is close to that 

derived from the thermochemical cycle and the theoretical value, and that the 

previous "direct" measurement ofthe EA is in error. 

The vibrational spectroscopy of the Nco- and Ncs- anions have. been 

thoroughly investigated in various alkali halide matrices.15
•
16

•
17

•
18 In addition, 

high resolution infrared gas phase spectroscopy has been performed on both Nco

and Ncs- in Saykally's laboratory. 19
,2o This work yielded the v3 fundamental 

frequency and the equilibrium rotational constant for each of these linear ions. 

However, as isotopically substituted spectra were not recorded, the rotational constant 

does not completely define the molecular structure, and therefore the two bond lengths 

remain unknown for each ion. In contrast, for the NCO radical at least, 11N isotopic 

substitution in the optical spectra, along with microwave data for 14NCO, yields the 

individual neutral bond lengths, R0(C-N) and R0(C-0).21 With this data for the 

neutral bond lengths, and a Franck Condon analysis of the Nco- photoelectron 

spectrum, we determine the individual bond lengths for the Nco- anion. 
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2. · Experimental 

The photoelectron spectra of Nco-, Ncs-, and CN- were recorded on our 

fixed-frequency negative ion photoelectron spectrometer. This apparatus has been 

described in detail elsewhere.22 Briefly, the instrument is a dual time-of-flight 

photoelectron spectrometer. A gas mixture at a stagnation pressure of ca. 3 atm is 

expanded through a pulsed molecular beam valve. Just below the orifice of the pulsed 

valve, a continuous 1 keV electron beam intersects the gas beam at 90°. Ions are 

made in the continuum flow region of the jet. Subsequent collisions in the expansion 

cool the internal degrees of freedom of the ions. Varying degrees of cooling of the 

vibrational modes can be achieved by changing the carrier gas. 

In these experiments, to make CN-, a mixture of 3% HCN, 8% NF 3 seeded in 

N2 is expanded through the pulsed valve. eN- is produced in the jet by the following 

reactions: 

NF 3 + e- ~ NF 2 + F-

F-+ HCN ~ HF +eN-

To produce Nco- and Ncs-, a few drops of benzyl isocyanate or benzyl 

thioisocyanate respectively are dropped into the valve, and 3 atmospheres of He ~r a 

40% CF4 I He mix, is expanded through the 'wet' valve. Nco- and Ncs- are 

produced by dissociative attachment of an electron to PhCH~CO or PhC~CS. The 

CF4 I He mix is found to give far superior cooling for vibrational modes of the Ncs-

IOn. 

The ions are perpendicularly extracted into a time-of-flight mass spectrometer 

ofWiley-McLaren design.23 The mass-selected ion of interest is photodetach~d using 

a pulsed Nd:YAG laser that propagates perpendicular to the ion beam. In these 
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experiments, the fourth (266 nm, 4.657 eV) or fifth (213 nm, 5.822 eV) harmonic of the 

Nd:YAG laser is used. Photoelectrons ejected from the mass selected ion are detected 

at the end of a 1 meter field-free flight tube which is orthogonal to the laser and ion 

beams. The energy of the detached electrons is determined by time-of-flight. The 

energy resolution is 8 meV for electrons with 0.65 eV of kinetic energy and degrades 

as E312 for higher kinetic energies. The polarization of the laser can be adjusted by 

means of a half-wave plate such that the angle 8 between the electric vector of the 

laser radiation and the direction of electron detection may be sampled. Adjustment 

of the laser polarization to the magic angle (8 = 55°) can be used to eliminate the 

photoelectron angular anisotropy term. 24 

Due to the high photon energy employed, any scattered light will release 

electrons from metal surfaces inside the ch~ber. This effect is minimized by electron 

and laser baffies but, even so, at 213 nm the background level is sufficiently high that 

the background signal must be subtracted from the data. As the kinetic energy 

distribution of the background photoelectrons is smooth and does not change from day 

to day, a smooth function is fitted to the background, scaled and subtracted from the 

experimental spectrum. This subtraction procedure has been followed for the 213 nm 

photoelectron spectrum of CN- here. 

The calibration procedure used in these spectra is worthy of some discussion. 

In the photoelectron spectrum of A- at photon energy hv, the electron kinetic energy 

of each peak is determined by 

(1) 

where EA(A) is the electron affinity of A (or, equivalently, the electron binding energy 

of A-), and Ei(A) and Ei(A -) are the internal energies of A and A- for that transition. 
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Ideally, for calibration purposes, the electron affinity and the· internal energies of the 

calibrant species should be extremely well known. At 266 nm the electron kinetic 

energy scale is calibrated using photoelectron spectra of the atomic ions F-, Cl-, Br-, 

and I-, for which the corresponding neutral electron affmities (3.401190, 3.61269, 

3.363590, and 3.0591 eV, respectivelr5
) and neutral atom spin-orbit splittings 

(0.05010,26 0.10940,27 0.456926 and 0.94268 eV,26 respectively) are known to good 

precision. Each calibrant ion gives two narrow peaks in the photoelectron 

spectrum,28 and these atomic lines cover the range of electron kinetic energies (0.65-

1.60 e V) appropriate for photodetachment at 266 nm. At this wavelength, we can 

access the ground electronic states of CN, NCO, and NCS, and can therefore 

accurately determine their electron affmities. 

The calibration proceeds as follows: the recorded flight times, t, for each 

calibrant line are fitted to the following form: 

(2) 

where me is the electronic mass and E1ab is the expected electron kinetic energy in the 

laboratory frame-of-reference. Using the 8 or more calibrant lines, the offset to. the 

effective flight length Q, and the quadratic correction factor yare determined by least 

squares. For 266 nm, a linear calibration of the energy scale (y = 0) is generally 

sufficient. Using these constants that define the electron energy scale, the flight times 

for the spectrum of interest are converted to electron kinetic energies; this conversion 

procedure includes a small center-of-mass correction to the energy.22 

The situation at 213 nm is less auspicious. For this photon energy the halide 

lines are clustered near electron kinetic energies of2 eV or above. There are no other 



54 

atomic negative ions with higher electron binding energies so it is necessary to go to 

a molecular calibrant ion. One of our motivations for studying CN- was to obtain 

calibration points for 213 nm at lower electron kinetic energies. This can be done 

using the transitions from CN- to the first excited electronic state of CN, the A2n 

state, which lies 0.83 eV above the ~l:+ ground state. This, of course, requires the 

accurate value for EA(CN) determined at 266 nm. Thus, the results presented in the 

next section will allow us to better calibrate future spectra at 213 nm. We note here 

that to fit the electron kinetic energy scale at 213 nm over the entire range covered 

by the halide and cyanide transitions, the quadratic scale compression factor, y, must 

be included. This calibration fit then reproduces all lines to within the measured 

time-of-flight uncertainties for all points.29 The inclusion of a quadratic term in the 

calibration is similar to that employed on negative ion photoelectron instruments in 

the Lineberger30 and Ellison31 groups. Our conversion scheme from time-of-flight 

to electron kinetic energy is analogous to that used on the multiphoton ionization 

photoeleCtron spectrometer described by Anderson et al. 32 

3. Results 

The 266 nm photoelectron spectra of the three molecular ions are shown in 

Figure 3-1. The Nco- spectrum was recorded using the laser polarized at the magic 

angle (6 = 55°) because a change in relative intensities across the band was noticed 

as a function of laser polarization. For Ncs- and CN-, although there is sizeable 

change in absolute counts recorded with the two extreme laser polarizations, the band 

profile did not change, so spectra were recorded with polarization chosen to maximize 

signal/noise. This was with a= oo for CN- and a= 90° for NCS-. Figure 3-2 shows 
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the 213 nm photoelectron spectrum of CN- with the polarization of the laser 

perpendicular (8 = 90°) to the electron collection direction. 

The spectra in Figure 3-1 are all relatively simple. Photodetachment of each 

ion leads to very little vibrational excitation in the corresponding neutral. The CN-

266 nm spectrum shows only a single peak, the 0-0 transition, indicating virtually no 

geometry change between eN- and the }fr ground state of CN. In the 213 nm 

spectrum (Fig. 3-2), in addition to the X state transition, a more extended progression 

(peaks AO-A2) in the vibrational levels of the A2n state is observed. Thus, according 

to the Franck-Condon principle, there is a somewhat larger geometry change for this 

anion-+neutral transition. Since the vibrational spacings and the energy of the 

electronic origin in the CN A 2ll state are known, 1 peaks A1 and A2 can be used in 

addition to AO to calibrate the electron energy scale at 213 nm. The only new 

spectroscopic feature in Figure 3-2 is peakaO. This is a hot band originating from the 

v=1 level of the anion. This spectrum was recorded under source conditions which 

increased the vibrational temperature of the anions; in other spectra (not shown), this 

feature can be eliminated. Observation of the hot band is desirable since it represents 

the first gas phase measurement of the CN-vibrational fundamental frequency, 2035. 

:t 40 cm·1
• 

The Nco- photoelectron spectrum shows a short progression in the v3 

'antisymmetric stretch' mode of the NCO Xln state (Fig. 3-1). Each peak consists of 

overlapping transitions to the two spin-orbit components of NCO <Aooo = -95.6 cm·1
).

33 

For the NCS Xln state, the spin-orbit splitting is much larger <Aooo = -323.4 cm-1
),

34 

and transitions to the individual fine structure components are resolved. The spacing 

between the doublets is close to the v3 (C-8 stretch) fundamental in NCS. However, 
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a more detailed comparison of the observed peak positions and the term values 

derived from extensive optical measurements33 reveals some discrepancies. This is 

discussed in more detail when we attempt to simulate the Ncs- photoelectron 

spectrum. 

The widths of the observed peaks (- 28 meV for Nco-, - 21 meV for Ncs

and - 16 me V for CN-, 266 nm) are larger than that due the instrumental resolution 

alone. In the case of NCO, the extra width is due to the unresolved spin-orbit 

splitting. For the remainder, the peak width is due to sequence bands and the 

underlying rotational contour for the transition. 

4. Analysis and Discussion 

4.1 Electron Affinities 

The electron affinities for the three radicals can be determined from the 266 

nm spectra shown in Figure 3-1. The adiabatic electron affinity is estimated as 

follows. The electron kinetic energy at the peak center of the assigned origin (Ei(A) 

= Ei(A -) = 0.0, see Eq. 1) yields the raw electron affinity via 

EA = hv- eKE (3) 

where hv is 4.657 eV for 266 nm. Corrections are made for the spin-orbit splitting (if 

appropriate), sequence bands, and any shift between the center of the rotational 

contour and the rotationless origin. Another factor to be considered in deriving 

accurate electron affinities is the effect of Coulomb repulsion of the remaining ion 

charge cloud on the ejected electrons. The interaction of the undetached ion packet 

with the electron causes the kinetic energy of the departing electron to be increased 

slightly. We correct for this effect by determining the magnitude of this shift for an 
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atomic ion of similar mass, for the same ion density. Values for' all of these 

corrections are listed in Table 3-1. As can be seen, the magnitude of this latter 'space 

charge' effect is fairly small. 

The rotational correction is calculated by simulating the expected rotational 

contour35.a6 using the known rotational constants for each molecule and assuming 

a simple s-wave detachment model developed by Fano37 and Walker38
• This is an 

approximation; an s-wave model is not strictly appropriate here, since the electron 

kinetic energies are on the order of 1 eV. Using an anion rotational temperature of 

200 ± 50 K, the rotational contour, when convoluted with the instrumental resolution 

function; matches the experimentallineshape, and the (small) correction between peak 

maximum and rotationless origin for the transition may be estimated. It turns out 

for all these systems that the correction is smaller than the error bars for the 

correction process, which nevertheless are propagated into the final uncertainty in the 

electron affinity. The rotational contour simulation for the photoelectron band to the 

CN ground state is shown in the inset of Figure 3-1. The possibility ofbroadening of 

the origin peak in the CN- 266 nm photoelectron spectrum due to the 1 ~ 1 sequence 

1 band has been chec~ed for; the simulated profile does not change even for vibrational 

temperatures as large as 1400K. The final electron affinities derived from this work 

appear in the final column of Table 3-I. 

Let us compare our electron affinity determinations with those currently in the 

literature. The reported CN electron affinity of Klein et al.8 obtained via laser 

optogalvanic spectroscopy is slightly lower than our measurement, and both 

measurements lie outside the range of their mutual error bars. Klein reports EA(CN) 

= 3.821 ± 0.004 eVS whereas we deduce EA(CN) = 3.862 ± 0.004 eV from the 266 nm 
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spectrum. We have repeated this measurement several times with independent 

calibrations, and are therefore confident in our value. To resolve the discrepancy 

between these two measurements we attempted to measure the total photodetachment 

cross section on a different apparatus,39 with a tunable dye laser. Such an 

experiment is much more akin to the optogalvanic experiment, and should provide an 

independent test. However, in contrast to Klein's experiment, we mass-select the eN

before irradiation. This experiment confirmed that the threshold for CN

photodetachment occurs to the blue ofKlein's reported threshold; our total detachment 

cross section rises at 321.1 :t 0.3 nm (3.862.eV) compared to 324.4 nm (3.821 eV). One 

possible explanation of this discrepancy is that Klein et al., who only observed the 

324.4 nm threshold when using BrCN as their source of ions, were actually observing 

the threshold for the channel Br(2p112)f-Br-; which occurs at 3.8205 eV.25:z6 Indeed 

the authors noted a strong slowly rising background due to the Br(2p312)f-Br

transition throughout the wavelength region they investigated. 

Our reported values for the eleCtron affinity of NCO and NCS are in excellent 

· agreement with some recent theoretical determinations, but in varying agreement 

with experimental estimates. For NCO, there have been numerous experimental 

determinations of the electron afimity. Brauman and coworkers40 observed that 

NCO has a higher EA than fluorine (3.401 e~5). Oster and Illenberger estimate 

EA(NCO) = 3.8 :t 0.2 eV based their observed 0 eVappearance potential ofNCO-and 

SF5 - from low energy electron attachment to ,SF5NC0,41 although this is only an 

upper limit if the appearance energies are less than 0 eV. Dillard and Franklin 

calculated EA(NCO) = 1.56 eV from the heats of formation of NCO and Nco

measured in their ion-molecule experiments,14 but the heats of formation found in this 
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work appear to be inconsistent with currently accepted values. Wight and 

Beauchamp calculated a value of 3.62 ± 0.2 eV from. their measured NCO- proton 

affinity using literature heats of formation for MI<;(HNCO) and £\Hc;(NC0).42 Our 

direct measurement- of the adiabatic electron affinity is consistent with the 

measurements of both Brauman and Oster, and also with Wight and Beauchamp's 

derived value. As discussed in the Introduction, previous 'direct' measurements of the 

NCS electron affinity/2 in contrast, appear tobe incorrect. Our value of3.537 ± 0.005 

eV, however, is in agreement with Dillard's derived value of 3.51 eV.14 

The theoretical values for the adiabatic electron affinities of Koch and 

Frenking, 3. 71 e V for NCO and 3.45 e V for NCS, 13 are in good agreement (better than 

0.1 eV) with our observed values. These calculated electron affinities are zero-point 

corrected MP2/6-31+G* energy differences between the optimized ion and neutral 

structures. Baker et al. have presented an exhaustive comparison of ab initio 

estimates of electron affinities for several molecular systems including NC0.4aa An 

interesting conclusion of that study was that the use of a simple MP216-31 +G* scheme 

for calculating the energy difference between ion and neutral was among the most 

effective methods for estimating the adiabatic EA, with the caveat that spin 

contamination in the unrestricted (UHF) radical wavefunction should be small (as is 

the case for NCO). This explains the success of Koch's calculations, and we have 

ourselves found that a MP2/6-31 ++G** model reliably yields excellent EA's in our own 

calculations when we compare to other experimental measurements in our laboratory. 

This is certainly an encouraging result for ab initio theory which has traditionally 

viewed negative ions as one of the hardest classes of molecules to describe correctly. 
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It appears that all three ions studied here have very similar electron binding 

energies. This would lead one to suspect that the 'extra' electron would be closely 

associated with the CN part of the molecule. The considerably larger electron 

affinities of NCO and NCS relative to OH and SH (1.828, 2:314 eV respectively25
) 

seem to support this, since, in OH- and SH-, the electron is localized on the oxygen 

and sulfur atoms. However, the HOMO (of1t symmetry) for NCO-has amplitude over 

all three atoms, not just the CN group, as is shown in Figure 3-3. This suggest that 

the 'extra' electron is actually somewhat delocalized just as for N 3 - (E.A.(N3) = 2.68 

eV39
). The HOMO in Ncs- is also shown in Figure 3-3. It appears more localized 

than the HOMO in Nco-, but actually has more amplitude on the sulfur end of the 

molecule than on the CN group. This is consistent with Ramsay's explanation for the 

large spin-orbit splitting in )fn NCS radical (323 cm"1
) which he attributed to the 

valence structure that has the unpaired electron localized on the sulfur atom 

dominating the electronic description of this radical.44 The replacement of an oxygen 

atom by a sulfur atom usually raises the electron affinity of a molecule, but the 

observation that NCO and NCS have similar electron affinities suggests this effect is 

approximately canceled by the more extensive electron delocalization in Nco- than 

in NCS-. Overall, the electron affinities appear to be determined by the interaction 

of electron delocalization and electronegativities of various chromophores in the 

molecule. 
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4.2 Derived Thermochemical quantities 

With a precise estimate of the NCO and NCS electron affinities, we may 

critically review some related thermochemical quantities. Shobatake45 has recently 

reported the threshold for photodissociation of HNCO 

HNCO +hv -+ H + NCO (A2~) 

to be A.= 162 ::!:: 1 nm. This implies the bond dissociation energy to the A state of 

NCO, J)A{H-NCO) = 7.65 eV.45 As the To for the A state is well known at 2.82 eV,34 

·these data together yield a bond dissociation energy, D
0
(H-NCO) :5; 111.4::!:: l kcallmol. 

Using the ionization potential of hydrogen and our electron affinity for NCO, we 

calculate D
0
(H•-Nco-) :5; 341.9 ::1:: 1 kcallmol, and a bond enthalpy D~(H•-Nco-) = 

343.2 ::!:: 1 kcal/mol. Wight and Beauchamp observed D~98(H•-NcO-) = 344.7::!:: 2 

kcal/mol by the proton abstraction reaction of HC02 - with HNCO in an ion cyclotron 

resonance (ICR) machine. Their heterolytic bond dissociation enthalpy is evaluated 

by comparison to that for formic acid, HCOJI. The homolytic and heterolytic bond 

dissociation thermochemistry therefore appears to be consistent. dH~ (NCO-) may 

also be re-evaluated from the recent direct determination of the heat of formation of 

neutral NCO in our laboratory,46 dHr(NCO, g, OK) = +30.4 ::!:: 1 kcal/mol, and the 

electron affinity reported here. Adopting the "ion convention" for ionic heats of 

formation, 11 dHr(Nco-, g, OK)= -52.8 ± 1 kca1Jmol. Using the frequencies in Table 

3-11, we estimate dH~ (NCO-) at 298K to be unchanged at -52.8 kca1Jmol. 

For the thermochemical cycles involving NCS-, the energy for the HNCS 

homolytic bond dissociation is less well defined than the heterolytic bond dissociation. 

We may thus use our electron affinity with the D~98(H•-Ncs-) of Bierbaum et al.47 

and the ionization potential of the H atom to deduce DH298(H-NCS) = 96::!:: 6 kcal/mol. 
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The temperature dependence of the electron affinity and ionization potential have 

been ignored here. The homolytic bond dissociation energy calculated here is 

considerably lower than the 111 ± 1 kcal/mol literature value listed in Lias.11 

However this value for D~98(H-NCS) was derived from Page's comparison of the 

'apparent' electron affinities of NCS measured with the magnetron technique using 

HNCS and (NCS)2 as precursors. 12 It is becoming fairly clear that this technique 

relies on rather too many other thermochemical assumptions to be trusted. 

Surprisingly, Lias' compilation neglected the more recent work of D'Amario48 from 

which D~9g(H-NCS) could be calculated. D'Amario's derived &I~ (NCS) = 76.4 ± 1 

kcal/mol from the photodissociation thresholds of CH3SCN and CiiaNCS to produce 

NCS. Using 

D~98(H-NCS) = LlH~ (NCS) - LlH~ (HNCS) + LlH~ (H), (4) 

LlH~ (HNCS) = + 30.6 ± 0.5 kcal/mol,11 and &I~ (H)=+ 52.1 kcal/mol,49 D~98(H-NCS) 

= 98.0 ± 1 kcal/mol is derived.50 Our unambiguous result for the electron affinity of 

NCS, coupled with Bierbaum's gas phase acidity for HNCS confirms this lower value 

for D~98(H-NCS). 

4.3 Simulations 

Our goal in this section is to use a simple Franck-Condon model to simulate 

the photoelectron spectra, allowing us to derive some structural and vibrational 

parameters for the negative ions. The method employed for Franck-Condon modelling 

is due to Hutchisson,51 and treats each mode as an independent Morse or harmonic 

oscillator within the normal mode approximation. In addition, we assume that the 

form of the normal coordinate for a mode changes little between anion and neutral; 
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this is known as the parallel mode approximation. Anion state populations are 

determined by Boltzmann factors characterized by one (or more) vibrational 

temperatures. 

The 266 nm spectrum (Fig. 3-1) consists of a single peak: CN (:x_2r) (v' = 0) +

eN- (v" = 0). The absence of a (v' = 1) +- (v" = 0) peak indicates that CN- has a 

bond length similar to ground state of CN: 1.1718 A.1 The 213 nm spectrum (Fig. 

3-2) shows a single peak due to a transition to the X state, as well as a progression 

due to transitions to the A state of CN. The A state bond length is 1.2223 A.1 By 

simulating the Franck Condon Factors for transitions to the two states we may 

bracket the value ofRe in CN-. 

In the simulations we use the known equilibrium bond lengths, ·harmonic 

frequencies and anharmonicitie~ for the X and A states of CN, as well as the spin 

orbit coupling-parameter of -52.6 cm·1 for CN Aen). 1 There is no spin orbit splitting 

in the CN ground xer+) state. The anion vibration is also treated as a Morse 

oscillator; the anharmonicity used is that calculated for CN-by Peterson and Woods,6 

and the harmonic frequency is derived from this anharmonicity and the value of the 

fundamental observed in our spectrum. We vary only the anion equilibrium bond 

length and the vibrational temperature until a satisfactory fit to the experimental 

spectrum is obtained. Franck-Condon factors for transitions to the two electronic 

states of the neutral are calculated separately. For transitions to the xer) state, 

values ofReanion in the range 1.162 A< Reanion < 1.182 A were acceptable in predicting 

intensity< 2% in the v=l+-0 transition, in accord with the absence of this feature in 
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the experimental spectrum; this range is centered on the value of Re in the ground 

state of the neutral (1.1718 A). This result also confirms that the anion bond length 

is shorter than that in the CN Aen) state (1.2333 A). Figure 3-4 shows our best fit 

to the photoelectron band due to transitions to the A state, with Reanion(C-N) = 1.1765 

A. Values of Re ranging from 1.173 to 1.182 A gave acceptable fits to the observed 

intensity distribution, allowing for the uncertainties in experimental peak heights 

determined from Poisson counting statistics. The experimental observation of two 

photoelectron bands allows independent determinations of R~anion(C-N). The results 

are completely consistent; our final estimate of the anion equilibrium bond length is 

Re = 1.177 ± 0.004 A. · This result is in excellent agreement with the Peterson and 

Wood's MP4(SDQ) prediction of Re = 1.1772 A and Botschwina's value of 1.1768 ± 

0.001 A calculated with the Coupled Electron Pair Approximation (CEPA-1) method.6
•
7 

Let us compare our observed gas phase value of 2035. ± 40 cm·1 for the eN-

fundamental frequency with other reported values. The vibrational frequency of the 

anion is 2080 cm·1 in aqueous solution and 2076 cm·1 in KCN crystal.2 F:'requencies 

ranging from 2068 to 2106 cm·1 were observed in various CN- doped alkali-metal 

halides.3 Mendenhall et al gave roe = 2125 ± 6 cm·1 and roexe = 14.2 ± 0. 7 cm·1 for eN

in KCl, and similar values for CN- in NaCl and NaBr.3 Sherman and Wilkinson 

plotted the observed CN- frequency in these various alkali halides (over 250 

measurements) versus the estimated shift due to the matrix, calculated from a lattice 

perturbation model, and predicted a free space vibrational frequency for eN- of 2038 

± 3 cm·1
,
4 in excellent agreement with our measurement. Very recently, Forney et al.5 

isolated CN-in a neon matrix. The observed fundamental frequency in this inert and 

non-polar environment was 2053.1 cm·1
• The ab initio calculation of Peterson and 
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Woods predicted roe= 2081.7 cm·1 (and roexe = 13.58 cm·1 which we have used in our 

fit), giving a fundamental of 2055 ± 6 cm·1
;
6 Botschwina similarly computed 2052 ± 

6 cm·1 for the anion fundamental. 7 It appears that the observed value is in reasonable 

accord with the ab initio work, and is, as · expected, lower than the reported 

frequencies in condensed media. This trend is also reported for the C-N stretching 

frequency in Nco- and NCS-.4
•
52 For comparison, the vibrational fundamentals for 

CN radical in the xer) and Aen) states are 2042.4 and 1787.3 cm·1 respectively. 1 

A simple molecular orbital picture of bonding in the CN species would suggest 

that the neutral has a bond order of 2¥2 while the negative ion has a bond order of 3; 

we thus expect the bond length in the ion to be shorter than that of the radical 

(1.1718 A.) and the harmonic frequency to be higher. The A state ofCN also has a 

bond order of2Y2, but it has a longer bond length than the ground state (1.2333 A.). 

In fad we find, in agreement with the ab initio calculations, that the negative ion has 

a slightly longer bond length than the ground state of the neutral and a similar or 

slightly smaller vibrational frequency. Thus, in contradiction to the bond order 

arguments, the bond in CN- is the same strength or slightly weaker than that in CN 

radical. It appears that the cr electron removed from. the negative ion is only very 

· weakly bonding and has part lone pair character (see Fig. 3-3), whereas the 1t electron 

removed to form the Aen) state is strongly bonding. This result is consistent with the 

photoelectron spectra of N2,
53 where ionization to N2• xel:;) gives a very small 

lengthening of the N-N bond, and a photoelectron band dominated by the 0-0 

transition, but ionization to N2+ Aen) gives a much larger bond length change and 

·consequently a longer progression. One additional effect comes into play for negative 

ions: the extra charge on the negative ion weakens, in the absence of any other 
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effects, the bonding overall because all valence electrons are held less tightly by the 

nuclear charge relative to the corresponding neutral. These arguments go some way 

in explaining why CN- has a longer equilibrium bond length than CN, and the 

relative vibrational frequencies of the anion and radical X and A states. 

Nco-

Both NCO and NCS are known to be linear in neutral and anion ground states. 

Therefore photodetachment is expected to excite only the bond stretching normal 

modes. In fact, only the v3 mode is appreciably excited in the Nco- and Ncs-

photoelectron spectrum. The intensity distribution in the v3 progression allows us to 

evaluate the normal coordinate displacement between anion and neutraL From these 

displacements and the force constant matrix, the indivi~ual bond length changes 

between the neutral and anionic species can be determined. We will employ ab initio 

predictions to guide this process. The literature ab initio values have been 

supplemented by our own computations where appropriate; we have used the 

Gaussian 90 package for all our calculations.54 Because of the larger data set 

available for NCO, we will describe our simulation for the Nco- photoelectron 

spectrum in detail. For NCO, the individual neutral bond lengths have been 

experimentally determined by comparing the ground state rotational constant for 

11NCO, observed in the spectroscopy of the .A?:E~X?n electronic band,21 and the 

rotational constant for 14NCO determined (to higher precision) in the microwave 

spectrum.55
•
56 This means that we can then use the bond length changes derived 

from our photoelectron data to extract the two anion bond lengths. These values are 
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then checked for consistency with the anion rotational constant as evaluated by 

I \ · vibration-rotation spectroscopy. 19 

The ab initio data in Table 3-III13
•
43

•
57

•
58 suggest that the difference in 

., I 

equilibrium structure between anion and neutral is that the C-N bond lengthens and 
.... 

I 

the C-0 bond contracts on removal of an electron. This is because the HOMO of the 

anion (from which the electron is detached to form ground state NCO) is C-N bonding 
' I 

and· C-O anti-bonding in character (Fig. 3-3). Further, the ab initio data suggests" that 

the change in equilibrium structure involves very little change in the overall end-to-

end length (Re(N-0)). As the normal modes for this molecule are very close to the 

symmetric and antisymmetric stretch of C02~ these described geometry changes map 

\ I 
almost exclusively onto a displacement along the 'antisymmetric' normal coordinate, 

~.and little change along the 'symmetric' stretch, Q1• This qualitative description 

I is clearly in good agreement with the progression seen in the v3 mode in the 

experimental spectrum in Figure 3-1. Using the data for vibrations of anion and 

neutral in Table 3-II, a Franck-Condon simulation is performed to fit the observed 

photoelectron band. The data shown in the table comes entirely from experimental 

determinations for NCO in the gas phase,34
•
59

•
60

•
61 and for Nco- mainly from 

I f 
extensive measurements of vibrational frequencies in several alkali halide 

, r matrices.15
•
16

•
17 All three vibrational modes are included in the simulation to model all 

'~ 

sequence and hot bands arising from excited anion states. For both the anion and 
1 \ 

neutral, Morse potentials are used to describe the v1 and v3 modes and the bending 

mode is treated as a degenerate harmonic oscillator; the Renner-Teller effect in the 

neutral radical is neglected. This level of treatment for the bending mode should be 
~' 

' i 
: i sufficient to describe the peak broadening due to sequence bands. In our one-
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dimensional model there can be no provision for cross anharmonicity terms :Xij· 

Consequently, the 'harmonic' frequencies, ro'i, quoted in Table 3-II are effective values 

given the independent and diagonal treatment of anharmonicity. Thus ro\ = ro1 + 

Y2X13 + :X12, and ro' 3 = ffia + lh:X13 + :X23• 
16 The simulation yields a stick spectrum which 

is then convoluted with our instrumental resolution function,22 and with an 8 meV 

Gaussian to approximately include the rotational band contour for the transition. 

In the fit, all vibrational parameters (anion and neutral) and the spin.:orbit 

coupling constant are treated as fixed; transitions to each of the spin-orbit components 

of NCO are weighted equally. The ~ displacement is the most important variable 

parameter in the fit. The Q1 displacement and the temperatures, T1, T2 and T3 

describing the Boltzmann distribution of anion vibrational states, are also varied. 

Varying the temperatures will essentially fit the width and lineshape of each peak. 

Finally, the electron kinetic energy for the progression origin is allowed to vary; this 

essentially allows improved estimation of the electron affinity and the effect of 

sequence bands. We use this to evaluate the sequence band correction to the electron 

affinity (See Table 3-I). 

The overall best fit is shown in Figure 3-5. The variable parameters are 

determined as L~Q3 1 = 0.128 ± 0.008 amu'>i·A, T3 = T1 = 775 ± 50 K, T2 = 600 ±50 

K. The change in the 'symmetric' stretch coordinate is limited to be 1.1.Q1 1 :::;; 0.04 

amu'>i·A.. The position of the 3~ hot band at 1.32 eV is well fit by the v3 fundamental 

from the gas phase work of Saykally et al. 19 The intensity of this hot band 

determines the vibrational temperature, T3, describing this v3 anion mode; we obtain 

an improved fit by assuming a higher temperature for the stretching vibrational 

modes relative to the lower frequency v2 bend mode. This is presumably justifiable 
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because the stretching modes are expected to be more strongly excited initially in the 

dissociative electron attachment reaction used to generate the NCO-ions. Moreover, 

the lower frequency bend mode should be cooled more effectively by collisions in the 

free jet expansion. Overall, the high vibrational temperatures needed in the fit show 

that vibrational cooling is fairly poor in the helium expansion. 

Jacox has constructed a force constant matrix from infrared observations of 

all vibrational frequencies of various isotopically substituted forms of NCO in an 

argon matrix.62 From these force constants, we have calculated the bond stretching 

normal coordinates. When combined with the values of I ll.Q3 1 and I ll.Q1 1 derived 

from the fit, we may calculate ll.RcN and dRco from anion to neutral. 

= (0.210 -0.332) .(AQtl 
lo.Iss 0.349 AQ3 

(5) 

As we expect the C-0 bond to shorten in the neutral and the C-N bond to lengthen, 

the sign of ll.Qa must be negative, but it is not possible to determine the sign of the 

small ll.Q1• Let us then consider 3 values for ll.Q1: +0.04, 0.0 and -0.04. Using ll.Q1 = 

+0.04 and ll.Qa = -0.128, Equation 5 yields ll.~ = 0.050 A and dRco = -0.039 A. If we 

take the Ro structure for NCO neutral from Misra et al. (Table 3-III),21 then these 

displacements yield Ro<C-N) = 1.15 A and R0(C-0) = 1.25 A for Nco-. For ll.Q1 = 0.0 

and ll.Q3 = -0.128, then ll.RcN = 0.042 A and ll.Rc0 = -0.045 A; resulting in Ro<C-N) = 

1.16 A and Ro<C-0) = 1.25 A. Finally if ll.Q1 = - 0.04 and ll.Q3 = -0.128, then ll.RcN = 

0.034 A and ll.Rco = -0.051 A; resulting in R0(C-N) = 1.17' A and Ro<C-0) = 1.26 A for 

NCO-. If we use these values to calculate the rotational constant B0 for NCO-, then, 

by comparing with the high resolution experimental rotational constant, we can 

determine the sign for ll.Q1• For ll.Q1 = + 0.04, 0.0 and -0.04 the calculated rotational 
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constants are B0 = 0.3925, 0.3878 and. 0.3834 cm·1 respectively. The last of these is 

closest to the observed B0, 0.3841 cm·1
,
19 indicating that the sign of ~Q1 is negative. 

The values that best fit the data and agree with Saykally's rotational constant are 

then ~Q1=-0.035 j: 0.01, ~Q3=-0.128 j: 0.008. 

The final result for the anion Ro bond lengths are shown in Table 3-III. The 

quoted error bars of j: 0.01 A include the uncertainties in the normal coordinate 

changes in our fit and the error bars in Misra's neutral bond lengths, but not the error 

in assuming the parallel mode approximation (i.e. the neglect ofDuchinsky rotation35
) 

. or in Jacox's force constants. qomparing our result to the ab initio values shows that 

the C-N bond length in Nco- is considerably overestimated at the highest level of 

theory (MP2). In fact, it appears that all levels of ab initio theory shown do not 

correctly describe the relative bond lengths R(C-N) or R(C-0) in either anion or 

neutral. It is well known that multiply bonded systems are difficult to describe 

theoretically and it appears that this system, which has somewhere between a single 

and double bond between C and 0 atoms, and between a double and a triple bond 

between C and N atoms, is certainly a strong test case. 

Ncs-

The Ncs- photoelectron spectrum has four major peaks; as already noted, 
. 

these are due to a short progression in the C-8 stretch (v3) in each of the two spin-

orbit components of the NCS X2n state. According to this assignment, the four peaks 
-~ 

correspond to transitions to the 2n312(000), 2n112(000), 2n312(001) and 2n112(001) levels of 

the neutral. However, the spacing of the peak centers from the origin, 0.040, 0.091 

and 0.130 eV, differ for the two 3~ transitions from the corresponding term values 
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given by Northrup and Sears33 (0.040, 0.094 and 0.137 eV) in their laser induced 

fluorescence/stimUlated emission pumping study of NCS. Although these 

discrepancies are small relative to our resolution, a simulation using Northrup's 

observed 001 term values cannot fit the observed photoelectron band. 

The apparent shift in our peak spacings is probably from Fermi resonances in 

NCS; Northrup showed these are responsible for extensive mixing ofthe 020 and 001 

states with n vibronic symmetry. The separation between the 2fl:vi001) and 

p2fl3t.z(020) levels is less than 10 meV (80cm"1
) - the 2fl3t.z(001) is higher - as is the 

separation between the 2fl 1t.z(001) and K 2fl 1i020) levels.33 (The subscript here refers 

to P, the projection of the electronic, vibrational, and spin angular momentum along 

the internuclear axis.63
) Close-lying levels with the same value of P can interact via 

Fermi resonance. In the absence of this _effect, the unperturbed 020 levels are 

expected to have poor Franck-Condon overlap with the Nco-ground vibrational level. 

However, because of the Fermi resonance, transitions to the 020 levels can occur with 

appreciable intensity in the photoelectron spectrum via intensity borrowing from the 

nearby 001 levels. Thus, we would expect to observe two unresolved doublets in the 

photoelec~ron spectrum for the "3~" peaks. The spacing from the origin of the center 

of each unresolved doublet would be expected to be the weighted average of the two 

mixed states making up the doublet. While our resolution is insufficient to resolve 

these doublets, each "3~" peak in the photoelectron spectrum does lie approximately 

at the average of Northrup's term values for the strongly interacting p2flm(020) and 

2fl3t.z(001) levels, for the P=312 component and at the average of x:2n1t.z(020) and 

2fl1t.z(001) levels for the P=1/2 component. Additional evidence for the hypothesis that 

the "3~" peaks are unresolved doublets is provided by the observation that these peaks 
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around 1.0 eV are broader (25-28 meV) than their respective origin peaks (21 meV) 
I ; 

at around 1.11 eV. The contribution to the peak width from instrumental resolution, I 

in contrast, is smaller for peaks at lower electron kinetic energy. 
I : 

An analogous Franck-Condon simulation can still be performed for the Ncs-

spectrum as for Nco-. However, because of the complications due to the Fermi 

resonance, which we ignore, and because the observed vibrational progression is very 

short, we use a simpler, purely harmonic model in this simulation. Because the 

bending mode is included only for simulation of sequence bands, the v2 mode is treated 

as a degenerate harmonic oscillator for the neutral as well as the ion, without account 
J I 

for the Renner-Teller effect. Northrup and Sears' vibronically deperturbed harmonic . I 

frequencies are used for the v2 and v3 modes (Table 3-II). The deperturbed ro3 

frequency actually matches the observed "v3" peak spacing in the photoelectron 

spectrum. The calculated intensities, however, average the complicated state mixing 

taking place in the "3~" peaks. For the anion, we also use an entirely harmonic 

treatment despite the existence of a thorough anharmonic force field derived from 

alkali halide matrix spectroscopy of Ncs-.18 This is reasonable because the anion 
'- .. i 

vibrational temperature turns out to be far lower than in Nco-, so that anion states 

higher than v=1 are not significantly populated. Further, a more complicated 

treatment does not seem warranted given the simple treatment of the neutral 

vibrations. The anion v1 (C-N stretch) frequency is fixed at the gas phase J'-

fundamental observed by Polak et. al.,20 whereas the v2 and v3 frequencies are taken 

from Csi matrix work. 18 Of all the alkali halide matrices, Csi is expected to have the 

least perturbation on the NCB-vibrational frequencies, as compared to the gas phase, 

because it has the largest vacancy sites. Even so, the free ion value for the C-S 
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stretching frequency (v3 ) has been the subject of considerable discussion; it has been 

suggested that there is still some perturbation caused by the Csl matrix on this 'soft' 

vibration.18
•
52 The position of the 3~ hot band in our photoelectron spectra, particularly 

where this feature is enhanced in spectra recorded from ions which are formed in a 

hotter pure helium expansion, is. consistent with the v3 fundamental observed in 

cesium iodide. Our resolution precludes determining the free-ion value with any 

greater precision. 

The variable parameters in the simulation are I L\Q3 1, the position of the origin, 

and the vibrational temperature Tvib· Here, we can adequately fit the spectrum 

assuming the same temperature for each vibrational degree of freedom. I L\Q1 1 is 

constrained to be less than 0.03 amu*·A, because little signal is observed at 0.24 eV 

to lower kinetic energy of the origin, where the 1~ transition is expected, and I L\Q2 1 

must be zero by symmetry. The best fit is shown in Figure 3-6, where Tvib = 350 K 

and I L\~ I = 0.13 amu*·A. Unlike the NCO radical, only the overall rotational 

constant for the neutral is known,64 and thus the two individual bond lengths are 

unknown. While there is no force constant matrix available for the radical, one has 

been constructed for the ion from the alkali halide matrix work.18 Calculating the 

normal coordinates for the stretching modes from this force constant matrix, we may 

again translate our observed L\Q3 value into equilibrium bond length changes. In 

using the anion normal coordinates for this purpose we are once again invoking the 

parallel mode approximation. By n,oting that Q3 corresponds to almost purely C-8 

shortening/lengthening, that there is no change in Ql, and that the rotational constant 

increases (therefore the overall molecule contracts) from anion to neutral, we can 

determine that the change in equilibrium bond length between anion and neutral is. 
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L\R(C-N) = 0.00 :t 0.01 A and M«C-S) = -0.03 :t 0.01 A. Comparing these geometry 

changes with the ab initio data in Table 3-IV,13
•
65 the HF/6-31+G* and HF/6-31G* 

results are consistent with the changes denved from the Franck Condon analysis. 

However the MP2 results are surprisingly poor; they predict the opposite result, L\R(C-

S) > 0 and a substantial shortening in the C-N bond, which is clearly not consistent 

with the absence of the 1~ peak in the photoelectron spectrum. 

5. Conclusions 

We have presented the photoelectron spectra of three pseudohalogen anions. 

The relatively simple spectra have yielded the electron affinity of CN, NCO, and NCS 

to a precision of about 5 meV. The electron affinities for all three radicals are now 

clearly established. Various related thermochemical quantities, including the bond 

dissociation enthalpy ofHNCS, have been derived. The first gas phase determinations 

of the equilibrium bond length and vib~ational frequency for the cyanide ion have also 

been reported. These data compare very well with high level ab initio theory. The 

results for the 213 nm photoelectron spectrum of CN- provide some useful calibrant 

lines for negative ion photoelectron spectroscopy at this and shorter laser wavelengths 

where there have been none hithertoavailable. A Franck-Condon analysis has yielded 

the bond lengths in Nco- and the change in geometry for Ncs- to NCS. These have 

been compared to ab initio results. 
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Table 3-1: Electron Affinities of Radicals studied in this work.a 

raw EN correction to sequence band space charge 
peak centroid• correctiond · correctione 

CN 3.860 ± 0.003 +0.003 ± 0.001 0.000 ± 0.000 +0.001 ± 0.001 

NCO 3.615 ± 0.004 -0.005 ± 0.001 +0.002 ± 0.001 +0.003 ± 0.001 

NCS 3.531 ± 0.004 0.000 ± 0.001 +0.002 ± 0.001 +0.004 ± 0.001 

a) All energies in eV. 
b) From the maximum in 0-0 peak, includes uncertainty in calibration. 
c) Difference between weighted peak center and highest point. 
d) From Franck Condon simulation. 
e) Estimated from halide ion corrections. 
f) Unresolved spin-orbit separation, if applicable. 
g) Estimated from rotational contour simulation (see text). 
h) Corrected adiabatic electron affinity. 

""" 
'· I ~ > 

spin orbit 
correctionr 

none 

-0.006 ± 0.001 

none 

) 

rotational 
correctiong 

-0.002 ± 0.002 

0.000 ± 0.002 

0.000 ± 0.002 

Final EAh 

3.862 ± 0.004 

3.609 ± 0.005 

3.537 ± 0.005 

00 
0 
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Table 3-ll: Spectroscopic data used in simulation of Nco- and Ncs- photoelectron spectra. All values in cm·1• 

Mode Vt v2 Va 

Aooo ro't Xu ro'2 X22 ro'a X33 

NCO- . 12338 -3b 6258 0 2148° -12b 

NCO -95.6d 12798 -3r 535g 0 1951d -15d 

NCS- - 2065h 0 469i 0 74fil 0 

NCS -323.4k 1942k 0 3761 0 7351 0 

a) From NCO- in Csl matrix. Refs. 15, 16 and 17. 
b) From Nco- in KI matrix. Ref. 17. 
c) From gas phase v3 fundamental (Ref. 19) and matrix X33 from Ref. 17. 
d) Ref. 34. 
e) Derived from NCO gas phase fundamental (Ref. 59) and co; Xu (Ref. 60). 
0 From co; eng) Ref. 60. 
g) Ref. 61. 
h) Fundamental in gas phase. Ref. 20. 
i) NCS- fundamental in Csl matrix. Ref. 18. 
j) Fundamental in Csl matrix (Ref. 18) and verified as gas phase value by hot band in photoelectron spectrum. 
k) Ref. 33. 
I) Harmonic deperturbed analysis of Ref. 33. See text for details. 

7 
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Table 3-DI: Calculated and Observed Geometries of NCo- and NCO: 

NCO-

Theory level Re(C-N) I A Re<C-0) I A Re(N-0) I A Be (cm·1
) 

HFI6-31G* 1.167 1.215 2.382 0.3971b,c 

HFI6-31+G* 1.169 1.214 2.383 0.3968d 

MPW6-31+G* 1.213 1.243 2.456 0.3737d 

MRDCI 

CASSCF 

MR-CI 

Experiment 1.17h 1.26h 2.42h 0.38411 

a) All structures linear. 
b) Ref. 13. 
c) Ref. 43a. 
d) Ref. 43b. 
e) This work. 
0 Ref. 57. 
g) Ref. 58. 
h) These are R0 ± 0.01 A derived from Ref. 21 and this work; see text. 
i) B0 from Ref. 19; Be = 0.3859 cm·1

• 

j) Ro ± 0.008 A, Ref. 21. 
· k) B0 from Ref. 56. 

-- ' 

NCO 

Re(C-N) I A Re(C-0) I A Re<N-0) I A 
1.212 1.160 2.372 

1.214 1.159 2.372 

1.254 1.166 2.411 

1.25 1.18 2.43 

1.21 1.19 2.40 

1.23 1.19 2.41 

1.20()1 1.20& 2.40& 

Be (cm·1) 

0.4011b,e 

o.4o1r 

0.3883e 

0.3822r 

0.3916g 

0.3885g 

0.3895k 

00 
1:..:1 
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Table 3-IV: Calculated and Observed Geometries of Ncs- and NCS. • 

Ncs-

Theory level R.(C-N)I A R.<c~s) I A R.(N-S) I A 
HFI4-31G* 

HFI6-31G* 1.149 

HF/6-31+G* 1.151 

CISDI4-31G* 

MP2/6-31+G* 1.201 

I E . 
1 xpenment 

All structures linear. 
Ref. 65. 
Ref. 13. 
This work. 

1.688 

1.686 

1.659 

a) 
b) 
c) 
d) 
e) 
f) 

. -1 
B. from Ref. 20; B0 = 0.1968 em . 
B0 from Ref. 64. · 

2.837 

2.837 

2.860 

B. (cm·1) 

0.1986. 

0.1987d 

0.1970d 

0.1974. 

~ 

NCS 

R.(C-N) I A R.(C-S) I A R.(N-S) I A 

1.158 1.641 2.799 

1.160 1.648 2.808 

1.160 1.649 2.810 

1.154 1.650 2.804. 

1.153 1.672 2.825 

B. (cm·1) 

0.2050b 

0.2036. 

0.2033d. 

0.2041b 

0.2007d 

0.2037r 

(X) 
~ 

"" 

£·,. ~::r 
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Figure Captions for Chapter 3. 

Figure 3-1. Photoelectron spectra of(top) CN-, (middle) NCO-, and (bottom) Ncs-

with 266 nm (4.657 eV) laser radiation. The polarization of laser with 

respect to the electron collection direction is parallel (0=0°) for CN-, 

'magic angle' (0=55°) for Nco-, and perpendicular (0=90°) for Ncs-. 

The experimental spectra have been smoothed by convolution with a 

5 meV full-width at half-maximum Gaussian. The inset of the CN-

photoelectron spectrum shows a rotational contour simulation of the CN 

X(2:r+) +-- CN-xer) transition assuming an ion rotational temperature 

of 200K (solid line); the experimental data points are indicated by 

circles. Rotational constants used in the simulation : B"o= 1.875 cm·l, 

B'o= 1.891 cm·t, D''a= -6.202 x 10-6 cm·t, D'o= -6.393 x 10-6 cm·1
• Refs. 1, 7 

Figure 3-2. Photoelectron spectrum ofCN-with 213 nm (5.822 eV) laser radiation. 

The polarization of the laser is perpendicular (0 = 90°) to electron 

detection direction. 

Figure 3-3. The highest o and 1t 'molecular orbitals for CN-, and the highest 

occupied molecular orbital (HOMO) for each of the NCO- and Ncs-

anions. These are the SCF molecular orbitals computed at the 

MP2/6-31+G* optimized geometry for each ion. Photodetachment 

(removal) of an electron from each. of these orbitals yields the ground 

electronic state of the respective neutral radical, except 

photodetachment from the eN- 1t orbital which yields the CN(A2TI) 

excited state. 

~· . 

' ' \ 
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Figure 3-4. Franck-Condon simulation for the CN Aen) ~ CN- xe~+) band. 

Experimental 213 nm data plotted as points. R:nion = 1.1765 A, 

; ' 
Figure 3-5. Simulated photoelectron band for NCO- photodetachment assuming 

spectroscopic parameters in Table 3-II. Simulation has anion 

vibrational temperature set at T = 775 K for the two stretching modes 

' ' 
and T = 600 K for the bend mode. Experimental data plotted in points. 

Figure 3-6. Simulated photoelectron band for Ncs- photodetachment with anion 

. \ 
vibrational temperature set at 350K, assuming spectroscopic 

parameters in Table 3-II. Experimental data plotted in points. 

' ' 

J I 
'j 

' ' 
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CN 

' ' 

NCO 

NCS 

0.0 0.5 1.0 1.5 
Electron Kinetic Energy ( e V) \ ' 

Figure 3-1 
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Chapter 4. Theoretical: Time-dependent framework for analyzing 

dissociative photoelectron spectra. 

1. Introduction 

In the interpretation of our transition state photoelectron spectra we have to 

relate the observed structure to the neutral reaction potential energy surface(s). This 

will mean simulating each photoelectron band with a fairly rigorous quantum 

mechanical procedure. However, we should choose a model that is not overly 

complicated, as we would like to be able to vary the neutral potential energy surface 

several times to try to improve the fit with the observed spectrum. This chapter 

describes the methods we have chosen to perform this operation, and some of the 

underlying theory and the philosophy behi~d the model. 

The photoelectron spectrum of a cold negative ion involves transitions from the 

ground vibrational state of the ion to many possible states supported by the upper 

neutral surface .. If there is more than one neutral electronic state accessible from the 

ion with the photon energy used, and transitions to that surface are allowed, 1 then 

bands due to each surface will be observed. Let us assume for the moment that there 

is only one neutral surface contributing to the photoelectron spectrum. The structure 

in the spectrum, i.e. the peak positions, widths and spacings, is due to the neutral 

states, and the peak intensities are due to the overlap of each neutral state with the 

anion ground state wave function. The problem then typically breaks into two parts, 

characterizing the upper neutral states, and calculating the overlap of these neutral 

state wave functions with the simple anion wave function. 
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Expressing the above mathematically, the photoelectron spectrum as a function 

of energy is, within the Franck-Condon approximation, 

I I 

I 

(1) 

where 'Vo" is the anion v = 0 wave function and 'V 1 (E) is the wave function on the 

neutral potential energy surface with energy E. If the neutral is bound, i.e. is not 

unstable with respect to dissociation, then 'I' 1 is a discrete function of energy. 'I' I is 

non-zero only at eigenvalues of the neutral potential surface. If the neutral is 

unbound, then 'V 1 is a continuous function of energy. E is defined with respect to 

some (arbitrary) zero of energy, usually the bottom of the lowest well on the neutral 

surface. The relationship between the electron kinetic energy, Ek, of the photoelectron 

spectrum and E, often described as the neutral or scattering energy, is 
j ! 

Ek = hv - b-0 - E (2) 

where hv is the photon energy and ~ is a constant energy relating the ground state 

level of the anion to the neutral's zero of energy. For example in a simple M-~ M 

photoelectron process where both anion M- and neutral M are bound molecules, l:i.o 

would be the adiabatic electron affinity less the zero point energy of the M neutral. 

For the less interesting case when the neutral potential surface is bound, 

equation (1) is routinely solved by invoking the normal mode approximation, and 

· separating out all the nuclear degrees of freedom.2 Usually the parallel mode 

approximation is also assumed, i.e. the normal coordinate decomposition of nuclear 

motion is identical for both the anion and neutral. The ~eigenvalues and 

eigenfunctions for motion in each separable mode are found, or are known analytically 
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in the case of a Morse or harmonic oscillator, and the spectrum is calculated by 

performing the one dimensional overlaps of each eigenfunction with 'lf0".
3 This was 

the method used in Chapter 3 to simulate the photoelectron spectra of CN-, NCO

andNCs-. 

In cases where a mode is not modeled by a harmonic or Morse potential 

function, numerical solution of the Schrodinger equation is required, and this is can 

be accomplished by a variety of numerical algorithms. One of the most efficient 

algorithms is the DVR method of Light and coworkers,4 which has been described by 

Metz.2 I note here that it is also possible, and simple, to use time-dependent methods 

to solve for bound levels, and although not as efficient as DVR for this problem, a 

time-dependent solution has been used to find the eigenstates of the "one-dimensional 

cut" in Chapter 5. 

The nature of our transition state experiments, where the species formed by 

photodetachment lives only on a femtosecond time scale, dictates that the neutral 

state wave functions are not bound. Tlie potential energy surface is repulsive and the 

'V' are scattering states. In general the full Schrodinger equation must be solved 

numerically, and separation of nuclear degrees of freedom along the lines of the 

normal mode approximation has only limited success. An alternative formulation to 

the problem, and along with it an alternative language from that of scattering states, 

is given by Heller.5 This is set up in time-dependent quantum mechanics, and 

involves motion of wave packets to describe molecular spectra. Although this 

formulation is mathematically equivalent to the above time-independent method, and 

the solutions via the two approaches are therefore identical, the time-dependent 

formalism gives rise to an entirely different conceptual framework to extract the 

I \ 
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dynamics from the photoelectron spectrum. In fact that framework is in many senses 

more appealing, as it carries with it a classical feel, but does not suffer from the 

inadequacies of classical mechanics in describing light particle motion. The inherent . 
principle of dynamical processes occurring along a time axis is restored. This 

framework has become increasingly popular over the last few years, and the language 

ofscattering and photodissociation is now decidedly mixed between time-independent 

and time-dependent. These developments have been spurred, in part, by the 

appearance of experiments that observe chemical dynamics explicitly in real time, 

such as those of Zewail and coworkers.6 

The nrimerical implementation of time-dependent solutions of the SchrOdinger 

equation has been driven by the work ofKosloff.7
•
8 In section 3, we will outline the 

Kosloffmethod for solving the time-dependent Schrodinger equation, and describe the 

practical issues involv~d in a successful wave packet propagation calculation. Several 

other groups have used the time-dependent approach to simulate frequency domain 

spectra,9
• 

10 as well as to interpret Zewail's time::.domain ex:Periments. The 

application of a time-dependent analysis to a frequency-domain experiment, such as 

photoelectron spectroscopy, is not contradictory. Although a wave packet is not 

created in our "long pulse"'1 photodetachment experiment, but rather a well defined 

neutral scattering state 'lf'(E) with a transition probability given by Equation(l), the 

photoelectron spectrum can nonetheless be interpreted in terms of the dynamics of a 

wave packet prepared in a hypothetical "short-pulse" experiment. First let us 

ill Our experiments employ a nanosecond laser. Thus the pulse length is 

infinitely long compared to the molecular dynamics. , 



96 

establish the relationship between the time-dependent wave packet and the energy 

spectrum. 

2. The photoelectron spectrum from the wave packet time dynamics 

The ground state wave function of the lower (anion) surface, 'Vo"(x), is 

transferred "up" to the neutral surface by the laser: an electronic transition dipole 

moment links the two surfaces. The vertical transition gives birth to a wave packet 

cj>(x, 0) on the upper surface given by 

II 
cl>(x,O) = JL(X) 1J10 (x) . (3) 

J.l(x), the electronic transition moment, is usually taken to be a constant over the range 

of coordinates where 'Vo"(x) has any amplitude, as in the Franck Condon formula (1). 

cj>(x, 0) is not an eigenfunction, or stationary state, of the neutral surface but evolves 

in time. cj>(x, 0) of Equation (3) is then the wave packet at the "zero" of time. From 

now on we do not refer to the explicit coordiD.ate dependence of the wavepacket: the 

initial wavepacket is thus denoted cj>(O). The wave packet motion is governed by the 

time-dependent Schrodinger Equation 

iT-t Ocl>(t) = Hcl>(t) 
at 

(4) 

where His the Hamiltonian for the neutral surface. The solution of (4) is formally 

expressed as 

I \ 
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4>(t) = e -IHt/11 4>(0) (5) 

where e·iHttt. is the time evolution operator. This gives the dynamics of the wave 

packet for all times t. The autocorrelation function, C(t), is defined by 

C(t) = ( 4>(0) l4>(t)) (6) 

and monitors the time development of the overlap of the moving wave packet with the 

initial wave packet at t = 0. In other words, the behavior of the wave packet with 

respect to the Franck-Condon region is mapped by C(t). Once the wave packet has 

completely disappeared from the Franck-Condon region, C(t) ~ 0. 

The photoelectron spectrum is related to the autocorrelation function by the 

Fourier transformation5 

+00 

J ' a(E) oc J e'Er/ ., C(t)dt (7) 

--
This can readily be shown to be rigorously equivalent to Equation (1) by the following 

steps. Substituting (5) and (6) into (7) yields 

a(E) oc J eiEtfl, ( 4>(0) I e -tHt/11 14>(0)) dt (8) 

--
Inserting the completeness relationship for the set of wave functions, '\jl', of the 

neutral Hamiltonian H, 

f dE' lllr'(£') )(lJr'(£1
) I = 1 (9) 
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into (8) gives 

-
a(E) oc I etEtfll ( ~(0) I e -tHrJ , I dE'Iw'<E')) (liT'(£') I ~(0)) dt (10) 

I --
As v'(E') are eigenfunctions ofH, then 

-
a(E) oc I I e'Er!, (~(0) le-tE'rJ b lv'(E')} (liT'(£') 1~(0)} dE' dt (11) 

--

a(E) cc J dE' J dt e'<E-E')tf" 1(4>(0) lv'<E')} 12 (12) 

--
- (13) 

- a(E) oc I ( 4>(0) lv'(E)) 12 (14) 

As we have assumed that J.l(X) is a constant over x in Equation (3) then expression (14) 

is equivalent to the Franck-Condon relationship (1). 

The major approximation in both expressions (1) and (7) is that the 

photodetachment electronic transition moment is taken to be a constant, and is an 

average over not only the nuclear coordinates but also over all final electron kinetic 

energies. Reutt has considered these approximations and given a similar, but more 

rigorous, derivation of (7) to that appearing here.11 

We have established through (7) that the photoelectron spectrum is simply 

related to the autocorrelation function by a Fourier transform. This is a powerful 

result. If we calculate C(t) from a theoretical wave packet propagation, we can 

immediately simulate the photoelectron spectrum. Let us first make a few 
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observations concerning the autocorrelation function. The wave packet is a complex 

function ofthe nuclear coordinates, i.e. it has real and imaginary parts. Even ifcp(x;t) 

is a stationery state, the wave function has a time evolution that involves a constantly 

changing phase. We usually define the phase to be zero at t = 0. It follows that C(t) 

is also complex, and even for a stationery state, where I C(t) I = 1 for all t, the real and 

imaginary parts of C(t) vary sinusoidally in time. Usually when the autocorrelation 

function is plotted to gain insight into the wave packet dynamics, only the absolute 

value, I C(t) I, is shown. However, numerically, the phase time dependence cannot be 

ignored. 

The Fourier integral limits in Equation (7) indicate evaluation over the time 

interval [ -oo, oo ]. Two points concern us with the physical implementation of this 

Fourier transform (FT). Firstly, time reversal symmetry dictates that C(t) is a 

Hermitian function, i.e. C(-t) = C*(t). Thus we need only run the dynamics from t = 

0 onwards! Secondly, how long in time must C(t) be computed so that the 

photoelectron spectrum may be evaluated? Clearly only a finite time of dynamics is 

required to ~eld the spectrum to a resolution equivalent to the experiment. We will 

return to this point later. 

Some examples of the dynamical signatures one may expect in the auto

correlation are given in the papers of Heller,5 Imre,9 Reutt,11 and Lorqueti2 as well 

as in chapters 5 and 6 of this thesis. Heller discusses some of the general 

relationships between peak spacings, homogeneous peak widths, as well as the overall 

Franck Condon envelope width in the energy spectrum and their characteristic time 

periods in I C(t) I. Some simple examples are illustrated in Figure 4-1. The re

appearance of the wave packet in the Franck Condon region, signalled by a peak in 
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the autocorrelation subsequent tot= 0, is termed a recurrence. Recurrence features, 

are shown in Fig. 4-l(ii, iii). These are significant as they yield vibrational structure 

in the energy spectrum. In fact one single recurrence in C(t) is necessary, but 

sufficient, to see undulations, or diffuse structure, in the energy spectrum (see Fig. 

4-l(iii)).9 Correlation loss over several vibrational periods is possible from a number 

of processes other than direct dissociation. Anharmonicity in a bound vibrational 

mode or non-adiabatic effects are possible mechanisms for losses at each recurrence 

in I C(t) I. 

2.1 The Autocorrelation function from the photoelectron spectrum 

Equation (7) may be inverted 

C(t) oc J o(E)e-tEtf" dE (15) 
_.., 

yielding the autocorrelation from the (experimental) spectrum. This has been the 

approach adopted by other groups in all prior photoelectron studies where the 

spectrum was interpreted, via C(t), in terms of the short time molecular dynamics.11
• 

12
• 

13 Lorquet has demonstrated how the reverse Fourier transform procedure may 

also be used for deconvolution purposes. The instrumental response function, any 
I l 

spin orbit splitting and rotational peak broadening can be removed to uncover the 

bare vibrational dyna:rilics.12
· 

We make a much stronger connection to the dynamics by simulating the wave 

packet dynamics that determine C(t). From this simulation we may then compare 

either the theoretical I C(t) I with the Fourier transformed experimental data or the 



101 

simulated photoelectron spectrum, from Equation (7), with the 'raw experimental 

photoelectron spectrum. 

3. Wave packet propagation 

3.1 Method 

To compute the motion of a wave packet on a model potential energy surface 

we must find a numerical solution to Equation (4). His the Hamiltonian for the 

neutral state and is given by 

(16) 

where V and V are the N-dimensional Laplacian and potential respectively. 

Throughout we shall use atomic units (i.e. 1i = me = 1). Note that the potential 

energy, and therefore the Hamiltonian, is time independent. The actual physical 

problems we will address in this work involve one or two dimensions, although the 

approach is completely general. For sake of illustration, we will consider the two-

dimensional case where the Cartesian coordinates, x andy, are the mass-scaled Jacobi 

coordinates for A + BC collinear reactive scattering. The coordinates are defined by 

x = (J.lc. AB I 11-AB ? 12 Rc. AB andy = R AB • 1-lc.AB is the reduced mass of the system C and 

AB, likewise 11-AB is the reduced mass of A-B. The kinetic energy operator for this case 

is separable 
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T = __ 1 [~+~] . 
2"'AB ax2 ay2 

(17) 

The numerical solution of (4) thus involves both spatial and temporal 

derivatives. Following Koslofl's formulation,7
•
8 this differential equation is solved by 

discretizing both time and space on a uniform grid. Accordingly, let cj>n(i", i,J 

represent the wave packet at time t = (n-1) M at the location x = (i" -1) llx, y = 

(i, -1) !1y. M, llx and Ay are the time step and the spacings of the Cartesian grid 

points respectively. Rewriting (4) in this discrete representation gives 

(18) 

This expression suggests an iterative (marching) scheme in time where the next wave 

packet is calculated from the previous packet(s) by evaluating the right hand side of 

Equation (18). Approximating the time derivative with a second order differencing 

formula 

(19) 

then 
I ' 

(20) 

Thus the (n+l)-th wave packet at t = nllt may be calculated from the two 

preceding packets once we have established how to compute the H operator. This 

second order differencing propagation scheme is a stable iterative solution of the time-

dependent Schrodinger equation, whereas the slightly simpler first order analog is 
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not.7 This is, therefore, the simplest finite difference scheme for solution of (18). 

Several more sophisticated propagators have been proposed that may ·be more 

effi.cient.14 

Equation (20) gives an iterative scheme that allows us, in principle, to 

propagate the wave packet for any desired time length. To initialize the solution, 

however, we require both cj> 1
, the initial wave packet (which we are setting equal to 

the anion ground state wave function), and cj>2
• To find cj>2 we use second order Runge-

(21) 

where the intermediate packet cj>
1 is given by 

(22) 

To compute the spati~ derivatives involved in the operation of the Hamiltonian 

a :pseudo-spectral (or Fourier) method is adopted, in contrast to the standard finite 

difference approach employed for the time derivative. The advantage of using a 

Fourier method is that it is extremely efficient and it requires substantially fewer grid 

points than finite difference schemes of similar accuracy.16 The conceptual appeal 

\ I 
of the 'method is that it allows calculation ofboth the kinetic and potential operators 

locally. The operation ofV on the wave packet q,n is simply to multiply together the 

value of the potential and the wave packet at each grid point - thus V is local in the 

position (Cartesian) representation. The Laplacian, however, is not local in the 

position representation - it involves spatial derivatives of the wave packet. The 

Fourier method uses the property of a Fourier transform that a derivative in the 
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spatial domain becomes a multiplication in the Fourier (momentum) domain. Thus 

the Laplacian operator is local in the momentum representation. 8 

If the spatial grid is set up in a rectangular set of coordinates, i.e. the kinetic 

energy can be written in the form of Equation (17), then the kinetic energy operator· 

in momentum space is also separable: 

(23) 

where k" and ky are the wavenumbers along the x andy spatial directions. Operating 

with Ton <P"(k", ky), the Fourier transformed wave packet, is as simple as multiplying 

«<>"(k", ky) by (k/ + k/J I 2JJ.. In the discretized form 

From the properties of the discrete Fourier transform, M" is given by M" = 2TC/ (xrna.x -

xmin) with a similar expression for My. 15 The resulting T Cl>"(ik , ik) is reverse Fourier 
% y 

transformed back to the spatial domain and added to Vcp"(i"' iy) to form Hq,n. Because 

the grid points are equally spaced, an two-dimensional fast Fourier transform (FFI') 

algorithm may be used to compute both Fourier transforms. Library routines for the 

extremely efficient evaluation of 1 and 2 dimensional FFI's are available.17 

Numerical solution of the problem then boils down to the following recipe.7
• 

16 

(a) Specify the initial wave packet on a chosen grid: $ 1 = 'l'o"• the anion ground 

state wave function. 

(b) Calculate the time evolution of cp(t) by obtaining cp n for successively higher n 

by relation (20); each time step involves: 

i ' 
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(i) compute T<!>" by an N-dimensional FFT on <!>" followed by a 

multiplication by (k,2 + k./J I 2J.l and a reverse FFT. 

(ii) calculate V<!>" by multiplication of the potential function evaluated at 

each grid point by the wave packet at the same grid point. 

(iii) after summing (i) and (ii) to give H<!>", form <1>11+
1 from <1>"·1 and Hq,": 

(c) At intervals of ~tovlp, compute the self-overlap of the wave packet <<1> 1 1 <!>">by 

integration on the spatial grid and store. 

(d) At the end of the time propagation, Fourier transform the stored 

autocorrelation function C(t) according to (7) to yield the photoelectron 

spectrum. 

The method is relatively easy to implement as most of the numerical work is done in 

the library FFT routine. Appendix C describes the wave packet propagation codes 

developed for use in this work. 

3.2 , Stability criteria and propagation errors. 

Kosloff and Kosloff show that there is a numerical dispersion in the Fourier 

method, which must be considered when choosing the time step for a pr6pagation.7 

For time steps larger than a certain value, known as Merit , the propagation will 

become unstable and exponentially increasing solutions will take over from the 

desired wave-like solutions. ~tcrit is given by the following relationship 
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At - --+--
[ 

1t2 ( 1 1 ll 
crit 2 ~ Ax2 Ay2 

= 1 (25) 

for a two dimensional spatial grid and zero potential. The term inside square brackets 

represents the maximum kinetic energy (in atomic units) for the wave packet allowed 

by the grid. This is derived from the range .of momenta supported by the choice of 

grid; in the x direction, for example, this is -k% mtJ% to k% mtJ% where k% mtJ% = TC/ .ix. Relation 

(25) is merely a statement of the energy-time uncertainty principle: the time step 

cannot be larger than 1 I llE , where llE represents the total range of eigenvalues 

possible in the Hamiltonian.8 For a real system where the potential is non-zero, llE 

is the sum of the complete range of kinetic and potential energies. Therefore, 

Equation (25)is an overestimate for lltcru and the range of potential energies expressed 

on the grid should be monitored carefully (see below). In order to achieve a converged 

solution of the time-dependent Schrodinger equation, values of the time step should 

be chosen such that llt - 0.2 lltcru • Kosloff and Kosloff show the numerical dispersion 

in this regime is almost.identical to the intrinsic dispersion in the time-dependent 

Schrodinger equation.7 

Kosloff has also. shown that the Fourier/ second order differencing method 

necessarily preserves the norm and the energy of the wave packet. 7 The error in a 

propagation thus accumulates in the phase; this limitation essentially determines the 

maximum propagation times possible with this discrete propagator approximation.8 

Convergence of a propagation solution is checked for by reducing the time step and/or 

decreasing the spatial grid spacings. 
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3.3 Implementation of wave packet propagation to simulation of 

photoelectron spectra. 

In later chapters, we apply the wave packet propagation method to simulate 

the photoelectron spectra for several transition state systems. The ions AHB- are in 

general linear, so photodetachment will access a linear configuration of the atoms in 

the transition state region of the neutral reaction surface. If the saddle point for the 

A + HB reactions is collinear,112 a simulation that computes only the motion of the 

atoms on a collinear potential surface should yield a reasonable approximation to the 

true photoelectron spectrum. To construct the initial wave packet, i.e. the anion 

ground state wave function, we require info~ation concerning the equilibrium bond 

lengths and fundamental frequencies of AHB-. If appropriate, the form· of the two 

stretching normal modes and anharmonicity data should be included. At best, some 

vibrational frequencies may be available from matrix isolation work. In most cases 

the remaining information has to come from ab initio calculations, or even empirical 

guesses in the worst case scenario. 

Next, a trial potential function for the neutral reaction is chosen; this should 

be an analytic function of the nuclear coordinates. A grid is set up in mass scaled 

coordinates subject to some of the criteria outlined below. The grid covers the reaction 

interaction region and the entrance and exit valleys. The number of grid points in 

each dimension _should be a power of two for compatibility with the FFT algorithm. 

The grid may be fairly sparse: often a grid as small as 64 x 32 points is sufficient for 

112 Most potential surfaces for the systems we are studying indeed have collinear 

saddle geometries. However, recent ab initio calculations for both the 0 + HF 

and F + H2 reaction suggest non-linear saddle point geometries. 

r 
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a converged propagation. Rarely is it necessary to exceed a grid size of 128 x 64 

points. Finally a time step and total propagation time is chosen. The time step is 

chosen to meet the stability and convergence criteria outlined in section 3.2; the total 

propagation time is chosen to reflect the resolution required in the simulated energy 

spectrum. Propagation for 1 psec is sufficient to yield features in the simulated 

photoelectron spectrum as narrow as 4 meV. Usually 300 - 400 fs of dynamics is 

adequate to produce a simulation of resolution comparable to the experimental spectra 

(ca. 12 me V). 

3.3.1 Grid sizes, time steps and potential shelves. 

These three aspects of the numerical wave packet propagation are linked 

together. The denser the grid; i.e. the larger the number of spatial grid points used, 

the smaller the spatial grid intervals, 8x and fly, become. As the range of momenta 

that can be described in the related discrete k space representation is inversely 

proportional to the spatial grid intervals, the smaller the gird spacings becomes the 

larger the range of kinetic energies that can be represented in the propagation. This 

may be physically necessary in some cases. However in cases where it is unnecessary, 

it leads to dramatically increased computation time for two reasons: (a) the more grid 

points used the slower the spatial fast Fourier transforms and (b) the larger the 

possible range of kinetic energies, according to relation (25) the smaller the time step 

becomes for a stable propagation. Thus, as a preliminary to a production run 

propagation it is useful to establish the range of kinetic energies that are physically 

reasonable for wave packet motion in each spatial dimension and plan the grid 

spacings accordingly. 7 Then the overall range in coordinate space (i.e. xmin• ~ax etc.) 
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should be decided such that the number of grid points in each direction is a power of 

two and that the grid includes the Franck Condon region and enough of the entrance/ 

exit valleys to accommodate an absorbing boundary (see 3.3.2 below). Finally, as 

mentioned earlier, for a converged propagation the time step must be around 5 times 

smaller than the time step that satisfies the stability criterion (25). 

If the grid contains points where the potential becomes very high, as is usually 

the case for small interatomic separations (the potential "walls"), the range of 

potential energy may become very large and force a restrictively small time step for 

stable propagation.18 The fact that the potential is huge in those regions of 

configuration space is actually irrelevant to the propagation; as long as the potential 

at these "no go" regions is much higher than the energy available in the wave packet 

then the propagation will not "know" the difference. Thus an arbitrary shelf is 

routinely established for the potential energy: for any grid points where the potential 

energy would be higher than that value, the potential is set equal to the shelfvalue.18 

The truncated range of potential energy is now contained at some reasonable value, 

and the time step necessary to converge the propagation becomes manageable again. 

A typical time step for a two dimensional propagation (involving hydrogen motion) is 

1 atomic time unit (1 a.t.u. = 0.024 fs). 
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3.3.2 Absorbing boundaries 

For the dissociative systems we are interested in studying, the wave packet 

will finally leave the grid, via either the entrance or exit valleys, or both. (It is not 

unusual for the wave packet to split up into fragments - this is a reflection of its 

quantum nature!) At the grid boundaries what happens to the wave packet? Discrete 

Fourier transforms, which are used in the numerical method to evaluate the motion 

of the packet, assume periodic boundary conditions. In other words, without a 

potential, the wave packet would leave one side of the grid and appear again at the 

far side. This is not acceptable behavior as far as the physics of our problem is 

concerned. As we are only interested in any parts of the wave packet that end up 

returning into the Franck Condon region, and parts of the wave packet that are 

leaving the grid are not expected physically to return (if the grid has been chosen 

sensibly), we may damp out all flux that approaches the edge of the grid, so that we 

do not encounter the "wrap around" effect described above. 

We follow the simple scheme ofBisseling et al. 18 The wave packet is multiplied 

by a one-sided gaussian absorbing function t:,bs at each propagation step. For a two 

dimensional grid fabs is given by 

where 

f ... (x) = { 
1 for x~xab" 

exp( -cabs.x (x-xwf) for x~x. 

(26) 

(27) 

and likewise for fabs(y). The situation is illustrated pictorially in Figure 4-2; the 

shaded regions of the grid are used for the absorbing boundary and the effect of the 
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damping function can be seen on a wave packet leaving along the valley parallel to 

the x axis. Xabs and Yabs are usually chosen so that a region 10 grid points wide is used 

for the absorbing boundary; cabs,% and cabs,y are empirically chosen to-minimize both 

reflection and transmission of the wave packet through the boundary. This can 

require careful attention to plots of the wave packet evolution at the boundary and 

artifacts in the autocorrelation. If the wave packet is reflected from the boundary and 

makes it back to the Franck Condon region before the end of the propagation, false 

resonances will appear in the simulated photoelectron spectrum. A more detailed 

discussion of the absorbing boundary problem has been given by Kosloff. 19 

3.3.3 Windowing and convolution of the autocorrelation. 

Once the propagation has been carried out to t = tma:< , and the autocorrelation 

has been stored at (tma:< I lltovzp) + 1 values, the photoelectron spectrum a(E) is obtained 

by a one-dimensional fast Fourier transform of the discrete C(t). The fmite 

propagation of the wavepacket leads to a finite resolution in the simulated energy 

spectrum. In principle this is given, in atomic units, by liE= 1t I tma:< •15 However, in 

practice, if C(t) has not decayed to zero by tma:< then its Fourier transform will show 

artificial high frequency oscillations; this "leakage" problem is rectified by applying 

a windowing function before the Fourier transform. 15 

Choice of a Gaussian window function is equivalent to convoluting the 

theoretical spectrum with a Gaussian energy resolution function. 113 Specifically, C(t) 

113 We are making use of the Convolution theorem (Ref. 15, p. 383) and the fact 

that the Fourier transform of a Gaussian is another Gaussian. 
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is multiplied by a time window function, r(t) = exp(-yf) , where yis chosen so that the 

product nt) C(t) has fallen to zero by tmax· The transform, l(E) given by 

+• 

I(E) = J e'E.tJ ... r(t)C(t)dt (28) 

is the photoelectron spectrum convoluted with the energy resolution function. The 

energy resolution !!£ , in atomic units, in the simulation is related to y by 

(29) 

Finally, a change of variable from E, the scattering energy, to Ek, the electron kinetic 

energy, using relation (2) allows us to compare the simulation with the spectrum 

measured in the laboratory. 

4. Conclusions 

The theoretical framework behind the numerical simulations and the 
I 

qualitative time-dependent picture have been described. The mathematical approach 

is completely equivalent to a Franck-Condon time-independent approach. We apply 

the wave packet method in two dimensions which allows us to solve for the collinear 

dissociation dynamics of a transition state species. The wave packet methodology is 

suitable for spectra that manifest both long-lived resonance states and fast 

dissociating direct scattering states. The calculation is an exact quantum solution of 

the collinear dynamics. This can: provide a useful test of more approximate adiabatic 

methods.2 In the next chapters we use wave packet propagation to simulate 

photoelectron bands for BrHI-; OHF- and FH2 -. 
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The most significant computational advance to be made in terms of simulating 

transition state spectra would be to extend the above technique to three dimensions 

so that a triatomic dissociation could be treated in full. This would allow routine 

simulations of the quality of the time-independent methods of Schatz,20 Zhang and 

Miller,21 and Manolopoulos,22 and would once again provide a useful comparison to 

Metz' approximate three-dimensional adiabatic simulations.2 Importantly, however, 

the results would retain the useful time-dependent perspective that allows insight into 

the mechanism behind features in the transition state spectrum. In th~ last few years 

several groups have achieved 3D wave packet codes; the methods used by each varies 

somewhat but most are a synthesis of basis set and FFT based solutions to the time

dependent Schrodinger equation. 23
• 

24
• 

25
• 

26
• 2

7 
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Figure Captions for Chapter 4. 

Figure 4-1. Example wave packet evolutions on upper state surfaces. In each case, 

the schematic potentials involved in the transition, the autocorrelation 

function and photoelectron spectrum obtained by Fourier 

transformation are shown. (i) bound --+ bound, no Franck-Condon 

excitation; (ii) bound --+ bound, large Franck Condon excitation; (iii) 

bound--+ (bound+ continuum) and (iv) bound--+ free. 

Figure 4-2. Schematic showing the region of the grid used for absorbing wave 

packet as it leaves grid. The shaded area indicates the absorbing 

boundary region. Contours of the wave packet as it hits this boundary 

' are superimposed on contours of the potential energy. Parameters for 

this propagation are given in the caption of Figure 6-9. Absorbing 

parameters are [refer to Equation (27)], xabs = 14.17, Yabs = 2.625, 

cabs,x = 0.001 I Llx, Cabs,y = 0.001 I !1y. 
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Chapter 5. Examina~ion of the Br + HI, Cl + HI, and F + HI Hydrogen 

Abstraction Reactions by Photoelectron Spectroscopy ofBrHI-, 

CIHI- and Fm-; 

Abstract 

The photoelectron spectra of the ions BrHI-, CIHI- and FHI-, along with their 

deuterated counterparts, are presented. These spectra provide information on the 

transition state region of the potential energy surfaces describing the exothermic 
. 

neutral reactions X + HI ~ HX + I (X = Br, Cl, F). Vibrational structure is observed 

in the BrHI- and ClHI- spectra that corresponds to hydrogen atom motion in the 

dissociating neutral complex. Transitions to electronically excited potential energy 

surfaces, that correlate to HX + IePMl,2p112) products, are also observed. A one-

dimensional analysis is used to understand the appearance of each spectrum and the 

BrHI- spectrum is compared to a two-dimensional simulation perfo:rmed using time

dependent wave packet propagation on a model Br + HI potential energy surface. 

1. Introduction 

We have recently shown that negative ion photodetachment can be used to 

investigate the transition state region of a neutral bimolecular reaction. 1-a In our 

experiments, the spectroscopy and dissociation dynamics of the short-lived [~] 

complex formed during the hydrogen transfer reaction A + HB ~ HA + B are studied 

via photoelectron spectroscopy of the stable, hydrogen-bonded anion AHB-. Thus far, 

results have been repc:>rted for the symmetric hydrogen transfer reactions Cl + HCl, 1 

* Published in J. Chem. Phys. 92, 7205 (1990) 
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I + HI, 2 and Br + HBr 3 which were investigated by photodetaching the negative 

ions ClHCl-, !HI-, and BrHBr-, respectively. The photoelectron spectra of these 

ions show resolved vibrational progressions assigned to the unstable neutral complex 

associated with the corresponding bimolecular reaction. Our analysis as well as 

simulations of these spectra by other investigators 4• 
5

• 
6 have shown that this 

vibrational structure provides a sensitive probe of the neutral potential energy surface 

near the transition state. 

This paper describes the application of our method to asymmetric hydrogen 

transfer reactions. We have studied the entire series of reactions X+ HY ~ HX + Y, 

where X and Y are unlike halogen atoms, via photoelectron spectroscopy of the 

asymmetric bihalide ions XHY-. In the same fashion, we have also conducted 

experiments on the polyatomic reactions F + CH30H ~ HF + CH30 and F + C~50H 

~ HF + C2H50. 7 . Results are presented here for the triatomic reactions Br +HI~ 

HBr + I, Cl + HI ~ HCl + I, and F + HI ~ HF + I. The remaining XHY- spectra and 

the ROHF- results will be discussed in a future article. In each case, the 

photoelectron spectrum of the precursor negative ion yields resolved vibrational and/or 

electronic structure associated with the unstable neutral complex formed by 

photodetachment. 

In contrast to the symmetric hydrogen transfer reactions, a vast body of 
/ 

experimental results exists concerning the kinetics and product state distributions for 

the asymmetric reactions. 8 Experimental studies of the triatomic X + HY reactions 

date back to the dawn of chemical reaction dynamics. This work has inspired the 

construction of model potential energy surfaces for these reactions which attempt to 

reproduce and explain the experimental results, using either classical trajectory 9• 
10 
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or quantum scattering 11 c~culations. These model surfaces have provided the 

foundation of many fundamental ideas in our understanding of the relationship 

between the features of a potential energy surface and the experimentally measurable 

asymptotic properties of a chemical reaction. Our experiment provides a direct test 

of the validity of these proposed model X + HY surfaces. Using such a surface, one 

can, in principle, simulate the XHY- photoelectron spectrum and compare the 

simulation to our experimental result. 

The methods of analysis which have been developed to simulate the vibrational 

structure seen in the XHX.- photoelectron spectra 3-6 can also be applied to the XHY-

photoelectron spectra. These methods all involve calculating the Franck-Condon 

overlap between the initial vibrational level of the ion and the set of scattering wave 

functions supported by the neutral potential energy surface. A one-dimensional 

analysis, in which the scattering coordinate is ignored, can approximately predict the 

spacing and integrated intensities of the peaks in each vibrational progression. This 

type of analysis is applied to the spectra presented in this paper as a first step in 

understanding our results. 

In addition to probing the ground electronic potential energy surfaces of the 

· X + HY reactions, photodetachment ofXHY- anions can access electronically excited 

reactive surfaces. These excited states of the neutral complex are in most cases quite 

distinct in the spectra presented here and provide information on an aspect of these 

reactions largely inaccessible to scattering-based experiments. The electronic features 

... 
in our spectra provide a more quantitative foundation for the electronic correlation 

diagrams proposed for these reactions 12
' 

13 and are discussed at length. 
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Finally, the BrHI-photoelectron spectrum is simulated using time-dependent 

wave packet propagation in two dimensions. This approach simulates peak profiles 

and widths as well as peak separations, thus testing more stringently the accuracy of 

the potential surface used in this simulation, but differs from the time-independent 

treatments mentioned above in that the scattering wave functions are never 

calculated. The use and implementation of a time dependent formalism to describe 

spectral profiles due to a repulsive state draws on the ideas of Heller 14 and 

Kosloff 15
• The time-dependent approach provides considerable insight into the 

experimental results and makes more concrete the relationship between our 

experimental spectra and the short time dynamics initiated on the neutral reaction 

surface. 

The systems chosen here illustrate both the promise and limitations of negative 

ion photodetachment as ·a probe of the neutral transition state region. The main 

concern is that the ion geometry must be similar to that of the neutral transition 

state. For symmetric X + HX reactions, the precursor ion XHX- is most likely linear 

and centrosymmetric; 16
' 

17 the only issue is how close the equilibrium interhalogen 

distance in the ion is to the saddle point geometry on the neutral surface. For an 

asymmetric X + HY reaction, an additional factor is the location of the hydrogen atom 

in XHY-. This is largely determined by the proton affinities of x- and y-. In a 

related experiment, Brauman and co-workers observed substantial differences in the 

total photodetachment cross sections for the series of ions ROHF- depending on 

whether the F- or RO- proton affinity is higher. 18 If RO- has the higher proton 

affinity, then photodetachment of the ion primarily accesses the F + ROH entrance 

valley on the neutral reactive surface, whereas if the proton affinity ofF- is higher, 
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the ion is more accurately pictured as (RO-)HF and photodetachment accesses the 

RO + HF valley of the surface. We shall see that these considerations have a 

profound effect on oilr experiment. 

2. Experimental 

The experiments were performed on a negative ion time-of-flight photoelectron 

spectrometer which has been described in detail previously. 3
• 

19 Briefly, an 

internally cold, mass-selected negative ion beam is photodetached with a pulsed fixed-

frequency laser. A small fraction of the ejected photoelectrons is collected and the 

electron kinetic energy distribution is analyzed by time-of-flight. The ion beam, based 

on the design of Lineberger and co-workers, 20 is generated by expanding an 

appropriate mixture of neutral gases through a pulsed molecular beam valve and 

crossing the molecular beam with a 1 keVelectron beam just outside the valve orifice. 

Negative ions are formed through a variety of dissociative attachment and clustering 

processes in the continuum flow region of the free-jet expansion and their internal 

degrees of freedom are cooled as the expansion progresses. BrHI- and ClHI- were 

generated from 5% HBr (H(Jl)/ 1% HI/ Ar mixture and FHI- was made from a 1% HF/ 

1% HI!Ar mixture. Similar mixtures were used to make the ions BrDI-, CIDI- and 

Several centimeters downstream from the beam valve, the negative ions in the 

molecular beam are extracted at 90° and injected into a time-of-flight mass 

spectrometer. 21 The ions are accelerated to 1 ke V and spatially separate into 

bunches according to their masses as they pass through the mass spectrometer. The 

pulsed photodetachment laser crosses the ion beam at the spatial focus of the mass 
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spectrometer, 140 em downstream from the extraction region. Mass selection of the 

ions to be photodetached is achieved by timing the laser pulse to intersect the ion 

bunch of the desired mass. In the results presented here, either the fourth (266 nm, 

4.66 eV) or fifth harmonic (213 nm, 5.83 eV) of a Nd:YAG laser was used for 

photodetachment. A small fraction (0.01 %) of the photoelectrons produced are 

detected by a 40 mm diameter dual microchannel plate detector 100 em from the 

laser/ion beam interaction region. The electron time-of-flight distribution is recorded 

. with a 200 MHz transient digitizer. In all experiments reported here, the laser beam 

was plane polarized perpendicular to the direction of electron collection. The 

resolution of the spectrometer is 8 meV for 0.65 eV electrons and degrades as E312 at 

higher electron kinetic energies. 

·a. Results 

The BrHI- and Brnr- photoelectron spectra at 213 nm are shown in Figure 

5-l. Each spectrum shows two progressions of approximately evenly spaced peaks. 

The peak positions are listed in Table 5-1a. The peaks labelled A and A* occur at the 

same electron kinetic energy in both spectra and are taken to be band origins of the 

progressions. The peak spacing within each progression in Figure 5-1 is noticeably 

less in the Brnr- spectrum than in the BrHr- spectrum. The direction of this isotope 

shift shows we are observing . progressions in the neutral [BrHI] complex in a 

vibrational mode primarily involving H atom motion. This is assigned to the v3 

stretching mode of the [BrHI] complex. The A-A* separation in each spectrum is 0.90 

± 0.02 eV (7300 ± 200 cm-1
). This is slightly less than the spin-orbit splitting in 

atomic I (7600 cm·1
) and suggests that the two progressions with band origins A and 
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A* correspond to two electronic states of the [BrHI] complex which asymptotically 

correlate to HBr + IeP312)and HBr + I*(Tlf.z), respectively. 

The peak widths in the progression at higher electron kinetic energy are -170 

meV, somewhat wider than the peaks in the second progression (-140 meV). All the 

peaks are substantially broader than our experimental resolution. Figure 5-2, the 

photoelectron spectrum ofBrHI- at 266 nm, shows only the fli'St two peaks (A and B), 

where their electron kinetic energies are 1.165 eV lower than in Figure 5-1. Thus, for 

these peaks, the energy resolution of the spectrometer is considerably higher (8 me V 

vs. -37 meV). While the positions of these peak centers can be determined more 

precisely from Figure 5-2, the appearance of this region of the spectrum is essentially 

unchanged from Figure 5-1; no additional structure is observed at higher resolution. 

The 266 run data are also tabulated in Table 5-1a. 

The exothermicity of the Br + HI reaction and relevant energetic quantities for 

the BrHI- anion are tabulated in Table 5-2, as are the same quantities for the other 

systems studied here. In Figure 5-1, the arrow at 2.07 eV shows the electron kinetic 

energy that would result from forming I+ HBr (v = 0), which is the lowest energy 

as)rmptotic decay channel available to the [BrHI] complex. This energy is given by 

E = hv- D
0
(Bi:-HI-)- EA(I). Here hv is the photon energy, D

0
(BrHI""') = 0.70 ::t 0.04 eV 

is the dissociation energy ofBrHI- to form I-+ HBr (v = 0), 22 and EA(I) = 3.059 eV 

is the electron affinity of I. 23 'l'he electron energy corresponding to the higher 

energy Br +HI (v = 0) asymptote is also indicated with the arrow at 1.36 eV. All ~f 

the peaks in Figure 5-1 occur at electron kinetic energies lower than .2.07 eV and 

therefore correspond to states of the [BrHI] complex that are unstable with respect to 
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dissociation to I+ HBr (v = 0). Recall that peaks at lower electron kinetic energy 

correspond to higher internal energy levels of the neutral species. 

As discussed in previous work,3 the v3 mode in the complex formed in a 

heavy+ light-heavy reaction is essentially a bound degree of freedom; it is poorly 

coupled to the dissociation coordinate of the complex. This is why a progression in the 

v3 mode can be observed in the BrHI- photoelectron spectrum. The v3 progressions 

and multiple electronic states in the BrHI- and BrDI- spectra were also seen in the 

symmetric XHX- photoelectron spectra. An important difference between the 

symmetric and asymmetric systems becomes apparent, however, when the peak 

separations are compared to the asymptotic HBr and DBr vibrational energy level 

spacings (refer to Table 5-1a). In the BrHBr- spectrum, the peak separation was 

nearly 1000 cm·1 (0.13 eV) less than the HBr spacings. Much smaller shifts are seen 

in the BrHI- and BrDI- spectra. Table 5-1a shows that for the ground state 

progressions of both [BrHI] and [BrDI], the separation between peaks A and B is 

essentially equal to the v = 0- v = 1 spacing in HBr and DBr. However, the B-C 

separations in both spectra, and the C-D separation for the BrDI- spectrum, are 

smaller than the corresponding 1-2 and 2-3 vibrational spacings in the isolated 

diatomic. In the excited state progressions, a somewhat larger shift of the v3 level 

spacing is observed. 

The ClHI- and ClDI- spectra at 213 nm are shown m Figure 5-3. A , 

comparison of the two spectra indicates that each consists of two vibrational 

progressions separated by 0.935 ::t 0.020 eV (7540 ::t 160 cm-1
). As in the BrHI-/ 

BrDI- spectra, the two progressions are attributed to different electronic states of 

[ClHI], and once again all peaks correspond to states of the [ClHI] complex that are 

IJ 
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unstable with respect to dissociation into I+ HCl (v = 0). 22
•
23 The most noticeable 

difference between the spectra in Figure 5-1 and Figure 5-3 is that the intensity of 

transitions to higher v3 levels of the neutral complex fall off more rapidly in the ClHI

and ClDI- spectra than in BrHI- I BrDI-. The peak positions and widths are listed 

in Table 5-1b. In comparison to the BrHI- and Brni- spectra the peak separations 

in CIHI- and ClDI- spectra are somewhat closer to the corresponding HCl and DCl 

vibrational spacings. In fact the A-B interval is just slightly larger than the diatomic 

0-1 interval in both hydride and deuteride. 

The FHI- and FDI- spectra at 213 nm are shown in Figure 5-4. The peak 

positions are listed in Table 5-1c. The two spectra are essentially identical. Each 

spectrum shows three peaks of comparable intensity. The splitting between the two 

highest energy peaks (labelled X and Y) is shown to better resolution in Figure 5-5, 

the, photoelectron spectrum of FDI- at ·266 nm. This splitting is 0.154 ± 0.007 eV 

(1240 ± 60 cm-1
). The large uncertainty in the dissociation energy 24 of FHI- does 

not allow us to say whether or not the state that corresponds to peak X is stable with 

respect to dissociation into I+ HF (v = 0). The separation between peaks X and Z is 

1.045 ± 0.020 eV (8430 ± 160 cm-1
), which is larger than the separation between the 

two progressions in either the BrHI- or ClHI- spectrum. In contrast to the 

BrHI-/BrDI- and ClHI-/ClDI- spectra, no isotope shifts are observed. This implies 

that the two closely spaced peaks, X andY, do not represent a vibrational progression 

and that all the structure in the spectrum is due different electronic states of the 

[FHI] complex. We will show that this can be understood in terms of perturbations 

of the I atom electronic states by a neighboring HF molecule. 
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4. Analysis and discussion 

4.1 Preliminary considerations 

As a prelude to understanding the peak positions and intensities in the XHY-

photoelectron spectra, one must consider what region of the X + HY potential energy 

surface is probed when the ion is photodetached. Within the framework of the 

Franck-Condon approximation, this depends solely on the geometry of the ion. The 

available experimental 16 and theoretical 17 evidence indicates that the bihalide ions 

are linear. However, while ab initio calculations on FHCl- have yielded both 

structural information 25 and vibrational frequencies, 26 there are no examples for 

which the equilibrium inter halogen distance and location of the hydrogen atom in an 

asymmetric xm- ion have been experimentally determined. One can estimate the 

location of the hydrogen atom in xm- from the proton affinities of x- and y-. The 

zero-order structure of an asymmetric anion can be written as XH .. y- or x-.. HY 

depending on whether the proton affinity ofx- or y-is higher. The proton affinities 

ofF-, Cl-, and Br- are 2.47 eV, 0.82 eV, and 0.40 eV higher, respectively, than the 

proton affinity of I-. 27 One therefore expects BrHI- to look like I-··HBr, with the 

hydrogen atom considerably closer to the Br than to the I atom. This asymmetry 

should become progressively more pronounced in ClHI- and FHI-. 

To understand the effects of the inter halogen distance and H atom location in 

xm- on the photoelectron spectrum, the potential energy surface for the neutral 

reaction must be considered. Figure 5-6 shows 28 a collinear section of the London-

Eyring-Polanyi-Sato (LEPS) functional form proposed for the Br +HI reaction by 

Broida and Persky (hereafter referred to as the BP surface). 10 The three-dimensional 

surface has a collinear minimum energy path and a 0.21 kcallmol barrier in the 
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Br + HI entrance valley. The surface is plotted using the mass-weighted coordinates 

defined in the figure caption. The acute skew angle and low entrance channel barrier 

in Figure 5-6 are characteristic of all X+ HY reactions. Note that the product valley 

is lower most in the figure. 

The region of the surface in Figure 5-6 that has the best Franck-Condon 

overlap with BrHI-is in the neighborhood of the equilibrium geometry of the ion. In 

the figure, this geometry is given by the intersection of the dashed vertical line 

corresponding to the equilibrium interhalogen distance in the ion (Re(IBr)) and the 

dashed horizontal line corresponding to the location of the H atom (Re(HBr)). The 

values for Re(IBr) and Re(HBr) used in the figure are obtained from the one 

dimensional fit discussed in Section 2, below. For the general X+ HY case, ifR/XY) 

is sufficiently small in XHY-, the corresponding vertical line in Figure 5-6 will pass 

through or near the barrier. Our experiment can then probe the transition state 

region on the X + HY surface, where the vibrational and/or electronic properties of the 
\ 

[XHY] complex are distinct from separated reactants or products. On the other hand, 

Re(HX) in the ion determines if photodetachment primarily accesses the X+ HY 

reactant valley or theY+ HX product valley. 

In the case of BrHI-, since the ion can be pictured as I-··HBr, better overlap 

with the I + HBr product valley rather than the reactant valley is expected. The most 

intense peaks seen in the experimental spectrum lie well below the asymptote for 

Br +HI (v = 0) confirming that the experiment accesses the product I+ HBr valley. 

However, the observation of a 'red shift' in the v3 spacings of the [BrHI] and [BrDI] 

complexes, compared to the vibrational level spacings in HBr and DBr, suggests that 
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Re(ffir) in Brm-is sufficiently small so that the transition state ~egion of the Br +HI 

surface is· accessed via photodetachment. 

Similar considerations apply to the CIHI- and FHI- photoelectron spectra. 

The potential energy surfaces for the Cl + HI and F + HI reactions should resemble 

the surface in Figure 5-6, although earlier barriers might be expected due to the 

higher exothermicity of these reactions. However, the expected location of the H atom 

in CIHI- and FHI- means that photodetachment should result in progressively 

greater overlap with the I + HX product valley. This effect will be discussed in more 

detail below. 

4.2 One dimensional analysis of XHY- spectra 

In this section, the peak positions and intensities of the ground state 

vibrational progressions in the three :xHY- (and XDY-) photoelectron spectra are 

analyzed using a one-dimensional model similar to that used in the analysis of the 

BrHBr- spectrum. 3 The BrHI- and BrDI- spectra are simulated using this model, 

which then serves as a framework for discussing the CIHI- and FHI- spectra. In 

addition to explaining the observed spectra, the analysis yields an approximate 

equilibrium geometry for BrHI- which will be used in the time-dependent analysis in 

Section 4. 

4.2.1 Brm- and BrDI-

In order to simulate the peak positions and intensities in the BrHI- and BrDI-

photoelectron spectra, we need to calculate the Franck-Condon overlap between the 

v3 = 0 level of the ion and the v3 levels supported by the neutral potential energy 

surface. We assume the ions prepared in our experiment are in their vibrational 

ground states. This analysis requires approximate potential energy surfaces for 
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BrHI- and the Br +HI reaction. We will use the BP surface, shown in Figure 5-6, 

for the Br + HI reaction. The development of a model v3 potential for BrHI- will now 

be discussed. 

In our earlier analysis of the symmetric XHX-spectra, we assumed a harmonic 

potential for the v3 vibration of the ion. This is likely to be a poor approximation for 

an asymmetric XHY- ion. In an ab initio study on FHCl-, Sannigrahi and 

Peyerimhoff25 calculated the potential energy curves governing H atom motion for 

several fiXed inter halogen distances. At the equilibrium F -Cl distance, they found a 

highly asymmetric, single minimum potential. Based on the FHCl- calculation, the 

analogous potential energy curve for BrHI- is expected to look like the solid curve in 

Figure 5-7. For the purposes of calculating the v3 = 0 wave function which is localized 

near the minimum, this curve can be approximated by the Morse potential, 

(1) 

. shown by the dashed curve in Figure 5-7. We use Eq. (1) as the v3 stretching potential 

for BrHI-. The v3 coordinate is ~-Br' and llHBr is the appropriate reduced mass for 

determining the vibrational energy levels and wave functions. Here Re(HBr) is the 

H-Br separation at the minimum of the potential; its' determination is described 

below. 

·The parameters De and~ in Eq. 1 are fiXed using the matrix isolation values 

for the v3 fundamental in BrHI- and BrDI-. 29 The choice of these values merits 

some discussion. Matrix studies by Ault and co-workers yielded two frequencies 

assignable to the v3 mode for each asymmetric XHY- ion. 29
• 

30 This was attributed 

to the existence of two forms of the ion in a matrix: a highly 'asymmetric' structure 

(type I) with a relatively high v3 frequency, and a more 'symmetric' structure (type II) 
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with a considerably lower frequency. For FHCl-, the v3 fundamental is 2491 cm·1 for 

the type I structure and 933 cm"1 for the type II structure. 30 The high degree of 

asymmetry in Peyerimhoffs potential 25 and a recently calculated value by Botschwina 

26 of 2814 cm"1 for the v3 fundamental in FHCl..., suggest that the more asymmetric 

. type I structure is closer to the gas phase structure. We have therefore used the type (! 

I frequencies, 29 920 cm"1 and 728 cm·1
, for the v3 fundamental in BrHI- and BrDI-, /' 

respectively. De and~· are then obtained analytically. 
. ' 

The BP potential energy surface in Figure 5-6 will be assumed for the Br + HI 

reaction. This surface was devised on the basis of quasi-classical trajectory ' 

calculations which produce reasonable agreement with the experimental rate 
(~ 

constants at several temperatures and the product HBr v = 2 I v = 1 ratio at 300 K. , l 
l I 

10 The v3 coordinate is taken to be the same as in the ion, namely y = ~-Br· Thus, the 
~-

I ( 

effective potential for the hydrogen stretch in the neutral [BrHI] complex is found by 

taking a vertical cut through the surface at x = xe, the value of x at the equilibrium 
,. 

I 

\ ' 
structure of the ion given by 

(2) 

Note that mimHBr = 1/80, so to a good approximation xe = 7.0 Re(lBr). Here, as before, 

Re(ffir) is the equilibrium inter halogen distance in the ion. The energy levels and 

wave functions supported by this potential are then solved for numerically. 

The peak spacings and intensities in the BrHI- photoelectron spectrum can 

now be simulated by calculating the Franck-Condon factors between the v3 = 0 ion v 

level supported by the Morse potential in Eq. (1) and the v3 levels supported in the 

neutral surface cut at x = xe. We assume the BP surface is correct and vary Re(IBr) 

and Re(HBr) in the ion until agreement with experiment is obtained. Re(ffir) largely t· 
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determines the location of the cut on the neutral surface which in turn determines the 

peak spacings in the photoelectron spectra. The value of Re(HBr) determines the 

position of the minimum in the Morse potential for the ion along they axis of Figure 

5-6 and therefore determines the intensity distribution of the simulated spectra. The 

best fit to both the BrHI- and BrDI- spectra is obtained with Re(HBr) = 1.55 A and 

xe = 27.1 A, so Re(ffir) = 3.88 A. The hydrogen stretching Va potential for ion and 

neutral are shown in Figure 5-8 along with the energies of the ion v3 = 0 and 1levels 

and the first few neutral v3 levels. The simulated stick spectra are superimposed on 

the experimental spectra in Figure 5-9. 

This one-dimensional analysis provides a firmer foundation for some of the 

qualitative ideas discussed in the previous section. Although the line x = xe in Figure 

5-6 passes very close to the barrier, the v3 = 0 level of BrHI- has the most overlap 

with the v3 = 0, 1 and 3levels supported by the neutral potential. The wave functions 

for these levels are confined to the I+ HBr product valley of the potential energy 

surface and can be thought of as HBr vibrational levels perturbed by a neighboring 

I atom. This is why the peaks in the spectrum corresponding to transitions to these 

states are spaced by ail interval only slightly less. than the HBr fundamental. Note 

that the v3 = 2 wavefunction is localized in the Br +HI valley. The anion 

wavefunction has very little overlap with this state but it does appear in the 

simulation as a smallpeak to the right of peak 3 in Figure 5-9 (top). 

4.2.2 CIHI- and Fm-

The differences between the ClHI- and BrHI- photoelectron spectra can be 

understood by considering how the potential energy curves in Figure 5-8 should differ 

in the case of ClHI- photodetachment. The product valley well in the neutral v3 
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potential should be deeper because the Cl + HI reaction is more exothermic (see Table 

5-2). Thus the first few v3 levels supported by this potential should look much like 

isolated HCl vibrational energy levels. This is confirmed by the peak spacings in 

Table 5-lb, which show little or no 'red shift' relative to the HCl and DCl vibrational 

energy levels. In addition, because of the larger difference in proton affinities between 

the halide ions in ClHI- compared to BrHI-, CIHI- will look more like I- clustered 

to a nearly unperturbed HCl molecule. We therefore expect the minima in the v3 

potentials for the anion and neutral to occur at a value of R8 .c1 quite close to the 

equilibrium value for diatomic HCl; the two minima should be much closer than the 

minima in the two potentials in Figure 5-8. Hence ~v3 = 0 transitions to the neutral 

are expected to dominate more than in BrHI- photodetachment, in agreement with 

our observations. 

The absence of a v3 progression in the FHI- and FDI- photoelectron spectra 

can also be explained by considering the v3 potentials for the ion and neutral. The 

F + HI reaction is considerably more exothermic than either the Br + HI or the 

Cl + HI reactions, and the ion should be even more asymmetric than either BrHI-or 

ClHI-. Thus, we expect the v3 p9tentials for the anion and neutral complex to look 

very much like the diatomic HF potential, at least near the bottom of the wells. With 

reference to Figure 5-8, in the case ofFHI-photodetachment we expect that the wells 

in the ion and neutral potentials are very similar in shape and their minima 

essentially coincide (at Re for diatomic HF); this results in only ~v3 = 0 transitions in 

the photoelectron spectrum. 
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4.3 Electronic structure in the XHY- spectra 

We now consider the electronic structure revealed in the XHY- photoelectron 

spectra. Photodetachment ofXHY-provides adirect probe ofthe multiple electronic 

potential energy surfaces in the HX + Y product valley (in the present case where 

Y = I). This is of considerable interest in light of past work on the role of 

electronically excited reactant and product states in these reactions. 12
• 

13
• 

31
• 
32

• 
33 

Let us first consider which neutral electronic states are accessible via 

photodetachment ofXHY-, a closed shell 1:E+ species. Based on the simple molecular 

orbital picture proposed for FHF- by Pimentel, 34 the two highest occupied molecular 

orbitals in XHY- are expected to be a o orbital which is a linear combination of the 

two halogen 2pz and H 1s orbitals, and a doubly degenerate 1t orbital of the form 

2px}X) - A.2px}Y). Removal of an electron from the o orbital by photodetachment 

results in a neutral 2:E state, whereas removal of an electron from the 1t orbital yields 

a 2TI state. If spin-orbit interactions are neglected in the collinear X + HY reaction, 

then when the 2p X atom begins interacting with the HY molecule, the lowest energy 

electronic state should be the :Estate in which the unfilled p orbital on the X atom lies 

along the XHY internuclear axis. On the other hand, the n state, in which the 

unfilled orbitai lies perpendicular to this axis, should result in a repulsive interaction. 

This is confirmed by DIM (diatomics-in-molecules) calculations by Duggan and Grice 

for the related systems F + HF and Cl + HCI. 32 

The inclusion of spin-orbit interactions results in a slightly more complicated 

picture of the electronic states involved in the reaction. A correlation diagram for the 

Br +HI reaction including spin-orbit effects is shown in Figure 5-10. 35 The Figure 

can be generalized to all X + HY reactions 13 and draws upon the DIM calculations on 
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F + ~ by Tully. 33 Near the interaction region, we see that reaction on the 2I:Vl curve 

leads from ground state reactants to ground state products with only a small barrier, 

whereas reaction along the 2TI312 or 2TI112 curve passes through a much larger barrier 

resulting from an avoided crossing. Near either asymptote, the potential energy 

curves are similar to the well-studied interaction between a 18 and a 2p atom. 36 In 

this region, where the spin-orbit interaction in the 2P atom is much larger than the 

intermolecular potential, it is more appropriate to label the three curves only with n, 

· the projection of the total electronic angular momentum on the internuclear axis, since 

n is a good quantum number but A (projection of the orbital angular momentum only) 

is not. Thus, in the asymptotic region, Hund's case (c) applies. The three curves are 

typically labelled X(l/2), I(3/2), and II(l/2), in order of increasing energy. The two 

n = 112 states are linear combinations of 21::112 and 2TI112 states, while the 2TI312 state is 

the only n = 3/2 state. The same notation is appropriate for the reactant and product 

valleys of collinear X+ HY reactions. In the HX + Y product valley, the X(l/2) and 

1(3/2) curves eventually correlate to YeP 312) + HX, whereas the II(l/2) curve correlates 

to Y*eP 112) + HX. We therefore expect the photoelectron spectrum of XHY- to show 

transitions to a maximum of three low-lying electronic potential energy surfaces in the 

HX + Y product valley. 

This is most likely the origin of the three peaks in the FHI-/FDI-

photoelectron spectra. The correlation diagram in Figure 5-10 shows that as HF is 

brought up to an I atom, the degenerate 2P312 state is split and the 2p112 state 

experiences a repulsive interaction. In our spectra (Figures 5-4 and 5-5), the two 

peaks X andY separated by 0.154 eV are assigned transitions to the X(l/2) and I(3/2) 

states, respectively, which both asymptotically correlate to I(2p 312) + HF. Peak Z at the 
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lowest electron energy lies 1.05 eV from Peak X. This is slightly larger than the I 

atom spin-orbit splitting and is assigned to a transition to the II(l/2) state which 

asymptotically correlates to I*eP u) + HF. 

Haberland 37 has shown that of the three potential energy curves resulting 

from the interaction betwe.en a 1S and a 2P atom, one curve can be determined if the 

other. two are known provided that the spin-orbit interaction is assumed to be 

independent of internuclear distance. In the Hund's case (c) limit, one obtains 

(3) 

where ll is the spin-orbit splitting in the 2P atom, R is the internuclear distance, and 

VI and Yn are the potential energies of the upper two curves relative to the X(l/2) 

curve. We can apply this formula to the three peaks iii the FHI- photoelectron 

spectrum. In this case, ll = 0.943 eV (the Iodine spin-orbit splitting) and the splitting 

between peaks X and Z is V11 = 1.045 eV. Equation (3) yields VI= 0.205 eV, which 

should be compared to the experimental spacing ofO:I54 eV between peaks X andY. 

Somewhat better agreement with experiment is obtained using the more accurate 

equations from which (3) is derived 37 that are appropriate for the intermediate region 

between the Hund's case (c) and (a) limits. In either case, the reasonable agreement 

with experiment supports our assignment of the three peaks to three electronic states 

in the I+ HF product valley. 

In the BrHI- and ClHI- photoelectron spectra, vibrational progressions from 

only two electronic states are apparent. The interval between the electronic states in 

the ClHI- spectrum is equal to the I atom spin-orbit splitting, whereas the interval 

in the BrHI- spectrum is slightly less. This ~uggests that in the region of the product 

valley probed by our experiment, the interaction between the I and HCl or HBr 
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molecple is not strong enough to produce a resolvable splitting of the degenerate 

I(2p 312) state. However, in both spectra, the peaks in the progression from transitions 

to the lower electronic state are broader than in the excited-state progression. We 

suggest that the increased width in the former peak results from. the splitting of the 

degenerate I(2p 312) + HX state but the splitting is smaller than the widths of the 

individual transitions. This would mean that the peak observed is an envelope of two 

broad transitions, whose individual widths are probably comparable to the ll(l/2) 

transition. The ground state peaks in the ClHI- spectrum are noticeably broader 

than in the BrHI- spectrum, indicating either a larger splitting of the I atom 

electronic degeneracy in the [ClHI] complex or a more repulsive interaction in the 

I + HCl product valley (see next section). 

In summary, as far as electronic effects are concerned, the interaction between 

I and HF in the region of the neutral surface probed by photodetachment of FHI- is 

stronger than the I+ HBr andi + HCl interaction probed in the BrHI- and ClHI

spectra. Two effects may contribute to this. The dipole moment ofHF is considerably 

higher than for HBr or HCl (1.82 D vs. 0.82 D, 1.08 D). 38 In addition, the bond 

length in HF is much less than in HBr or HCl (0.917 A vs. 1.414 A, 1.275 A). 39 We 

therefore might expect a shorter interhalogen distance in FHI- than in BrHI- or 

ClHI-. This means that subsequent to photodetachment, the spherical symmetry of 

the I atom will be most strongly perturbed by the neighboring HX molecule in the case 

of FHI-. The larger electronic effects seen in the FHI- spectrum are reasonable in 

light of these considerations. 

A final point of interest is that the two vibrational progressions in the BrHI

(and BrDI-) spectrum have similar intensity distributions. The peak spacings in'each 
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progression are also similar and are slightly less than the vibrational frequency in 

isolated HBr (DBr), although this difference is more noticeable in the excited state 

progression. This indicates that in the geometry probed by our experiment, the 

distortion of the HBr bond in the [BrHI] complex is approximately independent of the 

I atom electronic state, and suggests that the ground and excited electronic potential 

energy surfaces are not very different in the I+ HBr product valley. It would clearly 

be of great interest to probe the excited Br +HI potential energy surfaces in the 

region of the barrier as this is where the largest differences among the various 

surfaces are expected. This possibility is discussed below. 

4.4 Time dependent simulation 

The discussion in section 2 presents a qualitative explanation for the 

structured spectrum observed in the BrHI- photodetachment experiment. The simple 

one-dimensional calculations provide Franck Condon stick spectra within a familiar 

bound- bound eigenstate framework. However, an essential aspect of this experiment 

is that the neutral [BrHI] complex dissociates rapidly. Our spectra offer a good deal 

of dynamical information concerning this process, largely through the peak widths. 

In order to extract this information we must include at least the dissociative degree 

of freedom in our simulations. As in our analysis of the BrHBr- and IHI- spectra, 

we assume that no bending excitation in the neutral complex results from 

photodetachment and we confme ourselves to a two-dimensional treatment in which 

only the v 1 and v3 stretching motions are considered. 

In our treatment of BrHBr- and IHI- photoelectron spectra we used an 

adiabatic approximation to separate the bound (v3) and dissociative (v1) degrees of 

freedom, justified because of the different time scales for the two motions in a heavy-
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light-heavy system. 2'
3 While the BrHI- and BrDI- spectra could be simulated in the 

same way, this approximation is not so straightforward for asymmetric systems. 40 

Alternatively one can exactly solve the two-dimensional problem with a coupled 

channel collinear scattering calculation. llb, 
41 However, we choose to use the time-

dependent wave packet propagation method which also yields an exact solution. The 

time-dependent picture reveals the relationship between our experimental spectrum 

and the short time dynamics of the half reaction initiated on the neutral reaction 

surface in a more intuitive manner than the time-independent analyses. 

The practical difference between the two approaches is this. In time-

independent treatments, each of the many scattering states over a range of energies 

are solved for, and the simulated spectrum is described by the square of the overlap 

of the anion wave function with each of these neutral eigenfunctions. The time-, 

dependent perspective is based on the fact that the photoelectron spectrum is 

equivalently expressed as the Fourier transform of a time autocorrelation function 

C(t): 

cr(E) oc: ~ :xp(iEt I h) C(t) dt ) __ (4) 

This complex function C(t) monitors the overlap of a moving wave packet with the 

initial wave packet as a function of time: 

C(t) = (4>(0)14>(t)) (5) 

• 
The initial wave packet, 4>(0), in this case is defined as the ground state vibrational 

wavefunction of the anion, assuming the electronic dipole moment operator is a 

constant over the range of this wave function. The motion of the wave packet 

subsequently on the neutral surface is described by 
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(6) 

where e·i fl t 
1 21 is the time propagation operator and H is the Hamiltonian for the 

upper (neutral) surface. In this way the spectrum is simulated by simply performing 

the wave packet propagation and transforming the resultant autocorrelation function. 

This dynamical approach to molecular spectroscopy has been applied by other workers 

to the analysis of absorption and emission, 42
• 

43 fluorescence, 44 

photoelectron 45
• 

46 and Raman 47 experimental spectra. 

The propagation scheme implemented here is due to Kosloft and Kosloff; 48 

we use the Fourier method for evaluation of the Hamiltonian and second order 

differencing to appr~ximate the propagator. An advantage of the Fourier 

representation of the kinetic energy is that a relatively sparse spatial grid can be 

used. Convergence has been tested in each case by doubling the density of grid points 

along each dimension and halving the propagation time step. The parameters used 

for each calculation are shown in respective captions. 

The concepts involved in spectral analysis based on the autocorrelation function 

have been described admirably elsewhere. 14
• 

43 The application of these concepts to 

our results will be undertaken in two steps. We first discuss the features that appear 

in the autocorrelation function when considering the bound v3 degree of freedom alone. 

We then consider the extra features that result from a two dimensional analysis which 

includes the second (v1), dissociative degree of freedom. 

4.4.1 One-dimensional time-dependent treatment of the Brm- spectrum 

The features of the ground state progression in the BrHI- photoelectron 

spectrum have been explained in terms of eigenvalues of a one dimensional double 

well potential in Section 2. In a time dependent picture the key to understanding this 
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structure lies in the autocorrelation function, (<!>(0) I <l>(t)), and its relationship to the 

motion of the wave packet. Figure 5-11 shows the modulus of the autocorrelation 

function calculated for the BrHI system, using the same anion ground state wave 

function and the same one dimensional cut of the neutral Br + HI LEPS surface as 

was used in the time independent treatment. Figure 5-11 also shows the resulting 

photoelectron spectrum obtained by the Fourier transform of the complex C(t) 

function. A comparison of this simulation and the time independent one in Figure 5-9 

shows that they are identical, as we should expect because the two one-dimensional 

treatments are exact and equivalent. 

Figure 5-11 (top) shows that the correlation between the initial wave packet, 

<!>(0) and the wave packet at time t, q>(t), falls off rapidly after t = 0. This indicates 

that the packet moves quickly away from the Franck Condon region, which in turn 

indicates that there is considerable excitation in this v3 mode. In fact the faster the 

fall of I C(t) I from unity at t = 0, the longer the vibrational progression, or the larger 

the bandwidth in the photoelectron spectrum. The next feature is the recurrence, or 

oscillatory, structure in the autocorrelation. A recurrence occurs when the wave 

packet <l>(t) returns to the Franck Condon region. The recurrence structure in I C(t) I 

corresponds to the observation of discrete structure, rather than an unfeatured 

continuum, in the photoelectron spectrum. The I C(t) I in Figure 5-11 has periodic 

structure out to infinite time; this serves only to make the peaks in the photoelectron 

spectrum infinitely narrow, which is to be expected for a treatment that includes only 

a single bound degree of freedom. As pointed out earlier, the peaks in the BrHI-

photoelectron spectrum are not equally spaced because the reaction potential surface 

cut does not have a single minimum. The motion of the wave packet in this potential 
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cannot then be described as a coherent single frequency oscillation. The complex 

structure shown in Figure 5-11 and the fact that the height of the first recurrence is 

not unity are due to this effect which is comparable to dephasing of a wave packet 

moving in an anharmonic potential well. It is important to emphasize again that this 

peculiar double oscillatory feature is a result of the shape of the potential along the 

bound v3 coordinate, and is not related to the 'dissociative degree of freedom. 

The finite propagation of the wave packet in time, up until t = tmax• leads to a 

finite resolution of the simulated photoelectron spectrum. In principle this is given, 

in atomic units, by dE= 1t I tmax· 49 However, in practice, if the autocorrelation has 

not fallen to zero by tmax then its Fourier transform will show artificial high frequency 

oscillations; this problem is rectified by convolution with a window function. 50 

Choice of a Gaussian window function is equivalent to convoluting the stick spectrum 

in energy with a Gaussian energy resolution function. This operation has been 

performed to the one dimensional autocorrelation Figure 5-11 (top) to yield the 

simulated spectrum (bottom) so that the sticks have FWHM of 10 meV. 

4.4.2 Two-dimensional analysis of the Brm- and BrDI- photoelectron 

spectra 

Method 

The extension to higher dimensions of the time dependent approach is 

conceptually simple. The propagator now allows for motion of the initial wave packet 

along two dimensions, namely the two stretching coordinates of the linear triatomic. 

The autocorrelation is calculated in. the same manner and the transformation to a 

photoelectron spectrum simulation. is identical to that described above. The two 

dimensional treatment allows us to assign physical meaning to the peak widths. In · 
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the following calculations we aim to simulate the full ground X(l/2) state progression 

for the photoelectron spectra of BrHI- and BrDI-, using the published potential 

energy surface. At present we neglect the effects of the nearby 1(3/2) surface, 

discussed in section 3, on the X(l/2) progression in the photoelectron spectra. We 

shall discuss the agreement with the experimental spectra and comment on the 

interpretation of the peak widths. 

The propagation is performed on the effective collinear reaction surface derived 

from the BP LEPS surface. To extract the effective collinear surface from the supplied 

LEPS function of all three internal coordinates, the bending angle is considered fixed 

at 180°, and the zero point energy due to bending motion is included at every grid 

point. 3 The zero point bend energy is calculated in an harmonic approximation. This 

approach is in the spirit of the reduced dimensionality model of Bowman. 51 It is 

justified as long as little or no bending excitation is expected in the photoelectron 

spectrum. This is a reasonable assumption so long as the ion is linear and the 

minimum energy path on the neutral surface is collinear. The Broida and Persky 

LEPS parameters are not at any time adjusted to fit the experimental spectrum. The 

spatial grid used in the calculation is set up on the mass scaled coordinates, x and y 

defmed in the caption of Figure 5-6, so that the kinetic energy operator is 

diagonalized. llHBr is the appropriate reduced mass for describing motion on this 

surface. The anion potential surface is then the sum of the Morse potential (1) along 

y and a harmonic oscillator with frequency v1 along x. The equilibrium point of the 

anion potential is fixed at the best fit values found from the one dimensional analysis, 

namely Ye = 1.55 A and xe = 27.1 A. The initial wave packet is set equal to the ground 

state eigenfunction of this anion potential. Unfortunately there is no matrix isolation 

t I 



--
' ' 

145 

or calculated value for the v1 fundamental; this frequency would indicate the extent 

of the initial wave packet along the dissociation coordinate x.- However combination 

bands have been seen in the matrix isolation spectra ofBrHBr:- and !HI-yielding V1 

values for these ions of 164 and 121 cm·1 respectively. 52 The calculated FHCl- v1 

is lower than the observed v1 of both FHF- and ClHCl-. 16
'
26

_ Furthermore the v1 

frequency should be approximately unchanged upon isotopic substitution of the 

hydrogen. We therefore set v1 for BrHI-/BrDI- at 100 cm·1
; only minor changes in 

the resulting simulation occur if we double this frequency. 

This initial wave packet is propagated on the upper surface for 320 

femtoseconds. The calculation is checked for convergence with respect to grid size and 

time step. The potential function has been 'shelved' at extremely high values (5 eV 

above the I+ HBr energy zero), otherwise a prohibitively small time step is required 

for a stable propagation. 53 For the two dimensional simulation shown here utilizing 

a 128 x 64 grid, the entire calculation took seven CPU hours on a VAX 8650. As 

observed by Kosloff, 15 the numerical method is particularly suitable for vectorization \ 

on a supercomputer; the same calculation required only 3.3 CPU minutes on a Cray 

XIMP 14. Considerable reduction in run time can be achieved by employing absorbing 

grid boundaries which immediately allows use of a less extensive grid. 53 By this 

device it was possible to perform propagations to a picosecond on a 64 x 32 grid and 

examine resonances to higher energy resolution; these .computations required 2.5 

CPU minutes total on the Cray. 

Results and Discussion 

The calculated autocorrelation functions for BrHI and BrDI wave packet 

dynamics are shown in Figure 5-12. The oscillatory structure out to 60 fs is strongly 
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reminiscent of the autocorrelation function calculated in one dimension (see Figure 

5-11). However it is quite clear that the inclusion of motion along the dissociation 

coordinate leads to damping of the oscillations in the autocorrelation function over this 

time range. Each succeeding time that the wave packet bounces back along the HBr 

coordinate to the Franck Condon region, it has progressed further along the x 

coordinate and as such has diminishing overlap with <1>(0). One single recurrence in 

the autocorrelation is necessary, but sufficient, to yield oscillatory structure in the 

energy spectrum, as shown by Imre for the photodissociation of~0.43 If all v3 states 

supported by the one dimensional cut dissociated by the same direct mechanism one 

would expect essentially the one dimensional result convoluted with a single Gaussian 

envelope damping function to give the two dimensional autocorrelation function. The 

calculated function shown in Figure 5-12(a) cl~arly has a more complicated form; 

there is long time structure which has a qualitatively different form from the shorter 

time structure. Analysis of the wave packet dynamics and the Fourier transform of 

the time autocorrelation function show that the v3 states have widely differing 

'lifetimes'. 

Figure 5-13 explicitly shows how the initial wave packet q,(O) evolves as a 

function of time on the Br +HI surface. The modulus of q,(t) is plotted at several 

times ranging from t = 0 to t = 966.4 fs. The plots show the regions of the potential 

sampled by the wave packet, the mode or mechanism of dissociation, and the 

branching ratio between the arrangement and vibrational channels. The time-

dependent function <l>(t) represents the evolution of a coherent superposition of 

scattering eigenfunctions 'I'E weighted by <<1>(0) I 'I'E>· Although q,(t) and the 

photoelectron spectrum are uniquely related through Equation (4), we point out that, 
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in contrast to a 'short-pulse' laser absorption experiment, such a superposition is not 

created in our photoelectron spectroscopy experiment. Instead, each photodetachment 

event results in a well-defined neutral scattering state 'I'E with probability 

I <c!>(O) I 'I'E> 12. However, the plots ofcp(t) show what would occur if the initial wave 

packet cp(O) were created on the neutral potential energy surface and therefore provide 

considerable insight into the dissOciation dynamics of the [BrHI] complex. 

The first picture (t = 0 fs) shows that the bulk of the initial wave packet's 

amplitude is in the I + HBr exit valley, although cp(O) does have some amplitude at the 

saddle point region of the potential surface and therefore will have finite overlap with 

states localized in the HI valley. In the first few femtoseconds a small fraction of the 

wave packet breaks away upwards into the saddle point region while the rest moves 

downwards. The period of oscillation of this major component of the packet along the 

y coordinate is essentially that of diatomic HBr (tHBr = 12.6 fs). This is the dominant 

periodicity shown in the autocorrelation. The second frame shows the packet after 

-1.5 'tHsr where IC(t)l goes·through a minimum. As commented on for the one 

dimensional autocorrelation, the anharmonicity of the potential governing this fast 

oscillation along the y coordinate leads to a more complicated periodic structure. On 

each of the first few occasions that the major component of the packet returns to the 

'soft' wall, a fraction crosses the ridge between product and reactant valleys (seen in 

the pictures at t = 20.1 and 40.3 fs). 

Over the first 60 fs the major part of the wave packet moves barely perceptibly 

along the dissociation coordinate. However at later times we see this motion becomes 

more dominant; the overlap of this component of cp(t) with cp(O) becomes much 

smaller, and thus its contribution to the shape of the autocorrelation is diminished. 
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Therefore the autocorrelation at times later than 60 fs slowly loses resemblance to the 

earlier pattern and that seen in the one dimensional simulation. The pictures at 

longer times (e.g. at t = 201.3 and 261.7 fs) show the component ofthe wave packet 

that exits through the product valley spreads along x and from the leading edge (at 

higher x) to the tail there is an increasing number of nodes along the y direction. This 
' 

suggests that states with higher v3 excitation proceed more slowly along the 

dissociation coordinate. This is in accord with our simulations on BrHBr-, 3 and is 

manifested in the narrower linewidths ofthe [BrHI] Va = 3 and Va = 5 peaks in the 

simulated photoelectron spectrum (Figure 5-14(a), Table 5-3). Moreover notice the 

series of later time pictures show some components of the wave packet that remain 

localized in coordinate space for extended periods of time (e.g. at t = 201.3, 261.7 and 

966.4 fs). These correspond to a weighted superposition of quasi-stationary states or 

resonance states; the dominant resonance states seen have v3 = 4. These are 

manifested in. the autocorrelation at long time as oscillations modulated by a second 

frequency. In the simulated photoelectron spectrum the resonances appear as a series 

of closely spaced (-18 meV or -150 cm-1
) peaks at 1.21 eV electron energy. However 

they are not resolved individually when the simulation is convoluted with the 

experimental resolution function (Figure 5-14(a)). The positions ofthese resonances, 

which have not decayed by the end of a picosecond in this two dimensional simulation, 

are listed in Table 5-3. These states can be projected out and their individual mode 

of decay can be studied by time-dependent propagation as shown by Bisseling et al.53 

The differing 'lifetimes' of each vibrational state, and the resonance 

phenomenon supported by the potential energy surface used in this simulation, 

explain the complex decay of the autocorrelation function. The simulated 
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photoelectron spectra for BrHI- and BrDI- have been convoluted with the true 

instrument resolution function (given in Ref. 3) and are shown in Figure 5-14 where 

they are superimposed on the experimental spectra. It is quite clear that the 

experimental spectra do not show many of the features discussed above, and the 

autocorrelation functions leading to these spectra should be much simpler than that 

shown in Figure 5-12. The spacing of the peaks and the qualitative trends in peak 

width, namely decreasing width with greater vibrational excitation, are in good 

agreement with the experimental spectra. However the discrepancy in the 

magnitudes of the widths is striking, and the variation of width is much less 

noticeable in the experimental spectrum as opposed to the halving of linewidth seen 

between the simulated v3 = 0 and v3 = 3 peaks. Moreover we have shown that in a 

two dimensional simulation the BP LEPS surface supports resonance states which 

should give rise to sharp peaks in the spectrum, although the intensity of these peaks 

is expected to be small. These are not evident in the experimental profiles. Thus, in 

time-independent language, the experimental peaks all appear to be from direct 

scattering states on the Br + HI surface. Lastly the origins of the simulated 

photoelectron bands must be shifted to higher electron kinetic energy by 

approximately 60 me V to match with the experimental ones. This shift is just larger 

than the cumulative error in the reported thermochemical and spectroscopic data used 

to link the energy zeros of ion and neutral. 

We would like to be able to use the discrepancies between the simulated and 

experimental spectra, in particular the differences in the peak widths, to learn about 

the Br + HI potential energy surface. One might argue that the broad experimental 

peaks result from the multiple electronic states of the neutral complex accessible via 
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photodetachment. In section 3, we have argued. that each peak in the progression at 

higher electron kinetic energy could be split due to an electronic interaction between 

the dipole of the HBr and the open shell iodine atom. In the [FHI] system where the 

electronic interaction is largest and the components are resolved, some differences in 

peak width are seen for the three states (see Table 5-lc). In the case of [BrHI] less 

of a difference is expected in the peak shape and width among the three states and 

it is probable that the splitting is in fact a fairly small part of the width, the major 

part of the width being intrinsic to the transition to a dissociative state. 

A similar discrepancy between the simulated and experimental peak widths 

was also seen in our analysis of the BrHBr- photoelectron spectrum when we 

assumed a LEPS potential energy surface for the Br + HBr reaction. 3 We ther~fore 

developed a more flexible functional form f<?r an effective collinear Br + HBr surface 

which allowed the construction of a surface with a steeper minimum energy path in 

the Franck-Condon region. Simulations on this surface did reproduce the broad peak 

widths observed in the BrHBr- spectrum. A similar modification may be required for 

the BP Br + HI surface; that is, the surface may not be steep enough in the I + HBr 

exit valley. Another possibility is that the minimum energy path on the correct 

Br+ HI surface is not collinear, in which case the effective collinear approach is not 

appropriate and full three-dimensional simulations are required to accurately simulate 

the photoelectron spectrum. In any case, while it is somewhat risky to draw 

conclusions on the possible defects of a reactive potential energy surface based on an 

effective collinear analysis, this type of analysis provides an important first step in 

relating the features of the BrHI- photoelectron spectrum to the Br + HI potential 

energy surface. 
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Two variations on this experiment should provide considerably more 

information on the Br + HI reaction. BrHI- in its grotind vibrational state has good 

Franck-Condon overlap with the I+ HBr product valley. This is certainly an 

important region of the potential energy surface as it plays a major role in 

determining how the energy released in the reaction is partitioned among product 

degrees of freedom. However, we would also like to probe the reactant side of the 

potential energy surface, particularly the barrier. In Figure 5-8, note that the neutral 

levels with v3 ~ 4 span both valleys of the potential energy surface. While transitions 

to these levels from the v3 = 0 level of BrHI- are very weak, transitions originating 

from the v3 = 1level of the ion are considerably stronger. A simulated photoelectron 

spectrum assuming BrHI- with v3 = 1 is shown at the top ·Of Figure 5-15. The 

appearance of this spectrum is quite different from the simulation in Figure 5-14 and -
' ' 

shows intense peaks due to transitions to these higher neutral v3 levels. Hence, 

vibrational excitation of the ion provides an elegant means of probing the reactant 

side of the Br +HI surface. In general, vibrational excitation ofvarious modes of the 

ion is akin to varying the distribution of reactant energy in a state-to-state 

experiment. 

The simulated spectrum at the top of Figure 5-15 is convoluted with the 

experimental resolution of our photoelectron spectrometer., The spectrum at the 

bottom ofFigure 5-15 assumes an constant experimental resolution of 4 meV (35 cm-1
) 

and shows correspondingly more structure. For example, the v3 = 4 peak splits into 

4 closely spaced peaks which are actually resonance states quasi-bound along the v1 

coordinate. The appearance of these was discussed in the time dependent section 

above. Thus, a spectrometer with somewhat higher resolution has the capability to 
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reveal considerably more detail concerning the Br + HI potential energy surface. We 

currently have such an instrument: 54 a threshold photodetachment spectrometer 

with a resolution of 3 cm·1
• Recent results on IHI- have already shown vibrational 

features of the [IHI] complex that were obscured at lower resolution. 55
• 

56 Studies 

of asymmetric systems with this instrument will be undertaken in the near future. 

5. Summary 

Photoelectron spectra for the asymmetric bihalide anions XHI- and XDI- (X 

= Br, Cl, F) have been obtained in order to learn about the transition state region on 

the neutral X + HI potential energy surfaces. In the case of BrHI- and ClHl-, the 

spectra show resolved vibrational progressions assigned to the v3 hydrogen stretching 

mode of the neutral [XHI] complex. In all the spectra, transitions are observed not 

only to the ground state reactive potential energy surface, but also to electronically 

excited surfaces which correlate asymptotically to HX + I(2p312 , 2p112). The BrHI- and 

BrDI- spectra are analyzed in detail using an approximate geometry for the ion and 

a model potential energy surface for the Br + HI reaction. A one-dimensional analysis 

is used both to simulate the peak positions and intensities of the BrHI- and BrDI

spectra and to understand the appearance of the other XHI- spectra. We have also 

performed a two-dimensional quantum collinear simulation of the spectra of BrHI

and BrDI- via the wave packet propagation technique. The results of this time 

dependent simulation provide further insight into the origin of the structure seen in 

our spectra. The simulated peaks are narrower than the experimental peaks; this is 

discussed in terms of properties of the model Br + HI surface and approximations in 

the analysis. 



153 

6. Acknowledgements 

We would like to acknowledge Dr. Soo-Y. Lee for helping us start the time 

dependent simulation of the BrHI- spectrum by providing us with routines for the 

Kosloff algorithm in one dimension. We also thank Prof. M. Shapiro for useful 

discussions and Prof. P. Botschwina for communicating his results on FHCl-:-prior to 

publication. Support from the Air Force Office of Scientific Research under Contract 

No. AFOSR-87-0341 is gratefully acknowledged. D. M. N. thanks the Research 

Corporation and the Donors of the Petroleum Research Fund, administered by the 

American Chemical Society, for support. 



154 

References for Chapter 5. 

1. R. B. Metz, T. Kitsopoulos, A. Weaver, and D. M. Neumark, J. Chem. Phys. 88, 
1463 (1988). 

2. A. Weaver, R. B. Metz, S. E. Bradforth, and D. M. Neumark, J. Phys. Chem. 
92, 5558 (1988). 

3. R. B. Metz, A. Weaver, S. E. Bradforth, T. N. Kitsopoulos, and D. M. Neumark, 
J. Phys. Chem. 94, 1377 (1990). 

4. G. C. Schatz, J. Chem. Phys. 90, 3582 (1989); G. C. Schatz, J. Chem. Phys. 90, 
4847 (1989). 

5. J. M. Bowman and B. Gazdy, J. Phys. Chem. 93, 5129 (1989). 

·6. B. Gazdy and J. M. Bowman, J. Chem. Phys. 91, 4615 (1989). 

7. S. E. Bradforth, A. Weaver, R. B. Metz, and D. M. Neumark,Advances in Laser 
Science- IV Proceedings of the 1988 International Laser Science Conference, pp. 
657, American Institute of Physics (1989). 

8. N. Jonathon, C. M. Melliar-Smith, S. Okuda, D. H. Slater and D. Timlin, Mol. 
Phys. 22, 561 (1971); D. H. Maylotte, J. C. Polanyi, and K. B. Woodall, J. 
Chem. Phys. 57, 1547 (1972); J. R. Grover, C. R. Iden and H. V. Lilenfeld, J. 
Chem. Phys. 64,4657 (1976); C-C. Mei and C. B. Moore, J. Chem. Phys. 67, 
3936 (1977), J. Chem. Phys. 70, 1759 (1979); K. Tamagake, D. W. Setser, and 
J. P. Sung, J. Chem. Phys. 73, 2203 (1980); D. A. Dolson and S. R. Leone, J. 
Chem~ Phys. 77, 4009 (1982). 

9. C. A. Parr, J. C. Polanyi and W. H. Wong, J. Chem. Phys. 58, 5 (1973); D. J. 
Douglas, J. C. Polanyi, and J. J. Sloan, Chem. Phys. 13, 15 (1976); I. W. M. 
Smith, Chem. Phys. 20, 437 (1977); J. C. Brown, H. E. Bass, and D. L. 
Thompson, J. Phys. Chem. 81, 479 (1977); P. Beadle, M. R. Dunn, N. B. H. 
Jonathon, J. P. Liddy, and J. C. Naylor, J. Chem. Soc. Farad. Trans. II 74, 
2170 (1978). 

10. · M. Broida and A. Persky, Chem. Phys. 133, 405 (1989). 

11. M. Baer, J. Chem. Phys. 62, 305 (1975); J. A. Kaye and A. Kupperman, Chem. 
Phys. Lett. 92, 574 (1982); P. L. Gertitschke, J. Manz, J. Romelt, and H. H. 
R. Schor, J. Chem. Phys. 83, 208 (1985); J. Manz and H. H. R. Schor, Chem. 
Phys. Lett. 107, 549 (1984). 

12. K. Bergmann, S. R. Leone and C. B. Moore, J. Chem. Phys. 63,4161 (1975). 

13. J. W. Hepburn, K. Liu, R. G. Macdonald, F. J. Nothrup, and J. C. Polanyi, J. 
Chem. Phys. 75, 3353 (1981). 

' I 



155 
."' 

14. E. J. Heller, J. Chem. Phys. 68, 3891 (1978); Ace. Chem. Res. 14, 368 (1981). 

15. R. Kosloff, J. Phys. Chem. 92, 2087 (1988). 

16. K. Kawaguchi and E. Hirota, J. Chem. Phys. 87,6838 (1987); K. Kawaguchi, 
J. Chem. Phys. 88,4186 (1988). 

17. P. Botschwina, P. Sebald and R. Durmeister, J. Chem. Phys. 88, 5246 (1988); 
A. B. Sannigrahi and S. D. Peyerimhoff, J. Molec. Struct. (Theochem.) 165, 55 
(1988); S. Ikuta, T. Saitoh, and 0. Nomura, Inorg. Chem. submitted. 

18. C. R. Moylan, J. D. Dodd, C. Han, and J. I. Brauman, J. Chem. Phys. 86, 5350 
(1987). 

19. L.A. Posey, M. J. DeLuca, and M.A. Johnson, Chem. Phys. Lett. 131, 170 
(1986). 

20. M. L. Alexander, N. E. Levinger, M.A. Johnson, D. Ray, and W. C. Lineberger, 
J. Chem. Phys. 88, 6200 (1988). 

21. W. C. Wiley and I. H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955). 

22. G. Caldwell.and P. Kebarle, Can. J. Chem. 63, 1399 (1985). 

23. H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data. 14, 731 (1985). 

24. J. W. Larson and T. B. McMahon, Inorg. Chem. 23, 2029 (1984). 

25. A. B. Sannigrahi and S.D. Peyerimhoff, Chem. Phys. Lett. 112, 267 (1984). 

26. P. Sebald and P. Botschwina, to be published~ 

27. J. E. Bartmess and R. T. Mciver in Gas Phase Ion Chemistry; M. T. Bowers 
ed.; Academic Press, New York (1979). 

28. In fact the effective collinear surface, which has the zero· point energy due to 
the doubly-degenerate bend added at every point (described in Section 4), is 
shown in Figure 6. The correction is small but the barrier on this effective 
surface is 0.84 kcal/mol. 

29. C. M. Ellsion and B. S. Ault, J. Phys. Chem. 83, 832 (1979). 

30. B. S. Ault, J. Phys. Chem. 83, 837 (1979). 

31. P. L. Houston, Chem. Phys. Lett. 47, 137 (1977). 

32. J. J. Duggan and R. Grice, J. Chem. Soc. Faraday Trans. II 80, 739 (1983). 

33. J. C. Tully, J. Chem. Phys. 60, 3042 (1974). 



156 

34. G. C. Pimentel, J. Chern. Phys. 19, 446 (1951). 

35. Figure adapted for collinear reaction from that appearing iri Ref. 12. 

36. see for example C. H. Becker, P. Casavecchia, Y. T. Lee, R. E. Olson, and W. 
A. Lester Jr., J. Chern. Phys. 70, 54 77 (1979) and references therein. 

37. H. Haberland, Z. Phys. A. 307, 35 (1982). 

38. Nelson R. D., Lide D. R., and Maryott A. A., in CRC Handbook of Chemistry 
and Physics 69th edition, ed. Weast, CRC Press (1988), pp. E-58. 

39. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. 
Constants of Diatomic Molecules; Van Nostrand; New York (1979). 

40. J. ROmelt, Chern. Phys. 79, 197 (1983). 

41. D. K. Bondi, J. N. L. Connor, J. Manz, J. Romelt, Mol. Phys. 50, 467 (1983). 

42. S. 0. Williams and D. G. Imre, J. Phys. Chern. 92, 3374 (1988). 

43. N. E. Henriksen, J. Zhang, and D. G. Imre, J. Chern. Phys. 89, 5607 (1988); J. 
Zhang and D. G. Imre, J. Chern. Phys. 90, 1666 (1989). 

44. D. G. Imre, J. L. Kinsey, R. W. Field and D. H. Katayama, J. Phys. Chern. 86, 
2564 (1982). 

45. A. J. Lorquet, J. C. Lorquet, J. DelWiche, and M. J. Hubin-Franskin, J. Chern. 
Phys. 76, 4692 (1982). 

46. J. E. Pollard, D. J. Trevor, J. E. Reutt, Y. T. Lee, and D. A. Shirley, J. Chern. 
Phys. 81, 5302 (1984). 

4 7. A. B. Myers, R. A. Mathies, D. J. Tannor and E. J. Heller, J. Chern. Phys. 77, 
3857 (1982). 

48. D. Kosloff and R. Kosloff, J. Comput. Phys. 52, 35 (1983); R. Kosloff and D. 
Kosloff, J. Chern. Phys. 79, 1823 (1983). 

49. This is a result of the properties of a discrete Fourier transform (see Ref. 50). 
The transform is performed between -tmax and +tmax· 

50. W. H. Press, B. P. Flannery, S. A. Teukolsky, and V. T. Vetterling, Numerical 
Recipes; Cambridge University Press, Cambridge (1986). 

51. J. M. Bowman, Adv. Chern. Phys. 61, 115 (1985). 

52. M. E. Jacox, J. Phys. Chern. Ref. Data 13, 945 (1984). 



157 

53. R. H. Bisseling, R. Kosloff, and J. Manz, J. Chem. 'Phys. 83, 993 (1985). 

54. T. N. Kitsopoulos, I. M. Waller, J. G. Loeser, and D. M. Neumark, Chem. Phys. 
'Lett. 159, 300 (1989). 

55. D. M. Neumark in "Electronic and Atomic Collisions - Invited Papers of the 
XVI ICPEAC", in press. 

56. I. M. Waller, T. N. Kitsopoulos and D. M. Neumark, J. Phys. Chem. in press. 



158 

Table 5-la: Experimental Results for Photoelectron Spectra of BrHI- and BrDI-. 
(All energies in e V) 

eKE a FWHM' eKEa FWHMb Spacing Spacing in 
213nm 213nm 266nm 266nm HBr/ DBrc 

Brm-

A 1.970 (17) .175 0.783 (4) .170 

0.313 (5)d 0.317 <0-1) 

B 1.658 (13) .170 0.470 (3) .165 

0.268 (18) 0.306 (1-2) 

c 1.390 (10) .160 

A* 1.071 (7) .155 

0.292 (9) 0.317 <0-1) 

B* 0.779 (5) .140 

0.234 (10) 0.306 (1-2) 

C* 0.545 (8) -.120 

BrDI-

A 1.980 (17) .185 

0.240 (22) 0.228 (0-1) 

B 1.740 (14) .170 

0.203 (18) 0.222 (1-2) 

c 1.537 (11) .160 

0.193 (19) 0.216 (2-3) 

D 1.344 (15) -.160 

A* 1.068 (9} .180 

0.226 (15) 0.228 (0-1) 

B* 0.842 (11) .170 

0.192 (17) 0.22 (1-2) 

C* 0.650 (13) -.150 

0.170 (20) 0.216 (2-3) 

D* 0.480 (15) -.170 
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Table 5-la continued. 

a) Electron kinetic Energies (eKE) at each peak center found by fitting peaks to 
a set of Gaussians. Uncertainties, in parentheses, are approximate. 

b) Uncertainties in widths are approximately 0.005 eV, except where 
indicated. 

c) Spacings between vibrational levels indicated in parentheses; source Ref. 39. 

d) A-B spacing from 266 nm data 

A -7 A* spacing in the BrHI- and BrDI- photoelectron spectra are 0.899 :t 0.019 eV 
and 0.912 :t 0.020 eV respectively. The free iodine atom spin-orbit splitting is 0.943 
eV. 
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· Table 5-lb: Experimental results for Photoelectron spectra ofClHI- and CIDI-. 
(All energies in e V) 

eKE8 FWHJW eKEa.c FWHMb.c Spacing Spacing in 
213 nm 213 nm 266 nm 266nm HCJ/ DCld 

CIHI-

A 2.070 (17) .230 0.900 (5) .220 

0.380 (6)e 0.358 (0-1) 

B 1.678 (13) .220 0.520 (3) .220 

0.323 (18) 0.345 (1-2) 

c 1.355 (13) -.210 

A* 1.133 (10) .185 

0.358 (17) 0.358 {0-1) 

B* 0.775 (5) -.180 

CIDI-

A 2.079 (17) .205 0.900 (5) .190 

0.279 (7)e 0.259 (0-1) 

B 1.797 (14) .190 0.621 (4) .175 

0.258 (19) 0.252 (1-2) 

c 1.539 (13) -.175 

A* 1.148 (8) .175 

0.278 (14) 0.259 (0-1) 

B* 0.870 (11) .175 

0.235 (17) 0.252 (1-2) 

C* 0.635 (13) -.170 
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Table 5-lb continued 

a) Electron kinetic Energies(eKE) at each peak center found by fitting peaks to 
a set of Gaussians. Uncertainties, in parentheses, are approximate. 

b) Uncertainties in widths are approx. 0.005 eV, except where indicated. 

c) 266 nm spectra not shown 

d) Spacings between vibrational levels indicated in parentheses; source Ref. 39. 

e) A-B spacing from 266 nm data 

A~ A* spacing in the ClHI- and ClDI- photoelectron spectra are 0.937 ± 0.020 eV 
and 0.931 ± 0.019 eV respectively. 

Table 5-lc: Experimental Results for Photoelectron Spectra of FHI- and FDI-. 
(All energies in e V) 

eKEa FWHMb eKEa FWHMb Spacing 
213nm 213nm 266nm 266nm 

FBI-

X 2.143 (19) .100 

0.151 (25) 

y 1.992 (17) .130 . 
0.894 (19) 

z 1.098 (7) .115 

FDI-

X 2.143 (19) .100 0.966 (5) .070 

0.154 (7)0 

y 1.992 (17) .130 0.812 (4) .110 

0.894 (19) 

z 1.098 (7) .115 

a) Electron kinetic Energies (eKE) at each peak center found by fitting peaks to 
a set of Gaussians. Uncertainties, in parentheses, are approximate. 

b) Uncertainties in widths are approximately 0.005 eV. 

c) X-Y spacing from 266 nm data. 
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Table 5-2: Available data for the anions and neutral reactions described in this 
work. 

Anion BrHI- BrDI- ClHI- ClDI- FHI- FDI-

~H;,0(eV)
8 0.70 0.62 0.65b 

Va(cm·l)c 920d 728d 1560d 1219d 2955e 2225e 

E.B.E.(eV)r 3.88 3.85 3.76 3.76 3.68 3.70 

Neutral Br +HI Br + DI Cl +HI Cl + DI F+HI F +DI 
Reaction 

~(eV)g 0.704 0.710 1.379 1.390 2.815 2.843 

a) Hydrogen Bond Cleavage Enthalpy, i.e. the enthalpy change for the reaction 
XH .. I- ---7 HX +I- at 300K, from Ref. 22. This value is used, in the absence 
of any other data, for D0(XH . .I-) in the text. 

b) Estimated. See Ref. 24 for details. 

c) Fundamental frequency for the Type I hydrogen stretching vibration, measured 
for ion prepared in an argon matrix. See text for discussion of choice of 
frequencies. 

d) Ref. 29 

e) Ref. 30 

f) Approximate electron binding energy. This is estimated from center of 0-0 
peak in photoelectron spectrum (this work) 

g) Reaction exothermicity: ~Hg = D~(HX)- D~(HI). Data from Ref. 36 
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Table 5-3: Results of an exact quantum collinear simulation of the photoelectron 
spectra ofBrHI-and BrDI-using the BP LEPS surface with zero point 
bend included. 

Electron Kinetic v3 assignment Width (meV) 
Energy (eV)• 

Brm- 1.970 0 43 

1.662 1 36 

1.447 2 <4 
1.429 2 <4 
1.416 2 <4 
1.408 2 <4 

1.388 3 15 

1.230 4 <4 
1.211 4 <4 
1.192 4 <4 
1.176 4 <4 

1.143 5 8 

0.998 6 <4 

BrDI- 1.975 0 . 41 

1.751 1 38 

1.539 2 30 

1.346 4 10 

1.262 5 <4 
1.242 5 <4 
1.227. 5 <4 

1.184 6 <4 
1.171 6 <4 

1.017 8 <4 

a) Entire simulation has been shifted to higher electron energy by 0.062 (0.058) 
eV for BrHI- (BrDI-) to line up with experimental bands. 
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Figure Captions for Chapter 5 

Figure 5-l. The photoelectron spectra of BrHI- and BrDI- recorded at 213 nm. 

Arrows at 2.07, 1.36 and 1.12 eV represent asymptotes for dissociation 

into I (2pM) + HBr (v = 0), Br (2J>312) +HI (v = 0) and I ePuz) + HBr 

(v = 0) respectively. 

Figure 5-2. The photoelectron spectrum of BrHI- recorded at 266 nm. 

Figure 5-3. The photoelectron spectra of ClHI- and CIDI- recorded at 213 nm. 

Figure 5-4. The photoelectron spectra ofFHI- and FDI- recorded at 213 nm. 

Figure 5-5. The photoelectron spectrum of FDI- recorded at 266 nm. 

Figure 5-6. The effective collinear LEPS surface for the Br + HI reaction, derived 

from that of Broida and Pers~y, plotted in mass-weighted coordinates 

defined by: 

X= (Jli,HBr I llHBr)112 (RI- Rcm(HBr)) = (Jli,HB/llHBr)112 ~-Br- 7.0 ~-Br 

Y = ~-Br 

Here ~ and Rcm(HBr) are the position of the I atom and the HBr 

center-of-mass respectively, and llAB signifies the reduced mass of 

system A-B. The skew angle 9 is given by 

tan e = (mHM I mB~I?12 

which for this system is 8.2°, noting that M = m1 + mH + m8r - Contours 

are plotted at 0.161, 0.461, 0.761, 1.061, 1.361, 1.661 and 1.961 eV with 

respect to the I + HBr asymptote. The assumed anion equilibrium 

geometry is marked by the intersection of the dashed vertical and 
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horizonta.J. lines, at xe = 27.11 and Ye = 1.55 A, and the saddle point is 

marked with :j:. 

Figure 5-7. Potential along hydrogen stretching coordinate (v3) in BrHI- anion: 

expected form (solid) based on ab initio potential for FHCl- (ref. 25) 

and the Morse potential (dashed) used to model this. The lowest 

vibrational eigenstate of the inodel potential is also shown. Morse 

parameters are De = 0.283 e V and f3 = 3.243 k 1 

Figure 5-8. Anion and neutral v3 potentials used in the one-dimensional analysis of 

BrHI- spectrum. Calculated eigenstates are labelled by their v3 

quantum number. Each tick mark on vertical axis represents 0.2 eV. 

Figure 5-9. Franck-Condon stick spectra for (top) BrHI- and (bottom) BrDI-, 

simulated in one-dimensional time-independent analysis. Simulations 

superimposed on the respective experimental spectra. (dashed). 

Simulated sticks are labelled by v3 quantum numbers and for the 

BrHI- spectrum correspond to those shown on Figure 5-8. 

Figure 5-10. Correlation diagram for the reaction Br +HI, assuming c_ symmetry. 

The relative spacing of asymptotic levels are approximately to scale. 

The region between the dotted lines is where Hund's case (a) is 

appropriate. Adapted from the correlation diagram in Ref. 12. 

Figure 5-11. Absolute value of autocorrelation function, from one-dimensional 
I 

propagation, for BrHI-(top) and the simulated photoelectron spectrum 

which results from the Fourier transform of this autocorrelation 

function (bottom). Propagation carried out for 16384 time steps, with 
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~t = 1.0 a.u., and a 64 point spatial grid along y (=Ru-Br) between 0.79 

and 3.4 A. 

Figure 5-12. Absolute value of autocorrelation function, from two-dimensional 

propagation, for (a) BrHI- and (b) BrDI-. Calculation parameters 

given with Figure 5-13. 

Figure 5-13. Wave packet dynamics for the [BrHI] system. Equally spaced contours 

of I cl>(t) I ·are shown at times indicated on each frame; the highest value 

contours are omitted for clarity. Al~o shown are contours of the effective 

collinear potential energy surface, shown in Figure 5-6. Figure plotted 

in mass scaled coordinates (see text and Figure 5-6); they axis has 

been expanded here. Propagation performed over 10240 time steps, 

with ~t = 1.3 a.u., and a spatial grid with 128 x 64 points along x and 

y respectively. The final wave packet shown (966.4 fs) was calculated 

in a separate propagation, using same grid and ~t, but with an 

absorbing function applied at grid boundaries (see text and Ref. 53). In 

this plot the contouring resolution has been increased. 

Figure 5-14. Simulated photoelectron spectrum (solid) for (a) BrHI- and (b) BrDI

resulting from two-dimensional calculation. The simulations have been 

shifted so 0-0 bands line up (see text) and convoluted with the 

experimental resolution function. The experimental spectra are also 

shown (dashed}. 

Figure 5-15. Simulated photoelectron spectrum for BrHI- prepared in the (0,0,1) 

state. Simulation has been convoluted with (top) our spectrometer's 

experimental resolution function and (bottom) with a constant energy 
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·resolution of 4.3 meV. Bands are labelled by their effective v3 quantum 

numbers. Numerical parameters for the simulation are ~t = 1.3 a.u., 

tmax = _960 fs, spatial grid 64 x 32 points over range x = 22 - 35 A and 

y = o.95- 3.1 A. 
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7. Postscript: new experimental results on Brm-. 

Since publication of this work, we have recorded new spectra of BrHI- in our 

laboratory. Our signal-to-noise has been much improved (see Chapter 2) and the 

background due to stray electrons has been significantly reduced in the meantime. 

Polarization studies have also been undertaken. Figure 5-16 shows our improved 

spectrum for BrHI- photodetachment at 213 nm; the 9 =goo spectrum should be 

compared with Figure 5-l. Also shown is the Brill-spectrum recorded with the laser 

polarization parallel to the electron collection direction, 9 = 0°. The peaks A*-C*, due 

to the excited 2Il1rz state, have reduced relative intensity in the 9 = 0° spectrum. This 

behavior confirms that transitions are occurring from the anion to different electronic 

states in the two observed progressions. In addition the new spectra indicate we have 

achieved more vibrational cooling in the free jet expansion; the tail to high electron 

kinetic energy (above eKE = 2.1 eV) is less pronounced than in the earlier data 

(Figure 5-l). 

Figure Caption for 5.7 

Figure 5-16. BrHI- photoelectron spectrum recorded at 213 nm. (top) 9 = 0°, and 

(bottom) 9 = goo. 
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Chapter 6. Spectroscopy of the Transition State: Hydrogen Abstraction, 

Reactions of Fluorine· 

Abstract 

The reactions F + CH30H ~ HF + CH30, F + C2H50H ~ HF + C~50, and F 

+ OH ~ HF + oeP, 1D) are studied by photoelectron spectroscopy of the negative·ions 

CH30HF-, C~50HF-, and OHF-. In each case, photodetachment accesses the 

transition state region for direct hydrogen abstraction. The photoelectron spectra 

exhibit resolved vibrational structure which is sensitive to details of the potential 

surface in the transition state region. To aid in the interpretation ofthe spectra, ab 

initio equilibrium structures, harmonic frequencies, and hydrogen bond dissociation 

energies are calculated for the ions CH30HF- and OHF-. The anharmonic hydroxyl 

hydrogen stretching potential is also calculated for the two ions. Using the calculated 

ion properties and the fitted ab initio reaction surfaces of Sloan et al. (J. Chem. Phys. 

1981, 75, 1190), a two-dimensional dynamical simulation of the photoelectron 

spectrum of OHF- is presented and modifications to the reaction surfaces are 

discussed. The spectra of the alcohol complexes are discussed in light of this 

simulation, and the role of the "bath" degrees of freedom in these spectra is 

considered. 

Published in J. Phys. Chem. 95, 8066 (1991) 
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1. Introduction 

During the last several years, considerable progress has been made towards the 

spectroscopic characterization of the transition state in simple chemical reactions. An 

array of frequency1 and time-resolved2 techniques has been developed which allow 

one to directly probe the transition state region of the potential energy surfaces 

describing these reactions. These experiments are aimed at achieving a better 

understanding of the microscopic forces which govern the dynamics of bimolecular and 

unimolecular reactions. 

One of the more promising approaches to this problem has been to photodetach 

a stable negative ion in order to form an unstable neutral complex in the vicinity of 

the transition state for a chemical reaction. For example, in a study of a unimolecular 

transition state, Lineberger and co-workers3 used photoelectron spectroscopy ofC2~

to investigate the unstable vinylidene radical, which rapidly isomerizes to acetylene. 

In an experiment which serves as a precursor to the work described here, Brauman 

and co-workers4 examined total photodetachment cross sections in the visible and 

riear \lltraviolet (A. > 370 nm) for several ions of the form ROHF-, thereby learning 

about the relationship of the ion geometry to the potential energy surface for the 

F + ROH ~ HF + RO reaction. 

In our laboratory, negative ion photoelectron spectroscopy5
•
6

•
7 and threshold 

photodetachment8 are used to study the transition state region of bimolecular 

hydrogen exchange reactions A + HB ~ HA + B. By photodetaching the stable, 

hydrogen-bonded AHB- anion, one 1can form an unstable [AHB] complex located near 

the transition state for the bimolecular reaction. Most of our work to date has been 

on triatomic systems where A and B are like5
•
6

•
8 or unlike7 halogen atoms. The 
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_.photoelectron spectra of the AHB-bihalide anions yield resolved vibrational structure 

characteristic of the unstable [AHB] complex. This structure is very sensitive to the 

nature of the A + HB potential energy surface near the transition state. 

In this paper, the extension of our method to reactions involving polyatomic 

reactants is described. We report studies9 of the reactions F + CH30H ~ HF + CH30 

and F + C2H50H ~ HF + C~50 via photoelectron spectroscopy of CH30HF- and 

C~5QHF-. In both cases, the photoelectron spectra reveal resolved vibrational 

features attributable to the [ROHF] transition state region (R = CH3, C2H5). We also 

report a study of the related, but simpler, triatomic reaction, F + OH ~ HF + 0, from 

the photoelectron spectrum of the radical anion OHF-. The results on this last 

system are novel in their own right, but they also provide a model to compare and 

understand the structure manifested in the spectra of the polyatomic systems. 

There is a substantial body of experimental and theoretical work in the 

literature on the hydrogen abstraction reactions of fluorine. The F + CH30H and 

F + C2H50H reactions have been the· subject of both kinetics and product-state-

resolved experiments. For F + CH30H, two channels are available: 

F + HOCH3 ~ FH + OCH3 

F + HCH20H ~ FH + C~OH 

(1) 

(2) 

The exothermicities for these reactions are given in Table 6-1. Both reactions (1) and 

(2) are very fast at room temperature: kwt = 1 x 10 -lo - 2 x 10 -10 cm3 s-1
•
10

•
11

•
12 

There is a considerable range13
•
14 of reported branching ratios. 11

•
12

•
13

•
14

•
15

;
16 

However there is a consensus that reaction (1) accounts for more than the statistical 

25% oftotal product at room temperature, and this fraction may be as high as 80%.13 

For F + C~50H there are three channels available. If the fluorine attack were 
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completely non-site-specific, one would expect a branching ratio in F + CJi50H of 18% 

for CJf50 formation. As with methanol, the reported branching ratios17
•
18 indicate 

that fluorine abstracts at the hydroxyl group faster than at the methyl or methylene 

groups. Khatoon's work/2.17 using isotopically labelled reactants and a mass 

spectrometric detection scheme, indicates that the probability of abstraction of a 

particular hydrogen by fluorine is five times more likely at the hydroxyl site than at 

one of the alkyl sites, for both methanol and ethanol. This preference in both 

reactions is interesting since the CHaO and C2H50 product channels are less exoergic 

by 10 kcal/mol (see Table 6-I). As we shall see, our experimental data addresses the 

dynamics of the hydroxyl hydrogen abstraction channel only. 

The energy disposal in both products of reaction (1) can be measured: the HF 

product by infrared chemiluminescence and the CHaO product by laser-induced 

fluorescence. This has been used in a series of experiments 11
•
15

•
16

•
19 to determine, in 

detail, how the partitioning of product energy compares to results for the well-

characterized triatomic F + HX reactions (X= halogen).20 The results indicate that 

for the F + CHaOH reaction, the presence of a large number of product degrees of 

freedom has a small but noticeable effect on overall energy dlsposal, in comparison to 

the F + HX reactions. The fraction of available energy appearing as HF vibrational 

excitation is slightly less than in the F + HX reactions; and about 2% of the available 

energy appears as vibrational excitation of the Va niode (C-O stretch) of the CHaO 

radical. The single chemiluminescence study ofF + C2H50H suggests similar behavior 

for this system.21 Thus, one expects the potential energy surfaces for both the 

F + CHaOH and F + C2H 50H reactions to share important features with the F + HX 

surfaces, particularly a small entrance channel barrier to reaction. 
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The reaction of fluorine with hydroxyl has been less well studied. Possible 

reactions ofF with OH are: 

F + HO-HF + oeP) 

F+OH -HOF·-HF+ oeP) 

L>HF+ 0(1D) 

(3) 

(4) 

(5) 

In (3) and (5) fluorine directly attacks the hydrogen end of the hydroxyl; (3) proceeds 

on a triplet surface and is exothermic by 34 kcaVmol, while (5), which is 11 kcallmol 

endothermic, occurs on a singlet surface. This mechanism is akin to the reactions 

discussed so far with the alcohols. Reaction (4) involves the radical fluorine atom 

attacking the oxygen atom, the site of the unpaired electron on OH, and forming 

vibrationally hot HOF etA'). This radical-radical ·recombination should proceed with 

no barrier. However, a spin-forbidden non-adiabatic transition is tJ;len required for 

HF + 0(3P) production. The overall room temperature rate constant for reaction ofF 

+ OH by all pathways has been measured to be 4.1 x 10·11 cm3 s·1
•
22 

Sloan and coworkers23 have measured product state distributions from the 

F + OH reaction. They observed infrared chemiluminescence from product HF 

vibrational levels up to v=3 when reacting F with RzO. The F + H20 reaction is 

exoergic enough to produce only HF(v = 0, 1): The observation of population in higher 

HF vibrational levels was explained in terms of a secondary reaction, ofF with OH 

produced by the F + H20 reaction, taking place in their chamber. The product 

vibrational and rotational distributions from the secondary reaction appeared to be 
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statistical. On the basis of this and an ab initio calculation, which predicted a large 

barrier for (3), the authors concluded that the dominant reaction pathway is via attack 

of fluorine on the oxygen end of the OH molecule ( 4) and that HOF is a long- lived 

intermediate, which decays by a non-adiabatic transition. As we shall show below, the 

OHF- photoelectron spectrum is quite sensitive to the barrier for direct abstraction 

(3), allowing us to test Sloan's conclusions. This adiabatic pathway for F + OH to 

yield 0(3P) + HF by direct abstraction is entirely analogous to the alcohol reactions. 

Thus we will also use the results on the F + OH system to serve as a model for 

understanding the CH30HF- and C2H50HF- photoelectron spectra. 

Our experiment starts with the negative ion analog of the reaction transition 

state we wish to study. It is useful for that ion to be well-characterized. The · 

CH30HF- anion has been fairly well-studied and was first observed by Riveros in an 

ion cyclotron resonance (ICR) cell.24 In this anion, F- binds to the hydroxyl 

hydrogen of CH30H, since this hydrogen is considerably more acidic than the methyl 

hydrogens. Larson and McMahon determined the CH30H•·F- binding energy to be 

29.6 kcal/mol.25 The proton affinity of CH30- (or the gas phase acidity of CH30H) 

is slightly higher than that ofF- (381.2 kcal/mol versus 371.4 kcal/mol).26 This 

means that F- + CH30H is the lowest dissociation channel for CH30HF-; Jasinski 

et al27 have experimentally confirmed this by infrared multiphoton dissociation of the 

ion in an ICR cell. In addition, the relative proton affinities lead one to expect the 

shared proton in CH30HF- to lie closer to the 0 atom than to the F atom in the ion 

equilibrium structure. 

The proton affinity of C~5Q- (378.1 kcal/mol)26 is nearer to, but still higher 

than, that of F-. Thus it would be expected that the shared proton in C2H50HF-, 
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though still closer to the 0 than the F atom, would be more evenly shared than in 

CH30HF-. In agreement with this, the measured binding energy of CJf50HF-, 31.5 

kcal/mol, 25 is higher than that of CH30HF-. The OHF- ion has not been observed 

previously, but, since the proton affinity of0-(382.2 kcal/mol)26 is comparable to that 

of CH30-, one expects binding and structure similar to that of the alcohol complexes, 

namely OH•·F-. 

The position of the shared proton in the anion is critical to our photoelectron 

spectroscopy experiment, since the region of the A + HB potential energy surface 

accessible via photodetachment is determined by the ion geometry. For example, we 

have reported studies of the Br + HI, Cl + HI, and F + HI reactions by photoelectron 

spectroscopy of BrHI-, CIHI-, and FHI-.7 The proton affinities of Br-, Cl-, and F-

are at least 10 kcal/inol greater than that o~I-. We therefore expect Rmc < ~1 in the 

XHI- anions. The ions consequently have better geometric overlap with the I + HX 

product valleys on their respective neutral potential energy surfaces, and this is 

indeed the region that is probed in the reported photoelectron spectra. This turns out 

to be the case for all the asymmetric X + HY reactions, where X and Y are halogen 

atoms. 

On the other hand, photodetachment of CH30HF-, C2H50HF- and OHF-

should result in considerably better overlap with the F + CH30H, F + CJf50H or 

F + OH reactant valleys, respectively'. This is arguably the most important region of 

the surface since it includes the barrier along the minimum energy path. Thus the 

significance of the results presented here is twofold. The photoelectron spectra ofthe 

ROHF- and OHF- anions represent an extension of our 'transition state spectroscopy' 

method to more complex reactions. Furthermore, the spectra of all three systems 
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allow us to probe a more interesting part of the potential energy surface for the 

corresponding neutral reaction in comparison to the XHY- spectra. 

In addition to the experimental results, we present ab initio calculations that 

describe the equilibrium structure, harmonic frequencies and binding energies of the 

CH30HF- and OHF- ions. A two-dimensional dynamical simulation of the OHF-

photoelectron spectrum is then described, which is used as a starting point for 

·considering modifications to the F + OH reaction potential surfaces. The spectra of 

the polyatomic systems are discussed, with reference to the oHF- simulation, and 

finally the role of the extra degrees of freedom is evaluated. 

2. Ex}>erimental 

The time-of-flight photoelectron spectrometer used in this study has been 

described in detail elsewhere.5 Briefly, negative ions are formed by crossing the 

expansion of a pulsed molecular beam valve with a 1 ke V continuous electron beam 

close to the valve orifice. For production of OHF-, the gas mixture expanded through 

the valve was N20 with a trace concentration ofHF. The QHF-formation mechanism 

is probably via dissociative attachment ofN20 by slow secondary electrons, N20 + e-

-7 o- + N2, followed by the clustering process o- + HF + M -7 OHF- + M. The best 

way we found to make a stable beam of CH30HF- (or C2H50HF-) was to put a few 

drops of CH30H (or C2H50H) into the pulsed beam valve, which hangs vertically in 

the source chamber, and pass a 5% NF 3 I He mixture through the valve. Dissociative 

attachment to NF3 produces F-, which then clusters to the alcohol. Under the same 

expansion conditions, we have obtained vibrational temperatures of 150 - 300K for 
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CH2CN- and rotational temperatures ofless than lOOK for SH-prepared in a similar 

source.28 

The ions formed in the source chamber are extracted perpendicular to the 

molecular beam and injected into a Wiley-McLaren type time-of-flight mass 

spectrometer.29 Ions separate according to their masses and the ion of interest is 

photodetached by the fifth harmonic of a pulsed Nd:YAG laser (213 nm, 5.825 eV). 

The photoelectrons produced by this process are ejected into all solid angles and a 

small fraction (104
) is collected by a detector at the end of a one meter field-free flight 

tube. The flight time of the electrons is recorded and converted into center-of-mass 

kinetic energy. The energy resolution function of the instrument is given in reference 

5; essentially the apparatus' electron energy resolution is 8 meV at 0.65 eV and 

degrades as E312 at higher electron kinetic energies. 

3. Results & Analysis 

3.1 Experimental ReSults 

The CH30HF- and C2H5QHF- photoelectron spectra are shown in Figure 6-1. 

The spectra are considerably more complex than the spectra of the triatomic anions 

we have previously studied. The clearest structural pattern in both spectra are the 

four regularly spaced steps between 1.2 and 2.8 eV. The labelled arrows (A-D), at 

2.69, 2.24, 1.85, and 1.54 eV in Figure 6-la and 2.58, 2.18, 1.83, and 1.50 eV in 

Figure 6-1b, mark the onset of each step. There are two sharper features, Eat 1.15 

eV, and Fat 1.03 eV, in the CH3QHF- spectrum. 
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The peaks are labelled in order of increasing internal energy of the neutral 

complex. The electron kinetic energies (eKEs) are related to the internal energies of 

the neutral species (Ei<o>) by 

eKE = hv - D0

0(ROHF-) - EA(F) - ~oo - Ei<o> + Et> (6) 

Thus peaks with highest electron kinetic energy correspond to neutral states with 

lowes~ internal energy. In (6), hv is the laser photon energy, 5.825 eV, EA(F) is the 

electron affinity of fluorine, 3.399 eV,30 and D0

0(ROHF-) is the bond dissociation 

energy of ground state ROHF- to form ground state ROH and F-. For 

D0

0(CH30HF-), we use the experimental25 bond dissociation enthalpy, Ml298, and 

correct to 0 K using a set of ab initio calculated frequencies (see below); this yields 

1.244 eV. For D00(C~50HF-), we use the experimental25 bond enthalpy for this ion, 

and the same correction to 0 K as calculated for CH30HF'-; yielding 1.327 eV. ~0

0 

is the exoergicity for the reaction F + ROH ~ RO + HF and is given in 

Table 6-1.31
•
32.33

•
34

•
35

•
36 Ei<o> is the energy of the [ROHF] complex relative to 

ground state RO + HF. Et> is the internal energy of the precursor ion ROHF- above 

zero point. As all the anions studied here are expected to be prepared cold, this 

quantity is assumed throughout to be zero. 

The eKE corresponding to E/0> = 0 is shown by arrOws against the axis at 2.60 

eV (Figure 6-1a) and 2.50 eV (Figure 6-lb). These arrows indicate the electron kinetic 

energy corresponding to photodetaching ground state CH30HF- (C2H50HF . .:.') and 

forming ground state HF + CH30 (C2H50). We refer to these energies henceforth as 

product asymptotes. The reactant asymptotes, indicated by arrows at 1.18 eV 

(Figure 6-1a) and 1.10 eV (Figure 6-1b), correspond to ground state F + CH30H 

(C2H50H) formation for which E/0> =-~00• All the structure in each spectrum occurs 
' ' ) 
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at lower eKE than the product asymptote and is therefore due to states of the neutral 

complex that can dissociate to HF +CHaO (C2H50) products. In addition, features in 

the spectra at lower eKE than the reactant asymptotes correspond to states of the 

complex which can also dissociate to F + CHaOH (C2H50H) reactants. 

The photoelectron spectrum of CHaODF- (Figure 6-2) shows a clear isotope 

effect. The spectrum shows six steps more closely spaced than those in the CHaOHF

spectrum. This isotope effect suggests that the step structure is due to a vibrational 

mode of the neutral complex analogous to the Va mode seen in the triatomic bihalide 

spectra;5
•
6

•
7 that is, the light hydrogen atom is vibrating between the much heavier F 

atom and RO group in the complex. The spacing between the steps in Figures 6-1a 

~d 6-1b is less than that between the· first few vibrational levels of HF,a7 and the 

spacing between the second, third and fourth steps is less than the corresponding 

levels of the OH stretch in CHaOH. This 'red shift' occurs because the experiment 

probes the transition state region where the reacting species are interacting 

strongly;5
•
6 the H atom vibrates in a shallower potential than in isolated HF or 

CHaO H. 

The intensity in the CHaOHF- spectrum builds as one moves from the 

HF + CHaO product asymptote to the F + CHaOH reactant asymptote at lower electron 

kinetic energy. The intensity distribution in the C2H50HF- spectrum is similar, 

although there is relatively more signal near the HF + C2H50 asymptote. The breadth 

of all the features in the photoelectron spectra is considerably larger than the 

experimental resolution. Spectra recorded at 266 nm (4.66 eV, not shown) show the 

right-most steps in each of the 213 nm spectra with lower electron kinetic energy and 
(_. ·, 
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therefore higher resolution. Despite this higher resolution, there is no additional 

structure observed; the step profiles are unchanged. 

The photoelectron spectrum of OHF- is shown in Figure . 6-3. The peak 

positions and widths are listed in Table 6-II. The electron kinetic energies 

corresponding to the dissociation asymptotes Q(3p 2) + HF (2.43 e V), F~ 3fl) + OHerr3fl) 

(0.95 eV), and OctD) + HF (0.46 eV), are shown on Figure 6-3, as before, with arrows 

against the energy axis. These energies are calculated using a relationship similar 

to Equation (6), along with our best ab initio ion binding energy estimate (see below), 

the exoergicity for reaction (3) in Table 6-1, and the experimental38 oxygen atomic 

energy level splittings. Again, all structure observed in the spectrum corresponds to 

states of the neutral unstable with respect to dissociation to the lowest energy product 

channel (0(3P) + HF). Moreover peaks A-D correspond to neutral states which can 

only dissociate to OCSP) + HF products. 

The overall appearance of the OHF- spectrum is clearly very similar to both 

of the ROHF- spectra. This is an interesting result considering the far fewer 

vibrational degrees of freedom in the [OHF] complex as well as its different electronic 

character (see below). However, there are several differences between the OHF- and 

ROHF-spectra. The onset of structure occurs at almost 0.3 eV lower electron kinetic 

energy in the OHF- spectrum. Between the product and reactant asymptotes, the 

OHF- spectrum looks more like a set of broad peaks, in contrast to the step structure 

seen in the CH30HF- and C2H50HF- spectra. The feature below the reactant 

asymptote in the QHF- spectrum (labelled E) is much more distinct than any 

corresponding structure in the other spectra. Finally, the intensity in the OHF-

spectrum builds in the same way as the other spectra but, in this spectrum, there is 
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• even less intensity at the 0 + HF product asymptote than at the product asymptote 

in the CHaOHF- spectrum. 

The photoelectron spectra of OHF-, CHaOHF- and CJf50HF- all show 

maximum intensity near the asymptote for dissociation into reactants F + OH, 

F + CHaOH and F + CJI50H rather than the energetically lower product asymptote. 

This is in sharp contrast to the asymmetric bihalide ions,7 all of which show maximum 

intensity at the product asymptote. We can understand the intensity distributions in 

terms of the qualitative discussion of the ion geometries in the Introduction.· Because 

the proton affinities oro-, CHaO-, CJI50- are 0.47, 0.42, and 0.29 eV higher than 

that ofF-, the hydrogen should lie closer to the 0 atom than the F atom in all three 

anions. We therefore expect good Franck-Condon overlap with OH••F or ROH••F 

configurations of the neutral complex localized in the entrance valley of the reactive 

potential energy surface. The overall intensity envelopes seen in the spectra are in 

accord with this reasoning. In particular, the observation that the CJf50HF-

spectrum has more intensity at the product asymptote than the CHaOHF- spectrum 

is consistent with the higher proton affinity of CHaO-. 

It is clear from this discussion that the anion geometry has a significant effect 

on the photoelectron spectrum. In contrast to the bihalide ions, no spectroscopic data 

exist for ROHF- and OHF-. Therefore, in order to obtain a more quantitative picture 

of the anions, we have performed ab initio calculations on OHF- and CHaOHF- to 

determine their structure and properties. 
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3.2 Ab initio calculations: method and results 

Fully optimized geometries, frequencies and dissociation energies were 

calculated for the hydrogen-bonded anions OHF- and CH30HF- at both the Hartree-. 
Fock (HF) and second order Moller-Plesset (MP2) level of theory. In addition, MP4 

level calculations were employed to estimate hy~rogen bond dissociation energies; The 

calculations reported here were performed with the Gaussian 86,39 Gaussian 88 40 

and CADPA~1 ab initio packages available at the San Diego Supercomputing 

Center. The standard 6-31++G** basis set was used throughout; the incorporation 

of diffuse functions ( ++) is mandatory for a proper description of these anions. For 

OHF-, a spin-unrestricted wave function was used to describe both the 2ll ground and 

21: excited states. 

The results of these calculations are summarized in Table 6-III- Table 6-VII. 

For the purposes of analyzing our photoelectron spectra, the most important results 

are the ion equilibrium geometries, the shape of their potential surfaces along the 

hydroxyl hydrogen stretching coordinate, and the ab initio estimate of their 

dissociation energy into F- and OH or CH30H. For the last of these, an estimate of 

the zero point energy correction is required, so. frequencies were calculated for the 

hydrogen-bonded ions and the product fragments at both the HF and MP2 level of 

theory. All energies quoted (E0) include this zero point energy correction, which is 

applied at the same level of theory as the calculated energy (except for the MP4 

energies where the MP2 zero point energies are used); MP4 electronic energies 

include all single, double, triple and quadruple excitations while maintaining a frozen 

core (MP4SDTQ-FC); the MP2 energies have all electrons considered for correlation 

(MP2-FULL). The calculation of the ion force field, apart from providing zero point 
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energies, was also useful for (a) obtaining a reasonable form for each anion's 

vibrational normal coordinates and (b) providing an estimate for the hydrogen bond 

stretching frequencies in the ions. Both of these will be used in the dynamical 

calculations described below. 

The dissociation fragments of OHF- and CH30HF- that we need to consider 

are F-, CH30H, CH30-, HF, OH and o-. Computations of fully optimized geometries 

and frequencies for these fragments compare well with literature values for 

calculations using similar sized basis sets. The MP2 geometries and frequencies agree 

well with experimental values for CH30H, HF, and OH, and the fluorine electron 

affinity is well reproduced at the MP2level. The oxygen electron affinity, calculated 

at the same level of theory, 1.09 eV, is in poorer agreement with the experimental 

value of 1.46 eV. 30 By calculating the MP2/6-31++G** equilibrium geometry of the 

Jahn-Teller distorted ground state of CH30,42 and using scaled43 harmonic 

frequencies from the HF/6-31++G** force fields for ion and neutral, a zero point 

corrected adiabatic electron affinity of 1.47 eV for CH30 is computed. This is to be 

compared with the experimental value of 1.57 eV.44 

Geometries & Frequencies: Our qualitative expectations for the hydrogen-bonded ion 

geometries and dissociation energies are based on the proton affinity scale and have 

been outlined above. We expect that the closer the proton affinity of the bases A- and 

B-, the larger the degree of sharing of the proton and the stronger the hydrogen bond 

in AHB-.25 From comparison of the proton affinities of the methoxide, hydroxide, and 

fluoride ions, we expect the hydrogen to be closer to the oxygen than fluorine in both 

CH30HF- and OHF-. The quantitative ab initio results shown in Table 6-III and 

Table 6-VI show that indeed the hydrogen sits closer to the oxygen than the fluorine 
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atom for both ions. In fact, the equilibrium parameters for the two ions are very 

similar; the difference in 0-F separation is smaller than 0.01 A and the hydrogen 

position is different by only 0.02 A. However, the ab initio calculations suggest that 

OHF- has the hydrogen more centrally located. This is contrary to the proton affinity 

argument, but CH30H is only slightly more acidic than OH. 

The equilibrium geometry for CH30HF-, which has C8 symmetry, is shown in 

Figure 6-4. The F-··H-C~OH isomer is expected to lie considerably higher in 

energy than CH30H•·F-. The hydrogen bond is slightly bent, as found for 

F\~0),45 because of a weak interaction with the other nearby hydrogen atoms. 

With regard to the methanol frame, the staggered conformer is preferred to minimize . 

steric repulsion, but the barrier to internal rotation about the C-0 bond is calculated 

to be even smaller than in methanol.46 The equilibrium configuration was found by 

optimization of all geometric parameters; in particular, the methoxy frame was also 

allowed to relax in response to the perturbation by the F-. The changes in the frame 

with respect to the equilibrium CH30H geometry described by the same theoretical 

model are modest (Table 6-III). The principal differences are a contraction in re(C-0) 

by 0.03 A in CH30HF- and some distortion of the bond angles around the tetrahedral 

carbon center. By comparison, the change at the active center is much larger: there 

is a 0.10 A lengthening of the 0-H bond in the ion at the MP2level. The framework 

relaxation will be considered when discussing possible "bath" mode excitations in the 

CH30HF- photoelectron spectra. Previous calculations47 for this ion are in 

qualitative agreement with those shown here, but the earlier treatments were limited 

to small basis sets without a complete set of diffuse functions and neglected electron 

correlation. 
f 
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For AHB- species, a pertinent question to ask is whether there are two 

minima on the potential energy surface, corresponding to AH•·B- and A -··HB, or 

whether the two coalesce to form one broad, fairly flat-bottomed minimum. In the 

case of the symmetric bihalide ions AHA-, this is extremely important as it 

determines whether the equilibrium structure is centrosymmetric or not. For 

example, calculations48
•
49

•
50 on ClHCl- and BrHBr- show that a Hartree-Fock 

description predicts a double minimum potential for these anions, whereas the 

inclusion of other electronic configurations in the ground state wave function leads to 

a significant lowering of the energy for centrosymmetric geometries compared to the 

AH••A- geometries. Even using M0ller-Plesset Perturbation Theory to second order 

(MP2) causes the double minimum potentials for the AHA- ions to coalesce into a 

single flat- bottomed minimum. 5° High resolution spectroscopy studies indicate these 

anions do, in fact, have centrosymmetric equilibrium struc~ures.51 

For an asymmetric ion such as CH30HF-, we might expect to find a local 

minimum, CH30-••HF, as well as the global one described by Figure 6-4 and 

Table 6-III. Figure 6-5 shows a plot of the potential energy as a function of the 

position of the hydrogen atom between the 0 and F atoms which are assumed, along 

with all other degrees of freedom, to be fixed. The plot shows that at the Hartree

Fock level there is evidence of a plateau in the potential corresponding to the 

CH30-.. HF structure, but that it disappears at the MP2 level. The MP2 correction 

clearly stabilizes geometries with the hydrogen more evenly shared between F and 0; 

the potential shape is distinctly different. This has a large effect on the vibrational 

level spacings for the '0-H stretch' and the shape of the ground vibrational wave 
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function along this coordinate. This will, in turn, have a profound effect on the 

intensity distribution seen in the photoelectron spectrum. 

·The calculated harmonic Vibrational frequencies for the CH30HF- ion are 

shown in Table 6-IV; IDa is the 0-H stretching mode which corresponds to the. 

potential function we have been discussing. The harmonic frequency for this mode 
I 

(2215 cm"1
) is strongly perturbed from its value in CH30H (MP216-31++G** value 3900 

cm-1
). The F--HOR stretching mode, co9, is analogous to co1 in the bihalide ions and 

OHF-(see below). These two stretching modes, the 0-H stretch and the 0-F stretch, 

are the two modes most important to understanding the photoelectron spectra. 

The ab initio results for the ground 2TI state of the oHF- anion are shown in 

Table 6-VI and Figure 6-4. It is clear from the similarity in the equilibrium geometry 

of this ion and the OHF moiety in CH30HF- that the CH3 group has little effect on 

the hydrogen bond, except to slightly bend it. It is worth noting that, in contrast to 

CH30HF-, ()HF- is open shelled but the spin remains localized on the oxygen atom, 

as iri OH. The spin-orbit splitting in this state is expected to be smaller than the 139 

cm-1 of OHen).37 The expectation values of the. spin operator, <82>, listed in 

Table 6-VI indicate that spin contamination is not a problem in the unrestricted wave 

function; a pure doublet state has <82> = 0. 75_ 

A schematic of the molecular orbitals for OHF- is shown in Figure 6-6. This 

qualitative figure will be used later to explain the different neutral electronic states 

and their relationship to anion photodetachment. The 2TI ground electronic state is 

the configuration shown in Figure 6-6. There is a low-lying 2r state, which results 

on promoting a 6cr electron to the 21t orbital. This state has a single minimum at 

o-.. HF; it does not correlate to ground state OH + F-. Collinear potential cuts 
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along the Ron coordinate for the 2n and 2~ states are shown in Figure 6-7. The 2n 

curve is very similar to that shown for CH30HF- in Figure 6-5. Table 6-VI contains 

the harmonic frequencies of the ground 2n state. The 0-H stretching frequency, 2015 

cm.·1
, is significantly. reduced from the value in free OH and is also lower than the 

same mode (also ffi:J) of CH30HF-. The 0-F stretching frequency, ro1, at 433 cm·1 is 

higher than COg of CH30HF-. These two frequencies will be used to describe the anion 

wave function in the simulation below. The bending vibration has two components 

for the linear ground state of OHF-, as expected for a linear molecule in a degenerate 

electronic state.52 

Dissociation energies: Accurate ab initio estimates of bond dissociation energies are 

normally difficult to calculate. However, for dissociations that do not involve breaking 

of a bonding pair of electrons, as is the case here, correlation corrections are relatively 

small and ab initio methods can yield reliable energies.53 As can be seen in 

Table 6-V, even the Hartree-<Fock estimate for the hydrogen bond strength of 

CH30HF-, with respect to dissociation to CH30H + F-, is in fairly close agreement 

with the experimental value (D~98 = 1.28 eV). Handy et aL~ have shown that the 

M0ller-Plesset Perturbation Theory treatment is convergent and reliable for 

interaction energies if bond breaking or curve crossing does not occur. Chalasin8ki55 

demonstrated that MP2 calculations with standard basis sets, when corrected for basis 

set superposition error (BSSE), yield quantitative estimates of hydrogen bonding 

energies. It is important to recognize that for estimating correlation corrections to the 

hydrogen bond dissociation energies, the size-consistent MP methods are to be 

preferred over configuration interaction (CI) methods. 

.. 
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The calculated hydrogen bond dissociation energies D0

0, defined earlier, are 

shown in Table 6-V and Table 6-VII. OHF- is calculated to be more stable with 

respect to dissociation than CH30HF-. As ,mentioned earlier, the binding strength 

of CH30HF- has been measured25 whereas that of OHF- has not. To compare the ab 

initio value for CH30HF-with the experimental value, we must convert D0

0 to a bond 

enthalpy at 298 K.55 Using the MP2 harmonic frequencies of CH30HF- (Table 6-IV) 

and CH30H, and assuming that the change in the average rotational energy on 

dissociation is zero, we calculate ~H0

298(CH30HF- ~ F- + CH30H)= 1.32 eV (30.4 

kcaVmol) at MP2 and 1.29 eV (29.8 kcaVmol) at'MP4 compared. to the experimental 

value .of 1.28±0.04 eV (29.6±1 kcaVmol). 25 It appears that the ab initio estimate is 

in very good accord with the experimental data, placing confidence in the MP4 D0

0 

estimate, 1.48 eV (34.0 kcaVmol), for OHF-. 
,. 

It should be noted that no correction is made for basis set superposition error 

in these calculations. Further it appears that the· correlation correction to fourth 

order for the D0

0 of CH30HF- is more fully converged than that for OHF-. Thus it 

is probable that higher order corrections will be required for the latter ion. The fact 

remains that the OHF- anion is predicted to have a stronger hydrogen bond than 

CH30HF- at every level of correlation treatment. This is shown not only in the 

dissociation energy but also in the stronger perturbation to the 0-H stretching · 

frequency, the higher F-0 stretching frequency and the more central positioning of the 

hydrogen between the end atoms. This result is also supported by the experimental 
I 

observation that the photoelectron band origin for OHF- is shifted to lower electron 

kinetic energy by 0.3 e V over CH30HF-. 
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3.3 Simulation of the OHF- photoelectron spectrum 

In this section, we simulate the OHF- photoelectron spectrum using our ab 

initio results for QHF- along with the ab initio potential energy surfaces developed 

for the F + OH reaction by Sloan and co-workers.23 By comparing the simulated and 

experimental spectra, we can learn about deficiencies in the F + OH potential energy 

surface. We have previously described a fully quantum dynamical method that will 

simulate the dissociative photoelectron spectrum of a liriear triatomic AHB-. 7 This 

method, which is based on the wave packet propagation technique of Kosloff and 

Kosloff,56 treats dynamics along the two stretching coordinates exactly. It assumes 

all nuclear motion takes place on a collinear potential energy surface. 

An initial wave packet cp(O), which, within the Franck-Condon approximation, 

is the anion ground vibrational wave function, is propagated on the neutral potential 

energy surface according to 

lcp(t)) = e·ifltth lcp(O)). (7) 

Here e·i At ' 21 is the time evolution operator and H is the Hamiltonian for the neutral 

surface. The overlap of cp(t) with cp(O) defmes the time autocorrelation function C(t): 

C(t) = (cp(O) I cp(t)) (8) 

and the Fourier transform of this complex function yields the photoelectron 

spectrum:57
'
58 

cr(E) oc ~ :xp(iEt I h) C(t) dt. ) __ (9) 

The simulation makes use of the collinear ab initio surfaces which have been 

developed for the lowest triplet and singlet channels of the F + OH system.23 Sloan 

t ' 
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-and coworkers evaluated energy points across the two surfaces using a multi-reference 

configuration interaction (MRCI) scheme, employing the multi-reference analog of 

Davidson's correction59 to extrapolate energies to full configuration interaction (FCI). 

To calculate the entire collinear surfaces the authors were constrained to use of the 

relatively small 4-31G basis set. The surfaces were each fitted to a Rotated Morse 

Oscillator Spline (RMOS)·function.60 The authors went on to show that the barrier 

height on the lowest triplet surface remained virtually unchanged when the basis set 

was improved to dov.ble zeta plus polarization (DZP) quality. We shall first consider 

only the lowest surface for the collinear reaction F(2p) + OHerr) ~ HFe1:+) + 0(3P) for 

our simulation. This surface has 3IT electronic symmetry, and a classical barrier of 12 

kcal/mol at RoH = 1.08 A and ~F = 1.32 A. 

Together with the neutral potential s¢ace, we also require the wave function 

for the ground vibrational state of the anion. The wave function is assumed to be 

separable along the two normal coordinates, Q1 and Q3• To construct this vibrational 

wave function, we use our MP2 values for the anion equilibrium geometry (ReHF and 

Re0 H) and frequencies (c.o1 and c.o3 ) for the two stretching vibrations. The following 

transformation from internal coordinates (in A.) to normal coordinates (in amu112 ·A.) 

is derived from the ab initio Cartesian force constant matrix: 

(10) 

(11) 

In the simulations carried out for the BrHI- photoelectron spectrum,7 the 

experimental intensity distribution was impossible to model without including 

anharmonicity along the Q3 coordinate for the anion. The anion potential surface was 
( 
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therefore described by the sum of a Morse potential for the v3 mode and a harmonic . 

potential for the heavy atom v1 stretching mode. For OHF-, the MP2 potential energy 
·-

cut along the RoH coordinate can be fit to a Morse function; this is shown in 

Figure 6-7. The RoH coordinate is an extremely good approximation to Q3 if RoF is 

kept fixed, as seen in Equations (10) and (11), so the Morse potential in Figure 6-7 is 

assumed to be the potential energy along the ~coordinate. The one-dimensional fit 

to this function yields roe= 2015 cm·1 (as expected from Table 6-VI) and roe~= 350 

cm·1
• A harmonic potential is constructed along Q1 using the MP2 frequency (433 cm-1

) 

from Table 6-VI. The required initial wave packet, 4>(0), is then set equal to the 

ground vibrational wave function of this anion potential surface. 

The simulation is performed by propagating the initial wave packet on a grid 

in two dimensions, under the influence of the neutral collinear potential surface. The 

propagation is continued until all flux has left the grid. Abso.rbing boundaries are 

imposed at the edges of the grid;61 this device greatly reduces the configuration space 

the grid must span, and thus, the calculation time. All computational details of the 

method are contained in ref. 7 and the relevant parameters are listed in the figure 

captions for each simulation. Figure 6-8 shows the simulated photoelectron spectrum 

of OHF- resulting from wave packet propagation on the 3n ab initio surface. The 

result is exact within the collinear approximation. 

Figure 6-9 shows the wave packet dynamics that give rise to this simulation. 

The potential surface is plotted in the mass-scaled coordinates defined in ref 7; 

essentially x == 3 RoF andy = RoH· These coordinates almost exactly parallel the 

normal coordinates of the ion Q1 and Qa. The first frame (Figure 6-9a) shows the 

initial wave packet, corresponding to the anion wave function. The asymmetric shape 
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of the wave packet derives from the pronounced anharmonicity along ~- The wave 

packet sits right over the saddle point of the reaction surface (marked in the Figure 

with a cross), underlining the sensitivity of the photoelectron spectrum to features of 

the surface at the saddle point and to the magnitude of the barrier height. The initial 

wave packet also extends into both the reactant valley and around the reaction 

'comer' into the product valley. 

The following frames of Figure 6-9 show the bifurcation of the wave packet into 

both valleys; the subsequent disappearance of the wave packet out to fragments is 

very swift. The component of the wave packet exiting out to oeP) + HF has a faster 

rate of disappearance from the Franck-Condon region than the component travelling 

down the entrance valley. The latter component, moving parallel to the x axis and out 

to F + OH, shows little vibrational excitation as compared to that moving in the 0(3P) 

+ HF exit valley, where considerable nodal structure, corresponding to HF vibrational 

excitation, is seen perpendicular to· the direction of motion. In Figure 6-9d the last 

component of the wave packet is seen leaving the grid; the shape of the wavepacket 

is distorted here because of the absorbing boundary. 

In accord with the extremely fast movement of the wave packet away from its 

nascent position on the neutral potential energy surface, the autocorrelation function 

shows very fast decay and evidence of only a weak recurrence. The absolute value of 

the autocorrelation function, I C(t) I, is plotted in Figure 6-10. The fast fall-time is in 

strong contrast with the long-lived recurrences in the autocorrelation functions 

calculated for bihalide photodetachment.7
•
62

•
63 The Fourier transform of this 

autocorrelation function yields a broad, but structured, simulated photoelectron 

spectrum and it is this that is shown with the dashed line in Figure 6-8. 
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In this simulation, the two low intensity peaks between the product and 

reactant asymptotes are from transitions to states of the complex that correlate to 

different product HF vibrational levels. The single, more intense feature near the 

reactant asymptote is narrower than the other peaks (FWHM < 200 me V versus =300 

meV). This peak is most likely due to the component of the wave packet moving out 

along the entrance valley to F + OH, which, as noted above, leaves the Franck-Condon 

region more slowly than that departing along the exit valley. 

To confirm these 'assignments', we have performed a one-dimensional 

simulation that treats only the potential along they, or R08, coordinate with the mass 

weighted coordinate x fixed at its value for the ion equilibrium geometry, xe. This, to 

a good approximation, is the effective potential for the hydrogen stretching v3 mode.7 

In Figure 6-11 these one-dimensional potentials for the anion and neutral are shown 

along with the first few eigenvalues and eigenfunctions supported by each potential. 

The anion potential is the 2Il Morse potential shown in Figure 6-7, and the neutral 

potential results from taking a cut through the fitted ab initio F + OH surface at 

x = xe. By computing the Franck-Condon overlap between the ground state wave 

function supported by the anion potential with the first few neutral wave functions, 

a simulated stick spectrum, shown also in Figure 6-8, is generated. 

The one-dimensional stick spectrum consists of a progression in the v3 mode 

ofthe [OHF] complex; the peak labels in Figure 6-8 correspond to the energy levels 

in Figure 6-11. Peaks 0, 1 and 2 result from transitions to the 0 + HF product (exit) 

valley, while an inspection of the one-dimensional neutral wave functions 

(Figure 6-11) shows that the v3 = 3level is localized in the F + OH reactant (entrance) 

valley. Peak 3 in th~ one-dimensional simulation lines up with the intense peak in' 

·-
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the two-dimensional simulation, indicating that the latter is indeed due to· a state of 

' 
the complex localized in the reactant valley. Peaks 0 and 1 apparently correspond to 

the two peaks in the two-dimensional simulation between the reactant and product 

asymptotes, although the one-dimensional peaks occur at slightly higher electron 

kinetic energy. The comparison between the simulations suggests that peak 2 is 

hidden as a shoulder in the two-dimensional simulation. In fact, the intense peak in 

the two-dimensional simulation has a definite asymmetry and it can be readily 

confirmed that there is an intensity contribution, corresponding to the v3 = 2 stick, on 

the high electron energy side of this peak. The one-dimensional treatment is 

approximate in that it does not consider overlap at different values of x, and the time-

scale separation of x andy is strictly only appropriate for extreme heavy-light-heavy 

systems.5 It is these inadequacies that are presumably responsible for the one

dimensional sticks not coinciding with the centers of the two-dimensional peaks. 

However this analysis does provide some insight into the appearance of the two-

dimensional simulation. 

Let us now compare the simulated and experimental spectra (Figure 6-8). The 

two-dimensional peak widths and the spacings of the product progression agree 

reasonably well with experiment, and the intensity distribution is in qualitative 

agreement with the experimental profile. The overall agreement between 

experimental and simulated peak widths is particularly striking as it indicates that 

rapid dissociation on a collinear surface can explain the broad experimental peaks. 

On energetic grounds we assign peaks. A-D to states of the [OHF] complex that 

dissociate to 0 + HF products. Based on the one- and two-dimensional simulations, 
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we assign the intense experimental peak at 0.80 eV (E, Figure 6-3) as a reactant peak: 

a state of the [OHF] complex that dissociates to F + OH reactants. 

However, in Figure 6-8, the one- and two-dimensional simulations have been 

shifted by 0.22 e V to higher electron kinetic energy so that the experimental peak E 

lines up with the most intense· simulated peak. An even larger shift would be 

expected if the simulation had been performed on a comparable three-dimensional 

potential energy surface rather than the collinear surface used here; this additional 

shift will be approximately equal to the bending zero point energy near the saddle 

point on the three-dimensional surface. 64
•
65 This bending zero point energy is 

estimated to be ""'0.05 eV.66 Thus simulations on a comparable three-dimensional 

surface would need to be shifted by about 0.27 eV to higher electron kinetic energy. 

The significance of this shift is discussed in the following section. 

In our analysis of the bihalide spectra,5
•
7 we commented extensively on the role 

of excited electronic states of the neutral in our photoelectron spectra, and 

contributions from excited states are likely in the spectra presented here as well. For 

the F + OH system, we can explicitly model the contribution of one excited state, the 

1 fl. state, tO the photoelectron spectrum, because a potential energy surface is available 

for this state.23 We shall defer a full discussion of the electronic structure ofthis and 

other excited states until later, but here we show the results of performing an 

identical simulation, using the RMOS 1fl. surface of Sloan and coworkers, to that 

described above for the 3D surface. The wave packet dynamics should be quite 

different on the 1fl. surface, which adiabatically connects F + OHen) to 

HFer) + oeD). This is an endoergic process for which the barrier is expected to lie 

on the oeD) + HF side of the potential energy surface, and this is borne out by the ' :1 
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ab initio calculated surface. Thus, photodetachment to the 1A surface- should result 

in less overlap with the saddle point region than photodetachment to the an surface. 

Figure 6-12 shows the co~tribution of the 1 A simulation to the overall 

photoelectron spectrum. Both the an and 1A simulations have been shifted to higher 

electron kinetic energy by the same 0.22 e V discussed above. The electronic transition 

dipole moments for transition from ion ground state to the neutral an and 1A states 

have been set in the ratio 1:5 to best reproduce experiment, in the absence of any 

other data. By including the 1A state, the simulation now reproduces the broad 

experimental peak (F) at 0.45 e V. The overall agreement between the simulated and 

_experimental spectra is quite remarkable considering that all potential parameters are 

the 'raw' ab initio ones, including the energy separation between the two electronic 

state progressions. This would seem to be strong evidence for the overlapping 

contribution of excited states in the experimental photoelectron spectrum. 

4. Discussion 

4.1 OHF- photoelectron spectrum 

Let us return to consider the neutral reaction surface that dominates the 

OHF- photoelectron spectrum, the an surface. We wish to assess how realistic this 

surface is, and apply what we learn to the fluorine + alcohol reaction surfaces. 

Although there is .qualitative agreement between the simulated and experimental 

profiles, there are some serious deficiencies. We shall discuss these discrepancies, and 

some possible causes, in the hope of obtaining a more detailed picture of the neutral 

potential energy surface in the transition state region. 
~ 
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The three major areas in which the theoretical fit differs from the experimental 

spectrum are (i) the number of peaks in the product vibrational progression and their 

positions relative to the reactant peak, (ii) the large shift required for the entire 

simulation, and (iii) the intensity distribution of peaks corresponding to product 

states. These ·deviations are almost certainly due to discrepancies in the neutral 

potential energy surface and/or the equilibrium properties of the anion. Because ab 

initio descriptions ofpotential minima are known to be predicted to a higher degree 

of accuracy than points on a global surface far away from minima, we shall make the 

assumption in the following discussion that the anion structure and dissociation 

energy have been correctly described, and that all changes need to be made to the 

neutral surface. This is not likely to be completely true, but merely reflects the likely 

relative error bars on the two calculations. 

One obvious problem is that the reaction exoergicity on the RMOS an surface 

is incorrect. TheRMOS fit to the FCI/4-31G exoergicity is 1.198 eV as compared to 

the experimental value, 1.502 eV (these figures reflect bottom of the well energies for 

the diatomic molecules). Sloan et al. have shown that this problem stems mainly from 

the basis set used in the ab initio calculation.23 This gross defect is certainly 

contributing to the absence of any structure in the simulation at electron kinetic 

energies higher than 2.0 eV (Figure 6-8). With the surface as is, it is energetically 

impossible for a state to exist with an energy corresponding to the step at highest eKE 

in the experimental spectrum. Clearly, in any attempt to improve the simulation by 

changing the neutral potential energy surface, the exoergicity should be corrected. 

The other feature of the F + OH an surface that calls for some adjustment is 

the barrier height. A major discrepancy between the simulation on theRMOS surface 
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and the experimental spectrum was that the simulated band origins had to be 

displaced to higher electron kinetic energy to get the largest feature (assigned to the 

reactant channel) to match the experimental peak. For the 3ll surface, the saddle 

point lies in the center of the Franck-Condon region, so lowering the barrier height 

will shift the spectrum in the required direction. As the shift required, 0.27 eV, is 

considerably larger than the expected error in the ion binding energy(< 0.15 eV), it 

seems probable that the barrier on the reaction surface is indeed too high. 

To show the effect of using a smaller barrier we have performed two further 
I 

simulations. We first scaled67 theRMOS surface so as to reproduce the experimental 

exoergicity; this yielded a surface we shall call RMOS-A. A further round of 

scalin~8 was performed on RMOS-A in order to approximately halve the barrier to 
. - -

0.24 eV (5.5 kcal/mol). This surface we denote RMOS-B. _These surfaces are not 

suggested as optimized potential functions that reproduce our data, but they do 

demonstrate the result of some very simple improvements over the pure ab initio 
( 

surface. The simulated photoelectron spectra calculated on each of these surfaces, 

while ignoring the 1Ll state, are shown in Figure 6-13. The changes are significant. 

The RMOS-A simulation shows three, rather than two, resolved members of the 

product vibrational progression. In particular a feature corresponding to experimental 

peak D now appears. However the entire simulated spectrum must still be shifted, 

again to higher electron kinetic energy, to align the simulated reactant peak with the 

experimental peak E; for this surface the shift is 0.23 eV, or 0.28 eV including the 

zero point bend correction. 

In the RMOS-B simulation (Figure 6-13b), when including the zero point bend 

correction, no shift is required to line up experimental peak E with the intense peak 
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in the simulation. Decreasing the barrier height has thus removed the discrepancy 

between the energetics in the simulated and experimental spectra. The simulated 

peaks are still quite broad, in agreement with experiment. However, only two product 

peaks are discernible in the RMOS-B simulation, just as in the first simulation in 

Figure 6-8. As in that simulation, the third peak in the product progression is hidden 

under the intense reactant· peak. Essentially, in comparison to the RMOS-A 

simulation, lowering the barrier has shifted the intense reactant peak to higher 

electron kinetic energy while not affecting the product peaks, thereby obscuring the 

third product peak that appeared in theRMOS-A simulation. 

One important feature we have not attempted tp change is the location of the 

saddle point on the F + OH surface. This is likely to have a major effect in a 

simulation. In particular, if the barrier occurred earlier in the F + OH reactant 

valley, the anion would have better overlap with states of the [OHF] complex that 

dissociate to 0 + HF products and these states would be shifted in energy closer 

toward the product asymptote. 

In any case, the simulation on the RMOS-B surface has shown that a lower 

barrier can eliminate the need to shift the spectrum. Considering the errors in the 

calculated ion binding energy and the approximate treatment of the zero point 

bending energy we conclude that a realistic barrier height for the 3TI surface is in the 

range 0.09- 0.39 eV (2- 9 kcallmol). This result is significant as it implies that even 

·at room temperatures direct hydrogen abstraction may compete with the non-adiabatic 

pathway suggested by Sloan et al. 

Is this proposed barrier height reasonable? By comparison to other reactions 

of fluorine, the original ab initio barrier, 12 kcallmol, might be considered 

I I 
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unreasonably large for an abstraction reaction of this type. In general, ab initio 

reaction barriers reported are consistently too high, even with what must be 
(' 

considered current state-of-the-art methods.69
•
70 It is .very likely that problems of 

incomplete basis set, and thus errors resulting from basis set superposition error, will 

be manifested in the raw fitted ab initio surface used here. 

The Evans-Polanyi relationship71 between reaction exoergicity and barrier 

height states that the larger the exoergicity, the lower and earlier the classical barrier 

is on the reaction potential surface. This postulate has been well tested for hydrogen 

abstraction reactions. From this postulate, it would be expected that the reactions 

studied here-would occur on surfaces with barriers comparable With that for F + ~ 

and smaller than that for F + H20 (see exoergicities in Table 6-1). Stevens et al.72 

have estimated a 4 kcaVmol barrier for F + H20; the classical barrier height for 

F +~.although subject to some controversy, is currently considered to be 1.4- 2.5 

kcaVmol.69
•
70 The larger exoergicity for F + OH and F + HOR would seem to indicate 

that the barriers for direct abstraction for both reactions should be in the range 1 - 2 

kcaVmol. The result of our simulations, while in agreement with a substantially lower 

barrier than that calculated ab initio for F + OH, seem to suggest a barrier somewhat 

higher than that predicted by the Evans-Polanyi relationship. 

It is to be hoped that an ab initio reaction potential surface ofimproved quality 

can be generated which will confirm the lower barrier height for the direct abstraction 

process. In order to fully model the spectrum, it may be necessary to develop excited 

state potential energy surfaces as well. The role of low-lying excited surfaces is 

explored in part (c) below. 
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4.2 CH30HF- and CJ{50HF- photoelectron spectra 

The above discussion and simulations on the F + OH an surface serve as a 

model for understanding the photoelectron spectra of the alcohol complexes. The 

similarity of the OHF- spectrum to those of the polyatomic systems encourages one 

to think that the effect of the alkyl group "is small, and that the ROHF- spectra can 

be largely explained by the analysis of the OHF- spectrum. In particular, the basic 

step structure and the peak widths observed can be understood in terms of the two

dimensional model above, the differences in intensity distributions in the three spectra 

are explained by the differing position of the bridging hydrogen in the ion, and the 

missing low electron energy peak in the ROHF- spectra (peak F in the OHF

spectrum, Figure 6-3) is attributable to the differing electronic structure in the 

[ROHF] and [OHF] complexes (see below). 

However, as pointed out above, the features in the ROHF- spectra are, in 

general, broader than those in the OHF- spectrum. One could blithely attribute this 

to the presence of additional vibrational modes in the polyatomic systems. We would 

like to examine this more quantitatively to ascertain which, if any, ofthese vibrational 

modes play a major role in the appearance of the ROHF- photoelectron spectra. We 

do this by attempting to determine which of the additional modes in the polyatomic 

ROH and RO fragments are excited subsequent to ROHF- photodetachment. These 

are referred to as 'bath' modes; in the case of CHaOHF- photodetachment, these 

include all the CHaO vibrations and all the CHaOH vibrations except the 0-H stretch. 

We consider which fragment modes are excited solely on the basis of the 

differences between the geometry of the neutral complex created by photodetachment 

and the equilibrium geometries of the fragments. This is a variation of the 'Franck-

; 

I I 
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Condon picture' which has been shown to provide a reasonable zero-order description 

of fragment excitation in photodissociation experiments.73 In the classical picture of 

photodetachment, the nuclear configuration of the neutral complex formed is the same 

as the equilibrium geometry of the ion. The displacement of the C, Hand 0 atoms 

in the [CHaOHF] complex from the equilibrium geometry of free CH30H and CH30 

will then lead to vibrations in the bath modes of these species. Mapping these 

displacements into changes along each of the normal coordinates of the free fragment, 

we can estimate the degree of vibrational excitation in each of the fragment modes. · 

As a guide, we shall use the ab il:titio changes in bond lengths and angles in the 

methoxy frame from CHaOHF- to CH30H and CH30. 

The ab initio calculations (Table 6-III) show that the changes in geometry in 

the CH30 frame between CH30HF- and CH30H, while small, are principally in the 

C-0 bond length and the bond angles about the carbon atom; the LCOH angle is not 

dramatically altered. Further the calculated MP2 force field of CHaOH gives us the 

normal coordinates for this molecule. By performing the transformation of the MP2 

internal coordinate changes into CH30H normal coordinates displacements, we 

determine which bath modes receive excitation· in this simplified photodetachment 

process. The only mode appreciately excited is v7 '(CHa rock), whose observed 

fundamental frequency is 1060 cm·1
• 

35 The degree of vibrational excitation is, 

however, still small; if we compute Franck-Condon factors assuming two harmonic 

oscillators of the same frequency, for anion and neutral, displaced by the calculated 

value, a short progression is predicted with a (v=l)/(v=O) peak intensity ratio of 14%. 

The changes in geometry from CHaOHF- to CHaO are also small; for the CHaO 

equilibrium geometry we use the UMP2/6-31++G** optimized structure calculated in 
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C
8 
symmetry, which describes the lower Jahn-Teller component (A').42 Performing the 

the internal coordinate transformation into displacements of CHaOeA') normal 

coordinates (this time derived from the UHF/6-31++G** force neld of CHaO), we 

determine that no mode is significantly excited, i.e. no mode has (v=l)/(v=O) intensity 

ratio greater than 5%. 

This 'Franck-Condon picture' therefore predicts relatively small effects in the 

CHaOHF- spectrum from the presence of additional vibrational modes. While this 

treatment is quite approximate in that it is largely independent of the details of the 

potential energy surface in the F + CHaOH transition state region, we point out that 

the product state-resolved studies19 show that only 2% of the energy released in the 

F + CHaOH reaction appears as vibrational excitation in the Va C-0 stretching mode 

.of CHaO. Although this was the only product vibrational mode investigated, these 

results suggest that the bath modes play only a minor role in the dynamics of the F 

+ CHaOH reaction. 

We still are faced with the question of explaining the differences in widths in 

the OHF- and CHaOHF- photoelectron spectra. Our ab initio calculations indicate 

that the COH angle remains strongly bent in CHaOHF-, as in CHaOH. Therefore 

some of the energy released in the dissociation of the [CHaOHF] complex to HF + 

CHaO (by far the more exothermic channel) is likely to end up in rotational motion of 

both fragments. This rotational excitation may well provide a mechanism for adding 

width to the peaks that correspond to HF + CHaO product states. 

It is also worth noting that the precursor QHF- and CHaOHF- anions are 

most likely characterized by a non-zero temperature and some degree of vibrational 

excitation will be present. In QHF-, the 0-F vibration is calculated to have the 
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lowest frequency (ro1 = 433 cm-1
), whereas in CH30HF-there are three low frequency 

modes (Table 6-IV): COg = 391 cm·1 (0-F stretch), ro10 = 167 cm·1 (FOC bend), and ro15 

= 77 cm·1 (hindered rotation). Assuming the two anions are formed at the same 

temperature, the excitation ofthe additional low frequency modes in CH30HF-could 

lead to broader features in the photoelectron spectrum. 

4.3 Electronic effects 

In the analysis of the photoelectron spectra of BrHI-, CIHI- and FHI-, we 

presented7 a full discussion of the role of multiple neutral el~ctronic surfaces. For the 

F + CH30H and F + CJI50H systems the situation is similar to those X + HY 

systems. In the entrance valley, the three-fold spatial degeneracy of the 2P F atom 

(neglecting spin-orbit interactions) is broken by the approach of ROH, and all three 

resultant states may contribute to the photoelectron spectra. The states that 

correspond to approach ofF on the H-0 ,axis ofHOR with the unpaired electron in a 

1t type orbital will be much more repulsive than the ground state a type interaction. 

Morokuma et al. 74 have shown from ab initio work that there is a contribution from 

the first electronically excited neutral state in the photoelectron spectrum of ClHCl-

. that closely overlaps the band to the ground state. Experimentally we have recently 

determined that transitions to excited F + ~ potential energy surfaces overlap 

transitions to the ground state surface in the photoelectron spectrum ofF~ -.75 It 

is reasonable to expect this to occur in the ROHF- spectra also. 

For F + OH there are many more low lying electronic states than for X+ HY, 

even when ignoring spin-orbit coupling and constraining the geometry to be linear. 

These can be considered either by constructing a full correlation diagram or by using 
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the molecular orbitals of the anion (Figure 6-6) and depicting the various [OHF] states 

formed upon removal of an electron. The latter is simpler and more useful as it 

includes the selection rule for a photodetachment process, namely that only one

electron processes are allowed. This reduces the nup1ber of neutral states to be 

considered. Sloan et al. considered four potential surfaces, 3TI, 3~, 1~, and 1TI, all of 

which are accessible from the 2TI anion.23 We have already looked at two of these 

potential energy surfaces in the simulation section. 

To estimate if the other states will play a role in the photoelectron spectrum 

we have performed an ab. initio calculation for the electronic energy of each state at 

the anion geometry. Table 6-VIII shows these energies, and the electronic 

configurations of each state with reference to anion molecular orbitals shown in 

Figure 6-6. These energies, which should be viewed as crude estimates only, indicate 

roughly where maximum intensity will occur in a photoelectron band to this state. 

They do not indicate where the onset of vibrational (or continuum) structure 

assignable to the respective surface would occur in the photoelectron spectrum. The 

energies in Table 6-VIII are calculated using single-reference wave functions that also 

suffer from spin contamination; the effects of the latter have been projected out by 

the standard method available in the Gaussian 88 program. 76 The above ab initio 

problems were not an issue for the anion calculations presented earlier. In 

comparison to the results in Table 6-VIII, the multi-reference calculation of Sloan et 

al.23 orders the states slightly differently: 3TI, 3r., 1~, 1TI. Further theRMOS fitted 

surfaces yields a 3TI- 1~ separation at the anion geometry of only 0.63 eV. Apparently 

all four surfaces should be considered before assigning all of the. experimental 

I 1 
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spectrum's features. In addition, the inclusion of the spin-orbit interaction will result 

in even more potential energy surfaces to be considered. 

5. Summary 

We have shown that the photoelectron experiment successfully probes the 

transition state of an asymmetric triatomic hydrogen abstraction reaction, namely the 

F + OH reaction. The nature of the system, where all atoms are first row and 

consequently few electrons are involved, makes it amenable to a high level ab initio 

potential surface characterization. We hope the results presented here will stimulate 

such theoretical interest. The photoelectron spectra of CH30HF- and CJI50HF

have demonstrated the extension of our method to polyatomic reactions, and have 

shown that vibrational structure at the transition state can still be resolved even 

when the transition species has ten atoms. The interpretation of our spectra is 

relatively simple at a qualitative level and mirrors the work on the bihalide systems. 

A simulation that explicitly treats the collinear dynamics ofF + OH, using a multi

reference ab initio potential surface, has been performed and yields reasonable 

agreement with the experimental result. 

However a detailed understanding of the spectra is clouded by a number of 

difficult theoretical questions. The simulation for the F + OH system assumes that 

the transition state is collinear, and ignores the effect of the bending degree of 

freedom on the· dissociation dynamics and, thus, on the photoelectron spectra. 

Schatz77 has reviewed the theoretical formalism ofphotodetachment to the transition 

state of a bimolecular reaction in three dimensions. Schatz has also compared the 

results of exact collinear treatments, like this one, with three-dimensional J=O 
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Coupled Channel Hyperspherical (CCH) simulations for the ClHCl- and IHI-:-

photoelectron spectra. He finds good agreement in the qualitative features. For the 

bihalide systems, the assumption of a collinear transition state is more reasonable 

than it is here. There is considerable evidence78 that the 0(3P) + HCl ~ OH + Cl 

reaction proceeds via a bent transition state; Gordon et al. 79 have calculated the 

saddle point geometry and find L OHCl = 138°. The question then arises whether the 

collinear 3ll interaction 0(3P) + HF is also unstable with respect to bending, and 

whether a bent transition state is preferred for this reaction also. However a major 

difference between the two reactions is that 0 + HCl is approximately thermoneutral 

whereas 0 + HF is endoergic by 34 kcallmol. The similarity in the OHF-, 

CH30HF-, and C2H50HF- spectra indicates that the pseudo-triatomic model fairly 

successfully describes the polyatomic systems' spectra. However development of 

theoretical methods of treating polyatomic reaction systems is clearly desirable. 

Further experiments from this laboratocy will be forthcoming on transition state 

spectra for tetra-atomic systems, the results of which should be able to test theoretical 

methods for such systems. 
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Table 6-1: Hydrogen abstraction reactions of Fluorine 

I 
Reaction 

I 

mo a _.1EO b ~98 c E d 
298 0 b 

kcal/mol kcal/mol 1011cm3s·1 kcallmol 

F +H-Oe -34.0 -34.0 4.1 

F + H-OCH3 -32.2 -32.6 7.7 

F + H-OC~5 -32.0 -32.3 6.3 

F+H-H -32.1 -32.1 2.5 -2 

F + H-OH -17.2 -17.5 1.4 4 

F + H-C~OH -42.2 -42.9 1.7f 

F + H-CH(CH3)0H 
and -43.2 -43.9 1.4f 

F + H-CH2CH20H 

a) Exothermicity, LU!0
298, calculated from DH298(H-X) forCH30H (ref. 31), C2H50H 

(ref. 32), H20 (ref. 33), H-CH20H and H-CH(CH3)0H (ref. 34) and D0

0 for OH, 
~ and HF (ref. 37). 

b) Exoergicity, 8E0o, calculated by correction to mo298 using vibrational 
· frequencies for CH30H and H20 (ref. 35), CH~O and CH20H (ref. 36); 
vibrational corrections for ethanol reactions assumed equal to those of 
methanol.· All molecules are assumed to be ideal gases, and both hindered and 
full rotations are treated classically. 

c) Kinetic data collected from refs. 12, 17, 22, and 72. 

d) Estimated classical barriers from refs. 69, 70, and 72. 

e) Products 0(3P) + HF. 

f) This is the· measured rate divided by the number of available chemically 
equivalent hydrogen atoms for abstraction. 
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Table 6-II: Estimated peak centers and widths from the photoelectron spectra of 
QHF-. Onsets of four highest energy steps are also given. All energies in eV; 
approximate uncertainties shown in parentheses. 

Electron kinetic energy 

Peak Onset a Centerb Widthb 

A 2.46 (0.01) 2.25 (0.02) 0.35 (0.03) 

B 1.95 (0.02) 1.82 (0.02) 0.31 (0.03) 

c 1.51 (0.02) 1.38 (0.04) 0.30 (0.04) 

D 1.16 (0.02) 1.01 (0.02) 0.30 (0.04) 

E 0.80 (0.01) 0.15 (0.03) 

F 0.45 (0.03) -0.4 

a) Step onsets are measured at 50% of rising edge. 

b) Centers and widths are estimated by a six Gaussian fit to the photoelectron 
spectrum. Because bands overlap, the estimated uncertainties are large. 
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Table 6-111: Ab initio geometries and zero point energies for CH30HF- and CH30H 

CH30HF- CH30H 

RHF/ RMP2/ RHF/ RMP2/ 
6-31++G** 6-31++G** 6-31++G** 6-31++G** 

Re (0-H) A 1.004 1.059 0.942 0.964 

Re (H-F) A 1.462 1.373 

LOHF 173.8 175.3 

Re (C-0) A 1.376 1.399 1.401 1.427 

LCOH 108.4 106.4 110.5 108.6 

Re(C-~r) A 1.092 1.095 1.081 1.085 

Re(C-Hg) A 1.094 1.099 1.087 1.091 

L OCHtr 109.4 109.3 107.1 106.2 

L~rCHg 107.5 107.6 108.6 108.9 

L HgCHt 107.0 106.8 109.0 109.3 

Zero Point Energy 1.513 1.426 1.496 1.434 
(eV) 
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Table 6-IV: Harmonic frequencies (in cm-1
), calculated with 6-31-i-+G** basis set, for 

CH3oHF- . 

I Mode I RHF I RMP2 II Mode I RHF I RMP2 II Mode I RHF I RMP2. I 
ro1 (a') 3133 3102 ro6 (a') 1600 1498 ro11 (a") 3115 3060 

ro2 (a} 3106 3016 co, (a') 1253 1178 rol2 (a") 1610 1526 

ro3 (a') 2901 2215 COs (a') 1230 1132 rota (a") 1282 1248 

ro4 (a') 1731 1649 COg (a') 333 391 rol4 (a") 1214 1189 

ro5 (a') 1634 1556 ro10 (a') 168 167 rots (a") 94 77 

Table 6-V: Ab initio Energies for CH30HF-, including zero point energies. 

Eo RHF/6-31 ++G**// RMP2/6-31 ++G**// RMP4/6-31++G**// 
Total Energy a RHF/6-31 ++G** b RMP2/6-31 ++G** RMP2/6-31++G** • 

a.u. eV a.u. eV a.u.. eV 

CH30HF- -214.45671 0.000 -215.02240 0.000 . -215.04 730 0.000 
equilibrium I 

F- + HOCH3 

separated -214.41611 1.104 -214.97545 1.278 -215.00124 1.253 
fragments 

CH30- + HF 
separated -214.39208 1.758 -214.95104 1.941 -215.97621 1.934 
fragments 

a) Zero Point energies calculated from' force field evaluated at same level of 
theory as energy, except MP4 where MP2 zero point energies are used. 

b) Notation "af/b" means energy evaluated with theoretical model a at the 
optimized geometry calculated with model b. 

c) RMP4(SDTQ) frozen core energies. 
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Table 6-VI: Ab initio Geometry and Frequencies for OHF-

Method Re (Q·H)a Re (!J-F) LOHF Frequencies <8~ 
A A' (cm-1) 

379 
UHF/6-31 ++G** 1.031 1.400 180.0 1070, 1227 0.756 

2514 
-

433 
UMP2/6-31++G** 1.078 1.346 180.0 1064, 1225 0.752 

2015 

a) Re(O-H) in the free hydroxyl radical is 0.955 A (UHF/6-31++G**), 0.973 A 
(UMP2/6-31++G**) and 0.970 A (experimental,' ref. 37). 

Table 6-VII: Ab initio Energies for OHF-, including zero point energies. 

Eo UHF/6-31++G**// UMP2/6-31 ++G**// UMP4/6-31 ++G**// 
Total Energy" UHF/6-31 ++G** UMP2/6-31 ++G** UMP2/6-31++G** b 

a.u. I eV a.u. eV a.u. eV 

OHF- equilibrium -174.84998 0.000 -175.21214 0.000 -175.22800 0.000 

F- + HOfn) 
separated -174.80273 1.286 -175.16113 1.388 -175.17375 1.476 
fragments 

0-(2p) + HF 
separated -174.78075 1.884 -175.13652 2.058 -115.15280 2.046 
fragments 

a) Zero point energies calculated from force field evaluated at same level of theory 
as energy, except for MP4 where MP2 zero point energies used. 

b) UMP4(SDTQ) frozen core energies. 
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Table 6-VIII: Possible low-lying electronic states of [OHF] accessed in. the 
photoelectron spectrum of OHF-

PUMP4(SDTQ-FC)/6-31G** Electronic Configuration 
energtt at Anion Equilibrium (with reference to 

GeometrY' Figure 6-6) 

a. u. eV 

an -175.033816 0.0 .. 5cr lx4 2xx 1 2x/ 6o1 

3~- -175.009523 0.6 .. 5cr 11t4 2x/ 2x/ scr 
ln -174.931654 2.8 .. 5cr 1x4 2x/ 2x/ 6o1 

1~ -174.911790 3.3 .. 5cr tx4 21t 2 6<f 
y 

a) Spin projected UMP4 energies (see ref. 76) 

b) MP2/6-31++G** anion geometry used, see Table 6-VI 
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Figure Captions for Chapter 6. 

Figure 6-1. 

Figure 6-2. 

Figure 6-3. 

Figure 6-4. 

Figure 6-5. 

Photoelectron Spectra of (top) CH30HF- and (bottom) 

CJI50HF- recorded at 213 nm. Arrows against axis indicate 

energies corresponding to product and reactant asymptotes (see 

text). Step onsets are indicated by arrows above spectrum. 

Photoelectron Spectrum of CH30DF- recorded at 213 nm. 

Arrows as for Figure 6-1. 

Photoelectron Spectrum of OHF- recorded at 213 nm. Arrows 

against the axis indicate energies corresponding to asymptotes 

for formation ofOeP) + HF, F + OH, and oen) + HF, in order 

of decreasing electron kinetic energy. 

Calculated geometry for CH30HF- (top) and OHF- (bottom). 

Bond lengths (A), and angles, are those calculated by full 

geometry optimization at MP2/6-31++G**. 

Potential energy profile along the hydroxyl hydrogen stretching 

coordinate in CH30HF-. Cuts are calculated fixing geometry 

parameters at the MP2/6-31++G** equilibrium values and 

varying RoH· To simplify calculations the F-H-0 angle is treated 

as linear (this increases electronic energy by 2 x 104 a. u.) and 

the RoF is fixed at the sum of MP2 equilibrium RoH and RHF· 

CH30HF- potential variation shown at HF/6-31++G** level 

(dashed - for absolute HF energy subtract 214.527 a.u.) and at 

MP2/6-31++G** (solid - for absolute MP2 energy subtract 

215.077 a.u.) 

: ' 

. ' 
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Figure 6-6. 

Figure 6-7. 

Figure 6-8. 

Figure 6-9. 
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Schematic molecular orbital diagram for OHF-. Orbital 

occupancy shown is for 2ll ground state of anion. 

Potential energy profile for 2ll and 21: electronic states of QHF-

along hydrogen stretching coordinate at MP2/6-31++G** (solid 

lines). Cuts calculated with R0 F held at 2fl state equilibrium 

value. For absolute energies subtract 175 a.u. Dotted line shows 

Morse function used to approximate OHF- hydrogen stretching 

potential for construction of anion wavepacket. 

Simulated OHF- photoelectron spectrum from two-dimensional 

wavepacket propagation on the an RMOS surface (dashed) 

superimposed on experimental spectrum (solid). Also shown is 

the result of a one-dimensional simulation (sticks) described in 

text. Labels above sticks refer to va quantum numbers (see 

Figure 6-11). Both simulations have been shifted by 0.22 eV to 

higher electron kinetic energy (see text). 

Wavepacket dynamics on the RMOS an potential surface. 

Equally spaced contours of I 'P(t) I are superimposed on contours 

of the potential energy for (a) t = 0, (b) t = 31~ (c) t = 62, (d) 

t = 93 femtoseconds. The potential contours drawn are for 

energies 0.25, 0.75, 1.25, 1.75 and 2.25 eV above bottom ofOeP) 

+ HF well, and the saddle point is marked by an X. The 

propagation is carried out in mass-scaled coordinates (defined in 

ref. 7), which are also the coordinates used in the plots, on a grid 

with 128 x 64 points along x andy respectively. A 10 point 



Figure 6-10. 

Figure 6-11. 

Figure 6-12. 
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absorbing strip boundary is used to absorb flux leaving grid (see 

ref. 61). The initial wavepacket (see text for details) is 

propagated for 7680 time steps of 1 a.u. each. 

Absolute value of the time autocorrelation function calculated in 

the two-dimensional propagation on the an RMOS surface. 

One-dimensional potentials for v3 mode in OHF- and [OHF]. 

Anion potential (bottom) is the Morse potential shown in 

Figure 6-7; neutral effective potential (upper) is a cut through an 

RMOS surface at constant x = ~ (see text). Calculated 

eigenstates are labelled by their v3 quantum numbers. 

Simulated OHF- photoelectron spectrum showing contribution 

of an and 1Ll electronic surfaces. Component deriving from the 

1 Ll surface is shown by short dashed line. The sum of two states' 

simulated photoelectron profiles, convoluted with the 

experimental resolution function, is shown by dashed line. Each 

state's profile simulated via independent wavepacket 

propagations; both have been shifted to higher electron kinetic 

energy by 0.22 eV (see text). The initial wavepacket and 

propagation parameters are identical in two simuations, and are 

those given in caption of Figure 6-9. 
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Figure 6-13. 
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Simulated 3ll band (dashed) of OHF- photoelectron spectrum 

using the two scaled RMOS surfaces (see text), superimposed on 

the experimental spectrum (solid). (Top) TheRMOS-A surface 

has the correct reaction exoergicity; the simulated spectrum has 

been shifted to higher electron kinetic energy by 0.23 eV. 

(Bottom) The RMOS-B surface .has the correct exoergicity and a 

reduced barrier height of0.29 eV. This simulated spectrum has 

not been shifted. The initial wavepacket and propagation 

parameters for both simulations are once again identical to those. 

in Figure 6-9. 
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7. Postscript: new experimental results for OHF-

Since publication of this work, we have recorded new spectra of OHF- in our 

laboratory.1 Our signal-to-noise has been much improved and the background due 

to stray electrons has been significantly reduced in the meantime. This has allowed 

to us to record spectra of OHF- with the laser polarized parallel (a= 0°) to the 

direction of electron collection, where the signal is much lower. Figure 6-14 shows a 

comparison of the QHF- photoelectron spectrum at a= 90° (as data shown earlier) 

and a = oo. The feature at lowest electron kinetic energy (labelled F as in preceding 

text) is clearly accentuated relative to all other peaks in the a= 0° spectra. As we 

have already discussed in Chapter 1, this behavior is indicative of transitions 

occurring from the anion to different electronic states, and in these transitions the 

electron is probably being removed from molecular orbitals of different symmetry. 

This result confirms our tentative assignment, which was based only on the wave 

packet simulation analysis, that this single peak Fin the photoelectron spectrum is 

due to a transition to an excited electronic surface of [OIIF], possibly the 1~. This is 

not only rather gratifying but also demonstrates, once again, the power of measuring 

the photoelectron angular distribution in assigning overlapping bands in these 

complicated transition state spectra. 

1. E. H. Kim, unpublished work, 1992 
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Figure caption for 6. 7 

Figure 6-14. QHF- photoelectron spectrum recorded at 213 nm. (Top) 9 = 0°, and 

(Bottom) 9 = 90°. 

I . 
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Chapter 7. Photoelectron Spectroscopy of FH:z- : results for the F + 

para-H:z reaction and analysis of the 2J1 electronic bands. 

1. Introduction 

In this chapter we describe some new results on the photoelectron spectroscopy 

of F~- and extend our analysis of these spectra in the hope of characterizing the 

transition state of the prototype F + ~ reaction. This reaction, along with its D atom 

isotopic variants, has been very extensively studied both· experimentally and 

theoretically, particularly in the description of product and angularly resolved cross 

sections. It is not our purpose here to review that work; Alex Weaver has given an 

excellent historical review of work on this system in her Ph. D. thesis.1 Indeed our 

group has already reported a number of observations on the F + H2 reaction, including 

previous photoelectron results, I,2,a,
4 which are briefly summarized here. 

Our earliest results, the 266 ilm photoelectron spectrum ofFH2- recorded with 

the laser polarized perpendicular to the direction of electron collection, showed little 

detailed structure,2 but allowed comparison with some theoretical results ofZhang and 

Miller on F + ~.5 The FH2 -photoelectron spectrum represented an attractive target 

for Zhang and Miller to simulate with their accurate J=O three-dimensional quantum 

calculation because, in contrast to the full collision experiments, the photodetachment 

spectrum has only small contributions from higher angular momentum states and is 

a particularly sensitive and local probe to the dynamics in the three atom interaction 

region. (See Figure 7-1; the anion equilibrium geometry calculated by Nichols et. at' 

is very close to the saddle point geometry on the T5a potential energy surface7
). 

Subsequently, Weaver et al. reported far more extensive results for F~ -, FD2- and 
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FDH- at two different laser polarizations.3 The results with a= 0°, i.e. with the laser 

polarized parallel to the direction of electron detection, showed very powerfully how 

transitions from the negative ion to excited electronic states could he virtually 

eliminated. The excited state bands overlap and obscure transitions to the ground 

reaction surface in the a = 90° spectra. The F~- a = 0° spectra showed a wealth 

more information than the earlier spectrum, and the isotopically substituted spectra 

provided valuable clues on the origin of the observed peaks. Zhang and Miller 

extended4 their scattering calculations on the T5a potential energy surface, so as to 

simulate the photoelectron spectrum ofF~- over the entire energy range covered in 

the experiment and additionally simulated the FD2- spectrum. In most respects, the 

results agreed very satisfactorily with experiment. The experimental work up until 

·August 1991, and comparisons with theory, have been reviewed in detail in Weaver's 

thesis.1 

The purpose of this chapter is to describe new work in our laboratory, notably 

the synthesis ofF~ -frompara-H2 and the photoelectron spectra of this species, and 

to report improved spectra ofF~- recorded with normal-~. The new normal-~ 

spectra are superior for two experimental reasons: (a) our signal-to-noise for electron 

detection is improved by about a factor of three, and (b) we have constructed a new 

' pulsed nozzle source for these experiments which should allow increased cooling of the 

rotations and internal modes of the F~- anion. Additionally, photoelectron spectra 

ofF~- (normal-~) have been taken at a higher laser photon energy (5.82 eV, 213 

nm) to complete the search for features due to excited electronic surfaces. Along with 

this new experimental work, we have examined several theoretical issues, notably the 

impact of nuclear spin statistics in the anion, and its effect on the photoelectron 
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spectra. We will comment on the treatment of the anion in the theoretical work of 

Zhang and Miller. Finally, quantitative analysis of the contribution of the 

electronically excited states to the e = 90° spectra are presented for the first time, 

including simulations of these bands. Prospects for new experiments on this 

interesting system are discussed. 

2. Experimental 

The instrument employed in this study is the same time-of-flight photoelectron 

spectrometer described in our earlier work on F~ -;2
'
3 therefore here we will describe 

only modifications to the experimental apparatus and the particular details of the 

experiments carried out. F~- ions are made in the source region by clustering of 

F-, produced from dissociative electron attachment to NF3, with~· This is achieved 

by crossing a 1 keV electron beam with a pulsed free jet expansion of reagent gases. 

The reagent gases, in the ratio 8% NF3, 32% ~ and 60% N2 , are allowed to mix 

thoroughly in a stainless steel cylinder before use; at run time the stagnation pressure 

of the mixed gases behind the pulsed valve is 80 psig. 

Ions are made from both normal and para hydrogen. Recall that normal 

hydrogen is a 3:1 mixture of ortho and para hydrogen. The normal-~ used in these 

experiments was obtained commercially and is 99.99% purity. Para-~ was prepared 

by the U. C. Berkeley Department of Chemistry Low Temperature Laboratory. It was 

stored in standard aluminum gas cylinders, so as to reduce the para - ortho inter

conversion, and to reduce any isotopic exchange processes of impurities. The 

concentration of the para-~ on preparation is 99.7%. It has been observed that the 

half life for conversion of para-H2 to normal-H2 when stored in this way is on the 

.-
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order of three to four weeks.8
•
9 In these experiments the para-H2 was used within 

a few days of preparation to make a gas mixture suitable for the photoelectron 

experiment. The NF3 / para hydrogen/ nitrogen gas mixture was only temporarily (few 

hours) held in the stainless steel cylinder for premixing of the gases prior to use. The 

stainless steel surfaces of this vessel were certainly poisoned, as far as their properties 

for catalysis of para - ortho hydrogen conversion, because of prior use of the mixing 

cylinder with other gas mixtures. It is not known, therefore, how much para - ortho 

conversion occurred at this stage, but clearly at least 50% para-H2 remained, else it 

would seem unlikely for us to observe any differences in the photoelectron spectra of 

F~-made from normal-~ and para-~. 

The ion source has been modified from previous experiments to incorporate a 

new higher intensity pulsed valve, which is also more stable in its operation. The 213 

nm spectra reported here, as well as previously published spectra, were recorded with 

the original pulsed valve, a General Valve Series 9, which is of a spring/ solenoid 

design. The new source incorporated a piezo-electric valve, of the design of Proch and 

Trickl.10 This valve accomplishes larger gas throughput in a shorter pulse, and has 

better shot-to-shot reproducibility. Superior cooling of the~ is expected with this 

valve. The electron beam crosses the free jet at 90°. The position the two intersect 

is controlled by deflection of the electron beam. It is found that there is a strong 

variation in the temperature of the ions formed in the source depending on how far 

from the orifice the electron beam interacts with the jet. The ions appear to be 

created colder, i.e. the photoelectron spectrum is less congested and better resolved, 

if the electron beam intersects the jet some 25 mm from the orifice. This is 

considerably further away from the nozzle orifice than we normally operate the source, 
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but the characteristics of hydrogen cooling in a free jet expansion are somewhat 

unusuaL The degree of cooling of the FH2- ions was similarly improved when 

nitrogen was included in the expansion. 

The negative ions are extracted, mass selected and photodetached in the usual 

way.11 Spectra reported here were recorded with lase:r wavelengths of 213 nm (5.82 

eV) as well as 266 nm (4.66 eV). The pulsed laser light is plane polarized; as before 

we can adjust the angle 9 between the electric vector of the laser radiation and the · 

direction of electron detection by rotation of a half-wave plate. The second major 

change to our apparatus has been the upgrade of the electron detector. The electrons 

photodetached by the laser are detected at the end of a 1 meter flight tube, and their 

energy is analyzed by time-of-flight. For this detector we now use a pair of 75 mm 

diameter microchannel plates, rather than a pair of 40 mm plates.12 This increases 

the electron collection efficiency by a factor of 3.5, with a similar improvement in the 

signal-to-noise. There is a slight loss in electron energy resolution; typically the 

instrumental resolution is 12 meV at 0.65 eV, and, as before, degrades for higher 

electron energies as E3
fl. 

3. Results 

Photoelectron spectra were recorded for the F~- ion at both parallel and 

perpendicular polarizations of the laser .. Both normal and para hydrogen was used 

to make the ions. The spectra are presented in Figure 7-2. The form of the two 

normal-H2 spectra are very similar to those reported earlier/·3 except there is a 

noticeable improvement in signal-to-noise in the 9 = 90° spectrum. The detailed 

structure in peaks A, A' and B in the 9 = oo is a little different from that observed 
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earlier; peak C is also a little better resolved in the new a= oo spectrum.'1 We 

believe these differences are due to differences m source temperature. This will be 

examined in more detail below. The striking feature in Figure 7-2, however, is the 

pronounced differences between the spectra recorded with para hydrogen and those 

with normal hydrogen, particularly between 0.85 and 1.1 eV in the a= 0° spectra. 

Peak positions are listed in Table 7-1. There appears to be an extra peak (A') at 0.97 

eV electron kinetic energy that, because of its uni~pressive nature in the normal-~ 

spectra, was not previously thought significant. However, it is the dominant peak in 

the para-~ spectra. It appears that the peaks A and B do also appear in the para-~ 

spectra but as shoulders to the central peak A'. 

The two peaks observedin all four spectra at 1.26 and 1.21 eVare due to a two 

photon process and correspond to the photoelectron spectrum ofF-; the first photon 

dissociates FH2- to F- + ~. the second photon detaches F-.3 

Table 7-1: Peak positions (electron kinetic energies) in the e = oo, 266 nm 

a) 

ltl 

photoelectron spectra ofF~-. 

peak position I eV" 

F~-from A A' B c D 

normal-H2 1.000 0.972 0.941 0.815 0.54 

para-~ 0.996 0;970 0.942 0.81 0.51 

Peak positions in Table 7-1 and the spectra shown in Figure 7-2 have been 
corrected for the small space charge shift ( < 5 me V) in the electron kinetic 
energies. Uncertainties in peak positions are 0.005 e V, except for peaks C and 
D where the uncertainty is approx. 0.015 eV. 

The peak labelling scheme of Refs. 1, 3 and 4 is also used here to prevent 

confusion. 
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The 213 nm photoelectron spectra ofF~-, where the ion has been synthesized 

only from normal-~, are shown in Figure 7-3. The photon energy is 1.17 eV higher. 

The spectra are essentially identical to their respective 266 nm counterparts, except 

for the 1.17 e V shift to higher electron kinetic energy (eKE) and the diminished 

spectral resolution. The polarization dependence of the signal is the same. The 

important result is that no additional bands are observed for F~- photodetachment 

that are not present in the 266 nm spectra. 

4. ·Analysis and Discussion. 

4.1 Nuclear spin statistics in the anion and its effect on the photoelectron 

spectrum. 

The results for the photoelectron spectra ofF~- from para-~ are somewhat 

surprising.· As we will show, the differences in the F~- spectra with the ion 

prepared from normal and para hydrogen are due to differences in the nuclear spin 

statistics in the anion. The nuclear spin states of hydrogen, ortho and para, are 

carried through to the anion F~ -. The two forms of FH2 - (para and ortho ), which 

we will loosely callpara-FH2 - and ortho-FH2-, overlap two distinct sets of scattering 

states in the neutral, namely the states whose scattering wavefunction is symmetric 

to exchange of the H atoms (para states) and those that are antisymmetric (ortho). 

For example, scattering states that are symmetric with respect to hydrogen 

permutation are those that correlate to F + H2 (J = even). 

Let us examine the anion in more detail. The restriction on the anion 

rovibrational wavefunction imposed by the nuclear spin symmetry appears in the 

bending I hindered rotor mode. This is well known for molecules of type ~B 

I I 
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belonging to the c_ point group, such as N20.13 The nature of the bending energy 

levels ofF~- is s~own in Figure 7-4. Free rotation of~ correlates into the bending 

states of the linear12 triatomic ion as shown in the Figure. This correlation diagram 

derives from work by Henderson and Ewing on Ar-02 and Ar-N2 complexes.14 In the 

free rotor limit, as for free ~ , the para form exists only in even J states, where J is 

the internal rotor quantum number, and the ortho form of the triatomic only in odd 

J states. The nuclear spins are not scrambled in the clustering collision ofF- with 

~to form the weak van der Waals complex, as the H-H bond is notbroken. The 

correlation diagram shows that, in the limit of strong anisotropy in the angular 

potential, i.e. a large barrier to internal rotation of H2 in the complex, the energy 

levels become identical to those of a degenerate harmonic oscillator. However, there 

is a doubling of each state due to the two equivalent positions of the H nuclei. For 

each state there is a pair of wavefunctions: one is symmetric and the other 

antisymmetric with respect to H permutation. In the rigid bender limit, the two 

ground state levels are degenerate but have wavefunctions of opposite permutation 

symmetry. In either limit, the relative proportions of symmetric to antisymmetric 

states reflects the ratio of para to ortho hydrogen used in the clustering process. 

Therefore para-H2 will form only even symmetry states of FH2- shown in Fig. 7-4; 

normal-H2 will form 1:3 symmetric to antisymmetric states. 

#2 The equilibrium structure ofF~- is assumed to be linear on the basis of ab 

initio calculations of Simons6
• A linear structure is consistent with the 

electrostatic forces of a charge interacting with the ~ quadrupole moment. 
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We shall assume the barrier to internal rotation is large,113 that the bend can 

be approximately treated as a degenerate harmonic oscillator, and that the splitting 

between the two ground state wave functions (a, s symmetry) is negligible in the 

following discussion. This maybe a poor approximation if the bend is very strongly 

coupled to the van der Waals stretching mode. In that case, Figure 7-4 gives us some 

idea of the states formed in the intermediate anisotropy regime. 

In Zhang and Miller's calculation,4'
5 in order to compute the Franck Condon 

overlap of the anion with the F + ~ scattering states, these authors assumed the 

degenerate harmonic oscillator limit for the bend and used the geometry <&...a
2 

= 

2.138 A; ~-H = 0.796 A) and harmonic frequencies (ro1 = 302 cm·t, ~ = 693 cm·1 and 

O>a = 3816 cm-1
) from earlier results ofNichols et al.6 However, Zhang chose the anion 

ground state wavefunction to be symmetric with respect to nuclear exchange,5 

therefore the Frank Condon overlaps are computed with only the even set of 

scattering states. In fact Zhang's calculation employs a separation of the scattering 

matrix by the nuclear inversion symmetry/5 only one block, the para block, is being 

used in the Franck-Condon calculation. Thus, the appropriate comparison with 

113 Our ab initio calculations on F~- suggest that the barrier to internal rotation 

of~ is about 3000 cm·1
• The barrier is relatively large compared to the~ 

rotational constant, 60 cm·1
• The calculations compare the energy at the 

MP2/6-31++G** optimized linear geometry, which is close to Nichols' CCSD 

geometry,6 and the energy for the rotated configuration (C2) with RF,H
2 

and 

RH-H held constant. The calculated barrier is approximately invariant to the 

level of correlation correction to the energy. RHF, RMP2 and RMP4(SDQ) all 

give about the same barrier to internal rotation. 

I j 
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experiment is with the para-F~- spectrum, and not with the normal-F~-

spectrum as previously done.3
• 

4 Figure 7-5(a) shows the correct comparison of 

Zhang's 3D simulation of the F~- photoelectron spectrum with our parci-F~

results. The comparison is noticeably poorer with the para experimental spectrum 

than with the normal spectrum, and thus agreement between theory and experiment 

is not nearly as good as had been previously been thought the case.3
•
4 

The normal-FH2 -spectrum, in contrast, contains transitions that are 75% due 

to antisymmetric states. Therefore to simulate this photoelectron spectrum a 

computation of the anion overlap with ortho scattering wavefunctions should be made 

and then added tQ the para simulation shown in Figure 7-5(a) in the correct ratio. 

Very recently, Manolopoulos has carried out exactly this calculation. Using a three

dimensional scattering code16 that employs a methodology similar to that of 

Schatz,17 he has repeated (and reproduced) Zhang's result for para-F~ -, and has 

gone onto compute the ortho scattering states and their Franck Condon overlap with 

the antisymmetrized anion wave function. Together these simulations yield the 

theoretical photoelectron spectrum of normal-FH2 - shown in Figure 7-5(b),18 where 

it is compared to the experimental normal-FH2 - spectrum. Taken together, the 

agreement of the para-F~- and normal-FH2- simulations on the T5a surface with 

our respective experimental spectra is quite disappointing. 

However, there is one further effect of the nuclear spin statistics relevant to 

the anion formed in our experiment we should consider. It relates to the populations 

. of excited anion bending states, and hence the appearance of hot bands in our spectra. 

Let us consider the distribution of the ~ rotational states that we expect in the free 

jet. Para-H2 has approximately 53% J=O and 4 7% J=2 at room temperature, compared 
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to 10%,67%, and 11% J= 0, 1, 2 for normal-~ respectively. Because relaxation ofthe 

rotational energy in~ may' only occur by M = 2 inelastic collisions, normal-~ is not 

cooled well by a free jet expansion, however para.,~ is cooled much more effectively. 

Typical rotational distributions for pure ~in collimated continuous molecular beams 

have been given by Pollard et al. as a function of P 0d, the stagnation pressure

aperture diameter product.19 These distributions are measured by the rotationally 

resolved photoelectron spectra of~. In our work with pulsed valves, the calculated 

P0d would be of the order of 2500 Torr•mm. However, the molecular beam is not 

skimmed in our apparatus and the effective nozzle diameter of the pulsed valve may 

be somewhat less than the physical orifice size. It seems reasonable, therefore, to 

assume a lower effective P0d for the pulsed expansion. In the P0d- 100 Torr•mm 

regime, which may be considered a worst case limit, the rotational distribution of~ 

may be estimated from the work of Pollard as 18% J=O, 75% J=1 and 7% J=2 for 

normal-~ and 70% J=O, 30% J=2 for para-~. 

If we assume that the J, M state distribution in the free~ is mapped onto the 

anion quantum state distribution, i.e there is no further cooling in the expansion after 

clustering, then we may use the above ~ rotational distributions and the correlation 

diagram Fig. 7-4 to yield a conservative estimate of the bend state population in the 

F~- complexes formed. Even if additional cooling does take place after clustering, 

the nuclear interchange symmetry restrictions still restrict scrambling of states with 

opposite permutation symmetry. 

Therefore, FH2- made from normal-H2 may have a large number of excited 

anion states populated, maybe as high as 50% v2=1 if theM states are statistically 

distributed among the v2, ~states (see Figure 7-4). This possibility suggests that the 
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normal-F~- photoelectron spectrum may have major contributions from anion hot 

bands. In the para-F~- spectra, we suspect the contribution due to hot bands is 

smaller but may still be significant; hot bands in this case are derived only from ~ 

J=2 states (<30%). 

4.2 New work on the F + ~ reaction using the 5SEC surface. 

Truhlar and coworkers have proposed another surface for the F + ~ reaction, 

the 5SEC, that improves the description of the entrance channel and saddle point. 

The saddle point is earlier and lower than on the T5a surface and the bending 

potential is also flatter in the saddle point region.20 The product valleys for the two 

surfaces are essentially the same. 

Kress and Hayes have recently performed three-dimensional scattering 

calculations for F + H2 and made a correspondence between peaks and thresholds in 

their calculated cumulative reaction probability (CRP) with expected Franck Condon 

factors from the anion.21 These calculations were performed on both the T5a and 

5SEC surfaces, and the results on the former were in good agreement with Zhang's 

Franck Condon simulation.4 This would seem to support using the CRP to predict the 

photoelectron spectrum. Kress's CRP results for the 5SEC surface are qualitatively 

different from the results on the T5a. The authors show that the resonance structure 

in the cumulative reaction probability calculated for the two surfaces is very different. 

In the same way as Zhang's calculations comment only on the F +para-~ reaction, 

Kress' cumulative reaction probability is an even permutation sum (i.e. ~ ( j = even) 

only). Thus the energies and appearances of dynamical features in this calculation 

should also only be compared with ourpara-F~- spectra. 
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Interestingly, Kress predicts a trapped state resonance, labelled in their paper 

'a', between the features that are assigned to the peaks A and B of our photoelectron 

spectra. Could this indeed be the dominant feature in the para-FB:z- photoelectron 

spectrum we have called A'? The spacing between A, a, and B in their calculation 

are 15 and 28 meV, which compare favorably with the spacings in Table 7-1. The fact 

that peak A' is relatively diminished in our normal-F~- photoelectron spectrum is 

also consistent with the 5SEC assignment of this middle peak to a trapped-state 

resonance, a, in contrast to A and B being quantized-bottleneck states.114 However, 

preliminary calculations of the Franck Condon factors from the ion (wave function 

symmetric with respect to H permutation, i.e. para) with each of these states does not 

support peak 'a' having large intensity in the photoelectron spectrum. 18 

Full simulations for both para and normal-F~-will be shortly available and 

will allow a more quantitative discussion of the merits of this potential surface. 18
' 

22 

Clearly there is a great deal more work to be done before we can fully interpret the 

photoelectron spectra ofF~- and its isotopic variants! 

114 There is some variation in the terminology used to describe reactive resonances 

in the literature. We have typically used the term resonance only for states 

that are trapped, or quasi-bound, along the reaction coordinate. These are 

what Kress calls "trapped-state" resonances. The other type of peaks observed 

in our photoelectron spectra, which we call "direct scattering" states, are called 

"entrance channel" or "in-channel" resonances by some authors and "quantized 

bottlenecks" by Kress. 
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4.3 Electr<mic effects 

The approach of an F atom with a ground state~ molecule may occur on three 

potential energy surfaces, 12 A', 2 A" and 22 A' in the most general symmetry of collision, 

C.; the upper 2A" and 22A' surfaces become degenerate inc_ (collinear approach) so 

that there are two surfaces 2! and 2Il. Figure 7-6 shows the highest occupied 

molecular orbitals for the anion, where the c_ point group is appropriate. 

Photodetachment of an electron from the filled 11t and 4cr orbitals leads to the 21: and 

2I1 states, respectively, in the neutral. Only the lowest surface, the 21:, where the 

fluorine atom approaches with the p orbital containing the unpaired electron along the 

~bond, adiabatically leads to reaction. The introduction of spin orbit coupling in the 

F atom splits the degeneracy of the upper 2Il surfaces in C_v and the correct state 

labels are 21:112, 
2Il312 and 2I1112• The 2p 312 - 2p 112 splitting in the fluorine atom is 0.0501 

eV.23 A correlation diagram is shown in Figure 7-7(a). 

A number of theoretical studies were made in the 1970's on the role ofthe two 

excited surfaces in F + ~collisions. Initially Truhlar and Muckerman considered 

how much the calculated reaction rate constant should be reduced because only one 

of the three orientations of fluorine approach would lead to reaction at thermal 

energies.24 Blais and Truhlar constructed semi-empirical valence bond surfaces for 

the 21: and 2Il states, but did not use the upper· state surface in their classical 

calculations.25 The effects of spin orbit term in the Hamiltonian and non-adiabatic 

coupling between surfaces were next treated theoretically to assess the contribution 

of F(2p 112) on the reactive cross section. Two early ab initio studies were made on the 

potential variation along the collinear F to H2 center of mass coordinate, RF,H
2 

, for 

both 2! and 2Il states.26
.2

7 Spin-orbit coupling was included semi-empirically into 
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one of these calculations,26 and both studies calculated the non-adiabatic coupling 

strengths between the surfaces. Tully applied the diatomics-in-molecules (DIM) 

method to construct potential curves for all three states, as a function ofRr.H
2

, in both 

collinear and side-on geometries.28 In this work the spin-orbit interaction was 

included, and non-adiabatic coupling strengths were once again evaluated. Faist and 

Muckerman reformulated the DIM method and constructed a complete semi

quantitative correlation diagram for reaction between several states of the fragment 

atoms and diatoms.29 

Both Tully and Muckerman demonstrated that the F(2p 112) + H2 may contribute 

significantly to .the overall reaction rate constant, via non-adiabatic interactions, even 

at thermal temperatures.28
.2

9 Quantum calculations by Zimmerman et al. and LePetit 

et al. extended this work and showed va!J1ng results for the behavior of the multi

surface system. 30
.3

1 The main problem in these authors' assessment of the 

importance of the 20 surfaces to the reaction dynamics was the barely semi

quantitative knowledge of the shapes of these potential energy surfaces and their 

separation from the ground state. The non-adiabatic couplings are strongly dependent 

on the energy separations as a function of nuclear coordinates. Most theoretical effort 

subsequently concentrated on dramatically improving the quality of the 2l:112 surface 

so as to reproduce newer experimental results, while assuming that the upper 

surfaces were not significant in the reaction. A recent study, using low energy 

scattering of magnetically analyzed F atoms with D2, reports experimentally 

determined potentials for all three states.32 However, only the long range part of 

each potential is characterized in these experiments. To our knowledge only Wright 

and coworkers have considered the upper state surface at short range recently.33 
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Our photoelectron results may finally address some of the questions about the shape 

of the excited state surfaces and their separations from the ground state surface in the 

latter's transition state region. 

Presumably the reason for the absence of theoretical work on the upper state 

surfaces was because experimental work provided little data in this area. 

Experiments either did not explicitly look at the reaction of F(2p m> + f4 , or found, in 

contrast to some of the theoretical predictioris,29.ao it to be insignificant compared to 

the reaction of ground state fluorine atoms. Neumark et al. concluded that FeP1f.!) 

was unreactive in their cross beam studies ofF+ f4, HD and D2 •
34 This implies 

that non-adiabatic effects in the entrance channel are not large enough, at least at the 

collision energies employed in their study (0.68 - 3.42 kcallmol),34 to make this 

pathway competitive with the electronically adiabatic ground state reaction. Hepburn 

et al. made a crossed molecular beam study of a related system, F + HBr, and 

although they observed a significant exit channel non-adiabatic process forming 

Br*eP 1!.!) product from ground state FeP 3!.!) + HBr rather than from F(2p m>. they 

concluded again that F(2p 1!.!) was unreactive compared to F(2p 3!.!).35 

What do our photoelectron spectra tell us about these excited state surfaces? 

The 213 nm results (Figure 7-3) show no additional electronic bands within 2 eV of 

the 2!: band except those seen in the 266 nm spectrum appearing at polarization 

8=90°. Muckerman's semi-quantitative correlation diagram predicts that only the two 

2D states are expected within 6 eV of the ground state. Hence we may confidently 

assume that the allowed transitions from the anion to the 2n; states are those in the 

266 nm spectrum between eKE= 0.5 and 0.9 eV. Now it has been shown that, by 

setting the polarization of the laser parallel to the electron collection direction, the 
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contribution of the 2fl states may be all but eliminated.3 This spectrum may then be 

used as a reference spectrum for the 2I: band, and we may subtract this spectrum, 

appropriately scaled, from the spectrum collected with the perpendicular laser 

polarization geometry. Let us assume that feature A (at highest eKE) in the normal

F~- spectrum has no contribution from the excited electronic states, and so this peak 

is a marker of the contribution of the 2I:uz surface to the photoelectron spectrum for 

the scaling procedure in the subtraction. 

Figure 7-8 shows the subtracted result which we will assume represents the 

spectrum of transitions from the anion to the 2n3fl,uz states only. The two photon F

peaks at 1.21 and 1.26 e V appear with relatively large intensity in the difference plot 

because the F(2p3fl, 112) ~ F- transitions also have electron angular distributions 

peaked at a= 90°. The noise in the region 0.9- 1.1 eV we assum.e is due to slight 

differences in the 2I: band shape due to incomplete signal averaging, which is 

amplified in the subtraction process. The structure we are interested in lies between 

0.5 and 0.9 e V. The band rises fairly sharply at eKE = 0.9 e V, peaks at approximately 

0.8 eV and has a full width half maximum (FWHM) of ca. 0.3 eV. We note that the 

band is quite asymmetrical. 

As described above, potential energy curves have been calculated for the 2fl 

state. We may therefore attempt to simulate this photoelectron band using these 

potentials·. Tully calculated V~ as a function ofRF,H
2 

with RH-H fixed at the equilibrium 

distance in H 2 for both spin orbit components. Blais and Truhlar, ignoring the spin 

orbit interaction, calculated a valence-bond potential energy surface for the 2n state · 

and show a potential map as a function ofRF,H
2 

and RH-H for c_. Subsequent collinear 

dynamical calculations have used a modified form of the Blais-Truhlar surface or DIM 
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surfaces. The V n potentials are essentially non-reactive as they correlate to high 
.... 

lying, repulsive, states of HF (see Fig. 7-7a). They may be approximated by the 

separable function 

(1) 

where Vbound is the bound 1:t; potential curve of~, modelled by, say, a Morse function, 

and V rep is the repulsive interaction of the F atom with ~ in a n configuration. The 

repulsive potential can be modelled by an exponential curve fit to each of Tully's 2fl 

DIM curves,28
b 

(2) 

where ll = 0.0501 eV, the spin orbit splitting in fluorine,23 and Vis in units of eV and 

~.H2 in A. 

To simulate the photoelectron band we need to calculate the overlap of the · 

anion ground state wavefunction with the scattering states supported by each 2ll 

surface. If we assume that electronic and nuclear motions are uncoupled, i.e. ignore 

non-adiabatic effects, a relatively simple quantum mechanical calculation using the 

potential function given by Eqn. 1 will yield the scattering states for each spin-orbit 

surface; a fully coupled collinear calculation would resemble the formalism used by 

LePetit.31 A wavepacket propagation in the time domain is formally equivalent to a 

time-independent calculation of scattering states, and so, as before,36 we adopt this 

methodology to perform the simulation of the 2fl band. The contribution of the 2fl 

states, and the model we are using to describe it, is very similar to the contribution 
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of the F + HO ~ HF + oeD) reaction to OHF- spectrum.37 In the Franck-Condon 

region the V n potentials are fairly repulsive, compared to the 2:E potential, so the 

wavepacket moves quickly out of this region, and only a short propagation time is 

necessary. The simulated bands due to the 2nm and 2nuz are shown in Fig. 7-8. In 

the simulation we have assumed Simon's best ab initio geometry, a coupled cluster 

CCSD(T) optimized structure <~.~ = 2.075 A, ~·H = 0.770 A), and his MCSCF 

harmonic frequencies for the anion.6 For V0 , the Morse parameters for Vbound are 

derived from the constants in Huber and Herzberg.38 

The first simulation assumes ~3~ = 5.53 A_1 , Aw. = 3022 eV, ~~~ = 5.60 A-1 and 
r 

A1~ = 2950 e V in Eqn. 2; these parameters give the best fit to the curves shown in 

Figure 2 of Tully's paper.28
b Each has similar shape and the shape reproduces the 

experimental band shape in that it rises fairly rapidly at lower scattering energies 

(high eKE) and has a longer tail at low eKE. ·However, it is immediately apparent 

that V rep is not repulsive enough to reproduce the FWHM of the band. The FWHM 

in the simulation, for each 2n component, is only 0.065 eV. Further, the onset of the 

band (the high eKE edge) is very close to the F + H2 asymptote, and in comparison to 

the experimental band is at too high electron kinetic energy. The collision energy 

scale, i.e. the energy, E<0>, above F + H2 (v=O), of the calculation is anchored to the 

electron energy scale by the formula3 

eKE (ell) = 0.999 - E<f1> (ell) (3) 

which assumes a value for the dissociation energy ofF~- of 0.260 eV.3 

The second simulation uses a V rep that mimics the much more repulsive Blais

Truhlar potential;25 here we have considered just one 2n surface and found A = 68.2 

e V and ~ = 2.40 A-1 by comparison to the contour plot, Figure 2, of Ref. 30. This 
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simulated band's onset is at much lower eKE (0.75 eV) and the band has a much 

wider FWHM, 0.41 eV, than the simulations of the DIM-like potentials. This is 

clearly at the opposite extreme; the surface is now too repulsive at the anion 

geometrical configuration. The third simulation shown is a compromise "fit". It has 

· simulated bands due to both 2fl312 and 2fl112 surfaces, V rep has the same form as in 

Tully's plot, but has the correct slope and potential energy at the Franck-Condon, i.e. 

anion, F to ~ separation. The V rep curves for this fit potential are shown in Figure 

7-7(b) along with the ground state potential. The vertical energy differences from the 

21:112 to the 2fl312 and 2fl 112 surfaces at the anion geometry are 0.18 eV and 0.21 eV, 

using the T5a potential7 for the 21: and the above "fitted" for 2fl. In comparison, 

Simons' ab initio calculation suggested 0.25 eV for the 2:t-2n splitting at this 

geometry,6 whereas Tully's DIM curves suggest 0.01 eV and 0.06 eV separation from 

the 21:112 to the 2fl312 and 2fl 112 respectively.28 Wright gives the 2:t-2n separation at the 

lower's saddle point geometry is ca. 0.78 eV~33 The simulated bands in Figure 7-8(c) 

are separated by 0.03 eV at the band maximum and the band FWHM for the 2fl312 and 

2fl112 are 0.23 and 0.21 eV respectively. The sum of the two simulated bands 

approximately reproduces the whole unresolved band in our experimental spectrum. 

All simulations show a: small bump at lowest eKE's in both spin, orbit 

components. The bump is due to overlap with states correlating to H2 (v=1); there 

is overlap to· these vibrationally excited states because the anion has a slightly 

elongated H-H bond, and the valleys in the V0 surfaces have ~-H set at equilibrium 

~- The intensity of this band depends on two factors, the degree of H-H elongation 

in the anion and on the anharmonicity assumed along the H-H stretch in the anion. 

It seems reasonable to expect roexe for this mode to be at least as large in the anion 
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as it is for free~. which we have assumed in the simulation, and it is most likely 

larger (which would yield more intensity in the v=l bump). This may account for 

some of the signal extending out to low eKE's in the experimental difference plot. 

The important result here is that the 2Il surfaces rise more steeply in the 

interaction region than predicted by the diatomics-in-molecules (DIM) approach, and 

we have determined a more realistic form for the potentials. It may now be possible 

to estimate, with somewhat more certainty, the non-adiabatic coupling between the 

three surfaces in the entrance valley, and once again assess the reactivity of F(2p 112) 

with~. 

5. Summary 

In this work we have shown that there are pronounced differences in the 

ground state photoelectron band of F~- when synthesized from normal and para 

hydrogen. This has been rationalized in terms of the nuclear spin restrictions on the 

anion wavefunction. Three dimensional quantum scattering results employing the 

T5a surface are compared to the experimental spectra. There are likewise strong 

differences in the theoretical Franck Condon overlaps to ortho and para parity states. 

It should be restated that the previous comparisons of quantum scattering calculations 

(which used only the para symmetry states) with the normal-FH2- spectrum were 

erroneous. When we make the correct comparison, the agreement between the theory 

and experiment'is not as good as we originally had thought. The same considerations 

should be taken into account for the published comparison of the three-dimensional 

Franck Condon overlaps and the experimental spectrum for normal-FD2 -.
4 New 

simulations for the photoelectron spectrum of normal-FD2 - (1:2 para: ortho), as well 
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as a calculation on FDH-, where there have been none to date, would be useful.in 

determining where the discrepancies between theory and experiment lie~ 

Quantitative consideration of the excited state bands, assigned to the 2TI312 and 

2TI112 states, has been made here, and collinear simulations have allowed the 

determination of the shape ofthese potential curves along the RF.H
2 

coordinate in the 

interaction region. We hope this will stimulate some ab initio work on characterizing 

these surfaces, and their non-adiabatic coupling to the ground state surface. 

There is clearly much still to learn about the F + ~ reaction, and our 

photoelectron experiments have brought a new dimension into the fitting of the 

potential surfaces, both in the transition state region for the ground reaction surface 

and in the inner regions of the upper non-reactive surfaces. Further experiments to 

extract even more detail are possible. . Zero electron kinetic energy (ZEKE) 

photodetachment spectra, with an attainable resolution of 5 cm·1
, would be 

particularly useful for this transition state system. As the feature A in the normal

F~- spectrum 1s quite narrow, a more concrete assignment of the F~- internal 

· states giving rise to the peaks in this region should be possible in a ZEKE spectrum. 

One of the most serious limitations in deriving hard information about the 

neutral potential energy surfaces from our photoelectron spectra is the absence of high 

quality data on the anion precursor, notably the cluster dissociation energy, the 

equilibrium structure and the ·anion vibrational levels. Ab initio calculations are used 

extensively in the place of high resolution spectroscopic data. However, various 

'consequence', or 'action', spectroscopies could be applied on a mass-selected ion beam 

to perform, for example, vibrational spectroscopy. One final experimental approach, 

that is being pursued in our laboratory, is to attempt photoelectron spectroscopy of 
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selectively-prepared vibrationally excited negative ions. This idea has already been 

outlined in Chapter 1. In Chapter 5 we saw that the photoelectron spectra of ARB

ions in the v3 = 1 quantum state reveals very different information about the neutral 

reaction surface. For FH2 -,pumping one quantum in the~ stretching mode, e.g. via 

a stimulated Raman process,39 would allow overlap with a very different part of the 

21: reaction surface. Although a quantum of vibrational energy in the ~ stretch 

exceeds the calculated ion dissociation energy, the vibrational predissociation lifetime 

may be longer than the time for the excited molecule to interact with the 

photodetachment photon. 
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Figure Captions for Chapter 7 

Figure 7-1. Plot ofF+~~ HF + H ground state reaction surface with the F~-

ground vibrational state wavefunction shown shaded. The contours for 

the neutral potential surface are determined from the T5a potential 

function of ref. 7. The saddle point (RF,H
2 
= 1.953 A, RH-H = 0.762 A) is 

marked with a cross. The anion wavefunction assumes the ab initio 

CCSD(T) equilibrium geometry (:RF.H
2 
= 2.075 A and RH-H = 0. 770 A) and 

MCSCF harmonic frequencies of Nichols et al. (ref. 6); the ellipse 

represents the 90% probability limits of the wavefunction. The axes for 

the plot are massed scaled Jacobi coordinates: x = (J.1F,H
2 

I llH/rz RF,H
2 

and y = RH-H . The skew angle for F~ is 46°. 

Figure 7-2. Photoelectron spectra of F~- at 266 nm. (Top) Ions made from 

normal-H2 (3:1 ortho/ para), and (Bottom) ions made from para-~. 

Spectra recorded at two polarizations of the photodetachment laser: 

(Left) parallel [6 = 0°] and (Right) perpendicular [6 = 90°] to direction 

of electron collection. 

Figure 7-3. Photoelectron spectra ofF~-, made from normal-~, at 213 nm. (Top) 

polarization parallel (6 = 0°) and (Bottom) perpendicular (6 = 90°) to 

direction of electron collection. 

Figure 7-4. Correlation diagram for bend/ hindered rotor energy levels ofF~-. 
' ) 

Labels J and M correspond to the free rotor total angular momentum 

and its projection on the body fixed axis; v2 and Q are the vibrational 

quantum number and the vibrational angular momentum for the 

degenerate linear bend. The solid lines indicate vibrational states that 
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are symmetric with respect to H nuclei permutation, the dashed lines 

for antisymmetric states. Figure adapted from that for Ar .. 0 2 from Ref. 

14. 

Figure 7-5. (a) Three dimensional simulation (thin line) ofF~- photoelectron 

spectrum, considering only symmetric permutation states, of Zhang and 

Miller (Ref. 4) compared to 6 = 0° F~ -(para-H2) experimental spectra 

(solid line). {b) Three dimensional simulation (thin line) ofF~

photoelectron spectrum, considering both symmetric and antisymmetric 

permutation states, of Manolopoulos (Ref. 18) compared to the 6 = 0° 

F~ -(normal-H2) experimental spectrum. The simulation is a weighted 

sum of transitions to ortho and para states. Both calculations assume 

the same anion and neutral parameters. 

Figure 7-6. Highest molecular orbitals for F~ -, showing the 3a, the 11t and the 4a, 

all of which are fully occupied in the anion. Detachment (removal) of 

an electron from the 4a accesses the 2:E reaction surface of F + ~. 

whereas detachment from the 11t accesses the upper 2TI surfaces. The 

molecular orbitals are the optimized MP2/6-31 ++G** orbitals evaluated 

at the computed equilibrium structure for the F~- ion at the same 

level of theory. 

Figure 7-7. (a) Electronic correlation diagram for F + H2• (b) The variation of 

potential energy for the three lowest lying electronic states ofF~ as a 

function of the F to ~ distance. Lowest curve e:r.1fl) is calculated from 

the T5a surface (Ref. 7), upper 2TI3,.2, 112 surfaces are those calculated to 

best fit difference spectrum Figure 7-8 (see text). 
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Figure 7-8. (a) Difference plot of the 266 nm normal-~ spectra. Here thee= 0° 

spectrum has been scaled and subtracted from the e = 90° spectrum to 

yield the band due to transitions from the anion to the 2llarz and 2llm 

F~ states. (b)-(d) Collinear simulations of the 2ll bands described in 

text. Parameters in V rep used for simulations are chosen to (b) 

approximate DIM curves of Ref. 28, (c) approximate Blais-Truhlar 

surface, Ref. 25 and 30, and (d) yield a fit to photoelectron band (a). In 

simulations (b) and (d) transitions to both spin orbit components of the 

2ll state have been considere~, and are assumed to have equal 

transition probability (dashed and dot-dashed lines). The sum of the 

two sub-bands are shown by the solid line. 
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Appendix A. Propensities in photoelectron angular distributions for 

linear molecular anions 

The following table indicates whether the intensity in the photoelectron bands 

of the following negative ions favors a sin29 (intensity peaked around 9max = 0°, ~ < 0) 

or cos29 (9max = goo, ~ > 0) distribution. 
I I 

Unear negative ions listed by molecular point group. 

Ion Anion MO 9max Neutral electronic 

I 
Electronic removed state 
State 

c_v 

'. FJ4- ll:+ a 0 xer) 
1t 

-1':.'. 
go A(2Il) 

BrHI- ~r a 0 xer) 1 

1t go Aerr) 

I i oHF- 2rr a go xerr) 
1t 0 ae~) 

::.i 

I ' eN- ll:+ a 0 xer) 
1t go A err) 

Ncs- ~r 1t go X~Il) 

Nco- ll:+ 1t go xerr) 

No- 3l:- 1t go xerr) 
/• ·-' 1t go a(4Il) 

I 

At 213 nm the X state intensity is approx. same at both 9 = 0° and 9 =goo. 



2 

296 

Ion Anion MO emax Neutral electronic 
Electronic removed state 
State 

D_h 

IHI- l::E + au 0 xe:ru+) 2 
g 

1tg 90 Aen
8

) 

xe:r ") 
2n g 

o2- 90 ae~) g 1tg g 
be:r ·) g 

N.B. All transitions in D_h that remove a 1t
8 

electron are forbidden in ZEKE. 

213 nm; at 266 nm the absolute counts are higher for 8=90° to the ground 2::Eu+ state 
than at e = 0°. 
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Appendix B. Calibration and Background Subroutines for 

experimental code TENURE. 

1. Introduction 

These subroutines represent the part of the data acquisition code, TENURE, 

which deal with energy scale calibration and the fitting and subtraction of background 

spectra. The TENURE program is used to control data acquisition on the Neumark 

group photoelectron spectrometer. The calib2.pas routine is a completely revised 

version of the calibration routine found, along with the remainder of the TENURE 

source code, in the thesis of Dr. R. B. Metz. Fourier transformation and Wiener 

filtering is implemented in the subroutines ftshort.pas and fourl.pas to smooth 

background spectra. Subtraction of the smoothed background is performed by the 

scale.pas subroutine. The source is written entirely in PASCAL and is suitable for 

compilation in the Borland Turbo Pascal 3.0 environment. 

The use of, and principles behind, these two procedures are described in 

Chapter 2. Calibration is invoked with the <ALT>-C combination from within the 

TENURE program. The user is prompted for the detachment laser wavelength he or 

she wishes to calibrate. The time-of-flight, uncertainty and ion beam energy 

information is entered for each calibration line. A linear or quadratic fit to these 

calibration points is performed; the fitting parameters and indicators of the fit quality 

are output. The user is then asked whether he/ she accepts the fit. If so the entered 

calibrant information is saved to disk and the fitted parameters become the current 

ones used for time-of-flight to electron kinetic energy conversion in the main program. 

The fitting of a background spectrum with the Fourier/ Wiener filtering 
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routines is activated by the <ALT>-F combination. The time-of-flight dataset 

currently active is fast Fourier transformed and saved to disk (FOURTR.DAT). The 

user then selects a Lorentzian filter function for the Wiener filtering by entering a 

half-width in number of channels: typically 15 gives good filtering. If this filter 

results in too much smoothing of the background, the Lorentzian filter width should 

be increased. After multiplication by the filter the Fourier dataset is back 

transformed into time-of-flight; the filtered dataset may then be stored at this point. 

The subsequent scaling and subtraction of the now smoothed background spectrum 

from one (or many) time-of-flight photoelectron dataset(s)is achieved with the <ALT>-

N combination. 

2. Source Listing 

calib2.pas 

(*Define some statistical routines from Numerical Recipes*) 

(* These are for Linear Regression *) 
FUNCTION gammln(xx: real): real; 
CONST 

VAR 

stp = 2.50662827465; 
half = 0. 5; 
one = 1.0; 
fpf = 5.5; 

x,tmp,ser: double; 
j: integer; 
cof: ARRAY [1 .. 6) OF double; 

BEGIN 
cof[1) := 76.18009173; 
cof[2) := -86.50532033; 
cof[3) := 24.01409822; 
co f [ 4 l : = -1. 2 31 7 3 9 516; 
cof[5) ·= 0.120858003e-2; 
cof[6) .- -0.536382e-5; 
x := xx-one; 
tmp := x+fpf; 
tmp := (x+halfl*ln(tmp)-tmp; 
ser := one; 
FOR j := 1 to 6 DO BEGIN 

x := x+one; 
ser := ser+cof[j)/x 

END; 
gammln .- sngl(tmp+ln(stp*ser)) 

END; 
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PROCEDURE gcf(a,x: real; VAR gammcf,gln: real); 
LABEL 1; 
CONST 

itmax=100; 
eps=3.0e-7; 

VAR . 
n: integer; 
gold,g,fac,b1,b0,anf,ana,an,a1,a0: real; 

BEGIN 
gln := gammln(a); 
gold := 0.0; 
ao := 1.0; 
a1 := x; 
bO := 0. 0; 
b1 := 1.0; 
fac := 1.0; 
FOR n := 1 to itmax DO BEGIN 

an := 1.0*n; · 
ana := an-a; 
aO := (a1+aO*ana)*fac; 
bO := (b1+bO*ana)*fac; 
anf := an*fac; 
a1 := x*a0+anf*a1; 
b1 := x*b0+anf*b1; 
IF (a1 <> 0.0) THEN BEGIN 

fac := 1.0/a1; 
g := b1*fac; 
IF (abs((g-gold)/g) < eps) THEN GOTO 1; 
gold .- g 

END 
END; 
writeln('pause in GCF- a too large, itmax too small'); readln; 

1: gammcf := exp(-x+a*ln(x)-gln)*g 
END; 

PROCEDURE gser(a,x: real; VAR gamser,gln: real); 
LABEL 1; 
CONST 

itmax=100; 
eps=3.0e-7; 

VAR 
n: integer; 
sum,del,ap: real; 

BEGIN 
gln := gammln(a); 
IF (x <= 0.0) THEN BEGIN 

IF (x < 0.0) THEN BEGIN 
writeln('pause in GSER- x less than 0'); readln 

END; 
gamser := 0.0 

END ELSE BEGIN 
ap := a; 
sum : = 1. 0 I a ; 
del : = sum; 
FOR n := 1 to itmax DO BEGIN 

ap := ap+1.0; 
del := del*x/ap; 
sum := sum+del; 
IF (abs(del) < abs(sum)*eps) THEN GOTO 1 

END; 
writeln('pause in GSER- a too large, itmax too small'); readln; 

1: gamser := sum*exp(-x+a*ln(x)-gln) 
END 

END; 

FUNCTION gammq(a,x: real): real; 
VAR 

gamser,gln: re~l; 
BEGIN 
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IF ((x < 0.0) OR (a<= 0.0)) THEN BEGIN 
writeln('pause in GAMMQ invalid arguments'); readln 

END; 
·IF (x < a+l.O) THEN BEGIN 

gser(a,x,gamser,gln); 
gammq := 1.0-gamser 

END ELSE BEGIN 
gcf(a,x,gamser,gln); 
gammq := gamser 

END 
END; 

PROCEDURE fit(x,y: glndata; ndata: integer; sig: glndata; mwt: integer; 
VAR a,b,siga,sigb,chi2,q: real); 

' 
(* LINEAR REGRESSION FIT - Numerical Recipes *) 

(* Programs using routine FIT must define the type 
TYPE 

glndata =ARRAY [l .. ndata] OF real; 
in the main routine. *) 

VAR 
i: integer; 
wt,t,sy,sxoss,sx,st2,ss,sigdat: real; 

BEGIN 
SX := 0.0; 
sy : = 0. 0; 
st2 := 0.0; 
b := 0.0; 
IF (mwt <> O)THEN BEGIN 

ss := 0.0; 
FOR i := 1 to ndata DO BEGIN 

wt := 1.0/sqr(sig[i]); 
ss := ss+wt; 
sx := sx+x[i]*wt; 
sy := sy+y[i)*wt 

END 
END ELSE 

FOR i 
sx 
sy 

END; 

BEGIN 
:= 1 to ndata 
:= sx+x[i]; 
:= sy+y[i] 

ss := ndata 
END; 
sxoss := sx/ss; 
IF (mwt <> O)THEN BEGIN 

DO BEGIN 

FOR i := 1 to ndata DO BEGIN 
t := (x[i]-sxoss)/sig[i]; 
st2 := st2+t*t; 
b := b+t*y[i]/sig[i] 

END 
END ELSE BEGIN 

FOR i := 1 to ndata DO BEGIN 
t := x[i]-sxoss; 

END 
END; 

st2 := st2+t*t; 
b := b+t*y[i] 

b := b/st2; 
a := (sy-sx•b)/ss; 
siga := sqrt((l.O+sx*sx/(ss*st2))/ss); 
sigb := sqrt(l.O/st2); 
chi2 := 0.0; 
IF (mwt = O)THEN BEGIN 

FOR i := 1 to ndata DO BEGIN 
chi2 := chi2+sqr(y[i]-a-b*x[i]) 

END; 
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q := 1.0; 
sigdat := sqrt(chi2/(ndata-2)); 
siga := siga*sigdat; 
sigb := sigb*sigdat 

END ELSE BEGIN 
FOR i := 1 to ndata DO BEGIN 

chi2 := chi2+sqr((y[i)-a-b*x[i))/sig[i)) 
END; 
q := gammq(0.5*(ndata-2),0.5*chi2) 

END; 
END; 

(* The next three are for Generalized Least Squares fitting *) 

PROCEDURE gaussj(VAR a: glcovar; n,np: integer; 
VAR b: glnpbymp; m,mp: integer); 

(* Programs using GAUSSJ must define the types 
TYPE 

glnpbynp =ARRAY [1 •• np,1 .. np] OF real; 
glnpbymp =ARRAY [1 .. np,1 .. mp) OF real; 
glnp =ARRAY [1 .. np] OF integer; 

in the main routine. *) 
VAR 

big,dum,pivinv: real; 
i,icol,irow,j,k,l,ll: integer; 
indxc,indxr,ipiv: glnp; 

BEGIN 
FOR j := 1 to n DO BEGIN 

ipiv[j) := 0 
END; 
FOR i := 1 to n DO BEGIN 

big := 0.0; 
FOR j := 1 to n DO BEGIN 

IF (ipiv(j] <> 1) THEN BEGIN 
FOR k := 1 to n DO BEGIN 

END 
END; 

END 

IF (ipiv[k) = 0) THEN BEGIN 
IF (abs(a[j,k)) >=big) THEN BEGIN 

big := abs(a[j,k]); 
irow := j; 
icol := k 

END 
END ELSE IF (ipiv[k) > 1) THEN BEGIN 

writeln('pause 1 in GAUSSJ- singular matrix'); readln 
END 

ipiv[icol) := ipiv[icol)+1; 
IF (irow <> icol) THEN BEGIN 

FOR 1 := 1 to n DO BEGIN 
dum:= a[irow,l]; 
a[irow,l) := a[icol,l); 
a [icol,ll := dum 

END; 
FOR 1 := 1 to m DO BEGIN 

dum := b[irow,l); 
b[irow,l) := b[icol,l]; 
b[icol,l) := dum 

END 
END; 
indxr[i] := irow; 
indxc[i] := icol; 
IF (a[icol,icol] = 0.0) THEN BEGIN 

writeln('pause 2 in GAUSSJ- singular matrix'); readln 
END; 
pivinv := 1.0/a[icol,icol]; 
a[icol,icol] := 1.0; 
FOR 1 := 1 to n DO BEGIN 

a[icol,l] := a[icol,l]*pivinv 
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END; 
FOR 1 := 1 to m DO BEGIN 

b[icol, 1] := b [icol, 1] *pivinv 
END; 
FOR 11 := 1 to n DO BEGIN 

END 
END; 

IF (11 <> icol) THEN BEGIN 
dum:= a[ll,icol]; 
a[ll,icol] := 0.0; 

END 

FOR 1 := 1 to n DO BEGIN 
a[ll,l] := a[ll,l]-a[icol,l]*dum 

END; 
FOR 1 := 1 to m DO BEGIN 

b[ll,ll := b[ll,l]-b[icol,l]*dum 
END 

FOR 1 := n DOWNTO 1 DO BEGIN 
IF (indxr[l] <> indxc[l]) THEN BEGIN 

FOR k := 1 to n DO BEGIN 

END 
END 

END 

dum:= a[k,indxr[l]]; 
a[k,indxr(l]] := a[k,indxc[l]]; 
a[k,indxc(l]] :=dum 

END; 

PROCEDURE covsrt(VAR covar: glcovar; ncvm: integer; rna: integer; 
lista: gllista; mfit: integer); 

(* Programs using routine COVSRT must define the types 
TYPE 

glcovar =ARRAY [l .. ncvm,l .. ncvm] OF real; 
' gllista = ARRAY [1 .. mfit) OF integer; · 

in the calling program. *) 
VAR 

j,i: integer; 
swap: real; 

BEGIN 
FOR j := 1 to ma-l DO BEGIN 

FOR i := j+l to rna DO BEGIN 
covar[i,j) := 0.0 

END 
END; 
FOR i := 1 to mfit-1 DO BEGIN 

FOR j := i+l to mfit DO BEGIN 

END 
END; 

IF (lista[j) > lista[i]) THEN BEGIN 
covar [lista [ j], lista [ il) := covar [i, j] 

END ELSE BEGIN 
covar[lista[i],lista[j]) := covar[i,j] 

END 

swap := covar[1,1]; 
FOR j := 1 to rna DO BEGIN 

covar[1,j] := covar[j~j]; 
covar[j,j] := 0.0 

END; 
covar[lista[1],lista[1]) :=swap; 
FOR j := 2 to mfit DO BEGIN 

covar[lista[j],lista[j)] covar[l,j] 
END; 
FOR j := 2 to rna DO BEGIN 

END 
END; 

FOR i .:= 1 to j-1 DO BEGIN 
covar[i,j] := covar[j,i] 

END 
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( * The supplied function that generates polynomial basis functions 
for Generalized least squar'es fit *) 

procedure funcs(x: real;VAR afunc: glmma; rna : integer); 
BEGIN 

afunc[1] := 1; afunc[2] := x; afunc[3] := sqr(x); 
END; 

PROCEDURE lfit(x,y,sig: glndata; ndata: integer; VAR a: glmma; mma: integer; 
lista: gllista; mfit: integer; VAR covar: glcovar; 
ncvm: integer; VAR chisq: real); 

(* Programs using routine LFIT must define the types 
TYPE 

glndata = ARRAY [1. .ndata] OF real; 
glmma =ARRAY [1 .. mma] OF real; 
gllista =ARRAY [1 •• mma) OF integer; 
glcovar =ARRAY [1 .. ncvm,1 .. ncvm) OF real; 
glnpbymp =ARRAY [1 .. ncvm,1 .• 1] ,oF real; 

in the main routine. *) 
VAR 

k,kk,j,ihit,i: integer; 
ym,wt,sum,sig2i: real; 
beta: glnpbymp; 
afunc: glmma; 

BEGIN 
kk := mfit+1; 
FOR j := 1 to mma DO BEGIN 

ihit := 0; 
FOR k := 1 to mfit DO BEGIN 

IF (lista[k] = j) THEN ihit .- ihit+1 
END; 
IF (ihit = 0) THEN BEGIN 

lista[kk] := j; 
kk := kk+l 

END ELSE IF (ihit > 1) THEN BEGIN 
writeln('pause in routine LFIT'); 
writeln('improper permutation in LISTA'); readln 

END . 
END; 
IF (kk <> (mma+l)) THEN BEGIN 

writeln('pause in routine LFIT'); 
writeln('improper permutation in LISTA'); readln 

END; 
FOR j := 1 to mfit DO BEGIN 

FOR k := 1 to mfit DO BEGIN 
covar[j,k) := 0.0 

END; 
beta [ j, 1 J : = 0. 0 

END;· 
FOR i := 1 to ndata DO BEGIN 

funcs(x[i),afunc,mma); 
ym := y[i); 
IF (mfit < mma) THEN BEGIN 

FOR j .- (mfit+1) to mma DO BEGIN 
ym := ym-a[lista[j]]*afunc[lista[j)) 

END 
END; 
sig2i := 1.0/sqr(sig[i)); 
FOR j := 1 to mfit DO BEGIN 

wt := afunc[lista[j))*sig2i; 
FOR k := 1 to j DO BEGIN 

covar [ j, k] := covar [ j, k] +wt*afunc [lista [k] J 
END; 
beta[j,1) := beta[j,1]+ym*wt 

END 
END; 
IF (mfit > 1) THEN BEGIN 
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FOR j := 2 to mfit DO BEGIN 
FOR k := 1 to j-1 DO BEGIN 

covar[k,j] := covar[j,k] 
END 

END 
END; 
gaussj(covar,mfit,ncvm,beta,1,1); 
FOR j := 1 to .mfit DO BEGIN 

a [list a [ j ]] : = beta [ j, 1] 
END; 
chisq .:= 0.0; 
FOR i := 1 to ndata DO BEGIN 

funcs(x[i],afunc,mma); 
sum := o.o; 
FOR j := 1 to mma DO BEGIN 

sum := sum+a[j]*afunc[j] 
END; 
chisq := chisq+sqr((y[i]-sum)/sig[i]) 

END; . 
covsrt(covar,ncvm,mma,lista,mfit) 

END; 

_(* ************************************************* *) 

(* Now for main calibration routine *) 
(* S. E. Bradforth 1988; revised 5/91, and 8/92 *) 

procedure calib; 

VAR 
ques:string[1]; 
wavelength:integer; 
wavestr: string[3]; 
ndata,ndataold,mwt,i,count:integer; . 
cm,tt,temp,tempsig,tempFloat,temptime,tempspace,rmserr:real; 
a,b,c,chi2,q,siga,sigb,sigc: real; 
x,y,e,float,t,sig,sg,m,sp,Ecalc: glndata; 
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j: text; 
(* The following variables are for the generalized least squares routine *) 
covar: glcovar; (* Covariance matrix *) 
aa: glmma; (* Vector of paramters solved for *) 
listaa: gllista; (* List of parameters to vary *) 
rna, mfit, ncvm: integer; (* number of parameters, number to fit and 

dimension size of covariance matrix *) 

BEGIN 
writeln('Least Squares Fitting of Energy vs. TOF dataset'); 
writeln('All times should be from Time-of-flight display screen'); 
gotoxy(l, 4); 
Wavelength:=213; (*Default*) 
write('Laser wavelength you wish to calibrate (213,266,299,355 nm available) 

? ',Wavelength); 
gotoxy(73,4); 
readln(Wavelength); 
gotoxy(1,6); 
writeln(' ':7,'Mass',' ':3,'Energy (eV)',' ':3,'Time (ns)',' ':4,'error 

(ns)',' ':4,'Float (V)',' ':2,'Shift (meV)'); 
wavestr:=' '; 
str(wavelength,wavestr); 
If Exist('calib.'+ wavestr) FALSE THEN 

BEGIN 
writeln('Not available'); 
Delay(1000); 

END ELSE 
BEGIN 
assign(j,'calib.'+ wavestrl; reset(j); 
read ( j, ndata); 

-. .. -

"-



I I 

' I 

'"-' 

\ I 

... 
' 

(~ 

1 I ,_-

~ 

c,. 

' \ 

"~' 

t -· 

I I 

""" I I 
j 

r'r 

..,, 
~ \ 

i 

v 

,_ 
'--' 

writeln; 
FOR i:= 1 To ndata DO 

BEGIN _ 
read{j,T[iJ~E[i),sig[i),M[i],Float[i]); 
gotoxy{8,7+i); write{M[i) :5:1); 
gotoxy{l7,7+i); write{E[i] :7:5); 
gotoxy{30,7+i); write{T[i] :6:1); 
gotoxy{41,7+i); write{sig[i] :6:1); 
gotoxy(58,7+i); write{Float[i]~6:1); 
sp [ i J : =0 . 0; 
IF {M[i] = 26.0) OR {M[i] = 30.0) THEN 
BEGIN 
gotoxy{70,7+i); write(0.0:4il); 
END; 
writeln; 

END; 
Close{j); 
writeln; 
writeln{'Set Error Bar= 1000 to ignore data point'); 
gotoxy{l,7+ndata+3); 
write{'EDIT - Return for no change, Typover for new value. Do not use 

cursor keys!'); 

(* Edit line by line the elements, T[i], Sig[i] and Float[i] *) 
REPEAT 

FOR i:= 1 to ndata DO 
BEGIN 

(* Time element first *) 
temptime:=O; 
gotoxy(30,7+i); 
readln(temptime); 
IF (temptime<>O). AND (temptime<>-1) THEN BEGIN 
T[i] :=temptime; 
END; 

IF temptime=-1 THEN 
BEGIN 

IF sig[i)=lOOO THEN sig[i] :=2.5 ELSE sig[i]:=lOOO; 
gotoxy(41,7+i); write(sig[i] :6:1); 

END; 
gotoxy(30,7+i); write(T[i] :6:1); 

{* Sigma element next *) 
tempsig:=O; 
gotoxy(41,7+i); 
readln(tempsig); 
IF (tempsig <> 0) AND (tempsig < 1001) THEN sig[i] :=tempsig; 
gotoxy (41, 7+i); write (sig [iJ: 6:1); 

(* Float element last; Float is defined as the float voltage plus one 
half the extraction voltage of the ion beam when running the 
calibrant line photoelectron spectrum*) 

tempFloat:=O; 
gotoxy(58,7+i); 
readln(tempFloat); 
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IF (tempFloat > 0) AND (tempFloat < 2500) THEN Float[i] := tempFloat; 
gotoxy(58,7+i); write(Float[i] :6:1); 

(* IF calibrant is CN- or NO- allow a space charge correction to the 
expected electron energy *) 

IF (M[i] = 26.0) OR (M[i] = 30.0) THEN 
BEGIN 
tempspace := 0.0; 
gotoxy(70,7+i); readln(tempspace); 
IF (tempspace > 0 ) AND (tempspace < 100.0) THEN 

sp[i] :=tempspace/1000.0; 
gotoxy(70,7+i); write(sp[i]*l000:4:1); 
END; 

END; ( * next data point * l 

, 



gotoxy(1,7+ndata+4); 
write('Al1 correct? n'); 
gotoxy(15,WhereY); 
read(ques); 

UNTIL (ques='y') OR (ques='Y'); 

writeln; 
count:=O; 
FOR i:= 1 To ndata DO 

BEGIN 
IF sig[i)<>1000 THEN 
BEGIN 

count:=count+l; 
cm:=Float[i)*5.485802e-04; 

(* sp[i) is the space charge correction to the expected eKE *) 
X[count) :=1.0/(sqrt(E[i)+sp[i)-cm/M[i))); 
Y[count) :=T[i); 
sg[count) :=sig[i); 

END; 
END; 
ndataold:=ndata; 
ndata:=count; 

(* Now fit the X-Y data to a linear or quadratic model *) 

IF ndata<3 THEN 
BEGIN 

writeln('Too few datapoints, need at least three to do a linear 
regression.'); 

Delay(2000); 
END ELSE 
BEGIN 
writeln; 
write('Choose (L)inear or (Q)uadratic fit (L/Q) ? '); 
readln(ques); 
IF (ques='Q') OR (ques='q') THEN 

BEGIN 
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writeln('Quadratic ca~ibration fit; Generalized linear least squares'); 
writeln; 
write('Vary Quadratic compression factor (gamma) ? (.Y/N) : '); 
rtest2:=''; 
readln(rtest2); 
IF (rtest2 = 'y') OR (rtest2 'Y') THEN 

BEGIN 
ma:=3; 
mfit :=3; 
listaa [3] :=3; 

END ELSE 
BEGIN 

REPEAT 
write('Enter value to fix gamma at during fit; gamma '); 
c:=O.O; 
readln(c); 
UNTIL (c < 200.0) AND (c > -200.0); 
aa (3] : =c; 
ma:=3; 
mfit:=2; 
listaa [3] :=0; 

END; 
listaa(l] :=1; listaa[2] :=2; 
ncvm:=3; 

(* AA is returned with the values of a, b, and c; the fitted parameters 
COVAR has the 3x3 covariance matrix, and chisq is the chi squared for 
the Quadratic Least Squares fit *) 

lfit(x,y,sig,ndata,aa,ma,listaa,mfit,covar,ncvm,chi2); 
writeln; 
writeln('Quadratic least squares fit, using uncertainties as supplied'); 
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siga =sqrt(covar[l,l)); 
s~gb =sqrt(c,evar[2,2]); 
s~gc =sqrt(covar[3,3)); 
a:=aa[l); 
b:=aa!2J; 
c:=aa[3]; 
q:= gammq(0.5*(ndata-mfit), 0.5*chi2); 
writeln(' ':5,'a= ',a:l3:6,' ':6,'uncert.= ',s_iga:9:6); 
writeln(' ':5,'b= ',b:l3:6,' ':6,'uncert.=·',sigb:9:6); 
writeln(' ':5,'c= ',c:l3:6,' ':6,'uncert.= ',sigc:9:6); 
writeln(' ','chisq= ',chi2:13:6,' ':6,'for ',ndata,' datapoints'); 
writeln('Goodness of fit (Q) ',q:8:4); 

writeln; 
writeln('TO ',a:6:2,' ns +/- ',siga:6:2); 
writeln('l ', (b*5.93094e-02) :6:2,' em+/-

,, (sigb*5.93094e-02) :6:2); . 
writeln('gamma ',c:6:2,' eV.ns +/-', sigc:6:2); 
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{Fit is to curve of the form t = tzero + b sqrt(l/E-DELTAE) + gamma/(E-DELTAE) 

END ELSE (* End of quadratic calibration fit *) 

BEGIN 
mwt:=l; (* Use the uncertainties in sig vector for the linear fit *) 
fit(x,y,ndata,sg,mwt,a,b,siga,sigb,chi2,q); 

(* set the quadratic factor to zero, as not fitted for here! *) 
c:= 0.0; sigc:=O.O; 
writeln; 
writeln('Linear least squares fit using uncertainties as supplied'); 
writeln(' ':5,'a= ',a:l3:6,' ':6,'uncert.= ',siga:9:6); 
writeln(' ':5,'b= ',b:l3:6,' ':6,'uncert.= ',sigb:9:6); 
writeln(' ','chisq= ',chi2:13:6,' ':6,'for ',ndata,' datapoints'); 
writeln('Goodness of fit (Q) = ',q:8:4); 
writeln; 
writeln('TO ',a:6:2,' ns +/- ',siga:6:2); 
writeln(' 1 ', (b*5.93094e-02) :6:2,' em+/- ', (sigb*5.93094e-02) :6:2); 

{Fit is to line of the form t = tzero + K sqrt(l/E-DELTAE)} 
END; (* ques = 'L' *) 

writeln; 
writeln('The following makes permanent any changes you made to the 

calibrant file'); 
writeln('and passes these fitted calibration parameters through to main 

program'); 
write('Use these calibration parameters? '); 

rtest2:=''; 
readln(rtest2); 
IF (rtest2 = 'y') OR (rtest2 = 'Y') THEN 

BEGIN 
Param[lO).Value:= a; {New TO) 
Param[ll] .Value:=(b*5.93094e-04)*100.0; {New length ll 
Param[l3) .Value:=c; {New quadratic compression factor) 
PulseDelay := Param[lO) .Value + 40.0; 
PulseSlope := 284.3174 * Sqr(Param[lll .Value); 

(* Write back to calibrant file *) 
assign(j,'calib.'+ wavestr); 
rewrite(j); 
writeln(j,ndataold); 
FOR i:= 1 To ndataold DO 

BEGIN 
writeln(j,T[i) :6:1,' ':3,E[i) :7:5,' ':3,sig[i) :6:1,' 

· ' : 3 , M [ i J : 5 : 1, ' ' : 3, F 1 oat [ i J : 6 : 1 ) ; 
END; 

Close(j); 

(* Now Check on fit *) 

writeln('With these parameters, the fit is as follows:'); 



Ignored'); 

writeln(''); 
writeln(' Mass',' ':4,'Exact I I , 

writeln(' ':9,'Energy 
rmserr:=O.O; 

FOR i:= 1 To ndataold DO 
BEGIN 

Energy'); 

IF (ques='Q') OR (ques='q') THEN 
(* As calibration numbers are from tof display, 

','Calib. I I 
I Deviation',' 

they have not been corrected by 40.0 ns, Thus do not use PulseDelay 
but Param[10).Value directly for TO here*) 

BEGIN 
cm:=Float[i)*5.485802e-04; 
tt:=(T[i)-Param[10) .Value); 
temp:= (PulseSlope + 2*tt*c + 

sqrt(PulseSlope*(PulseSlope+4*c*tt)) ) I (2*sqr(tt)); 
Ecalc[i] :=temp+ cm/M[i]; 

END ELSE 
BEGIN 

cm:=Float(i]*5.485802e-04; 
Ecalc[i) :=PulseSlope/sqr(T[i)-Param[10) .Value) + cm/M[i); 

END; 

IF sig[i]<> 1000 THEN 
BEGIN 
writeln (M [i]: 6:1,' ':3,E [i] +sp [i] :5:3,' ':S,Ecalc [i) :5:3,' 

' :4, E [ i J +sp [ i ]-Ecalc [ i) : 6:3); 
rmserr:=rmserr + sqr(E[i]+sp[i]-Ecalc(i]); 

END 
ELSE BEGIN 

, writeln (M [i]: 6:1,' ':3,E [i] +sp[i] :5:3,' ':S,Ecalc [i]: 5:3,' 
':4,E(i]+sp[i]-Ecalc[i] :6:3,' ':7,'***'); 

END; 

END; (* FOR *) 

rmserr:=sqrt(rmserr/ndata); 
writeln(''); 
writeln('Root Mean Square Deviation ',rmserr:6:4,' eV'); 
writeln(''); 
write('<Press Any Key to continue>'); 
WHILE NOT KeyPressed do 

END; ( * If rtest2 = y *) 

END; 

end; {else part of if ndata<3 

END; (* ELSE file exists *) 

ftshort.pas 

(*Fourier transfomation on time of flight spectrum, expects <1024 point 
datafile*) 
procedure ftfit(var totdata : rmbuf); 

const 
nn=1024; 
nn2=2048; 
nn3=512; 
nn4=513; 

var 
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i,ii : integer; 
data : gldarray; 
avg : real; 
olddir : Bufstring; 

, TYPE 
BufString = String[SO]; 
parray = array[l .. nn4] of real; 

Procedure WriteFilea(writedata : rmbuf); 
(* write data file. *) 

var 
FileVar : text; 
i : integer; 
FileName,OldDir : bufstring; 
NewFormat : boolean; 

begin 
write(' Name of output file (data\noise\NAME.dat) '); 
readln(FileName); 
CheckDir(FileName); 
Assign(FileVar,FileName); 
Rewrite(FileVar); 
writeln(FileVar,'A'); 
writeln(filevar,round(Param[4] .Value)); 
writeln(filevar,round(Param[3] .Value)); 
writeln(filevar,round(Param[2] .Value)); 
writeln(filevar,'l'); (*Marker to indicate smoothed file*) 
writeln(filevar,round(Param[S] .Value)); 
writeln(filevar,round(Param[lO] .Value)); 
writeln(filevar,round(Param[ll] .Value)); 
for i:= 1 to round(Param[3] .Value) do 
begin 

writeln(FileVar,writedata[i]:O:l); 
end; 
Close(FileVar); 
Writeln (' '); 
Writeln(i,' Data Points written~); 

end; { procedure } 

Procedure WriteFour; 
VAR 

FileVar :text[$800]; 
i : integer; 

BEGIN 
assign (FileVar,'FOURTR.DAT'l; 
rewrite(FileVar); 
For i:=l to nn2 do 

Writeln(FileVar,data[i]); 
Close(FileVar); 

END; 

PROCEDURE ReadFour; 
VAR 

FileVar : text[$800]; 
i: integer; 

BEGIN 
assign (FileVar,'FOURTR.DAT'); 
reset(FileVar); 
For i:=l to nn2 do 

Readln(FileVar,data[i]); 
Close(FileVar); 

END; 

Procedure Fourierl; 
var 

i,Thecase,ii,io,cutl,cuto : integer; 
Noise,freq,a: real; 
Filter: parray; 
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BEGIN 
(*Wiener Filtering- see Numerical Recipes by Press et al .. *) 

Writeln(' Wiener Filter : Smooth Lorentzian Filter'); 
a:=lS; 
Write('FWHM/2 of Lorentzian (default=lS) ? '); 
Readln(a); 

FOR ii:= 1 to nn3+1 DO 
Filter[ii] :=1.0/(l+sqr(int(ii-1))/sqr(a)); 

For ii;=l to nn3+1 do 
BEGIN 

i:=2*ii; 
data[i-1] :=data[i-l]*filter[ii]; 
data[i] :=data[i]*filter[ii]; 

END; 
For ii:=nn3+2 to nn do 

BEGIN 
i:=2*ii; 
data[i-1] :=data[i-l]*filter[nn-ii+2]; 
data[i] :=data[i]*filter[nn-ii+2]; 

END; 
end; {procedure} 

(*Main procedure*) 
BEGIN 

Olddir:=Directory; 
Directory:='\turbo\data\noise\'; 
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Writeln('Fourier Transformation of a ',round(Param[3] .Value),' point time of 
flight spectrum'); 

Writeln; 
Write('Is the transformed spectrum already stored as FOURTR.DAT? (l=yes) '); 
Readln(i); 
IF i <> 1 THEN 

BEGIN 
For ii:=l to round(Param[3] .Value)-10 do 
BEGIN 
data[2*ii-l]:=totdata[ii]; 
data[2*ii] :=0; 

END; 
avg:=O.O; 

·For ii:= round(Param[3] .Value)-9 to round(Param[3] .Value) do (*extrapolate 
the last ten points out to nn*) 

. BEGIN 
data[2*ii-l]:=totdata[ii]; 
data [2*iil :=0; 
avg:=avg+totdata[ii]; 

END; 
avg:=avg/10. 0; 
For ii:=2*round(Param[3] .Value)+l to nn2 do 

data[ii] :=avg; {pad end with average of last ten points} 
FOURl(data,nn,l); {transform into frequency space} 

WriteFour; { store the frequency spectrum} 

END {if} 
ELSE BEGIN 

ReadFour; (*Read fourier transform file*) 
END; 

( -, 

FOURIER!; / 

FOURl(data,nn,-1); !Inverse Transform} 

writeln; 
For ii:=l to round(Param[3] .Value) do 

BEGIN 
totdata[iil :=data[ii*2-l]/nn; 

END; 
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(* Set first two points to min and max of input data for comparison*) 
totdata[l):=maxval; 
totdata[2) :=0; 

LastFile:='FTFIT'+ LastFile; 
Write('Save the smoothed spectrum? (l=yes, default no) '); 
i :=0; {default) 
Readln(i); 
IF i=l THEN 

WriteFilea(totdata); 
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(*in any case the smoothed spectrum is passed back to main routine for display*) 
Directory:=OldDir; {reset to old directory) 
Param[l).Value:=l; (*Set number of Scans to 1 to mark the fact that this is sub 
file*) 
END; 

fourl.pas 

PROCEDURE fourl(VAR data: gldarray; nn,~s~gn: integer); 
(* Programs using routine FOURl must define type 
TYPE 

gldarray = ARRAY [1 .. nn2) OF real; 
in the calling routine, where nn2=nn+nn. *) 
VAR 

ii,jj,n,mmax,m,j,istep,i: integer; 
wtemp,wr,wpr,wpi,wi,theta: real; 
tempr,tempi: real; 

BEGIN 
n := 2*nn; 
j := 1; 
FOR ii := 1 to nn DO BEGIN 

i := 2*ii-1; 
IF (j > i) THEN BEGIN 

tempr := data[j); 
tempi := data[j+l); 
data[j) := data[i); 
data [ j+l J := data [i+l); 
data[i) := tempr; 
data[i+l) :=tempi 

END; 
m := n DIV 2; 
WHILE ((m >= 2) AND (j > m)) DO BEGIN 

j := j-m; 
m := m DIV 2 

END; 
j : = j+m 

END; 
mmax := 2; 
WHILE (n > mmax) DO BEGIN 

istep := 2*mmax; 
theta := 6.28318530717959/(isign*mmax); 
wpr := -2.0*sqr(sin(0.5*theta)); 
wpi := sin(theta); 
wr := 1.0; 
wi := 0.0; 
FOR ii := 1 to (mmax DIV 2) DO BEGIN 

m := 2*ii-1; 
FOR jj := 0 to ( (n-m) DIV istep) DO BEGIN 

i := m + jj*istep; 
j := i+mmax; 
tempr := wr*data[j)-wi*data[j+l); 
tempi := wr*data[j+l)+wi*data[j]; 
data[j] := data[i)-tempr; 
data[j+l) := data[i+l]-tempi; 
data[i] := data[i)+tempr; 
data[i+l] data[i+l]+tempi 

END; 



wtemp := wr; 
wr := wr*wpr-wi*wpi+wr; 
wi := wi*wpr+wtemp*wpi+wi 

END; 
mmax := istep 

END 
END; 

scale. pas 

procedure scale; 

type 

var 
BufString = string[SO]; 

FileVar : text; 
FileName : bufstring; 
i : integer; 
NumOfScans, PointsPerScan,TimePerPoint,r 
teststr : BufString; 
ErrFlag,NewFormat : boolean; 
con : real; 
olddir : BufString; 

BEGIN 
ErrFlag:=FALSE; (*Initialize flag*) 

real; 

IF round(Param[3].Value) > ( (MAXSIZE-10) /2) THEN 
BEGIN 

ErrFlag:=TRUE; 
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writeln(#7+'Dataset too many points for subtraction, must be<= 1200 pts'); 
Delay (1500); 

END; 

IF (InitSub=FALSE) AND (ErrFlag = FALSE) THEN 
BEGIN 
For i:= 1 to round(Param[3] .Value) do 

BackData[i] :=Data[i]; 
olddir:=Directory; 
Directory:='\turbo\data\noise\'; 
write('Filename (Default is data\noise\) '); 
readln(FileName); 
CheckDir(FileName); 
IF Exist(FileName)=FALSE THEN 
BEGIN 
Writeln('File does not exist'); 
Delay(500); 
ErrFlag:=TRUE; 

END; 
If Exist(FileName)=TRUE THEN 

BEGIN 
Assign(FileVar,FileName); 
Reset (FileVar.); 
Readln(FileVar,teststr); 
IF (teststr[1] = 'A') then NewFormat :=TRUE 
else NewFormat := FALSE; 
IF NOT NewFormat then Reset(FileVar); 
Readln(FileVar,TimePerPoint); 
IF (TimePerPoint = Param(4] .Val~e) then 

BEGIN 
Readln(FileVar, PointsPerScan); 
if PointsPerScan < Param[3] .Value then Param[3] .Value := 

PointsPerScan; 
Readln(FileVar,r); 
Readln(FileVar,NumOfScans); 
Param[1] .Value := Param[1] .Value + NumOfScans; 
Readln(FileVar,r); 

:''• ..... 
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IF NewFormat then 
BEGIN 

Readln(FileVar,r); 
Readln(FileVar,r); 

END; 
for i:= 1 to round(Param[3] .Value) do 
BEGIN 

Readln(FileVar,r); 
BackData[round(Param[3] .Value)+il := r; 

END; 
Close (F ileVar) ; 
Writeln('Data Read'); 

END 
else 

BEGIN 
Writeln(#7 + ' Time per Point is Wrong Cannot Add Data Set'); 
Close (FileVar) ; 
Delay(SOO); 
ErrFlag:=TRUE; 

END; {This ends the Time per poin~ 1F !} 
END; (*if Exist FileName*) 

Directory:=Olddir; {reset directory to what it was on entry} 
END 

ELSE writeln('Using Original datasets for the raw spectrum and background 
Fit'); 

{now if InitSub was set or not} 
IF ErrFlag=FALSE THEN 

BEGIN 

set*) 

Write('Scale by #Scans of data/#Scans of Background ? '); 
Readln(con); 
for i:=1 to 10 do 

begin 
Data[i] :=0; 

end; 
for i:= 11 to round(Param[3] .Value) do 

Data[i] := BackData[i] - con * BackData[round(Param[3] .Value)+i]; 
IF InitSub=FALSE THEN 

LastFile := 'SUB ' + LastFile; 
InitSub:= TRUE; (* Now true because full file read, and plot filename 

Writeln(' '); 
Writeln('Subtraction Done'); 
Delay(SOO); 

END; 

END; {procedure} 
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Appendix C. Time Dependent Wave packet Propagation Codes 

1. Introduction 
I , 

Codes have been developed to calculate the time-dependent dynamics of a wave 

packet in both one- and two-dimensional space. The resulting wave packet dynamics 

is used to compute the autocorrelation function and, in turn, the simulated 

photoelectron spectrum. The number of dimensions corresponds to the number of 

~. I 
\ c 

independent coordinates explicitly represented by the wave packet. A wave packet 

propagation is merely a solution of the discretized time-dependent Schrodinger 

Equation. Assuming a two-dimensional space, this is written 

r-

(1) 

where ~n(~, i,) is the n-th wave packet in time and is a complex function expressed 
l .. 

in space at each grid point (~ , iy ). The method we adopt for solving (1) and the 

relevant references are detailed in Chapter 4. Here we concentrate on how to use the 

code, and how the code is constructed. 

The Hamiltonian is time independent and, as usual, made up of a kinetic and 

potential energy term. The kinetic energy is evaluated by the Fourier method (see 

'Chapter 4)- this is generalizable into N-dimensions. In one-dimension, the potential 
?' 

energy can be a bound or repulsive function of the single coordinate, x. In two 

dimensions, the potential, V( x, y ), may be bound (i.e. possess a well) or be of a more 

general form, e.g: unbound or containing a saddle point. The propagation codes can 

handle any potential function. It is useful for the potential to be an analytic function 

of the coordinates. 
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We will be concentrating on potential en~rgy surfaces for direct bimolecular 

reactions, i.e. those with no wells and a single saddle point, for the neutral in the 

following discussion. For reaction surfaces, simple analytic forms, such as the 

London-Eyring-Polanyi-Sato (LEPS) function, are very often used. More recently ab 

initio surfaces have been computed for light atom reactions (e.g. H + ~. F + ~. 0 + 

HF, 0 + Hcl, and Cl + Hcl); these are usually only evaluated at a set of points. In 

some cases analytic functions have been fit to the points, or a spline interpolation for 

the full surface has been given. In principle, as our method of solution of Equation (1) 

requires the potential only at a set of gridpoints, it is conceivable that the potential -

could be evaluated at each point on the grid by ab initio methods. 

The two-dimensional code (prop2d22) grew out of the one-dimensional code 

(proplO), but the two-dimensional code is a lot more flexible in terms of potentials 

allowed for the anion and neutral and the controls the user may implement. The 

basic usage of the codes is very similar. The one-dimensional code is useful mainly 

for preliminary calculations and for instructional use. Other more efficient techniques 

are available to solve the Schrodinger equation in one dimension on a grid for bound 

or purely repulsive potentials. Actually, the wave packet propagation does prove 

useful (and efficient) for an intermediate case where the dynamics involves a region 

of the upper state potenti~ that can trap the wave packet and another region where 

the wave packet moves to dissociation. An example of this is a wave packet that is 

launched fairly high up on a Morse or Lennard-Jones potential (see Figure 4-l(iii)). 

One important use of the one-dimensional code is to examine the form of the 

· autocorrelation function that derives from motion in just one dimension when 

comparing to a full two-dimensional propagation (see Chapter 5). 
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2. One-dimensional Propagation Code • proplO 

The executable code, prop10, is compiled by using the UNIX make utility and 

the makefile makeprop10. The code depends on four files of FORTRAN source, 

koslofl7.f, lepsl.f, anionmorsewfl.f and wave2.f. If any of the source files to prop10 

are modified, the prop10 program should be recompiled; ~do so use the make utility 

as follows: 

make -f makeprop10 

The code can be compiled and run on a Sun SPARCstation as the numerical demand 

is small enough that this machine is fast enough to cope with a reasonable length 

propagation; a 400 femtosecond propagation (4 a.u. time steps, 4096 steps) on a 64 

point spatial grid consumes only 14 CPU s~conds on a SPARCstation ELC. 

The code is used as follows. An input deck (called koss.dat) is constructed 

that controls not only the way the code proceeds but also contains all physical 

information such as the potential parameters. The input deck is not free format, but 

comments may be left to the right of the input line to assist the user in making 

changes to a template file. A typical input deck is shown below: 

0,0,0 
1.0 
8192.00,2.00 
0.0,6.0,64 
1 
3.0,1000.0,0.0,0.0 
1 
4.0,1000.0,0.0,0.0 
0.00 
0.00,2.00 
16,2048 

Control parameters: save lower/ upper pot./ wavepacket 
Reduced mass (in amu) 
Total propagation time and time step (in a.u.) 
Xm1n, X,..x and number of grid points in X 
LOWER (anion) potential type 
Parameters (e.g. X0 , 000 and ~X0 ) for LOWER potential 
UPPER (neutral) potential type 
Parameters (e.g. XG, roe and ~Xg) for UPPER potential 
Dephasing constant gamma (0 = automatic window chosen) 
Min. and Max. energies (eV) in Fourier trans. spectrum 
No. of time steps to save self overlap and full wavepacket 

This is the only input to the program; no entry is expected from the keyboard. Most 

lines of the input deck are self explanatory. Line 1 sets the parameters (0 =no, 1 = 

I 
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yes) that control whether the potential evaluated either for the lower or upper 

surfaces is to be saved to disk (in files called potiA.out and potm.out) and whether 

the wave packet, or the wave packet and its derivatives, are to be saved to disk (in 

files called wavepkt.out and wave.drw). Wave packets, with our without 

derivatives, are saved at intervals determined by the second number in the final line 

of the input deck. The wave packet derivatives are useful only for debugging; if 

derivatives are selected, ~kx , ky ), the momentum space representation of the wave 

packet, and the result of the operators T, V, and H acting on the wave packet (Tel>, Vel> 

and He!>) are saved into the files as well as the wave packet. This consumes disk space 

fairly rapidly, so save only a few wave packets! The wave.drw file, which is 

unformatted binary, can be read into a 1D wave packet graphing program draw3. If 

the control parameter for wave packet derivative storage is set to a value of -1, then 

no information on the wave packets or its derivatives are saved to disk. 

Total propagation times and the time step are entered on line 3 in atomic 

units. Atomic time units are the natural unit for a propagation; 1 femtosecond is 

approximately 41 a.t.u. The time step is chosen by consideration of criterion (25) in 

Chapter 4; if a too large time step is selected, the program will terminate with a 

message indicating that the propagation WO'!J.ld be unstable. Next the grid range and 

grid size is determined on line 4. Remember that the range in coordinate space and 

the grid size determines the grid spacing Ax, which in turn determines the maximum 

kinetic energy that is possible on the grid (and therefore the largest energy 

eigenvalue). The selection of these parameters is the trickiest part of the whole 

operation. However, .some very simple guidelines should ensure success: (i) The 

number of grid points must be a power of two, and should be at least 32 and never 
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need exceed 256; usually 64 is adequate. Using a higher number of points than 

required will force the time step to be very small. (ii) Choose a range of coordinates 

that covers all the important parts of the anion and neutral potential surfaces -

physical intuition is all that is required here. For example, if there is a big change 

in geometry between anion and neutral then one knows that there will be high 

amplitude motion involving large kinetic energies. (iii) Start the calculation going and 

look at the value output for the maximum kinetic energy that the program calculates 

from your~- If it is reasonable then continue; if it is huge, then you can reduce the 

number of grid points and achieve a much faster propagation. If it is smaller than 

physically desirable, you need to reduce the grid range or increase the number of grid 

points. 

The next few lines contain information on the lower and upper potentials. 

Information on the lower (anion) potential is required to compute an initial wave 

packet for the propagation; the ground state wave function for a harmonic potential 

or a Morse potential is constructed analytically for this purpose. For each potential 

the first control line indicates the potential.type; this choice determines the form of 

the input expected on the following line(s). The potential types the program accepts 

are the following (the number indicates the potential type parameter to be entered on 

the control line): 

(0) Morse function (data required on next line is Rein A, De in eV, ~in k 1 and 

V0 , the potential offset constant, in eV ). 

(1) Harmonid Morse function (data required on next line is Rein A, roe and roexe 

in cm·1 and V0 in eV). 

,I 
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(2} LEPS potential function cut (data required on next six lines: line 1 - V0 , 

line 2 - masses of atoms A, B, and C in a.m. u., lines 3 - 5 contain the data De 

in eV, J3 in A-t, Ra and the Sato parameter for each fragment AB, BC and AC 

respectiv~ly and finally line 6 - the value of RAe for which the 1D cut will be 

made). 

(3) read potential from potB.in file (data required on next line V0 only). 

Once information on both potentials has been entered, the final three lines of the 

input deck supply the windowing function parameter y (defined in Equation (29) of 

Chapter 4), the range of energies to be written to the output file absspec.out (which 

contains the final simulated energy spectrum a(E)), and the step intervals for the 

program to calculate the autocorrelation atovtp and to save the wave packet. If y is 

chosen to be zero, the program calculates a default (conservative) window function 

that eliminates any spurious ringing in the energy spectrum. 

The output is generated as follows: a summary of the input parameters, the 

potential function and the grid as well as the consistency checks on the norm and the 

average energy of the wave packet during the course of the propagation are sent to 

the file out.dat as well as to the screen. The norm should stay close to unity and the 

energy should remain constant. If the norm starts increasing wildly, this means the 

time step is too large, or perhaps the potential needs shelving (see Section 3.3.1 of 

Chapter 4). The autocorrelation is written to a file auto.dat (real part, imaginary 

part and modulus ofC(t)) and the final energy spectrum to absspec.out suitable for 

plotting with a simple X-Y plotting package. The wave packet output has already 

been described. Some simple checks that can be performed on the calculation to make 

sure that everything proceeded smoothly are graphing the wave packet file with the 
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draw3 program, plotting the autocorrelation and checking for smooth behavior and 

convergence checking by repeating the calculation with a rE1duced time step and grid 

spacing. 

I 
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3. Two-dimensional Propagation code · prop2d22 

The executable code, prop2d22, can be compiled by using the UNIX make 

utility and the makeflle makeprop2d22 (make -f makeprop2d22). If using the San 

Diego Cray Y/MP a convenient script file called prop2d that takes care of retrieving 

the source from the DataTree, as well as compiling and executing the code is 

available. To retrieve this execute the commands 

dti get time/prop2d 

prop2d 

on logging in. The prop2d script can also be used subsequently as a convenient 

interface for executing the code. 

The two-dimensional propagation code depends on three files of FORTRAN 

source, koss2d22.f, potread2.f and graphicsy.f and the NAG numerical library and 

local graphical libraries. The dimensioning of arrays that determine grid size are 

controlled by an include file, param.inc. This file contains a single line dimension 

statement and should be edited prior to compiling the code to match the grid size that 

the user has specified in his/ her input deck. The graphicsy.f file is machine 

dependent; all graphics routines have been bundled into this source file; the file 

shown here uses the Computer Associates DISSPLA graphics library with a 

GKS/NCAR graphics interface available on 'the San Diego Supercomputer Center's 

Cray Y/MP. The prop2d22 code is generally run on this supercomputer as it makes 

heavy use of a vectorized two-dimensional fast Fourier transform routine. However 

it is possible to use the code on a fast scalar workstation, and one envisages that it 

could be readily be ported to a RISC based scalar machine with suitable libraries 
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installed. If the NAG library routine used for the two-dimensional FFTs is not 

available, the code may be compiled With an. extra source file (twodfR.f) however the 

speed will be significantly reduced. To do this, the koss2d22.f code should be edited 

(as indicated in comments in the code) to remove reference to the NAG routine. The 

twodfR.f file contains subroutines based on code in Section 12.11 of Numerical Recipes 

-The Art of Scientific Computing by W. H. Press, B. P. Flannery, S. A. Teukolsky and 

W. T. Vetterling, Cambridge University Press, Cambridge (1989). 

Typical run times are 20 Cray CPU seconds for a 320 femtosecond propagation 

(1.3 a.u. time steps, 10240 steps) on a 64 x 32 point spatial grid. Memory 

requirements are modest; for such a typical job 350 kwords (2.8 Mbytes) are required. 

Propagations of 2 psecs on a 128 x 64 grid are the largest jobs that have been 

attempted. These large jobs yield excellent energy resolution, and the limitation at 

this point is less a question of CPU time but more expected errors accumulating in the 

phase of the wave packet (see Chapter 4): 

The two-dimensional code is used in a very similar way to the one-dimensional 

code, however this code can treat a completely general wave packet propagation on a 

bimolecular reaction surface, suitable for tw~coordinate photodissociation or 

photodetachment to a continuum. The quantum dynamics is exact, in contrast to the 

2D adiabatic approaches employed by Metz (Ph. D. thesis, U.C. Berkeley (1991)), 

which are strictly applicable only in limiting heavy-light-heavy cases. However, 

because the calculation treats the two coordinates generally (fully coupled), it is 

computationally more demanding for a given dimensionality. At present we have not 

extended this method to three-dimensions, although other authors have achieved such 
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three-dimensional wave packet calculations, arid the code presented here should be 

easily generalizable. (See chapter 4, section 4 for references). 

The code is used as follows. An input deck (called koss2d.dat) is constructed, 

in a very similar way to the one-dimensional code. Once again, no input from the 

keyboard is required. This file controls the way the code proceeds and contains all 

physical information such as the masses of the atoms and potential parameters. The 

input deck is not free format, but comments may be left to the right of the input line, 

or at the end of the file, to assist the user in making changes to a template file. The 

reader is directed to remarks in Section 2 above concerning the meaning of many of 

the input lines which are common to both codes. A typical input deck is shown below: 

0,0,-1,0,0 
78.918,1.00728,126.9045 
512.00,1.0000 
22.00,35.00,64,0.9500,3.10,32 
2 
1,1,0,0 
3.88,100.00,0.000,0.00 
1.55,1276.30,178.10,0.00 
2,1 
3.920 
3.920,1.810,1.414,0.186 
3.196,1.751,1.609,0.055 
1.834,1.876,2.469,0.220 
0.00 
2.293 
1,128 

Line 1 
Line 2 
Line 3 
Line 4 
Line 5 
Line 6 
Line 7 
Line 8 
Line 9 
Line 10 
Line 11 
Line 12 
Line 13 
Line 14 
Line 15 
Line 16 

I Line 1: (Flags) SavePotA,SavePotB,SaveWavepackets,Readinitialwavepacket, 
I Restart 
I All flags except SaveWavepackets can be 0 (NO) or 1 (yes) 
I SaveWavepackets can be -1 (NONE) 
I 0 (only wavepackets saved) 
1· or 1 (wavepackets and k-space wavepacket saved) 

I Line 2: (Mass) Atom A, Atom B, Atom C 
I Order is important A + BC -> AB + C 

(al} in amu.) 

I Line 3: (Time) Total propagation time, time step (both in atomic units) 
I time step is usually around 1.0 a.u. and this should be varied to assure 
I numerical convergence. 

I Line 4: (Grid) Xmin,Xmax,NXpts,Ymin,Ymax,NYpts (in mass scaled coords.) 
I Range of x and y should be supplied in mass scaled coordinates 
I (amu~o.5 . Angs), and Nxpts and Nypts should be the same as 
I n1pts and n2pts, respectively, in the param.inc include file. 
I Both nXpts and nYpts should be powers of two. 



# Line 5: 
# 
# 
# 

(Flag) Absorbing boundaries: 
0 (No) 
1 (Yes, supplied on extra following line, see source) 
2 (Yes, use defaults, no extra line required) 

# Next 
# (see 
# Line 
# 

section varies depending on choice of potential 
comments in subroutine Potread for details) 
6: (Lower) Potential type (see comments at top of Main code for 

# Line 7: 
# Line 8: 

potential types) 
(Lower) Potential data along one dimension (parallel to x) 
(Lower) Potential data along other dimension (parallel to y) 

# Line 9: (Upper) Potential type 
# Line 10-13 (Upper) Potential data (non seperable LEPS potential) 

# Line 14: (Real) Damping Constant (0.0 = default) 
# This determines how much damping takes place before taking Fourier 
# Transform of autocorrelation function to produce photoelectron spectrum 
# Usually set to 0.0, where program calculates optimal value. 

# Line 15: 
# 

# Line 16: 

(Real) Origin in spectrum that corresponds to zero of 
upper potential suface (This is just an offset) 

(Steps) How many steps between saving overlap, wavepackets 

# This sample input deck performs a 512 step propagation on a mass weighted 
# grid 64x32 in size with absorbing boundaries. The time step and grid size 
# .is set up so that the calculation converges correctly and the numerical 
# propagation is stable. 
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This template file has a set of detailed comments describing the purpose of each entry 

and line. This should be used in consultation with the comments below and in the 

header to the main code. Criteria related to the grid and time step are common to 

those described for lD propagations. All lines marked "(flags)" should contain only 

integers; further nXpts, n Ypts, both step intervals indicating when to save the overlap 

and the wave packet, and the flags indicating potential type should be integers. All 

remaining entries should be real numbers. 

Let us describe the input parameters that are new. The purpose of the extra 

flags Readlnitialwavepacket and Restart are fairly self-explanatory. If either flag 

value is set to one, the program attempts to read the a wave packet from the 

wave.dump file either for use as the t = 0 wave packet or to continue the propagation 

from a previous propagation. Note Readlnitialwavepacket and Restart cannot both 

be one. See comments in subroutine initB source for more information on this 

I 
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advanced option. The mass of the three atoms is required to determine the 

appropriate reduced masses for the mass-scaled Jacobi coordinate grid. (See Chapter 

4, section 3.1 for definitions). The range of x andy are expected in this mass-scaled 

coordinate system, however the equilibrium geometry data in the potential parameter 

input is expected in the relevant internal coordinates without mass-scaling. 

The absorbing boundary information required in line 5 is again fairly self-

explanatory. Use of the default boundaries for a dissociative system is recommended 

for initial calculations; for bound problems the absorbing boundaries should be turned 

off. Refer to section 3.3.2 of chapter 4 for details on absorbing boundaries. 

Most of the potential types are common to the 1D code and have been described 

above. Notice that for the lower potential, four integers are expected on Line 6: two 

to describe the potential type in each spatial direction and two to describe the 

quantum state of the initial wave function. If 0, 0 is chosen for the latter pair then 

the ground state wave function is computed for the potential type required. Note 

that the potential can be Morse oscillator along only one spatial direction; that 

direction must be along they coordinate. The upper potential requires only two (but 

it must have two) integers describing the potential type., In addition to harmonic/ 

Morse (0 and 1), LEPS (2) and read-from-file (3), two new potential types have been 

added, and the LEPS potential extended. The LEPS function data is input exactly as 

before except the mass data has already been entered in Line 2 and no cut RAe is 

relevant or required. The other integer flag on the potential type line allows the zero-

point bend correction to be added to the LEPS potential energy at each point (0 =no 

correction, 1 = ZPB correction). The zero-point bend correction was suggested in the 

reduced dimensionality work of Prof. J. M. Bowman (Emory Univ.). The new 



326 

functions available are (4) user-defined subroutine upotfn (compiled into code) and (5) 

rotated-Morse-oscillator spline (RMOS) function. (4) is useful for-specific potentials, 

e.g. lennard-Jones, quartic anharmonic oscillator or elaborate reaction potentials 

such as the T5a and 5SEC surfaces (ofTruhlar and coworkers) for the F +~reaction. 

The RMOS potential type is very useful for fitting ab initio reaction surfaces; 

references for this potential type appear in Chapter 6. 

If either a potential or an initial wave function is read from disk, this must be 

constructed in a rectangular array of the same size as the propagation grid with the 

same grid points. The imposition of a shelving criterion to the potential energy helps 

reduce computation time by allowing a larger propagation time step (see section 3.3.1 

in Chapter 4). This is hard-coded in the source for all potential types. To modify the 

shelf value the user must edit the code and recompile. See section 4 below. 

Completing the description of input parameters, Line 15 is a constant offset for 

calculation of the origin in the final photoelectron simulation. Unlike the 1D code, 

this code transforms the simulation from the neutral internal energy scale to a true 

electron kinetic energy scale by use of formula (2) in Chapter 4. L\, of formula (2), is 

the offset supplied on this line. 

The program, if run so as to produce graphical output (this is carried out by 

. keywords on the prop2d22 command line or via the prop2d script), will generate all 

of the important computed information in graphical form. Graphical output is possible 

to any ,device the graphics software supports; typically this is to a Textronix 4013 

emulator or to a graphics metafile. The latter may be converted into many other 

formats such as X11 bitmap or PostScript. The graphics capability of the code makes 

error checking and general use particularly easy. The values of the wave packet norm 
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and energy (which are conserved only if there is no flux absorbed by absorbing 

boundaries) is displayed along with the contour plots of the wave packet. On these 

plots, contours of the upper potential surface are also ~hown. Plots are displayed at 

time intervals specified by wave packet step interval on the last line of the input deck. 

Viewing eight or so wave packets as a function of time is usually sufficient to interpret 

the wave packet dynamics. 

Inadequacies in the choice of grid range and absorbing boundary are manifest 

in this moving image of the wave packet dynamics. To check the performance of the 

grid in the momentum domain (i.e. whether the full range of momenta in the wave 

packet fits on the Fourier space grid), the SaveWavepackets flag may be set to 1, and 

cp(kx ,ky ) will aiso be graphed as well as saved to the wavepkt.out file. The use of 

graphics is extremely important in giving the user a feel for the calculation he or she 

is attempting, and suggesting possible remedies if problems with the propagation 

arise. 

Output to files out.dat and auto.dat is as for the lD code. The potlA.out and 

potffi.out files containing the lower and upper potentials, and the wavepkt.out file 

containing the wave packet, are now two dimensional arrays of potential/ wave packet 

values; the wavepkt.out file gets very large, very quickly. The file absspec.out is 

in the same format as for the lD code but gives the spectrum as a function of the 

electron kinetic energy rather than of the neutral internal energy .. There is no 

wave.drwfile. Finally there is a dump file (wave.dump) written for the final wave 

packet of the propagation for restarting purposes. 
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4. How the proplO and prop2d22 programs work 

This section is really only intended for users_who wish to make changes to the 

codes. The methodology behind both codes is described in Chapter 4 of this thesis and 

the simple use of each code is described in sections 2 and 3 above. Both codes have 

very similar layout and the names of subroutines and functions are in may cases 

identical. The basic organization is as follows (subroutine names given in italics). 

The main routine initializes the graphics device (if applicable) and calls 

subroutine const which defines some fundamental constants and then reads the input 

deck (file koss.dat or koss2d.dat). The necessary input is described in detail in 

section 2 and 3 above. This subroutine establishes the parameters for the 

propagation, converting them into atomic units where appropriate, mid (if applicable) 

the absorbing function. The potential parameters are read, and the lower and upper 

potentials are stored in the potential array xypot in subroutine potread. All the 

necessary conversion of coordinates for the 2D code are performed by statement 

functions like AMStoRab. Potread calls one of an assortment of subroutines to 

evaluate the potential depending on the potential type -lepstore (for LEPS potentials), 

upotfn (for user defined potentials) and rmos (for the RMOS spline functions) are the 

starting subroutines for calculation of each of these non-separable potentials. 

For the upper state potential, where the propagation will proceed, the potread 

subroutine imposes a shelf on the highest numeric value the potential may take. The 

purpose of this is described in Chapter 4, section 3.3.1. This shelf value is hard-wired 

in the code for each potential type. If the value is unsuitable for the user's 

application, he/ she should change the value in this routine and recompile the code. 

One way to estimate an appropriate value for the potential shelf is to consider the 
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classical turning points for motion on the upper surface, and the energy at the turning 

point. One classical turning point is xinitiaJ• the center of the initial wave packet, and 

the energy is given approximately by the <H> evaluated by the program at t=O. This 

energy must be considerably less than the chosen shelf value. Errors from choosing 

a value for the shelf that is too low will be obvious when the wave packet propagation 

is graphed; parts of the wave packet will spill into regions of configuration space that 

they should not be in! If in doubt raise the value of the potential shelf, and reduce 

the time step as necessary, and check for convergence. 

Returning to the main routine, the input data is written to the output stream 

and to the file out.dat. The maximum kinetic energy supported by the grid is 

calculated and the program aborts if it finds the chosen time step is too large to 

maintain a stable propagation. The potentials are saved (potlsave) to disk, if the user 

has so requested, and the wave packet disk file(s) are initialized (initpkt). In the 2D 

code, if the NAG 2D-FFI' routine is used, it is initialized now. The initial wave packet 

is now set up by a call to initB. 

InitB determines if there is to be a restarted propagation or if the wave packet 

is to be read from disk (readwave) or calculated. If the latter, the routine determines 

whether an analytic form for the initial wave packet exists (i.e. if the lower surface 

is harmonic or Morse), or whether a initial wave packet must be calculated 

numerically (relax). The lD code is much more primitive in this subroutine - it will 

not read from the disk or restart a propagation, and it allows only an analytic initial 

wave packet. For calculation of the analytic initial wave packet, initWF or morsewf 

is called. In the 2D code, these two routines will calculate a v = 1 wave function as 

well as v = 0, allowing some experimentation with "hot-band" photoelectron spectra. 
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InitB finally propagates the initial wave packet for its first time step, to calculate (j> 2 
, 

with second order Runge-Kutta. The initial wave packet, (j>l, along with (j> 2 are passed 
. 

back to the main routine where the initial packet is saved to disk (pktsav). The norm 

and average energy of the initial wave packet on the upper surface is evaluated (chk, 

chknrm, chken). 

Finally we enter the main loop; the propagation now begins! This is the loop 

that gives the iterative solution of the time-dependent Schrodinger equation by second 

order differencing (SOD). In each pass through the loop, psi2 (or psi2ab, if absorbing 

boundaries are being used) is called. This routine contains the SOD formula. If 

absorbing boundaries are being used, it is at this point where the wave packet is 

multiplied by the absorbing function. In each operation of the SOD formula, He~> must 

be calculated. This is also required each time the average energy is calculated 

(chken). The operation of H on (j> is performed in the routines Hpsi, KEmat and 

PEmat; this is the core of the Fourier method. 

KEmat evaluates the operation of the kinetic energy operator on the wave 

packet. It does this by performing a pair of discrete fast Fourier tran~forms on the 

data array. For the 2D code we use either c06fuf, the vectorized NAG library routine, 

or twodfft, the (slow) Numerical Recipes routine. In the lD code the Numerical 

Recipes FFT routine is employed. Between the two FFTs, the wave packet (now 

represented ink space) is multiplied by (k,.2 + k/), or just k,.2 in one dimension. The 

KEmat routine is where both proplO and prop2d22 spend most of their CPU time. In 

contrast, PEmat performs a simple multiplication of the wave packet by the potential 

at each grid point; each is already stored in memory. 
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Inside the main loop the self overlap of the wave packet with the initial wave 

packet is computed (ovlp) and stored at regular intervals; the overlap is calculated by 

Simpson's rule (zsimpint, ztrapint). At more infrequent, but still regular, intervals the 

wave packet is checked for norm and average energy, and stored and graphed. These 

regular intervals are determined by the last two parameters set in the input deck . 

. Mter the main propagation loop is complete some tidying up is done: the 

autocorrelation function is saved to disk, the energy spectrum is calculated by a one-

dimensional FFT of the autocorrelation function and saved (savabs ), and files and 

graphics devices are closed up. 

4.1 Source Code Listing 

4.1.1 One-dimensional Code- prop10 

makeprop10 

FFLAGS=-cg89 -03 -dalign -w 
proplO: kosloff7.o wave2.o lepsl.o anionmorsewfl.o 

f77 -cg89 -03 -dalign kosloff7.o wave2.o lepsl.o anionmorsewfl.o -o 
proplO 

kosloff7.f 

C Version PROPlO 
C This is a ONE dimensional wavepacket propagation Code. 
C Code based on routines of S.Y. Lee. Singapore. 

C Adapted for photoelectron spectra of negative ions by S.E. Bradforth 2/26/89 
C Address: Dept. of Chemistry, 
C Neumark Research Group, 
C University of California, 
C Berkeley, CA 94720 
C E-mail: neumark@violet .berkeley. e.du OR neumark@violet .bitnet 

c INPUT: koss.dat 
c 
c 
c OUTPUT: out.dat 
c 
c auto.dat 
c 
c auto. pic 
c 
c 
c absspec.out 

input deck (can be prepared by accompanying 
program or by following comments in supplied 
example) 
summary of input parameters and details of 
wavepacket propagation 
autocorrelation function (real, imaginary and 
modulus) as a function of time 
autocorrelation function (suitable for x-y plot) 
modulus only as a function of time, damped by 
window function (gamma) 
Fourier transform of autocorrelation function, 



c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

wavepkt.out 

potlA.out 
potlB.out 
wave.out 

the absorption/photoelect'ron spectrum 
real, imaginary and absolute value of wavepacket 
as a function of time 
(can include wavepacket derivatives) 
lower potential 
upper potential 
formatted direct access wavepacket output 
suitable for reading by 
wave lD tektronix plotting program 

C It is helpful to be able to graph wavepacket evolution in time, for 
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C checking usefulness of run and that all criteria for successful propagation 
C have been satisfied. The file wave.out can be 
C plotted with the "draw3" (seperate) program. 
C The files potlA.out and potlB.out, (the lower and upper 
C potential energy surfaces), are provided for for graphing and checking. 

C Potential types included ar·e: 
C 0: Morse (input Re, De and Be) 
C 1: Harmonic/Anharmonic (input Re, We, Wexe) 
C (if wexe .ne. 0 then uses Morse) 
C 2: Leps (upper surface only) 
C 3: Potential read form file 
C other potentials may be added by modifying subroutine potread 

C There is no provision for absorbing boundaries in this code, 
C Also restarting from arbritary time point is not coded for. 

C Notes for this version: 
C 8/11/92 Input xmin, xmax range in Angstroms. 
C Include shelf for potentials in potread. 
C Include conversion constants common block. 
C Remove Time step printout except every npktsav steps. 
C Code does not stop to query for whether potentials are to be saved or 
C Whether to save derivatives in wavepkt.out. 
C Instead this now comes from input deck as in 2D code. 
C 1989 Change format for input of potentials. 
C All potentials stored as arrays. 5/10/89 

C Note all quantities in main routine are in Atomic units, 
C conversions performed in I/0 routines {const(), savabs, pktsav, savovlp} 
C Note all variables beginning with z are complex 

implicit double precision (A-H,O-Y) 
implicit complex*l6 (z) 
double precision lde,lre,lb 
parameter (npts=l024,nFFT=8192) 
dimension zpsiAO(npts) 
dimension zpsiBO(npts),zpsiBl (npts),zpsiB2(npts) 
dimension zovlp(nFFT) 
dimension omega(nFFT), Eprsq(nFFT) 

common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/constl/ xmas, hb 
common/const2/xOA,xomegA,vOA,xwexeA,dea,xalphaA,x0B, 

xomegB,xwexeB,deB,xalphaB,vOB 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,npacket 
common/const6/gamm 

c 

common/const7/ Espmin,Espmax,domega,novsav,npktsav 
COMMON/LEPS/LDE(3),LRE(3),LB(3),AM(3),DELTA(3),RCA 

900 format (2x,'xmas =', f6.3 ,2x, 'hb =' ,f4.1) 
910 format (2x, 'x0A=',f6.2,2x, 'xomegA=',f9.2,2x, 'v0A=',f6.3) 
915 format (2x, 'x0A=',f6.2,2x, 'xomegA=',f9.2,2x, 'v0A=',f6.3,/, 



2 
920 
925 

3 
927 
930 
940 

1 
950 
960 
966 
c 
c 

format 
format 

format 
format 
format 

format 
format 
format 

2x,'wexeA =' ,f9.2,2x,'alphaA =',f9.3,2x,'DeA =',f9.3) 
(2x, 'xOB =' ,f6.2,2x, 'xomegB =' ,f9.2,2x, 'vOB =',f6.3) 
(2x, 'xOB =' ,f6.2,2x, 'xomegB =' ,f9.2,2x, 'vOB =',f6.3,/, 

2x,'wexeB =',f9.2,2x,'alphaB ='tf9.3,2x,'DeB =',f9.3) 
(2x, rvOB =',f6.3,2x,'kB =',e13.6) 
(2x, 'tmax =',fl0.2,2x, 'ntmax =',i5,2x, 'delt =',fl0.6) 
(2x, 'xmin =',f9.2,2x, 'xmax =',f9.2,2x, 'nXpts =' ,i5,2x, 

'dx =', e13.6) 
(2x,'gamm =' ,e13.6) 
(2x,'Espmin=', f13.6,2x,'Espmax=',fl3.6) 
(2x,'novsav=', i3,2x,'npktsav=',i4) 

write(6,*) 
write(6,*)'WELCOME TO THE 1D WAVEPACKET PROPAGATION CODE' 

C read the needed data and also define some useful constants. 
write(6,*)'Reading input deck for job from koss.dpt' 
write(6,*) 

open (1, file= 'koss.dat') 
C read in some control parameters for the run: 
C Do I save lower and upper potential surfaces 
C and DO I save wavepacket only, or wavepacket and derivs, or none 

read(l,*)isavpotA, isavpotB, isavde 

call const() 
close (1) 

C Change novsav and npktsav to be useful values ..... 
c novsav=2*ntmax/nFFT 

if (novsav .lt. 1) novsav=l 
c npktsav=ntmax/16 

if (npktsav .lt. 1) npktsav=1 
c then domega in circular frequency a.u. (ie hartrees) is 

domega=2.0dOO*pi/(ntmax*delt) 

open (2, file= 'out.dat') 
write(2,900) xmas/amu, hb 
if (xwexeA .eq. O.Od00) then 

write(2,910) xOA*aO,xomegA*harwn,vOA*harev 
else 

write(2,915)xOA*aO,xomegA*harwn,vOA*harev, 
xwexeA*harwn,xalphaA/aO,deA*harev 

end if 
if (xwexeB .eq. O.OdOO) then 

write(2,920) xOB*aO, xomegB*harwn, vOB*harev 
else 

write(2,925)xOB*aO,xomegB*harwn,vOB*harev, 
xwexeB*harwn,xalphaB/aO,deB*harev 

end if 
write(2,930) tmax*atu,ntmax,delt*atu 
write(2,940) xmin*aO,xmax*aO,nXpts,dx*aO 
write(2,950) gamm 
write(2,960)Espmin*harev,Espmax*harev 
write(2,966)novsav,npktsav 
write(2,970)domega*harwn 

C Write a few parameters to screen 
write(6,*)'Time parameters (fsecs), energy resolution (cm-1) 
write(6,930)tmax*atu,ntmax,delt*atu 
write(6,970)domega*harwn 

970 format(2x, 'domega'=' ,f10.1,' cm-1') 
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·' 

C criteria of succesful propagation given in Kosloff, J. Comput. Phys. 52, 35 
C( (1983); essentially the max kinetic energy representable on a grid with 
C spacing dx is given (in au) by pi*pi/(2*xmas*dx*dx) and the stability 
c criterion is {delt*( (pi*pi)/(2*xmas*dx*dx) + V) <= 1.0} 

sqkmax=4.9348d00/(xmas*dx*dx) 
write(6,912)sqkmax*27.2116 



912 format(2x,'Maximum kinetic energy that can be represented is ' 
4 f6.3,' eV') 

write(6,913)sqkmax*delt 
913 format(2x,'Stability at best, assuming zero potential, is ',f6.3) 

if ( sqkmax*delt .gi. 1.0d00) then 
write(6,*) 
write(6,*)'*******THIS PROPAGATION WILL BE UNSTABLE**********' 
write(6,*) 
stop 

end if 

c 
C Save the lower and upper state potential if required 
c 

if (isavpotA .eq. 1 ) then 
write(6,*)'Lower potential saved in potlA.out 
call pot lsave (1) 

end if 
if (isavpotB .eq. 1) then 
write(6,*)'Upper potential saved in potlB.out 
call potlsave(2) 

end if 
c 
c initialise wavepacket file if isavde set 

if (isavde .ne. -1) call initpktsav(isavde) 
c 
c Notes 
c ===== 
c 

in eV' 

in eV' 

c will save autocorrelation function (overlap between t=O zpsi and 
c t=novlp*novsav*delt zpsi) at intervals determined by novsav 
c and will Save the wavepacket in its entirety e~ery npktsav point in time 
c 

ti=O.OdOO 
c 
c Clear the overlap array 
c 

do 5 it=1,nFFT 
zovlp(it)=zero 

5 COI}tinue 
c 
c Generate the wavefunction on the ground state surface that determines the 
c initial wavepacket. Generate zpsiB1 by second order Runge kutta. This 
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c step is required to evaluate the time derivative in 2nd order differencing 
c later on. 
c 

call initB(ti,zpsiBO,zpsiB1) 
c 
c Store the t=O wavepacket for future use to calculate autocorrelation. 
c 

do 10 ix=1,nxpts 
zpsiAO(ix)=zpsiBO(ix) 

10 continue 
novlp=1 
call ovlp(zpsiAO,zpsiBO,zovlp(novlp)) 

npacket=O 
c 
c save the zero wavepacket and derivatives to disk 

if (isavde.ne.-1) call pktsav(zpsiBO,ti,npacket,O) 
if (isavde) 778,778,777 

777 iderflag=1 
778 call chk(2,ti,zpsiBO,rsnorm,Have) 

write(6,877)'Norm of initial wavefn is' ,rsnorm 
write(2,877)'Norm of initial wavefn is' ,rsnorm 
write(6,878)'Energy (on upper surface) <H> =',Have/rsnorm, 

% ',Have*harwn/rsnorm,' cm-1' 
write(2,878)'£nergy <H> =' ,Have/rsnorm,' 



& Have*harwn/rsnorm,' cm-1' 
877 format(a,f12.6) 
878 format(a,f10.5,a,f10.2,a) 

write (6, *) 
iderflag=O 

c npacket=npacket+l 
c 
c Start the propagation ................•.. 
c Perform this by second order differencing (Kosloff) 
c 

do 100 it=l,ntmax 
c check to see if we need to store overlap and/or write wavepacket to disk 

if (mod(it,novsav) .eq. 0) then 
novlp=novlp+1 
call ovlp(zpsiAO,zpsiB1,zovlp(novlp)) 

endif 
if (mod (it, npktsav) .eq. 0) then 

if (isavde) 781,780,779 
779 iderflag=1 
780 npacket=npacket+1 

call pktsav(zpsiBl,ti,npacket,O) 
781 call chk(2,ti,zpsiBl,rsnorm,Have) 

ti=it*delt 
965 format(a,i6,a,f8.3) 

write(6,965)'Timestep' .it, ', t =' ti*atu 
write (2, 965) 'Timestep ', it, ', t = ' ti*atu 
write(2,877)'Norm of wavefunction is ', rsnorm 
write(6,8i7)'Norm of wavefunction is ',rsnorm 
if (rsnorm .gt. 2.0d00) then 
write(6,*)'Exceeded reasonable norm- terminating, .. ' 
stop 

end if 
write(6,878)'Energy <H> =',Have/rsnorm, 

' ',Have*harwn/rsnorm,' cm-1' 
write(2,878)'Energy <H> =',Have/rsnorm,' 

Have*harwn/rsnorm,' cm-1' 
write(6,*) 
iderflag=O 

endif 
c determine the new wavefunction zpsiB2 from zpsiBO and zpsiBl 

call psi2(2,ti,zpsiBO,zpsiB1,zpsiB2) 
c now we have zpsiB2 prepare for next step of propagation 
c 

c 

call vcopy(nXpts,zpsiBl,z~siBO) 
call vcopy(nXpts,zpsiB2,zpsiBl) 

c ,now round propagation loop agai~····· 
c 
100 continue 

close(2) 
C Implicitly closes up the wavepacket file ... (?) 
c close(9) 

c Wavepacket (and derivs) stored on disk for inspection and graphing, 
c Now store Overlap for inspection of Autocorrelation function 

call savovlp(zovlp,novlp) 

c forward fourier transform for absorption (photoelectron) spectrum here 
c Include a dephasing constant gamm to give finite width to peaks or to 
C simulate experimental resolution. 
C Include C{-t) at tail end of array zovlp (in wrap around order) forcing 
c C(-t)=C(t) so that absorption spectrum is real ... 

do 872 iFT=1,nFFT/2+1 
ti=(iFT-1)*delt*novsav 
zovlp(iFT)=zovlp(iFT)*exp(-gamm*ti**2) 

872 continue 
do 560 iFT=nFFT/2+2,nFFT 
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jFT=nFFT-iFT+2 
zovlp(iFT)=dconjg(zovlp(jFT)) 

560 continue 

c 

write(6,*)'Performing final fast Fourier Transform' 
call FFT(zovlp,nFFT,1) 

c At the moment are using a two sided C(t) and checking I(w) to be real 
c 

domega=2.0dO*pi/(nFFT*delt*novsav) 
absmax=O.O 
jFT=O 
do 120 iFT=1,nFFT 

v1=(iFT-1)*domega 
if (v1 .ge. Espmin .and. v1 .le. Espmax) then 

jFt=jFT+1 
omega (jFT) =v1 
Eprsq(jFT)=drealizovlp(iFT)) 
if (Eprsq(jFT) .lt.O.O) Eprsq(jFT)=O.OdO 
if (Eprsq(jFT) .gt. absmax) absmax=Eprsq(jFT) 

end if 
120 continue 

ninit=1 
nfin=jFT 

c Save spectrum(omega is in circular wavenumbers) 
call savabs(omega,Eprsq,ninit,nfin,absmax) 

c 
c 
c 

c 
c 

stop 
end 

All Done 

c *********~*************** 
subroutine const() 

c ************************* 
C ***read the needed data and also define some useful constants. 

c 

implicit double precision (A-H,O-Y) 
implicit complex*16 (z) 
parameter (npts=1024,nFFT=8192) 

common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/const1/ xmas, hb 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,npacket 
common/ c:onst 6/ gamm 
common/const7/ Espmin,Espmax,domega,novsav,npktsav 

C set conversion factors 
harev = 27.211608d0 
evwn = 8065.479d0 
aO = 0.52917706d0 
amu = 1822.882d0 
emu = 9.109534d-31 
harwn = harev*evwn 
amass = 1.66056d-27 
atu=0.024199d0 

C set constO 
zero=dcmplx(O.OdOO,O.OdOOl 
zeye=dcmplx(O.Od00,1.0d00) 
pi= dacos(-1.0d00) 
twopi= 2*pi 
sqrtpi= dsqrt(pi) 
pisq=pi*pi 
c=2.99792458d10 
hb=1. OdO 

c speed of light in cm/s and hbar in atomic units 
c 
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C set constl (expect mass in amu ) 
read(l,*) xmas 
xmas=xmas*amu 

C set const3 (expect in a.u.) 
read(l,*) tmax,delt 
ntmax=tmax/delt 

C set const4 (expect in angstroms) 
read(l,*) xmin,xmax,nXpts 
xmin=xmin/aO 
xmax=xmax/aO 
dx=(xmax-xmin)/nXpts 

call potread() 

C set const6 
C set dephasing constant gamma (in atu**-2) 
C If user enters zero then use optimal window function 
C See Numerical recipes ... 

read(l,*) · 
if (gamm .eq. 0.0) gamm=S.OOOO/tmax/tmax 

c 
C set const7 
c min and max energies of output spectrum (expected to be in eV.) 

read(l,*) Espmin, Espmax 
Espmin=Espmin/harev 
Espmax=Espmax/harev 

c converted to circular frequency in a.u. (this is equiv. to hartrees) 
c 
C set up counting variables 
c 
c save autocorrelation function (overlap between t=O zpsi and 
c t=novlp*novsav*delt zpsi) at intervals determined by novsav and 
c Save the wavepacket in its entirety every npktsav point in time 
c These are ignored right now ........ . 

c 

c 

read(l,*)novsav,npktsav 
if ( (2*ntmax/novsav) .gt. nFFT) then 

write(6,*)'Too many overlap points- alter novsav' 
stop 

endif 

return 
end 

c 
C****************************************************** 

subroutine potread() 
C****************************************************** 

implicit double precision (A-H,O-Y) 
implicit complex*l6 (z) 
double precision lde,lre,lb 
parameter (npts=l024) 

common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/constl/ xmas, hb 
common/const2/xOA,xomegA,vOA,xwexeA,dea,xalphaA,xOB,· 

xomegB,xwexeB,deB,xalphaB,vOB 
common/const4/xmin,xmax,nXpts,dx,npacket 
COMMON/LEPS/LDE(3),LRE(3),LB(3),AM{3),DELTA{3),RCA 
common/pot/zpot(npts,2) 
common/pottyp/ipottypA 

C This routine reads in potential parameters for both surfaces and then 
C stores potential at each grid point to save further computation. 

C Read anion potential first 

C set the potential by reading potential type 
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read(1,*)ipottypA 
if ((ipottypA .gt. 3) .or. (ipottypA .lt. 0)) then 
write(6,*)'Problem with potential type in input deck' 
stop 

end if 

C For each type read relevant parameters: 
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C (expect xO in Angs, omega, and wexe in cm-1 and Vo, De in eV, alpha in Angs-1) 

if (ipottypA .eq. 0) then 
read(1,*)xOA,deA,xalphaA,vOA 

C convert to au 
xOA=xOA/aO 
deA=deA/harev 
xalphaA=xalphaA*aO 
xwexeA=xalphaA**2/(2.0*xmas) 
xomegA=dsqrt(4.0*xwexeA*deA) 
vOA=vOA/harev 
call morse(1,xOA,deA,xalphaA,v0A) 

end if 

if (ipottypA .eq. 1) then 
read(1,*)xOA,xomegA,xwexeA,vOA 

C convert to au 
xOA=xOA/aO 
xomegA=xomegA/harwn 
xwexeA=xwexeA/harwn 
vOA=vOA/harev 

C If Morse, convert potential parameters to reciprocal bohr and hartrees ... 
if (xwexeA .ne. O.OdOO) then 

xalphaA=dsqrt(2.0dOO*xmas*xwexeA) 
deA=xomegA**2/(4.0dOO*xwexeA) 
ipottypA=O 
call morse(1,xOA,deA,xalphaA,v0A) 

else 
call harmonic(1,xmas,xOA,xomegA,vOA) 

endif 
endif 

if (ipottypA .eq. 2) then 
write(6,*)'Leps not supported for anion' 
stop 

end if 

if (ipottypA .eq. 3) then 
read (1, *) vOA 
vOA=vOA/harev 
open(7,file='pot.in') 

do 821 ix=1,nxpts 
read(7,*)pot 
zpot(ix,1)=pot+v0A 

821 continue 
endif 

C Now read neutral (B) potential 

read(1,*)ipottypB 
if ((ipottypB .gt. 3) .or. (ipottypB .lt. 0)) then 
write(6,*)'Problem with potential type ~n input deck' 
stop 

end if 

if (ipottypB .eq. 0) then 
read(l,*)xOB,deB,xalphaB,vOB 
xOB=xOB/aO 
deB=deB/harev 
xalphaB=xalphaB*aO 
xwexeB=xalphaB**2/(2.0*xmas) 



,xomegB=dsqrt(4.0*xwexeB*deB) 
vOB=vOB/harev 
call morse(2,xOB,deB,xalphaB,vOB) 

end if 

if (ipottypB .eq. 1) then 
read(l,*)xOB,xomegB,xwexeB,vOB 

·xOB=xOB/aO 
xomegB=xomegB/harwn 
xwexeB=xwexeB/harwn 
vOB=vOB/harev 
if (xwexeB .ne. O.OdOO) then 

xalphaB=dsqrt(2.0dOO*xmas*xwexeB) 
deB=xomegB**2/(4.0dOO*xwexeB) 
ipottypB=O 
call morse(2,xOB,deB,XalphaB,v0B) 

else 
call harmonic(2,xmas,xOB,xomegB,v0B) 

endif 
end if 

if (ipottypB .eq. 2) then 
C Read in three atom masses in amu of atom A,B,C repectively 

read (1, *) vOB 
vOB=vOB/harev 
READ(l,*) AM(l),AM(2),AM(3) 

C For each pair of atoms input the parameters De, Beta, Re, Sato 
CwhereDe (ineV); Beta (iriAngs. -1); Re (inAngs.) 
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C In the order atoml-atom2 (A-B), atom2-atom3 (B-C) and then atoml-atom3 (A-C) 
DO 2050 I=l,3 

IF (I.EQ.3) THEN 
J=l 

ELSE 
J=I+l 

END IF 
READ(l,*) LDE(I),LB(I),LR~(!),DELTA(!) 

C convert to kJ/mol and nm-1, nm 
lde(i)=lde(i)*96.485 
lb(i)=lb(i)*lO.O 
lre(i)=lre(i)/10.0 

2050 CONTINUE 
C Now input the value of Rae that you want lD cut at (in Angstroms) 

READ (1, *) RCA 
rca=rca/10.0 

C potential routine hardwired to expect kJ/mol and nm,nm-1 
call lepstore(vOB) 

end if 

if (ipottypB .eq. 3) then 
read (1, *) vOB 
vOB=vOB/harev 
open(7,file='potB.in') 

do 822 ix=l,nxpts 
read(7,*)pot 
zpot(ix,2)=pot+vOB 

822 continue 
endif 

C Now zpot array contains A and B potentials at nXpts on grid 
return 
end 

c ********************************************** 
subroutine initB(ti,zpsiBO,zpsiBl) 

c ********************************************** 
c 
c initialize the wavefunction arrays and then evolve this wavepacket 
c using second order runge-kutta. 
c 



implicit double precision (A-H,O-Y) 
implicit complex*16 (z) 
parameter (npts=1024) 
dimension zpsiB0(1),zpsiB1(1) 
dimension zpsiBI(npts),zHpsiBI(npts),zHpsiBO(npts) 

common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/const1/ xmas, hb 
common/const2/xOA,xomegA,vOA,xwexeA,dea,xalphaA,xOB, 

xomegB,xwexeB,deB,xa1phaB,vOB 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,npacket 
common/pottyp/ipottypA 

c 
c place the initial wavepacket on surfac~ A discretize it. 
C If using a fully flexible potential, ie from a file, then need the 
C initial (ground) wavefunction of the ground state surface supplied 
C explicitly: use anionwf subroutine that reads 1d wavefunction from file 
C in the format produced by the FCF program of Ellison. 

if (ipottypA .eq. 3) then 
call anionwf(1,zpsiB0) 

else 
if. (ipottypA.eq. 1) then 

C else if using Harmonic/Morse potential then call respective routine 
C that produces ground state wavefunction 

call initWF(zpsiBO) 
else 

call morsewf(zpsiBO) 
end if 
end if 

C Check the norm and energy of the stationery state on the lower potential 
call chk(1,ti,zpsiBO,rsnorm,Have) 
write(6,*) 
write(6,877)'Norm of initial wavefn is ',rsnorm 
write(6,878)'Energy (on lower surface) <H> =' ,Have/rsnorm, 

# ' ',Have*harwn/rsnorm,' cm-1' 
write(6,*) 

877 format(a,f12.6) 
878 format(a,f10.5,a,f10.2,a) 
c 
c evolve this wavefunctions for time delt/2 on the surface 

call Hpsi(2,ti,zpsiBO,zHpsiBO) 
do 20 ix=1, nXpts 

zpsiBI(ix) = zpsiBO(ix) - zeye *(delt/2.00d00)*zHpsiBO(ix)/hb 
20 continue 

c Second order Runge Kutta using the intermediate derivative. 
call Hpsi(2,ti,zpsiBI,zHpsiBI) 
do 30 ix = 1, nXpts 

zpsiB1(ix)=zpsiBO(ix) - zeye*delt*zHpsiBI(ix)/hb 
30 continue 
c 

c 

return 
end 

c ***************************.****************** 
subroutine initWF(zpsiAO) 

c ********************************************* 
c 
c initialize wavefunction on lower surface A 
c 

implicit double precision (A-H,O-Y) 
implicit complex*16 (Z) 
dimension zpsiA0(1) 

common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/constl/ xmas, hb 
common/const2/xOA,xomegA,vOA,xwexeA,dea,xalphaA,x6B, 

xomegB,xwexeB,deB,xalphaB,vOB 
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common/const4/xmin,xmax,nXpts,dx,npacket 
c 
C Initial wavefn on surface is ground harmonic oscillator 
C Only does the ground state wavefunction (lowest quantum 
C state); for higher vibrational wavefunctions see the 2d code 

c 

if (xomegA .eq. O.OdOO) then 
write(6,*)'No initial wavepacket as no omega available' 
stop 

endif 
xt=xOA 

pt=O.OdOO 
zat=dcmplx(O.OdOO,xmas*xomegA/2.0d00) 
gt=-(hb/4.0d00)*dlog(2*dimag(zat)/(pi*hb)) 
zgt=dcmplx(O.OdOO,gt) 

c write(2,910) xt,pt,zat,gt 
910 format (5(lx,e13.6)) 
c 

do 10 ix=l, nXpts 
xi=xmin + (ix-1)*dx 
zarg=zat*(xi-xt)*(xi-xt) + pt*(xi-xt) + zgt 
zpsiAO(ix)= exp(zeye*zarg/hb) 

10 continue 
c 

c 

return 
end 

c ************************************************************ 
subroutine psi2(ipot,ti,zpsiAO,zpsiAl,zpsiA2) 

c ************************************************************ 
c 
c evaluate the new wavefunction zpsi2 from· the old ones zpsiO and zpsi2 
c 

c 

implicit double precision (A-H,O-Y) 
implicit complex*16 (z) 
parameter (npts=1024) 
dimension zpsiAO(l),zpsiA1(1),zpsiA2(l),zHpsiA1(npts) 

common/constO/ zero,zeye, pi, c,twopi,sqrtpi,pisq 
common/constl/ xmas, hb 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,npacket 

c compute H*zpsil(*): 
call Hpsi(ipot,ti,zpsiAl,zHpsiAl) 
do 10 ix = 1, nXpts , 

zpsiA2(ix)=zpsiAO(ix) - 2.0*zeye*delt*zHpsiA1(ix)/hb 
10 continue 
c 

return 
end 

c *********************************************** 
subroutine Hpsi(ipot,ti,zpsiA,zHpsiA) 

c *********************************************** 
c 
c 
c compute H *psi·= { KE + PE l * psi(x) 
c 

c 

implicit double precision (A-H,O-Y) 
implicit complex*16 (z) 
parameter (npts=1024) 
dimension zpsiA(l), zHpsiA(l) 
dimension zpsiPE(npts),zpsiKE(npts) 

common/constO/ zero,zeye, pi, c,twopi,sqrtpi,pisq 
common/constl/ xmas,hb 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,npacket 
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c 

call KEmat(zpsiA,zpsiKE,ti) 
call PEmat(ipot,zpsiA,zpsiPE) 

do 10 ix = 1, nXpts 
zHpsiA(ix)=zpsiPE(ix) + zpsiKE(ix) 

10 continue 
c 

if (iderflag .eq. 1) then 
c write(9,*)'This is the second derivative ..... ' 

npacket=npacket+1 
call pktsav(zpsike,ti,npacket,-1) 

c write(9,*)'This is the Vpsi ..... ' 
npacket=npacket+1 
call pktsav(zpsipe,ti,npacket,-2) 

c write(9,*)'This is the Hpsi ..... ' 

c 

c 

npacket=npacket+1 
call pktsav(zHpsiA,ti,npacket,-3) 

endif 

return 
end 

c **************************************************** 
subroutine KEmat(zpsiX,zpsiK,t) 

c **************************************************** 
c 
c computes (-hb**2)/(2*xmas))*(d/dx)**2[zpsiX] = zpsiK 
c note zpsix(1)<-> zpsi(xO), zpsi(nXpts) <-> zpsix(xf), etc. 
c uses forward and backward FFT to evaluate 2nd derivative 
c 

c 
c 

implicit double precision (A-H,O-Y) 
implicit complex*16 (z) 
dimension zpsiX(1),zpsiK(1) 

common/constO/ zero,zeye, pi,c,twopi,sqrtpi,pisq 
common/const1/ xmas, hb 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,npacket 

c backward fourier transform : ipsiX(x) => zpsiK(k) 
c 

isign=-1 
do 10 ix=1, nXpts 

10 zpsiK(ix)=zpsi~(ix) 

c 

call FFT(zpsiK,nXpts,isign) 
if (iderflag .eq. 1) then 
npacket=npacket+1 
call pktsav(zpsik,t,npacket,-4) 

end if 

c compute the second derivative in the momentum domain. 

20 
c 
c 

L=nXpts/2 
do 20 k=O,nXpts-1 

if (k .le. L) then 
zpsiK(k+1)= -k*k*zpsiK(k+1)/nXpts 

else 
zpsiK(k+1)=-(nXpts-k)*(nXpts-k)*zpsiK(k+1)/nXpts 

endif 
continue 

c forward transform : zpsiK(k) => zpsix(x) 
isign=1 
call FFT(zpsiK,nXpts,isign) 

c 
c scale results 

xL= xmax-xmin 
c1= -O.SdOO*hb*hb/xmas 
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30 
c 

c 

c2= 4*pisq/(xL*xL) 
c = c1*c2 
do 30 ix=1,nXpts 

zpsiK(ix)= c*zpsiK(ix) 
continue 

return 
end 

c ***************************************** 
subroutine PEmat (ipot, zpsiX, zpsiPl' 

c ***************************************** 
c 
c calculate zpot(x)*zpsiX=zpsiP 
c note zpsiX(1) <-> zpsiX(xO), zpsiX(nxpts) <-> zpsiX(xf), etc. 
c 

c 

implicit double precision (A-H,O-Y) 
implicit complex*16 (z) 
dimension zpsiX(l),zpsiP(1) 
parameter (npts=l024) 

common/const4/xmin,xmax,nXpts,dx,npacket 
common/pot/zpo,t (npts, 2) 

do 10 ix=l,nXpts 
zpsiP(ix)=zpot(ix,ipot)*zpsiX(ix) 

10 continue 
c 

return 
end ( 

c ****~************************************************ 
subroutine harmonic(ipot,xmas,xO,xomeg,vO) 

c *************************·**************************** 
implicit double precision (A-H,O-Y) 
implicit complex*l6 (z) · 
parameter (npts=1024) 

common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/const4/xmin,xmax,nXpts,dx,npacket 
common/pot/zpot(npts,2) 

C Establish shelf for maximum value of potential so as to minimize 
C unnecessary reduction of the time step. 

shelf=2.0/harev 
write(6,*)'Establishing shelf in harmonic potential',ipot 
write(6,*)'so that full range of potential energy is ' 
write(6,99)'no greater than ',shel+*harev,' eV' 

99 format(a,f5.1,a) 
write(6,*) 

do 120 ix=l,nXpts 
xi=xmin + (ix-ll*dx 
zpot(ix,ipot)= 0.50dOO*xmas*(xomeg*(xi-x0))**2 + vO 

if (real(zpot(ix,ipot))-vO.gt.shelf) zpot(ix,ipot)=shelf+vO 
120 continue 

c 

, return 
end 

c ***~************************************************** 

subroutine morse(ipot,xO,de,xalpha,vO) 
c ****************************************************** 

implicit double precision (A-H,O-Y) 
implicit complex*l6 (z) 
parameter (npts=1024) 

common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/const4/xmin,xmax,nXpts,dx,npacket 
common/pot/zpot(npts,2) 

C Establish shelf for maximum value of potential so as to minimize 
C unnecessary reduction of the time step. 

shelf=2. 0/harev 
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write(6,*)'Establishing shelf in Morse potential',ipot 
write(6,*)'so that full range of potential energy' 
write(6,99)'is no greater than ',shelf*harev,' eV' 

99 format(a,fS.l,a) 
write(6,*) 

do 120 ix=1,nXpts 
xi=xmin + (ix-l)*dx 
zpot(ix,ipot)= de*(1.0d00-dexp(-xalpha*(xi-x0)))**2 + vO 

if (real(zpot(ix,ipot))-vO.gt.shelf) zpot(ix,ipot)=shelf+vO 
120 continue 

c 

return 
end 

c *******~******************************* 
subroutine potlsave(ipot) 

c *************************************** 
c 

c 

implicit double precision (A-H,O-Y) 
implicit complex*16 (z) 
parameter (npts=1024) 
common/const4/xmin,xmax,nXpts,dx,npacket 
common/pot/zpot(npts,2) 

if (ipot .eq.1) open(3,file='potlA.out') 
if (ipot. eq.2) open(3,file='potlB.out') 
do 10 ix=1,nXpts 
xi=0.529177*(xmin+(ix-1)*dx) 
a=dreal(zpot(ix,ipot))*27,2116d00 

write(3,930)xi,a · 
930 format(2x,f8.3,2x,f20.10) 
10 continue 

c 
c 

close(3) 
return 
end 

c *************************************** 
subroutine Vcopy(n,zA,zB) 

c *************************************** 
c 
c copy a vector of length N from zA to zB 
c 

c 

implicit complex*16(z) 
dimension zA(1), zB(1) 

do 10 ix=1,N 
zB(ix)= zA(ix) 

10 continue 
c 

c 

return 
end 

c *************************************** 
subroutine FFT(x,n,isign) 

c *************************************** 
c 
c *************************************************************** 
c * The fft computes the discrete fast Fourier transform of. a * 
c * sequence of n terms. * 
c * The forward FFT computes * 
c * y(j)= sum (from k=O to n-1) x(k)*exp(2*pi*i*j*k/n) * 
c * the backward FFT computes * 
c * y(j)= sum (from k=O to n-1) x(k)*exp(-2*pi*i*j*k/n) * 
c * * 
c * x is a complex array of length n. 
c * n is a power of 2. n<=16384 
c * isign is the direction Of the transform. 
c * the fft is forward , otherwise bac~ward. 

* 
* 

If isign >= 0 then* 
* 
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c * 
c * Ref. 
c * 

* 
Cooley, Lewis, Welch. The FFT and its applications 

IEEE Trans. on Education, vol. E-12 #1; p. 29 
* 
* 

c *************************************************************** 
c 

c 

implicit double precision (A~H,O-Y) 
complex*16 s,v,w,x(n),cstore(16384) 
data ntbl/0/ 

c The roots of unity exp(pi*i*k/j) for j=1,2,4, .. ,n/2 and k=0,1,2, .. ,j-1 
c are computed once and stored in a table. 
c This table is used in subsequent calls of fft with parameter n<=ntbl 
c 

if (n .gt. ntbl) then 
ntbl=n 
pi=3.14159265358979d00 
j=1 
icnt=O 

10 s=pi*(0,1)/j 
do 20 k=O,j-1 

icnt=icnt+1 
20 cstore(icnt)=exp(s*k) 

c 

j=j+j 
if (j .lt. n) goto 10 

end if 

c ******Bit reversal********** 
c 
c the x(j) are permuted in such a way that each new place number j is 
c the bit reverse of the original placenumber. 
c 

j=1 
do 30 i=1,n 

if (i .le. j) then 
v=x (j) 
x(j)=x(i) 
x(i)=v 

endif 
m=n/2 

25 continue 
if (j .gt. m) then 

j=j-m 
m=m/2 
if (m .ge. 1) go to 25 

else 
j=j+m 

endif 
30 continue 
c 
c ******~*****Matrix multiplication*************** 
c 
c the roots of unity and the x(j) are multiplied 
c 

j=l 
icnt=O 

40 jj=j+j 
do 50 k=l,j 

icnt=icnt+l 
w=cstore (icnt) 
if (isign .lt. 0) w=dconjg(w) 
do 50 i=k,n,jj 

v""w* (i+j) 
x(i+ )=x(i)-v 

50 x(i) x(i)+v 

c 

j=jj 
if (j .lt. n) goto 40 

return 
end 
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c 
c ************************************************ 

subroutine chk(ipot,ti,zpsiA,rnorm,Hav) 
c ************************************************ 
c 
c 
c Ch~ck that norm and energy are conserved 

implicit double precision (A-H,O-Y) 
implicit complex*16 (z) 

c 
c 

dimension zpsiA(1) 
call chknrm(zpsiA,rnorm) 
call chken(ipot,ti,zpsiA,Hav) 

return 
end 

c ************************************************** 
subroutine chknrm(zpsi,rnorm) 

c ************************************************** 
c 
c Check that the norm is conserved during numerical integration of TDSE. 

implicit complex*16 (Z) 

c 

implicit double precision (A-H,O-Y) 
parameter (npts=1024) 
dimension zpsi(1),psisq(npts) 
common/const4 /xmin, xmax·~ nXpts, dx, npacket 

do 10 ix=1,nXpts 
rpsi=dreal(zpsi(ix)) 
aipsi=dimag(zpsi(ix)) 
psisq(ix)=rpsi*rpsi+aipsi*aipsi 

10 continue 
c 

c 

c 

call simpint(nXpts,psisq,dx,rnorm) 

return 
end 

c ************************************************* 
subroutine chken(ipot,ti,zpsiA,Hav) 

c ************************************************* 
c 
c check that energy is conserved during numerical intergration of the TDSE 

implicit double precision (A-H,O-Y) 

c 

implicit complex*l6 (z) 
parameter (npts=1024) 
dimension zpsiA(l),zHpsiA(npts),psiHpsi(npts) 
common/const4/xmin,xmax,nXpts,dx,npacket 

call Hpsi(ipot,ti,zpsiA,zHpsiA) 
do 10 ix=l,nXpts 

psiHpsi(ix)=dreal(dconjg(zpsiA(ix))*zHpsiA(ix)) 
10 continue 
c 

c 

c 

call simpint(nXpts,psiHpsi,dx,Hav) 

·return 
end 

c *************************************************** 
subroutine simpint(nx,fl,dx,fint) 

c *************************************************** 
c 
c 
c Simpson Rule integrator. This subprogram calls the trapezoidal 
c integrator twice. Because of cancellation of errors the result is 
c accurate to the the order of (l/nx**4) 
c 
c Rule valid only when nx odd. Hence for even nx the last piece of area 
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c under f1(nx-1) and f2(nx) is added by trapezoidal rule. 
c 
c Reference 'Numerical recipes' Press, Flannery, Teukolsky, Vetterling 
c Cambridge University Press, Cambridge (1986) 
c 

c 

parameter(nypts=1024) 
implicit double precision (A-H,O-Y) 
dimension f1(nypts),f2(nypts) 

c define: 

c 

c 

dx1=dx 
dx2=2.0d00*dx 
ixn=O 

if (nx .gt. nypts) then 
write(6,*) ' simpint : nx .gt. nxpts 
endif 

if ((mod(nx,2) .eq. 0)) theri 
nx1=nx-1 

nypts 

nx2=0.50dOO*nx1+1 
fint=O.SOdOO*dx*(f1(nx-1) + f1~nx)) 

c 

else 
nx1=nx 
nx2=0.50dOO*nx1+1 
fint=O.OdOO 

endif 

c copy the odd elements of farray into f2 
do 10 ix=1,nx1,2 
ixn=ixn+1 

10 f2(ixn)=fl(ix) 
c 
c Now integrate ~1,. f2 in two pieces. 
c 

c 

c 
c' 

call trapint(nx1,f1,dx1,fint1) 
call trapint(nx2,f2,dx2,fint2) 
fint=fint+(4.0dOO*fint1 - fint2)/3.0d00 

return 
end 

c *************************************************** 
subroutine trapint(npts,f,dx,fint) 

c *************************************************** 
c 

implicit double precision (A-H,O-Y) 
dimension f(npts) 

c trapeziodal rule integrator for f(1)-f(npts) <-> f(xO)-f(xf) 
fint=O. 

c 
do 100 i=2,npts-1 

fint=fint+f(i) 
100 continue 
c 

c 

c 

return 
end 

fint=fint+(f(1)+f(npts))/2.0d00 
fint=fint*dx 

c ************************************************** 
subroutine ovlp(zpsi1,zpsi2,zovp) 

c ************************************************** 
c 
c finding the overlap integral 
c 

implicit double precision (A-H,O-Y) 
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c 

implicit complex*16 (zl 
parameter (npts=1024) 
dimension zpsi1(1),zpsi2(1),zprod(npts) 
common/const4/xmin,xmax,nXpts,dx,npacket 

do 10 ix=1,nXpts 
zprod(ixl=dconjg(zpsi1(ixll*zpsi2(ix) 

10 continue 
c 

call zsimpint(nXpts,zprod,dx,zovpl 
c 

c 

return 
end 

c ************************************************* 
subroutine zsimpint(nx,zf1,dx,zint) 

c ************************************************* 
c 
c complex simpsons rule integrator 
c 

implicit double precision (A-H, 0-Yl 
implicit complex*16 (zl 
parameter (nypts=1024l 
dimension zf1(nypts),zf2(nypts) 

c 
c define : 

dx1=dx 
dx2=dx*2. 
ixn=O. 

c 

c 

if (nx .gt. nypts) then 
write(6,*) ' zsimpint 
endif 

nx .gt. nypts 

if ((mod(nx,2) .eq. 0).) then 
nx1=nx-1. 

nypts 

nx2=0.50d00*nx1+1 
zint=0.50dOO*dx*(zf1(nx-1) + zf1(nx)) 

c 

else 
nx1=nx 
nx2=0.50dOO*nx1+1 
zint=O.OdOO 

endif · 

c copy the odd elements of zf1 array into zf2 
do 10 ix=1,nx1,2 
ixn=ixn+1 

10 zf2 (ixn)=zfl (ix) 
c 
c Now integrate zfl, zf2 in two pieces. 
c 

c 

c 

call ztrapint(nx1,zfl,dxl,zintl) 
call ztrapint(nx2,zf2,dx2,zint2) 
zint=zint+(4.0d00*zintl- zint2)/3.0d00 

return 
end 

c *************************************************** 
subroutine ztrapint(npts,zf,dx,zint) 

c *************************************************** 
c 

implicit double precision (A-H,O-Y) 
implicit complex*l6 (z) 
dimension zf(npts) 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 

c trapeziodal rule integrator for f(l)-f(npts) <-> f(xO)-f(xf) 
zint=zero 

c 
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I 100 
c 

c 

do 100 i=2,npts-l 
zint=zint+zf(i) 

continue 

return 
end 

zint=zint+(zf(l)+zf(npts))/2.0d00 
zint=zint*dx 

c ************************************************************* 
subroutine savabs(arrayl,array2,ninit,nfin,absmax) 

c ************************************************************* 
c 
c save arrays 
c 

c 

implicit double precision (A-H,O-Y) 
implicit complex*l6 (z) 
dimension arrayl(l),array2(1) 
common/constO/ zero,zeye,pi,c,twopi,sqrtpi,pisq 

900 format (2(2x,f20.10ll 
c 

write(6,*)'Writing absorption spectrum to absspec.out' 
open (file='absspec.out', unit=Sl 
write(8,900)0.0,0.0 
· do 120 iw=ninit,nfin 

c convert omega from a.u. to eV. 
write(8,900)arrayl(iw)*27.2116,array2(iw)/absmax 

120 continue 
c 

c 
close (8) 

return 
end 

c ************************************************************* 
subroutine savovlp(zsav,novlpl 

c ************************************************************* 
c 
c save overlap (autocorrelation function) 

c 

implicit double precision (A-H,O-Y) 
implicit complex*l6 (zl 
dimension zsav(l) 

common/const3/tmax,ntmax,delt,iderflag 
common/const7/ Espmin,Espmax,domega,novsav,npktsav 
common/const6/gamm 

900 format (f9.2,lx,f9.3,lx,fl8.15,1x,f18.15,1x,f18.15) 
901 format (f9.3,2x,fl8.15) 

open(file='auto.dat', unit=Sl 
open(file='auto.pic', unit=7) 

do 100 it=1,novlp 
ti=novsav*(it-ll*delt 
tfs=ti*2.4199d-2 
re=dreal(zsav(it)) 
ai=dimag(zsav(itll 
amod=dsqrt(re*re+ai*ail 
write(8,900) ti,tfs,re,ai,amod 
write(7,901) tfs,amod*exp(-gamm*ti**2) 

100 continue 
close(8) 
close(7) 
return 
end 

wave2.f 
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c ************************************************************ 
subroutine pktsav(zpsi,time,npkt,itype) 

c ************************************************************ 
c Save the wavepacket at several shots in time in the same file 

implicit double precision (A-H,O-Y) 
implicit complex*l6 (z) 
character char*l 
character charl*4 
dimension zpsi(l) 
common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/const4/xmin,xmax,nXpts,dx,npacket 

.C Append the new packet to the file 
open(9,file='wavepkt.out',fileopt='eof') 

c 
c And add extra record to the open random access file 
c 
900 
901 
910 

100 

format(f7.3,2x,fl6.10,2x,fl6.10,2x,fl6.10) 
format(l024(fl6.10,2x)) 
format(lx,i3,3x,f7.1,3x,f7.3,2x,a4) 
tfs=time*atu 
if (itype .eq. -1) 
if (itype .eq. -2) 
if (itype .eq. -3) 
if (itype .eq. -4) 

char='T' 
char='V' 
char='H' 
char='k' 

char=' if (itype .eq. 0) 
charl=char//'psi' 
write(9,910)npkt,time,tfs,charl 
do 100 ix=l,nXpts 

xi=xmin+(ix-l)*dx 
xiA=xi*aO 
re=dreal(zpsi(ix)) 
ai=dimag(zpsi(ix)) 
amod=dsqrt(re*re+ai*ai) 
write(9,900)xiA,re,ai,amod 

continue 
write (7, 901, rec=npkt+2) (abs (zpsi ( i)), i=l, nXpts) 

c Close the sequential file so it is backed up 
close(9) 
return 
end 

c *************************************************************** 
subroutine initpktsav(isavde) , 

c*********************~****************************************** 

implicit double precision (A-H,O-Y) 
common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin, xmax, nXpts, dx, npacke·t 
common/const7/ Espmin,Espmax,domega,novsav,npktsav 
integer*4 irec 

irec=nXpts*l8+1 
size=float(irec*(isavde*4+l)*ntmax/npktsav) 
if (size .gt. 100000.0) then 
write(6,*)'Too many wavepackets to save- thats 1 meg of storage!' 
end if 
istat=system('alias rm rm') 
istat=system('rm -f wave.drw') 
istat=system('rm -f wavepkt.out') 

write(6,*)'This version backs up the wavepacket file, and creates a 
wave.drw file' L 

write(6,*)'**** I HAVE Removed old wave.drw and wavepkt.out *****' 
open(7,file='wave.drw',access='direct' ,form=' formatted' ,recl=irec) 
tlastpkt=int(tltmax/npktsav)*npktsav*delt 
write(7,900,rec=l) isavde, irec, xmin*aO, xmax*aO, nXpts, 0.0, 

& tlastpkt*atu, ntmax/npktsav+l 
900 format(il,2x,i4,2x,f6.3,2x,f6.3,2x,i4,2x,f6.3,2x,fl2.3,2x,i3) 

return 
end 
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lepsl.f 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Create a LEPS potential for a triatomic system. 
See Smith p. 44 
Indices: 

Variables: 

Functions: 

1 
2 
3 

ab 
be 
ca 

R(1) = ab distance (nm) 
Delta(1) = (1/S(1)) - 1, where Sis Sate 
De(1) = dissoc limit of ab (kJ/mol) 
Re(1) =equilibrium ab bond length (nm) 
B(1) width of potential for ab (nm -1) 
M(1) = mass of atom a (amu) 

Parameter 

V(R(1), R(2), R(3)) LEPS potential (kJ/mo1) 
Q(1,R(1)) = Q for ab and Rab 
AJ(1,R(1)) = J for ab and Rab 
VM(1,R(1)) =Morse potential for ab and Rab 
VaM(1,R(1)) =anti-Morse potential for ab and Rab 

c ----------------------------------------------
FUNCTION VM (I, R) 
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
DOUBLE PRECISION LDE,LRE,LB 
parameter (npts=1024) 

COMMON/LEPS/LDE (3), LRE (3 )', LB (3), AM (3), DELTA (3), RCA 
X= -LB(I)*(R- LRE(I)) 
VM = LDE(I) * (DEXP(2.0*X) - 2.0*DEXP(X)) 
RETURN 
END 

c ----------------------------------------------
FUNCTION VAM(I,R) 
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
DOUBLE PRECISION LDE,LRE,LB 
parameter (npts=1024) 
COMMON/LEPS/LDE(3),LRE(3),LB(3),AM(3),DELTA(3),RCA 

X= -LB(I)*(R- LRE(I)) 
VAM = LDE(I) * (DEXP(2.0*X) + 2.0*DEXP(X))/2.0 
RETURN 
END 

c ------------------~---------------------------
FUNCTION Q(I,R) 
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
DOUBLE PRECISION LDE,LRE,LB 
parameter (npts=1024) 
COMMON/LEPS/LDE(3),LRE(3),LB(3),AM(3),DELTA(3),RCA 

Q = ((1.0 + DELTA(I))*VM(I,R) + (1.0- DELTA(!)) * VAM(I,R))/2.0 
RETURN 
END 

c ----------------------------------------------
FUNCTION AJ (I, Rl 
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
DOUBLE PRECISION LDE,LRE,LB 
parameter (npts=1024) 
COMMON/LEPS/LDE(3),LRE(3),LB(3),AM(3),DELTA(3),RCA 
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AJ = ((1 + DELTA(l))*VM(I,R) - (1- DELTA(!)) * VAM(l,R))/2.0 
RETURN 
END 

c ----------------------------------------------
FUNCTION JSIGN(l,K) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IF (I .EQ. K) THEN 

JSIGN=1 
ELSE 

JSIGN=-1 
END IF 
RETURN 
END 

c-------------------------------------------------
FUNCTION ALV(RAB,RBC) 
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
DOUBLE PRECISION LDE,LRE,LB 
parameter (npts=1024) 
COMMON/LEPS/LDE(3),LRE(3),LB(3),AM(3),DELTA(3),RCA 

DIMENSION R(3),T(3) 
DOUBLE PRECISION JSUM 

R(l) 
R(2) 
R(3) 
QSUM 

RAB 
RBC 
RAB+RBC 
0.0 

DO 10 I = 1,3 
T(l)=1.0D0/(1.0DO+DELTA(l)) 
QSUM = QSUM + Q(l,R(l))*T(l) 

10 CONTINUE 

JSUM = 0.0 
DO 20 I = 3,1,-1 
DO 30 K = 1,I 
JSUM = JSUM + AJ(I,R(I)) * JSIGN(I,K) * T(l) * AJ(K,R(K)) * T(K) 

30 CONTINUE 
20 CONTINUE 

ALV = QSUM- DSQRT(JSUM) 
RETURN 
END 

c ----------------------------------------------
c 
C Asymmetric stretch potential 
c 

FUNCTION POTEN(DR) 
IMPLICIT DOUBLE PREC'ISION (A-H, 0-Z) 
DOUBLE PRECISION LDE,LRE,LB 
parameter (npts=l024) 
COMMON/LEPS/LDE(3),LRE(3),LB(3),AM(3),DELTA(3),RCA 

X = DR*0.052917706 
C Convert from bohrs to nanometers 
Cln thls case Rae is distance between two heavy atoms 

RAB = X 
RBC = RCA - X 
POTEN = ALV(RAB,RBC)/2625.504 

C Convert from KJ/mol to hartrees 
RETURN 
END 

C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
subroutine lepstore(vO) 

c++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
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C Save the Leps potential in an array for later use ... 
c 

c 

implicit double precision (A-H,O-Y) 
implicit complex*l6 (z) 
parameter(npts=l024) 
double precision lde,lre,lb 

common/const4/xmin,xmax,nXpts,dx,npacket 
COMMON/LEPS/LDE(3),LRE(3),LB(3),AM(3),DELTA(3),RCA 
common/pot/zpot(npts,2) 

C Establish shelf for maximum value of potential so as to minimize 
C unnecessary reduction of the time step. . 
C For LEPS set this at the three atom dissociation limit (0.0 eV) 

shelf=O.O/harev 
write(6,*)'Establishing shelf in LEPS potential' 
write(6,*)'so that full range of potential energy is ' 
write(6,*)'no greater than from bottom of exothermic' 
write(6,*)'channel valley to three atom dissociation' 

do 120 ix=l,nXpts 
xi=xmin + (ix-l)*dx 
zpot(ix,2)=poten(xi)+v0 
if (real(zpot(ix,2))-v0 .gt. shelf) zpot(ix,2)=shelf+v0 

120 continue · 
return 
end 

c ************************************************************************ 

aniomilorsewfl.f 

C Anionwf stolen from READFCFB 
C Read the wavefuction off the fort.4 file of a 
C FCF program job (code of Ellison et al.) 
C This can actually pull off any wavefunction (excited vibrational 
C states) from the wavefunction calculated for the LOWER potehtial 
C using that program.· To use this feature change !LEVEL from 1 in 
C calling routine 

C This routine is mandatory if the user uses a general potential 
C from a file for the LOWER potential in the wavepacket calculation 
c 

c 

SUBROUTINE ANIONWF(ILEVEL,ZPSI) 
IMPLICIT DOUBLE PRECISION (A-H,O-Y) 
Implicit Complex*l6 (z) 
DIMENSION NEN(2),PCOEFS(2,6),XKOUT(75) 
DIMENSION V(75,2),NPOT(2),E(2,50),VJ(2,70,50) 
DIMENSION ZPSI(l) 
common/const4/xmin,xmax,nXpts,dx,npacket 

C Read data from file fort.4 
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C Lets allow the fort.4 file to have data about upper surface for compatibility 
c 

OPEN(4,FILE='fort.4') 
READ(4,900) NOSC 

900 FORMAT(I3) 
IF(NOSC.EQ.l) THEN 

READ (4,903) NEN(l),N 
ELSE 

READ(4,905) NEN(l),NEN(2),N 
END IF 

903 FORMAT(2I3) 
905 FORMAT (3I3) 

NKNOT = N + 4 
READ(4,910) (XKOUT(I),I=l,NKNOT) 

910 FORMAT(l3(6Fl2.6,/)) 



READ (4, 915) NPOT (1), (PCOEFS(l, I), I=1, 6) 
915 FORMAT(I2,6F12.6) 

READ(4,920) (V(I,1),I=1,NKNOT) 
920 FORMAT((6F12.7)) 

READ(4,925) (E(1,J),J=1,NEN(l)) 
925 FORMAT(20F12.7) 

IF(NOSC.EQ.1) GO TO 10 
READ(4,915) NPOT(2), (PCOEFS(2,I),I=1,6) 
READ (4, 920) (V (I ,2), I=1, NKNOT) 
READ(4,925) (E(2,J),J=1,NEN(2)) 

10 DO 20 I=1,NEN(1) 
READ(4,920) (VJ(1,J,I),J=1,N) 

20 CONTINUE 
IF(NOSC.EQ.1) GO TO 40 
DO 30 I=1,NEN(2) 
READ(4,920) (VJ(2,J,Il,J=1,N) 

30 CONTINUE 
CLOSE(4) 
XH = XKOUT(2) - XKOUT(1) 
if ((xmin*0.529177- xkout(l)) .gt. 0.0005) then 
write(6,*)'xmin= ·~0.529177*dx 
write(6,*)'first knot at ',xkout(1) · 
write(6,*)'first points dont match- Stopping' 
stop 

end if 
if ( (xh-0. 529177*dx) .gt. 0 .0005) then 
write(6,*)'dx= ',0.529177*dx 
write(6,*)'knot spacing= ',xh 
write(6,*)'Grid sizes dont match- Stopping' 
stop 

end if 
if (nknot .ne. nxpts) then 
write(6,*)'nXpts= ',nxpts 
write(6,*)'nknots= ',nknots 
write(6,*)'Dont match- Stopping' 
endif 

40 PRINT(999) 
999 FORMAT(' DONE READING') 

C This has stored all needed and uneeded data ..... . 
c 
c 
c 

Calculate wavefunction from spline coefficients 
Want the ground state wavefunction, I=1: 

I=ILEVEL 
ZPSI(1)=VJ(1,1,I) + VJ(1,2,I)/4 
ZPSI(N)=VJ(l,N,Il + VJ(l,N-1,I)/4 
DO 100 J=2,N-1 

100 
c 

ZPSI(J)=VJ(1,J-1,I)/4 + VJ(1,J,I) + VJ(1,J+1,I)/4 
CONTINUE 

c 
c 

Get the correct sign for wavefunction (+ at beginning) 

J=O 
105 J=J+1 

IF(real(ZPSI(J)) .GT.O) GO TO 110 
IF (real (ZPSI (J)) .EQ. 0) GO TO 105 
DO 106 J=1,N 
VJ(1,J,I)=-VJ(1,J,I) 

106 ZPSI(J)=-ZPSI(J) 
110 CONTINUE 

return 
end 

c ******************************************************* 
subroutine morsewf(zpsi) 

c ******************************************************* 
C Calculate the ground Wavefn for anharmonic oscillator 
C Wavefn has following form (see J. Res. N.B.S. A 65, 451 (1961)) 
C psi(x) =norm* [K * e~pval(x)].(0.5*(K-1)) * exp(-0.5*K * expval(x)) 
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C where 
c 

expval(x) = exp(-beta*x) 
norm = sqrt ( beta/gamma(k-1) 

C This routine will only calculate lowest wavefunction of a 
C Morse potential, for higher ·states (i.e. v=l !) see the 2d code 

C This method of calculating the wavefunctions of a Morse oscillator 
C fails when the anharmonicity is very small (i.e. in the limit 
C of a harmonic oscillator) because the gamma function blows .up. 
C This limit is reached for mildly anharmonic oscillators 
C e.g. NCO- where we=2149 cm-1 and wexe=12.5 cm-1. · 
C In this case it is only a small approximation to use the H.O. 
C wavefunction for the anion ground vibrational wavefunction 

implicit double precision (a-h,o-y) 
implicit complex*16 (z) 
dimension zpsi(1) 

common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/const4/xmin,xmax,nXpts,dx,npacket 
common/const2/xOA,xomegA,vOA,xwexeA,dea,xalphaA,x0B, 

xomegB,xwexeB,deB,xalphaB,vOB 

C Form K = we/wexe and calculate gamma function of (k-1) 
AK = xomegA/xwexeA 

C evaluate the gamma fn. 
arg=AK-1.0 
APOLY=l+l/(12.0*arg)+1/(288*arg*arg) - 139/(51840*arg**3) 
gak=dsqrt(twopi/arg)*(arg**arg)*dexp(-arg)*APOLY 
Anorm=dsqrt(xalphaA/gak) 

C write(6,*)AK,arg,APOLY,gak,Anorm 

do 300 i=1,nxpts 
r=xmin+(i-1)*dx 
x=r-xOA 
expval=dexp(-xalphaA*x) 

355 

zpsi(i)=dcmplx(Anorm * (AK*expval)**((AK-1)/2)*dexp(-AK*expval/2),0.0) 
C write(4,899)zpsi(i) 
899 ·' format(e22.16,2x,e22.16) 
300 continue 

return, 
end 

4.1.2 Two-dimensional Code - prop2d22 

makeprop2d22 

prop2d22: koss2d22.o potread2.o graphicsy.o 
segldr -o prop2d22 ~L /usr/local/lib -lsci,nag14,diss,gksncar koss2d22.o 

potread2.o graphicsy.o 

koss2d22.o: param.inc 
pot~ead2.o: param.inc 
graphicsy.o: param.inc 

param.inc 

parameter(nlpts=64,n2pts=32) 
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koss2d22.f 

C VERSION koss2d2l.f 
C This code has been tested to run under VAX/VMS Fortran, VAX/UNIX Fortran 
C STARDENT GS2000/Stellix FORTRAN, SUN SPARC/UNIX/FORTRAN1 Cray UNICOS Fortran, 
C and SUN/UNIX Fortran. In most respe·cts the code is generic FORTRAN ! 
C The code has been written to take maximum advantage of CRAY vector 
C processors, and so may not run as optimally on a scalar machine as it could 
C before vectorization! This code achieves greater than a 60 MegaFlops rating 
C on a Cray X/MP 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

This is a two-dimensional wavepacket propagation Code. 

This code is set up to solve specifically the photoelectron/photodissociation 
spectrum of a linear triatomic assuming collinear dynamics. It allows for the 
inclusions of the zero point bending motion adiabatically for LEPS potentials. 
However the code can be easily modified to solve any two dimensional coupled 
quantum dynamics problem. 

Code performs EXACT fully quantum mechanical calculation in 2D. 

Original sections of the lD code are 
Adapted for photoelectron spectra of 
Address: Dept. of Chemistry, 

from Dr. S. Y. Lee, Singapore 
negative ions by S.E. Bradforth 2/26/89 

Neumark Research Group, 
University of California, 
Berkeley, CA 94720 

E-mail: neumark@violet.berkeley.edu OR neumark@violet.bitnet 

Calculates photoelectron spectrum of triatomic system for completely 
general case where lower surface is bound (of any potential form) and 
upper surface is bound or repulsive of any form. 

INPUT: 

OUTPUT: 

koss2d.dat 

out.dat 

auto.dat 

absspec.out 

wavepkt.out 

potlA.out 
potlB.out 
wave.dump 

input deck (can be prepared by accompanying 
program or by following comments in supplied 
example) 
summary of input parameters and details of 
wavepacket propagation 
autocorrelation function (real, imaginary and 
modulus) as a function of time 
Fourier transform of autocorrelation function, 
the absorption/photoelectron· spectrum 
absolute value of wavepacket as a function of time 
(can include wavepacket derivatives) 

lower and upper potentials 

dump of wavepacket at last propagation step (for 
restarting purposes) 

It is extremely helpful to be able to graph wavepacket evolution in time, for 
checking usefulness of run and that all criteria for successful propagation 
have been satisfied, and for presentation. The files wavepkt.out, 
along with potlA.out and potlB.out, (the lower and upper 
potential energy surfaces), are provided for this purpose. 

The file graphics.£ contains all the machine specific graphical 
routines. Usually the command line is used to indicate if the 
program should produce graphical output. 
See the comments at top of the header to graphics.£ 

Note: In comments within code that follows "lower", "A", and "anion" surface, 
as well as "upper", "B", and "neutral" surface are used interchangeably 
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C Algorithm assumes no separation of variables or symmetry 
C so general coupled potentials, or reaction surfaces are allowed 
C for either anion or neutral. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Note flexibility of potential is determined by subroutine potdef, at the 
present allows: (Number refers to potential type requested in input deck) 

0 SHO or Morse (expressed with we and wexe) 
1 Morse (expressed with De and Be) 
2 LEPS (only for neutral) with/without, ~.p. bend correction 
3 general supplied 2d potentials from a file (on ms grid) 
4 general functional form for 2d potential supllied in function 

upotfn within this code 
5 Rotated Morse Oscillator Spline function 

Revised to perform symmetric/asymmetric systems; to include absorbing 
boundary conditions and to start with a excited initial wavepacket. 
Will restart from any point and allows any form of starting wavepacket. 
Time dependent relaxation algorithm to find ground wavefunction of lower 
surface added 1990 

Code can use the Mark 13 NAG library for extremely efficient vectorised 
2D FFT routine (lOx faster). This routine also increases program speed 
on scalar machines. The NAG version is strongly recommended! 
THE PROGRAM SPENDS OVER 75% OF ITS CPU TIME INSIDE the 2D FFT 
ROUTINE SO IT IS ADVISABLE TO USE A VERY EFFICIENT ROUTINE, LIKE 
THE NAG ROUTINE c06fuf. IF SUCH A LIBRARY ROUTINE IS NOT 
AVAILABLE USE MUST BE MADE OF twodfft (from Numerical Recipes). 

Note all quantities in main routine are in Atomic units, 
conversions performed in I/0 routines. 

Note all variables beginning with z are "complex 

PROGRAM PROP2D 
implicit real*8 (A-H,O-Y) 
implicit complex*l6 (z) 
real*8 lde,lre,lb 
character arg*70 
include "param.inc" 
parameter(nFFT=8192) 
dimension zpsiAO(nlpts,n2pts),zpsiBO(nlpts,n2pts) 
dimension zpsiBl(nlpts,n2pts),zpsiB2(nlpts,n2pts) 
dimension zovlp(nFFT),omega(nFFT),Eprsq(nFFT) 

common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/constl/ xmas,ymas,redmas, hb 
common/const2xA/xOA,xomegA,vOA,xwexeA,xdea,xalphaA 
common/const2xB/xOB,xomegB,xwexeB,xdeB,xalphaB,vOB 
common/const2yA/yOA,yomegA,fcupA,ywexeA,ydeA,yalphaA 
common/const2yB/yOB,yomegB,ywexeb,ydeB,yalphaB,fcupB 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/const6/gamm 
common/const7/ Espmin,domega,novsav,npktsav 

(20%) 

C workspace defined in fftwork common block is required for NAG routine only 
common/fftwork/trigm(2*nlpts),trign(2*n2pts) 
COMMON/LEPS/LDE(3),LRE(3),LB(3),DELTA(3) 
common/mass/AMl,AM2,AM3,AMab,AMcxab,AJAcob 
common/flags/isavpotA,isavpotB,isavde,ireadwav,irestart,iabs 
common/absparam/xabs,yabs,cxabs,cyabs 
common/wdraw/iwdrw,arg 

C Check for argument on command line for graphics options 

call argchk(igraph,iwdrw,arg) 



C n1pts and n2pts define the grid size and are defined as constants 
C within program. They should be powers of two. 
C They can be changed by replacing every parameter statement within code or 
C by using an include file if allowed in user's version of FORTRAN 

C Initialize ....... . 
C Check that n1pts is larger or equal to n2pts else problems 
C with array construction ..... . 

if (n1pts .lt. n2pts) then 
write(6,*)'n1pts .lt. n2pts- Change source code!!!' 
stop 

endif 
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C Start reading the needed input data and also define some useful constants. 
open (1, file= 'koss2d.dat') 
call const(nFFT) 
close (1) 
if (iwdrw.eq.1) call inidrw() 

C Program arrays set so nxpts=n1pts >= nypts=n2pts -- Program checks for this. 
if ((nxpts.ne.n1pts) .or. (nypts.ne.n2pts)) then 

write(6,*)'Illegal nxpts or nypts- check and' remedy !' 
stop 

end if 

C novsav should be a factor of the total number of time steps ntmax and should 
C be such that 2*ntmax/novsav =< nFFT 
C Change novsav and npktsav ~o be useful values ..... 
c novsav=2*ntmax/nFFT 

if (novsav .lt. 1) novsav=1 
if (2*ntmax/novsav .gt. nFFT) then 

write(6,*) 'novsav is too large -Exiting' 
stop 

end if 
if (mod(ntmax,novsav) .ne.O) then 

write(6,*)'ntmax=',ntmax 
write(6,*)'novsav is not a factor of ntmax- Please fix' 
stop 

end if 
c if (isavde .eq. 1) then 
c if ((npktobe .lt. 2) .or. (npktobe .gt. 6)) npktsav=ntmax/4 
c else 
c if ((npktobe .lt. 4) .or. (npktobe .gt. 30)) npktsav=ntmax/8 
c endif 

if (npktsav .lt. 1) npktsav=1 
if (isavde .eq. -1) then 

npktobe=O 
write(6,*)'There will be ',npktobe,' wavepackets stored' 

else 
npktobe=ntmax/npk~sav+(1*(1-irestart)) 
write(6,*l'There will be ',npktobe*(isavde+1), 

$ ' wavepacke~s stored' 
end if 

c Calculate Delta Omega (domega) in a.u. 
domega=2.0*pi/(ntmax*delt) 

c 
C Start writing to output record file 

open (2, file= 'out.dat') 
write(2,899) AMab/amu,AMcxab/sqrt(amu),AJAcob*amu 
write(2,900) xmas/amu,ymas/amu,redmas/amu,hb 
if (xwexeA .eq. 0.0) then 

write(2,910) xOA*aO,xomegA*harwn,vOA*harev 
else 

write(2,915)x0A*aO,xomegA*harwn,vOA*harev, 
xwexeA*harwn,xalphaA/aO,xdeA*harev 

end if 
if (ywexeA .eq. O;O) then 

write(2,911) yOA*aO,yomegA*harwn,fcupA*harev/aO/aO 
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else 
write(2,916)yOA*aO,yomegA*harwn,fcupA*harev/a0/a0, 

ywexeA*harwn,yalphaA/aO,ydeA*harev · 
end if 

if (xwexeB .eq. 0.0) then 
write(2,920) xOB*aO,xomegB*harwn,vOB*harev 

else 
write(2,925)xOB*aO,xomegB*harwn,vOB*harev, 

xwexeB*harwn,xalphaB/aO,xdeB*harev 
end if 
if (ywexeB .eq. 0.0) then 

write(2,921) yOB*aO,yomegB*harwn,fcupB*harev/aO/aO 
else 
'write(2,926)yOB*aO,yomegB*harwn,fcupB*harev/a0/a0, 

ywexeB*harwn,yalphaB/aO,ydeB*harev 
end if 
write(2,930) tmax*atu,ntmax,delt*atu 
write(2,940) xmin*aO,xmax*aO,nXpts,dx*aO 
write(2,945) ymin*aO,ymax*aO,nYpts,dy*aO 
if (iab~ .ne. 0) then 
write(2,942)xabs*aO,yabs*aO,cxabs,cyabs 

end if 
write(2,950) gamm 
write(2,960)Espmin*harev 
write(2,966)novsav,npktsav 
write(2,970)domega*harwn 

C Write a few parameters to screen 

c 
899 
900 

910 
911 
915 

916 

920 
921 
925 

926 

930 
940 

942 

945 

950 
960 
966 
970 

write(6,*l'Time parameters (fsecs), energy resolution ·' 
write(6,930)tmax*atu,ntmax,delt*atu 
write(6,970)domega*harwn 

format (2x,'AMab =' ,f9.3,2x,'AMc,ab =',f9.3,2x,'Jacobian =',f9.4) 
format (2x,'xmas =', f9.3,2x,'ymas =', f9.3,2x,'redmas =', 

e12.3,2x, 'hb =',f4.1) 
format (2x, 'xOA =',f6.2,2x, 'xomegA =',f9.2,2x, 'vOA =',f6.3) 
format (2x, 'yOA =' ,f6.2,2x, 'yomegA =' ,f9.2,2x,'fcupA =',f6.3) 
format (2x, 'xOA =',f6.2,2x, 'xomegA =',f9.2,2x, 'vOA =',f6.3,/, 

2x,'xwexeA =',f9.2,2x,'xalphaA =',f9.3,2x,'xDeA =',f9.3) 
format (2x, 'yOA =' ,f6.2,2x, 'yomegA =' ,f9.2,2x,'fcupA =' ,f6.3 

A ,/,2x,'ywexeA =',f9.2,2x,'yalphaA =',f9.3,2x,'yDeA =',f9.3) 
format (2x, 'xOB =',f6.2,2x, 'xomegB =',f9.2,2x, ~vOB =',f6.3) 
format (2x, 'yOB =' ,f6.2,2x, 'yomegB =' ,f9.2,2x,'fcupB =' ,f6.3) 
format (2x, 'xOB =',f6.2,2x, 'xomegB =',f9.2,2x, 'vOB =',f6.3,/, 

A 2x,'xwexeB =',f9.2,2x,'xalphaB =',f9.3,2x,'xDeB =',f9.3) 
format (2x, 'yOB =',f6.2,2x, 'yomegB =',f9.2,2x,'fcupB =',f6.3, 

A /,2x,'ywexeB =',f9.2,2x,'yalphaB =',f9.3,2x,'yDeB =',f9.3) 
format (2x, 'tmax =',f10.2,2x, 'ntmax =',i5,2x, 'delt =',f20.6) 
form~t (2x, 'xmin =',f9.2,2x, 'xmax =',f9.2,2x, 'nXpts ~',i5,2x, 

A 'dx =', f9.3) · 
format(2x, 'xabs =',f9~2,2x,'yabs =',f9.2,2x'cxabs =',e9.3, 

2x,'cyabs =' ,e9.3) 
format (2x, 'ymin =' ,f5.1,2x, -'ymax =' ,f5.1,2x, 'nYpts =' ,i5,2x, 

, dy =' , f9. 3) 
format (2x,'gamm =',e13.6) 
format (2x,'Espmin=', f13.6) 
format (2x, 'novsav=', i3, 2x, 'npktsav=', i4) 
format(2x,'domega =',f7.1,' cm-1') 

c Now start numerical work 
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c 
c 

Method described in Bradforth, Weaver, Arnold, Metz and Neumark J. Chern. Phys. 
92, 7205 (1990) and refs. therein. 

c 
c 
c 
c 
c 
c 

Criteria of succesfu1 propagation given in Kosloff, J. Comput. Phys. 52, 35 
(1983); essentially the maximum kinetic energy representable on a grid with 
spacing dx (dy) is given (in au) by pi*pi/(2*redmas*dx*dx) and the stability 
criterion is {delt*( sumi{(pi*pi)/(2*redmas*dxi*dxi)} + V) <= 1.0} 
We do not actually calculate potential range, but by careful use of shelfs on 



C potential values, the maximum kinetic enrgy should dictate the convergence 
C criterion 
c 

sqkmax=4.9348*(1.0/(redmas*dx*dx) + 1.0/(redmas*dy*dy)) 
write(6,912)sqkmax*harev 
write(2,912)sqkmax*harev 
write(6,*)'KE along x : ',134.2~/(redmas*dx*dx),' eV' 
write(6,*)'KE along y : ',134.28/(redmas*dy*dy),' eV' 

912 format(2x,'Maximum kinetic energy that can be represented is' 
4 f9. 4,' eV' ) 

write(6,913)sqkmax*delt 
write(2,913)sqkmax*delt 

913 format(2x,'Stability at best, assuming zero potential, is ',f6.3) 
c 
C make crude check on whether propagation will be stable 
c 

c Save 
c 

if (sqkmax*delt .gt. 1.0) then 
write(6,*) 
write(6,*)'*******THIS PROPAGATION WILL BE UNSTABLE**********' 
write(6,*) 
stop 

end if 

the lower/upper state potential surfaces 

if (isavpotA .eq. 1 ) then 
write(6,*l'Potential saved in potlA.out in eV' 
call potlsave (1) 

end if 
if (isavpotB .eq. 1 ) then 
write(6,*)'Potential saved in potlB.out in eV' 
call potlsave(2) 

end if 

c initialise wavepacket file if wavepackets are to stored 
if (isavde .ne. -1) call initpkt() 

c will store autocorrelation function (overlap between t=O zpsi and 
c t=novlp*novsav*delt zpsi) at intervals determined by novsa~ 
c and will write the wavepacket to disk in its entirety every npktsav 
C point in time if required. 
c 
c Initialise ti = 0 but routine ;ini tB may change this ... 

ti=O.O 

360 

C Initialize the 2D FFT routine in NAG library - needs to set up trig ~able in 
C KEmat for more efficient further calls .... 
C INCLUDE if using NAG library, twodfft routine does not need to be initialized 

call KEmat(zpsiBO,zpsiBl,ti,l) 

c Generate the wavefunction on the ground state surface that determines the 
c initial wavepacket. Generate zpsiBl by second order Runge kutta. This 
c step is required to evaluate the time derivative in 2nd order differencing 
c later on. 
c 

call initB(ti,zpsiAO,zpsiBO,zpsiB1) 
tinit=ti 
tfs=ti*atu 
write(6,*) 
write(6,*)'**** Wavepacket propagation on neutral surface*****' 
write(6,*) 
write(6,*)'Starting at t~',tfs 
write(2,*)'Starting at t=',tfs 
nov1p=l 
call ovlp(zpsiAO,zpsiBO,zovlp(novlp)) 
npacket=O 

c if required save the first wavepacket and derivatives to disk 
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if ((irestart .ne. 1) .and. (isavde .ne. -1)) then 
call pktsav(zpsiBO,ti,npacket,O) 

end if 
if (isavde) 778,778,777 

if (irestart.ne.1) iderflag=1 
call chk(2,ti,zpsiBO,rsnorm,Have) 
write(6,*)'Norm of wavefn is' ,rsnorm 
write(2,*)'Norm of wavefn i~ ',rsnorm 
write(6,*)'Energy Hav =', 

% Have/rsnorm,' ',Have*harwn/rsnorm,' cm-1' 
write(2,*l'Energy Hav =' ,Have/rsnorm,' 

& Have*harwn/rsnorm,' cm-1' 
iderflag=O 

C First Drawing to screen if graphics required 
if (iwdrw.eq.1) then 

call iniplt(arg,2) 
call wavdrw(zpsiBO,tfs,rsnorm,Have) 

endif 

c ******** MAIN LOOP ********** 
.c Start the propagation ....•.............. 
c Perform this by second order differencing (Kosloff algorithm) 
c 

965 
c 

779 
780 

781 

c 

c 
c 

c 

do 100 it=1,ntmax 
ti=ti+delt 
tfs=ti*atu 
format(1x,'Time step ',i6,', t = ',f10.4) 

check to see if we need to store overlap and/or write wavepacket to disk 
if (mod(it,novsav) .eq. 0) then 

novlp=novlp+1 
call ovlp(zpsiAO,zpsiB1,zovlp(novlp)) 

endif 
if (mod(it,npktsav) .eq. 0) then 
if (isavde) 781,780,779 

iderflag=1 
npacket=npacket+1 
call pktsav(zpsiB1,ti,npacket,0) 
call chk(2,ti,zpsiB1,rsnorm,Have) 
if (iwdrw .eq. 1) call wavdrw(zpsiB1,tfs,rsnorm,Have) 
write(2,965)it,tfs 
if (iwdrw.ne.1) write(6,965)it,tfs 
if (iwdrw.ne.1) write(6,*)'Norm of wavefn is ',rsnorm 
write(2,*)'Norm of wavefn is' ,rsnorm 
if (rsnorm .gt. 2.0) then 
write(6,*)'Exceeded reasonable norm- terminating •.. ' 
stop 

endif 
if (iwdrw.ne.1) write(6,*)'Energy Hav =' ,Have/rsnorm, 

@ ·' ', Have*harwn/rsnorm,' cm-1' 
write(2,*)'Energy Hav =' ,Have/rsnorm,' 

Have*harwn/rsnorm,' cm-1' 
iderflag=O · 

end if 
determine the new wavefunction zpsiB2 from zpsiBO and zpsiB1 

if (iabs .ne. 0) then 
call psi2ab(2,ti,zpsiBO,zpsiB1,zpsiB2) 

else 
call psi2(2,ti,zpsiBO,zpsiB1,zpsiB2) 

endif 
now we have zpsiB2 prepare for next step of propagation 

call vcopy(nXpts,nYpts,zpsiB1,zpsiBO) 
call vcopy(nXpts,nYpts,zpsiB2,zpsiB1) 

c now round propagation loop again ..... 
c 
100 continue 
c ********* END OF MAIN LOOP *************** 
C closes up .the wavepacket file, autocorrelation and output files 
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c 

close(9) 
close(2) 
call wavedump(zpsiBO,ti) 

c Wavepacket ~and derivs) stored on disk for inspection and graphing, 
C Write the autocorrelation to disk 
C If this is a restarted job append autocorrelation to auto.dat 
c 
C otherwise just write the autocorrelation directly 

if (irestart .eq. 0) then 
open(4,file='auto.dat') 
tfs=tinit*2.1199e-2 
writ~(4,956) tinit,tfs,real(zovlp(l)),dimag(zovlp(l)), 

# abs (zovlp (1)) 
956 format (fl0.4,lx,fl0.6,1x,fl8.15,1x,fl8.15,1x,fl8.15) 

# 
8888 

else 

do 8888 i=l,novlp-1 
ti=i*delt*novsav+tinit 
tfs=ti*2.4199e-2 
write(4,956)ti,tfs,real(zovlp(i+l)),dimag(zovlp(i+l)), 

continue 
close(4) 

abs(zovlp(i+l)) 

C Tidy up files if did a restart: 
C need to append autocorrelation to auto.dat file 
C read in old auto.dat file 

open (4,file='auto.dat') 

C ***** SUN VERSION DOES NOT LIKE THIS WAY OF APPENDING DATA 
C USE FILEOPT=EOF INSTEAD, then close file and reopen for a read .. 
C find end-of-file indicator in previously stored sequential file auto.dat 

do 989 iloop=l,l6777215 
read(4,*,end=987) 

989 continue 
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c move back before end-of-file indicator and record total no. of records on file 
987 . nsavpts=iloop-1 

backspace(4) 

C Start appending autocorrelation from this restarted run 
C It only makes sense to append runs that have same time increments of 
C autocorrelation saved (ie same novsav and same delt etc.) 
C The program does not check for this! 

do 8788 i=l,novlp-1 
ti=i*delt*novsav+tinit 
tfs=ti*2.4199e-2 
write(4,956)ti,tfs,real(zovlp(i+l)),dimag(zovlp(i+111, 

# abs(zovlp(i+1)) 
8788 continue 
C Now read back the whole file in zovlp array, so I can then take full FFT 
C If nsavpts+novlp-1 > nFFT/2 + 1 then have to read in every other point 

rewind(4) 
nskip=int(2*(nsavpts+novlp-3)/nFFT)+1 
nend = int((nsavpts+novlp-2)/nskip)+1 
do 345 i=1,nend 
read(4,*)ti,tfs,tmpr,tmpi,tjunk 
zovlp(i)=cmplx(tmpr,tmpi) 
if ((nskip.ne.1) .or. (i.eq.nend)) then 

o do 346 j=1,nskip-1 
read(4,*)ti,tfs,tmpr,tmpi,tjunk 

346 continue 
endif 

345 continue 
novsav=novsav*nskip 

C Correct gamm value so I make use of improved resolution due to longer run 

[ ' 
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! l 

C new maximum time is tmax 
tmax=ti 

ti read in last line of auto.dat file 

C Close up appended file 
close(4) 

end if 

C calculate absorption spectrum now that we have complete autocorrelation 
C function (ie. from t=OJ in memory 
C if using default value of gamma (0.0) then set to optimal value 
C This value is somewhat conservative (to eliminate ringing on baseline) 
C Higher resolution can be pulled out of a given run by reducing gamma 

c 
c 
c 

c 
c 

if (gamm .eq.O.O) gamm=5/tmax/tmax 
call savabs(zovlp,nFFT,gamm,omega,Eprsq,jFT) 

if (igraph.eq.1) then 
if (iwdrw .eq.O) call iniplt2(arg) 
call absdrw(omega,Eprsq,jFT) 

end if 
if (igraph.eq.1) call pltfin 

stop 
end 

All. Done 

c ************************* 
subroutine const(nFFT) 

c ************************* 
C ***read the needed data and also define some useful constants. 

'c 

implicit real*8 (A-H,O-Y) 
implicit complex*l6 (z) 
include "param.inc" 
common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/const1/ xmas,ymas,redmas, hb 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/const6/gamm 
common/const7/ Espmin,domega,novsav,npktsav 
common/mass/AMl,AM2,AM3,AMab,AMcxab,AJAcob 
common/flags/isavpotA,isavpotB,isavde,ireadwav,irestart,iabs 
common/absparam/xabs,yabs,cxabs,cyabs 
common/absvec/fabsx(n1pts),fabsy(n2pts) 

C set conversion factors 
harev = 27.211608 
evwn = 8065.479 
aO = 0.52917706 
amu = 1822.882 
emu= 9.109534e-31 
harwn = harev*evwn 
amass = 1.66056e-27 
atu=0.024199 

C set constO 
zero=cmplx(O.O,O.O) 
zeye=cmplx(0.0,1.0) 
pi= acos(-1.0) 
twopi= 2*pi 
sqrtpi= sqrt(pi) 
pisq=pi*pi 
c=2.99792458el0 

c 

363 

C Take instructions to save potentials wavepackets and derivatives from input 
C deck. Also see whether to read initial wavepacket from wave.dump and whether 
C job is a restart. These are stored as flags. 

read(l,*)isavpotA,isavpotB,isavde,ireadwav,irestart 



C set const1 (expect masses in amu., in order A + BC -> AB + C EXOthermic 
C convert to atomic units 

read(1,*)AM1,AM2,AM3 
AM1=AM1*amu 
AM2=AM2*amu 
AM3=AM3*amu 

C Calculate total mass, and two reaction reduced masses 
AMtot=AM1+AM2+AM3 
AMcxab=sqrt(AM3*(AM2+AM1)/AMtot) 
AMab=(AM1*AM2)/(AM1+AM2) 

C Calculate Jacobian Q1,Q3 --> x,y 
if (AM1 .eq. AM3) then 
AJAcob=2.0/(AMcxab*sqrt(AMab)) 

else 
AJAcob=1.0/(AMcxab*sqrt(AMab)) 

endif 
C set hbar equal to one (atomic units) 

hb=1.0 
c 
C Define X coordinate to be approx R(AC) 
C and to run parralel to the line for dissociation into AB + C 
C Y coordinate is the asymmetric bound coordinate R(AB) 
c 
c 
c 
c 
c 
c 
c 
c 

For anion evaluate G matrix elements for coordinates Q1 and Q3: 
this stuff is specific to HLH type molecules and can be ignored 
if more general input is used. 
Q1 and Q3 need not necessarily be parallel t6 x 
Elements depend on symmetry of ion (and what we 
If using normal coordinates supplied explicitly 
xmas and ymas 

if (AM1 .eq. AM3) then 
C symmetric 

xmas=1.0/(1.0/AM1 + 1.0/AM3) 
ymas=1.0/(1.0/AM1 + 1.0/AM3 +4.0/AM2) 

else 
C asymmetric 

and y. 
use for Q1 and Q3) 
elsewhere code ignores 
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C assumed that anion resembles (AB)C- and that v3 vibration is essentially A-B 
xmas=AM3*(AM2+AM1)/AMtot 
ymas=AMab 

endif 

C To work with grid in mass weighted coordinates, mass in TD Schrodinger 
C equation is unity , 

redmas=1.0 

C set const3 (expect in a.u.) 
read(1,*) tmax,delt 
ntmax=tmax/delt 

C set const4 (converted to a.u.) 
C These are the range of x,y on the working (mass weighted) grid 
C in {(amu) ~ 0.5 * Angs} 

read(1,*) xmin,xmax,nXpts,ymin,ymax,nYpts 
xmin=xmin*sqrt(AMab)/aO 
xmax=xmax*sqrt(AMab)/aO 
ymin=ymin*sqrt(AMab)/aO 
ymax=ymax*sqrt(AMab)/aO 
dx=(xmax-xmin)/nXpts 
dy=(ymax-ymin)/nYpts 

C program allows ABSORBING BOUNDARIES (see Bisseling et al. JCP 83, 993 (1985)) 
C set absorbing grid parameters 

read(1,*)iabs 
if (iabs .eq. 0) ·goto 930 
if (iabs .eq~ 2 ) then 

C Use default absorbing parameters: 
write(6,*)'Using default ABSORBING BOUNDARIES 
xabs=xmax-10*dx 
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yabs=ymax-lO*dy 
C These are empirically derived best parameters Try as first guess! 

cxabs=(delt/1.3)*0.0005/dx/dx 
cyabs=(delt/1.3)*0.0005/dy/dy 

else if (iabs .eq. 1) thep 
write(6,*)'Using supplied ABSORBING BOUNDARIES 
read(l,*)xabs,yabs,cxabs,cyabs 
xabs=xabs*sqrt(AMab)/aO 
yabs=yabs*~qrt(AMab)/aO 
cxabs=cxabs/dx/dx 
cyabs=cyabs/dy/dy 

endif 
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C Calculate the absorbing vaues across the grid and store them (faster to store 
C than to recalculate every time) . 
C This calculates the absorbing boundary function 

do 433 ix=l,nxpts 
x=xmin+(ix-l)*dx 
if (x .le. xabs) then 

fabsx(ix)=l.OOOOOOOO 
else 

fabsx(ix)=exp(-cxabs*(x-xabs)*(x-xabs)) 
end if 

433 ' continue 
do 434 iy=l,nypts 
y=ymin+(iy-l)*dy 
if (y .le. yabs) then 

fabsy(iy)=l.OOOOOOOOO 
else 

fabsy(iy)=exp(-cyabs*(y-yabs)*(y-yabs)) 
end if 

434 continue 

C Read in and calculate both potentials (store in memory) 
930 call pot read () 

C set const6 
C dephasing constant gamma (in atu**-2) 

read (1,*) gamm 

C Default value of gamma (this is chosen to give optimal spectrum - best window 
C function - see Numerical Recipes FFT chapter for details) is set in main 
C routine if gamma is set to zero here (default) 
C N.B. gamma can also be used to simulate a constant lifetime depletion of 
C the wavefunction as a function of time (eg. fluorescence, curve crossing) 
c 
C set const7 
C Espmin is the threshold energy for photoelectron spectrum 
C (expected to be in eV and coverted to a.u.) 
C This just defines the spectral origin with refence to potential zero. 

read(l,*) Espmin 

c 
c 
c 
c 
c 
c 

Espmin=Espmin/harev 
if (Espmin .le. 0.0) then 
write(6,*)'This is not a valid threshold energy', 

@ ' for photoelectron spectrum' 
write(6,*)'Espmin must be> 0.0 or no P.E.S. !!' 
stop 

end if 

set up counting variables 

save autocorrelation function (overlap between t=O zpsi and 
t=novlp*novsav*delt zpsi) at intervals determined by novsav and 
Save the wavepacket in its entirety every npktsav point in time 

read(l,*)novsav,npktsav 

if ( (2*ntmax/novsav) .gt. nFFTl then 
write(6,*)'Too many overlap points to store- alter novsav' 
stop 



c 

end if 
return 
end 

c ********************************************** 
subroutine initB(ti,zpsiAO,zpsiBO,zpsiBl) 

c ********************************************** 
c 
c initialize the wavefunction arrays and then evolve this wavepacket 
c using second order runge-kutta. 
c 

implicit real*B (A-H,O-Y) 
implicit complex*l6 (Z) 
character arg*70 
include "param.inc" 
dimension zpsiAO(nlpts,l),zpsiBO(nlpts,l),zpsiBl(nlpts,l) 
dimension zpsiBI(nlpts,n2pts),zHpsiBI(nlpts,n2pts) 
dimension· zHpsiBO (nlpts, n2pts) 

common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi, c,twopi,sqrtpi,pisq 
common/constl/ xmas,ymas,redmas, hb 
common/const2xA/xOA,xomegA,vOA,xwexeA,xdea,xalphaA 
common/const2xB/xOB,xomegB,xwexeB,xdeB,xalphaB,vOB 
common/const2yA/yOA,yomegA,fcupA,ywexeA,ydeA,yalphaA 
common/const2yB/yOB,yomegB,ywexeb,ydeB,yalphaB,fcupB 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/flags/isavpotA,isavpotB,isavde,ireadwav,irestart,iabs 
common/mass/AMl,AM2,AM3,AMab,AMcxab,AJAcob 
common/analytic/ianal 
common/anionqno/ivibx,iviby,irotcoor 
common/wdraw/iwdrw,arg 

C Calculate anion and neutral wavefunctions on discrete grid. 

C Check to see whether anion wavefunction is to be calculated 
C analytically or numerically using the potential surface xypot(ix,iy,l) 
C or whether to read in the initial wavefunction on the current mass-scaled 
C grid 

ti=O.O 
rtJacobian=sqrt(AJAcob) 
if ((irestart.eq.l) .and. (ireadwav.eq.l)) then 

write(6,*)'cannot read anion wavefunction as well as', 
'starting neutral wavepacket from disk' 

write(6,*)'Exiting .... ' 
end if 

if (ireadwav.ne.l) then 

if (ianal.eq.l) then 
C Analytic solution available 

if (ywexeA .eq. 0.0) then 
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C Harmonic Oscillator separable in mass scaled coordinates after transformation 
C of coordinates 

call initWF(zpsiAO,tstart) 
else 

C Potential separable in mass scaled coordinates: 
C Morse Oscillator along y and harmori1c along x 

call morsewf(zpsiAO,tstart) 
end if 

C Normalise 
do 47 iy=l,nypts 

do 48 ix=l,nxpts 
zpsiAO(ix,iy)=rtJacobian*zpsiAO(ix,iy) 

48 continue 
47 continue 

r' 
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else 
C No analytic solution for wavefunction available, calculate numerically. 

if ((ivibx.ne.O) .or.(iviby.ne.O)) then 
write(6,*)'A Numerical Solution for the anion wavefn. is' 

,'necessary for the potential you have input' 
write(6,*)'This program will only calculate the lowest' 

,' eigenfunction numerically- use another algorithm!' 
stop 

end if 
write(6,*) 
write(6,*)'This anion potential requires numerical'. 

,' evaluation of the initial wavefunction' 
write(6,*) 
write(6,*)'******* Doing relaxation algorithm******' 
write(2,*)'******* Doing relaxation algorithm ******' 
call relax(zpsiAO,delt,ntmax) 

end if 
else 

C Do a readwave: get anion wavefunction from disk (ie as solved for by 
C another program.) The wavefunction must be on same grid as used here. 
c 

write(6,*)'* Doing readwave for anion ...... ' 
write(2,*)'* Doing readwave for anion ...... ' 
call readwave(zpsiAO,ti,irestart) 

end if 

C Now have anion wavefunction calculated"check norm, 
C and energy if we know anion potential (ie. not a readwave) 

iderflag=O 
cal.l chk ( 1, 0. 0, zpsiAO, rsnorm, Have) 
if ((rsnorm.lt.0.99) .or. (rsnorm.gt.1.01)) then 
write(6,*)'Anion wavefunction being renormalised' 

, ·~originally ',rsnorm 
write(~,*)'Anion wavefunction being renormalised' 

, ', originally ',rsnorm 
do 705 iy=1,nypts 

do 704 ix=1,nxpts 
zpsiAO(ix,iy)=zpsiAO(ix,iy)/sqrt(rsnorm) 

704 continue 
705 continue 

else 
write(6,*)'Anion norm= ',rsnorm 
write(2,*)'Anion norm= ',rsnorm 

end if 
write(6,*)'Anion <H> = ',Have*harwn/rsnorm,' cm-1' 
write(2,*)'Anion <H> = ',Have*harwn/rsnorm,' cm-1' 
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C If the readwave flag is set to -1 in fact SAVE the anion wavepacket to file 
C 'wave.anion' 

if (ireadwav.eq.-1)then 
call wavedump(zpsiA0,-1.0) 
write(6,*)'**Anion wavefunction saved to wave.anion**' 

end if 
C Plot Anion wavepacket on anion potential 

if (iwdrw.eq.1) then 
call iniplt(arg,1) 
call wavdrw(zpsiAO,ti,rsnorm,Have) 

end if 

C **********************NEUTRAL WAVEFUNCTION***************************** 
C Decide where neutral initial wavepacket for propagation should come from; 
C if it is the anion wavefunction just copy it, if instead we are 
C doing a restart then do a readwave for zpsiBO 

if (irestart.eq.O) then 
c Copy the anion WF to the t=O wavepacket 

call Vcopy(nxpts,nypts,zpsiAO,zpsiBO) 
ti=O.O 



else 
C Do a readwave for the neutral wavepacket, and get the start time for 
C the propagation 

call readwave(zpsiBO,ti,irestart) 
write(6,*)'* Start time= ',ti,' a.u. ';ti*2,4177e-2, 

' fs' 
end if 

C The neutral wavefunction is correctly normalised and ready for propagation 

c Evolve neutral wavefunction for time delt/2 on the surface 
call Hpsi(2,ti,zpsiBO,zHpsiBO) 
do 22 iy=l,nYpts 

do 20 ix=l, nXpts 
zpsiBI(ix,iy) = zpsiBO(ix,iy) -

zeye *(delt/2.00)*zHpsiBO(ix,iy)/hb 
20 continue 
22 continue 

c Second order Runge Kutta using the intermediate derivative. 
call Hpsi(2,ti,zpsiBI,zHpsiBI) 

30 
32 
c 

c 

do 32 iy=l,nYpts 
do 30 ix = 1, nXpts 

zpsiBl(ix,iy)=zpsiBO(ix,iy) -
& zeye*delt*zHpsiBI(ix,iy)/hb 

continue 
continue 

return 
end 

c ********************************************* 
subroutine initWF(zpsiA,tinit) 

c ********************************************* 
c 
c initialize wavefunction on lower surface A 
c 

c 

implicit real*S (A-H,O-Y) 
implicit complex*l6 (z) 
include "param.inc" 

common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/constl/ xmas,ymas,redmas, hb 
common/const2xA/xOA,xomegA,vOA,xwexeA,xdea,xalphaA 
common/const2xB/xOB,xomegB,xwexeB,xdeB,xalphaB,vOB 
common/const2yA/yOA,yomegA,fcupA,ywexeA,ydeA,yalphaA 
common/const2yB/yOB,yomegB,ywexeb,ydeB,yalphaB,fcupB 
common/anionqno/ivibx,iviby,irotcoor 
common/const4/xmin,xmax,nXpts;dx,ymin,ymax,nYpts,dy,npacket 
common/mass/AMl,AM2,AM3,AMab,AMcxab,AJAcob 
common/transf/T(2,2) 
dimension zpsiA(nlpts,l) 

C Initial wavefn on surface is ground harmonic oscillator, approximation for 
C non harmonic potentials ..... Note that the wavefunctions are determined 
C on the mass weighted coordinate grids and so a conversion is required 
C from the normal modes of the anion to the mass weighted coordinates 
C define statement functions 

\ 

AmstoRab(xx,yy)= yy/sqrt(AMab) 
AmstoRbc(xx,yy>=-yy*sqrt(AMab)/AM2 + xx/AMcxab 
AmstoQl(xx,yy)=xx/AMcxab 
AmstoQ3(xx,yy)=AmstoRab(xx,yy) 
AmstoSl(xx,yy)=AmstoRab(xx,yy)+AmstoRbc(xx,yy) 
AmstoS3(xx,yy)=AmstoRab(xx,yy)-AmstoRbc(xx,yy> 
AmstoNCl(xx,yy,rabeq,rbceq)=T(l,l)*(AmstoRab(xx,yy)-rabeq) 

~ +T(1,2)*(AmstoRbc(xx,yy)-rbceq) · 
AmstoNC3(xx,yy,rabeq,rbceq)=T(2,1)*(AmstoRab(xx,yy)-rabeq) 
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+T(2,2)*(AmstoRbc(xx,yy)-rbceq) 

i~ (xomegA .eq. 0.0) then 
write(6,*)' No initial wavepacket as no xomega available' 
stop 

endif 
if (yomegA .eq. 0.0) then 
write(6,*)' No initial wavepacket as no yomega available' 
stop 

endif 
if (ivibx.gt.l) then 
write(6,*)' Illegal SHO x vibrational quantum number' 
stop 

endif 
if (iviby.gt.ll then 
write(6,*)' Illegal SHO y vibrational quantum number' 
stop 

end if 

c perform conversion of coordinates : ***user supplied normal coordinates 
if (irotcoor .eq. 1) then 
write(6,*)'Rotated Wavepacket' 
do 13 iy=l,nYpts 

yi=ymin + (iy-l)*dy 
do 14 ix=l,nXpts 

xi=xmin + (ix-1) *.dx 
x=AmstoNCl(xi,yi,xOA,yOA) 
y=AmstoNC3(xi,yi,xOA,yOA) 
temp=gauss(x,O.O,xomegA,amu,ivibx) 
zpsiA(ix,iy)=temp*gauss(y,O.O,yomegA,amu,iviby) 

14 continue 
13 continue 

else 

C perform conversion of coordinates ***symmetric 
if (AMl .eq. AM3l then 

do 23 iy=l,nYpts 
yi=ymin + (iy-l)*dy 
do 24 ix=l,nXpts 

xi=xmin + (ix-l)*dx 
x=AmstoSl (xi,yi) 
y=AmstoS3(xi,yi) 
temp=gauss(x,xOA,xomegA,xmas,ivibx) 
zpsiA(ix,iy)=temp*gauss(y,yOA,yomegA,ymas,iviby) 

24 continue 
23 continue 

C perform 

240 
230 

else 

conversion of coordinates ****Asymmetric 
do 230 iy=l,nYpts 

yi=ymin + (iy-l)*dy 
do 240 ix=l,nXpts 
xi=~min + (ix-l)*dx 
x=AmstoQl (xi, yi) 
y=AmstoQ3 (xi, yi) 
temp=gauss(x,xOA,xomegA,xmas,ivibx) 
zpsiA(ix,iy)=temp*gauss(y,yOA,yomegA,ymas,iviby) 

continue 
continue 

endif 
endif 
tinit=O.O 
return 
end 

c ********************************************* 
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function gauss(oi,oOA,omega,omas,ivibo) 
c ********************************************* 

implicit real*S (A-H,O-Y) 
implicit complex*l6 (z) 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/constl/ xmas,ymas,redmas, hb 

c gaussl includes the normalisation factor of 1/sqrt(2) 

c 

if (ivibo.eq.l) then 
gaussl=sqrt(2*omega*omas/hb)*(oi-o0A) 

else 
gaussl=l.O 

end if 
Anorm=sqrt(sqrt(omas*omega/(pi*hb))) 
arg=-(oi-o0A)*(oi-o0A)*omas*omega/(2.0*hb) 
gauss= exp(arg)*Anorm*gaussl 
return· 
end 

c ************************************************************ 
subroutine psi2(ipot,ti,zpsiAO,zpsiAl,zpsiA2) 

c ************************************************************ 
c 
c evaluate the new wavefunction zpsi2 from the old ones zpsiO and zpsi2 
c 

c 

implicit real*8 (A-H,O-Y) 
implicit complex*l6 (z) 
include "param.iric" 
dimension zpsiAO(n1pts,1),zpsiA1(n1pts,1) 
dimension zpsiA2(n1pts,l),zHpsiA1(n1pts,n2pts) 

common/constO/ zero,zeye, pi, c,twopi,sqrtpi,pisq 
common/constl/ xmas,ymas,redmas, hb 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts;dx,ymin,ymax,nYpts,dy,npacket 

c compute H*zpsi1(1,11: 
call Hpsi(ipot,ti,zpsiA1,zHpsiA1) 
do 10 iy = l,nYpts 

do 20 ix=l,nXpts 
zpsiA2(ix,iy)=zpsiAO(i~,iy) - 2.0*zeye*delt*zHpsiAl(ix,iyl/hb 

20 continue 
10 continue 
c 

return 
end 

c ******~***************************************************** 
subroutine psi2ab(ipot,ti,zpsiAO,zpsiA1,zpsiA2) 

c ************************************************************ 
c 
c evaluate the new wavefunction zpsi2 from the old ones zpsiO and zpsi2 
c 

c 

implicit real*8 (A-H,O-Y) 
implicit complex*l6 (z) 
include "param.inc" 
dimension zpsiAO(nlpts,l),zpsiAl(n1pts,l) 
dimension zpsiA2(n1pts,l),zHpsiAl(nlpts,n2pts) 

common/constO/ zero,zeye, pi, c,twopi,sqrtpi,pisq 
common/constl/ xmas,ymas,redmas, hb 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/absvec/fabsx(n1pts),fabsy(n2pts) 

c compute H*zpsi1(1,1): 
call Hpsi(ipot,ti,zpsiA1,zHpsiAll 
do 10 iy = 1, nYpts 

do 20 ix=l, nXpts 
zpsiA2(ix,iy)=zpsiAO(ix,iy) - 2.0*zeye*delt*zHpsiAl(ix,iy)/hb 
zpsiA2(ix,iy)=zpsiA2(ix,iy)*fabsx(ix)*fabsy(iy) 
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c 
c 
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continue 
continue 

return 
end 

*********************************************** 
subroutine Hpsi(ipot,ti,zpsiA,zHpsiA) 

*********************************************** 

c compute H *psi= { KE + PE } * psi(x) 
c 

implicit real*B (A-H,O-Y) 
implicit complex*l6 (z) 
include "param.inc" 
dimension zpsiA(nlpts,1), zHpsiA(n1pts,l> 
dimension zpsiPE(nlpts,n2pts),zpsiKE(nlpts,n2pts) 

common/constO/ zero,zeye, pi, c,twopi,sqrtpi,pisq 
common/const1/ xmas,ymas,redmas,hb 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 

call KEmat(zpsiA,zpsiKE,ti,O) 
call PEmat(ipot,zpsiA,zpsiPE) 

do 10 iy = l,nypts 
do 20 ix=1,nXpts 

zHpsiA(ix,iy)=zpsiPE(ix,iy) + zpsiKE(ix,iy) 
20 continue 
10 continue 

C This section necessary if you wish to save T*psi, V*psi and H*psi in 
C the wavepkt.out file for viewing. Note ~f you do this you will need 
C to change the viewing program also ..... · 
c if (iderflag .eq. 1) then 
c npacket=npacket+l 
c call pktsav(zpsike,ti,npacket,-1) 
c npacket=npacket+l 
c call pktsav(zpsipe,ti,npacket,-2) 
c npacket=npacket+1 
c call pktsav(zHpsiA,ti,npacket,-3) 
c endif 

c 

return 
end 

c **************************"************************** 
subroutine KEmat(zpsiXY,zpsiKXKY,t,initze) 

c **************************************************** 
c 
c computes (-hb**2)/(2*redmas))*(del)**2[zpsiXY) = zpsiKXKY 
c note zpsixy(l,l)<-> zpsi(xO,yO), zpsi(nXpts,nYpts) <~> zpsix(xf,yf), etc. 
c uses forward and backward two dimensional FFT to evaluate 2nd derivative 
c 

implicit real*B (A-H,O-Y) 
implicit complex*l6 (z) 
include "param.inc" 

common/constO/ zero,zeye, pi,c,twopi,sqrtpi,pisq 
common/constl/ xmas,ymas,redmas, hb 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
dimension zpsiXY(nxpts,nYpts),zpsiKXKY(nxpts,nYpts),nparms(2) 

C These extra initial statements are required for NAG version 
common/fftworkltrigm(2*nlpts),trign(2*n2pts) 
dimension x(nlpts,n2pts),y(nlpts,n2pts),work(2*nlpts*n2pts) 
external c06fuf,c06gcf 

C The NAG version of KEmat is the default. This routine is much more 

371 



372 

C efficient, particularly on a vector machine, and can give significant savings 
C in speed. The routine also allows non-powers of 2 as sizes for spatial grid. 
C The c06fuf routine in the NAG 13 library requires the complex matrix 
C to be set up in two matrices, the real and imaginary parts, x and y. 
C Hence semi-redundancy of the array zpsiKXKY in this modified routine. 

C However if this routine is not available, then the twodfft routine supplied 
C can serve as a replacement. To implement this version all the NAG using 
C parts of this routine should be commented out, and the lower part should be 
C reinstated. 

C S. E. Bradforth/ Cray-NAG version/ September 1989 

c ONLY FOR NAG VERSION 
C check for the initializing call to set up TRIG workspaces .• 

if (initze .eq. 1) then 
ifail=O 
do 178 iy=l,nypts 

do 179 ix=l,nxpts 
x(ix,iy)=real(zpsiXY(ix,iy)) 
y(ix,iy)=dimag(zpsiXY(ix,iy)) 

179 continue 
178 continue 

c 

write(6,*)'Initializing 2DFFT •... ' 
call c06fuf(nxpts,nypts,x,y,'Initial' ,trigm, 

& trign,work,ifail) 
if (ifail .ne. 0) then 

write(6,*) 'IFAIL <> 0 on initialization of 2D FFT' 
stop 

end if 
return 

end if 

c backward fourier transform zpsiXY(x,y) => zpsiKXKY(kx,ky) 
c 

ifail=O 
do 1788 iy=l,nypts 

do 1789 ix=l,nxpts 
x(ix,iy)=real(zpsiXY(ix,iy)) 
y(ix,iy)=dimag(zpsiXY(ix,iy)) 

1789 continue 
1788 continue 

c 

call c06fuf (nxpts, nypts, x, y, ··subsequent', trigm, 
& trign,work,ifail) 

if (ifail .ne. 0) then 
write(6,*)'IFAIL <> 0 in KEmat(l) -investigate 
stop 

end if 
Conly transfer the real, imaginary psi(k) matrices to complex matrix 
C if the user needs to see the psi(k) - otherwise skip this stage until after 
C reverse transform to x space .... 

if (iderflag .eq. 1) then 
npacket=npacket+l 
do 189 iy=l,nypts 

do 188 ix=l,nxpts 
zpsiKXKY(ix,iy)=cmplx(x(ix,iy),y(ix,iy)) 

188 continue 
189 continue 

c 

call pktsav(zpsikxky,t,npacket,-4) 
endif 

c compute the second derivative in the momentum domain. 
LX=nXpts/2 
LY=nYpts/2 
xL2=(xmax-xmin)*(xmax-xmin) 
yL2=(ymax-ymin)*(ymax-ymin) 
nptsq=nXpts*nYpts 
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c 
c 
c 

do 20 ky=O,nYpts-1 
if (ky .le .LY) then 

do 22 kx=O,nXpts-1 
if (kx .le. LX) then 
x(kx+1,ky+1)= -(kx*kx/xL2+ky•ky/yL2)* 

* x(kx+1,ky+1) 
y(kx+1,ky+1)= -(kx*kx/xL2+ky*ky/yL2)* 

* y(kx+1,ky+1~ 
else 
x(kx+1,ky+l)=-((nXpts-kx)*(nXpts-kx)/xL2 + 

ky*ky/yL2)*x(kx+l,ky+l) 
y(kx+l,ky+l)=-((nXpts-kx)*(nXpts-kx)/xL2 + 

ky*ky/yL2)*y(kx+l,ky+l) 
endif 
continue 

else 
do 23 kx=O,nXpts~l 
if (kx .le. LX) then 
x(kx+1,ky+l)=-(kx*kx/xL2 + (nYpts-ky)* 

(nYpts-ky)/yL2)*x(kx+l,ky+l) 
y(kx+1,ky+l)=-(kx*kx/xL2 + (nYpts-ky)* 

(nYpts-ky)/yL2)*y(kx+1,ky+l) 
else 

x(kx+l,ky+l)=-((nXpts-kx)*(nXpts-kx)/xL2 + 
(nYpts-ky)*(nYpts-ky)/yL2)*x(kx+l,ky+l) 

y(kx+l,ky+l)=-((nXpts-kx)*(nXpts-kx)/xL2 + 
(nYpts-ky)*(nYpts-ky)/yL2)*y(kx+l,ky+l) 

endif 
continue 

endif 
continue 

forward transform : zpsiKXKY(kx,ky) => zpsixy(x,y) 
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c 
c 
c 

using NAG routine, zpsiKXKY is represented by x (real part) andy (imag part); 
to do forward transform perform complex conjugate operation {c06gcf} before 
and after the call to c06fuf 

c 

call c06gcf(y,nptsq,ifail) 
call c06fuf(nxpts,nypts,x,y,'Subsequent',trigm, 

S trign, work, ifail) 
if (ifail .ne. 0) then 

write(6,*)'IFAIL <> 0 in KEmat(2) -investigate 
stop 

end if 
call c06gcf(y,nptsq,ifail) 

c scale results & return them to complex array zpsiKXKY 
cl= -O.S*hb*hb/redmas 
c2= 4*pisq 
cprod = cl*c2 
do 31 iy=1,nYpts 

do 30 ix=1,nXpts 
zpsiKXKY(ix,iy)= cmplx(cprod*x(ix,iy),cprod*y(ix,iy)) 

30 continue 
31 continue 

c 
C **** twodfft version (SLOWEST but does not require library) 
c Starts here .... 
c 
c Perform backward fourier transform zpsiXY(x,y) => zpsiKXKY(kx~ky) 
c 
c 
c 
c 
c 
cl2 

isign=-1 
do 10 iy=1, nYpts 

do 12 ix=1, nXpts 
zpsiKXKY(ix,iy)=zpsiXY(ix,iy) 

continue 



c10 
c 
c 
c 
c 
c 
c 
c 
c 

continue 
nparms(1)=nxpts 
nparms(2}=nypts 
call twodfft(zpsiKXKY,nparms,2,isign) 
if (iderflag .eq. 1) then 

npacket=npacket+1 
call pktsav(zpsikxky,t,npacket,-4) 

endif ' 

c compute the second derivative in the momentum domain. 
c LX=nXpts/2 
c LY=nYpts/2 
c xL2=(xmax-xmin}*(xmax-xmin) 
c yL2=(ymax-ymin)*(ymax-ymin) 
c nptsq=nXpts*nYpts 
c 
c 
c 
c 
c 
c 
c 

do 20 ky=O,nYpts-1 
if (ky .le .LY) then 

do 22 kx=O,nXpts-1 
if (kx .le. LX) then 

zpsiKXKY(kx+1,ky+1)= -(kx*kx/xL2+ky*ky/yL2)* 
* zpsiKXKY(kx+1,ky+1) 

c else 
c zpsiKXKY(kx+1,ky+1)=-((nXpts-kx}*(nXpts-kx)/xL2 + 
c , ky*ky/yL2}*zpsiKXKY(kx+1,ky+1) 
c endif 
c22 continue 
c else 
c do 23 kx=O,nXpts-1 
c if (kx .le. LX) then 
c zpsiKXKY(kx+1,ky+1)=-(kx*kx/xL2 + (nYpts-ky)* 
c (nYpts-kyl/yL21*zpsiKXKY(kx+1,ky+1) 
c 
c 
c 
c 
c23 
c 
c20 

c 
c 

else 
zpsiKXKY(kx+1,ky+1)=-( (nXpts-kxl*(nXpts-kx)/xL2 + 

(nYpts-ky}*(nYpts-ky)/yL2)*zpsiKXKY(kx+1,ky+1) 
end if 
continue 

end if 
continue 

c forward transform_: zpsiKXKY(kx,ky) => zpsixy(x,y) 
c isign=1 
c call twodfft(zpsiKXKY,nparms,2,isign) 
c 
c scale results 
c 
c 
c 
c 
c 
c 
c30 
c31 
c 

c 

c1= -O.S*hb*hb/redmas 
c2= 4*pisq/nptsq 
cprod = c1*c2 
do 31 iy=l,nYpts 

do 30 ix=l,nXpts 
zpsiKXKY(ix,iy)= cprod*zpsiKXKY(ix,iy) 

continue 
continue 

return 
end 

c ***********"******************************* 
subroutine PEmat(ipot,zpsiXY,zpsiPI 

c ****************************************** 
c 
c calculate xypot(x,y)*zpsiXY=zpsiP 
c note zpsiXY(l,l) <-> zpsiXY(xO,yO), zpsiXY(nxpts,nypts) <-> zpsiXY(xf,yf) 
c 

implicit real*S (A-H,O-Y) 
implicit complex*16 (z) 

.. ,·· .. 
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include "param.inc" 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/pot/xypot(nlpts,n2pts,2) 

10 
20 

dimension zpsiXY(nxpts,nypts),zpsiP(nxpts,nypts) 

do 20 iy=1,nYpts 
do 10 ix=1,nXpts 

zpsiP(ix,iyl=xypot(ix,iy,ipot)*zpsiXY(ix,iy) 
continue 

continue 
return 
end 

c * * * *'* * * * * * * *:* * * * * * * * * * * * * * * * * * * * * * * * * * * 
subroutine Vcopy(NX,NY,zA,zB) 

c *************************************** 
c 
c copy a matrix of size NX by NY from zA to zB 
c 

c 

implicit complex*16(z) 
dimension zA(NX,NY),zB(NX,NY) 

do 20 iy=1,NY 
do 10 ix=1,NX 

zB(ix,iy)= zA(ix,iy) 
10 continue 
20 continue 
c 

c 

return 
end 

c *************************************** 
subrout.ine FFT (x, n, isign) 

c *************************************** 
c 
c *************************************************************** 
c * The fft computes the discrete 1d fast Fourier transform of a* 
c * sequence of n terms. * 
c * The forward FFT computes * 
c * y(j)= sum (from k=O to n-1) x(k)*exp(2*pi*i*j*k/n) * 
c * the backward FFT computes * 
c * y(j)= sum (from k=O to n-1) x(k)*exp(-2*pi*i*j*k/n) * 
c * 
c * x is a complex array of length n. 
c * n is a power of 2. n<=16384 
c * isign is the direction of the transform. 
c * the fft is forward , otherwise backward. 
c * * 

* 
* 
* 

If isign >= 0 then* 
* 

c * Ref. Cooley, Lewis, Welch. The FFT and its applications * 
c * IEEE Trans. on Education, vol. E-12 #1; p. 29 * 
c *************************************************************** 
c 

c 

implicit real*S (A-H,O-Y) 
complex*16 s,v,w,x(n),cstore(16384) 
data ntbl/0/ 

c The roots of unity exp(pi*i*k/j) for j=1,2,4, .. ,n/2 and k=0,1,2, .. ,j-1 
c are computed once and stored in a table. 
c This table is used in subsequent calls of fft with parameter n<=ntbl 
c 

10 

20 

if (n .gt. ntbl) then 
ntbl=n 
pi=3.14159265358979 
j=1 
icnt=O 
s=pi*(0,1)/j 
do 20 k=O,j-1 

icnt=icnt+1 
cstore(icnt)=exp(s*k) 

j=j+j 
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c 

if (j .lt. n) goto 10 
end if 

c ******Bit reversal********** 
c 
c the x(j) are permuted in such a way that each new place number j is 
c the bit reverse of the original placenumber. 
c 

25 

j=1 
do 30 

if 
i=1,n 

(i .le. j) then 
v=x (j) 
x (j) =x (i) 
x(i)=v 

end if 
m=n/2 
continue 
if (j .gt. m) then 

j=j-m 
m=m/2 
if (m .ge. 1) go to 25 

else 
j=j+m 

endif 
30 continue 
c 
c ************Matrix multiplication*************** 
c 
c the roots of unity and the x(j) are multiplied 
c 

40 

so 

c 

c 

j=1 
icnt=O 
jj=j+j 
do SO k=1,j 

icnt=icnt+1 
w=cstore(icnt) 
if (isign .lt. 0) w=conjg(w) 
do 50 i=k,n,jj 

j=jj 

v=w*x (i+j) 
x(i+j)=x(i)-v 
x(i)=x(i)+v 

if (j .lt. n) goto 40 

return 
end 

c ************************************************ 
subroutine chk(ipot,ti,zpsiA,rnorm,Hav) 

c ************************************************· 
c 
c Check that norm and energy are conserved (this is a property of 
C Second Order Differencing scheme) . 

c 

implicit real*8 (A-H,O-Y) 
implicit complex*16 (z) 
include "param.inc" 
dimension zpsiA(nlpts,l) 

call chknrm(zpsiA,rnorm) 
call chken(ipot,ti,zpsiA,Hav) 

return 
end 

c ************************************************** 
subroutine chknrm(zpsi,rnorm) 

c ************************************************** 
c 
c Check that the norm is conserved during numerical integration of TDSE. 

implicit complex*16 (z) 
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implicit real*S (A-H,O-Y) 
include "param.inc" 
dimension zpsi(nlpts,1),psisq(n1pts,n2pts) 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 

do 20 iy=1,nYpts 
do 10 ix=l,nXpts 

psisq(ix,iy)=real(conjg(zpsi(ix,iy))*zpsi(ix,iy)) 
10 continue 
20 continue 
c 

c 

call twodint(nXpts,nYpts,psisq,dx,dy,rnorm) 
return 
end 

c ************************************************* 
subroutine chken(ipot,ti,zpsiA,Hav) 

c ************************************************* 
c 
c check that energy is conserved during numerical intergration of the TDSE 

implicit real*S (A-H,O-Y) 
implicit complex*16 (z) 
include "param.inc" 
dimension zpsiA(n1pts,l),zHpsiA(nlpts,n2pts) 
dimension psiHpsi(nlpts,n2pts) 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 

call Hpsi(ipot,ti,zpsiA,zHpsiA) 
do 20 iy=l,nYpts 

do 10 ix=1,nXpts 
psiHpsi(ix,iy)=real(conjg(zpsiA(ix,iy))*zHpsiA(ix,iy)) 

10 continue 
20 continue 
c 

call twodint(nXpts,nYpts,psiHpsi,dx,dy,Hav) 
return 
end 

c *************************************************** 
subroutine simpint(nx,fl,dx,fint) 

c *************************************************** 
c 
c 
c Simpson Rule integrator. This subprogram calls the trapezoidal 
c integrator twice. Because of ~ancellation of errors the result is 
c accurate to the the order of (1/nx**4) 
c 
c Rule valid only when nx odd. Hence for even nx the last piece of area 
c under fl(nx-1) and f2(nx) is added by trapezoidal rule. 
c 
c Reference 'Numerical recipes' Press, Flannery, Teukolsky, Vetterling 
c Cambridge University Press, Cambridge (1986) 
c 

c 

implicit real*S (A-H,O-Y) 
include "param.inc" 
dimension f1(nx),f2(nlpts) 

c define: 

c 

c 

dx1=dx 
dx2=2.0*dx, 
ixn=O 

if (nx .gt. n1pts) then 
write(6,*) ' simpint : nx .gt. n1pts 
end if 

if ((mod(nx,2) .eq. 0)) then 
nx1=nx-1 
nx2=0.50*nx1+1 

n1pts 
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c 

fint=O.SO*dx*(f1(nx-1) + f1(nx)) 
else 

nx1=nx 
nx2=0.50*nx1+1 
fint=O.O 

end if 

c copy the odd elements of farray into f2 
do 10 ix=1,nx1,2 
ixn=ixn+1 

10 f2(ixnl=fl(ixl 
c 
c Now integrate f1, f2 in two pieces. 
c 

c 

c 
c 

call trapint(nx1,f1,dx1,fint1) 
call trapint(nx2,f2,dx2,fint2) 
fint=fint+(4.0*fint1 - fint2)/3.0 

return 
end 

c *************************************************** 
subroutine trapint(nfpts,f,dx,fint) 

c *************************************************** 
c 

implicit real*8 (A-H,O-Y) 
dimension f(nfpts) 

c trapeziodal rule integrator for f(1)-f(nfpts) <-> f(xO)-f(xf) 
fint=O. 

c 
do 100 i=2,nfpts-1 

fint=fint+f(i) 
100 continue 
c 

c 

c 

return 
end 

fint=fint+(f(1)+f(nfpts))/2.0 
fint=fint*dx 

c ************************************************** 
subroutine ovlp(zpsi1,zpsi2,zovp) 

c ************************************************** 
c 
c finding the overlap integral 
c 

c 

10 
20 
c 

c 

implicit real*B (A-H,O-Y) 
implicit complex*16 (z) 
include "param.inc" 
dimension zpsil(n1pts,1),zpsi2(n1pts,1) 
dimension zprod(n1pts,n2pts) 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 

do 20 iy=1,nYpts 
do 10 ix=1,nXpts 
zprod(ix,iy)=conjg(zpsi1(ix,iyll*zpii2(ix,iy) 

continue 
continue 

call ztwodint(nXpts,nYpts,zprod,dx,dy,zovp) 
return 
end 

c ************************************************* 
subroutine zsimpint(nx,zf1,dx,zint) 

c ************************************************* 
c 
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c complex simpsons rule integrator 
c 

c 

implicit real*8 (A-H,O-Y) 
implicit compl~x*16 (z) 
include "param.inc" 
dimension zf1(nx),zf2(n1pts) 

c define : 
dx1=dx 
dx2=dx*2. 
ixn=O. 

c 
if (nx .gt. n1pts) then 

write(6,*) ' zsimpint 
endif 

nx . gt .. n1pts = 

c 
if ((mod(nx,2) .eq. 0)) then 

nx1=nx-1 
nx2=0.50*nx1+1 
zint=0.50*dx*(zf1(nx-1) + zf1(nx)) 

c 

else 
nx1=nx 
nx2=0.50*nx1+1 
zint=O.O 

end if 

c copy the odd elements of zf1 array into zf2 
do 10 ix=1,nx1,2 
ixn=ixn+1 

10 zf2(ixn)=zfl(ix) 
c 
c Now integrate zf1, zf2 in two pieces. 
c 

c 

c 

call ztrapint(nxl,zf1,dx1,zintl) 
call ztrapint(nx2,zf2,dx2,zint2) 
zint=zint+(4.0*zintl - zint2)/3.0 

return 
end 

I 
c *************************************************** 

subroutine ztrapint(nfpts,zf,dx,zint) 
c *************************************************** 
c 

implicit real*8 (A-H,O-Y) 
implicit complex*16 (z) 
dimension zf(nfpts) 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 

n1pts 

c trapeziodal rule integrator for f(l)-f(nfpts) <-> f(xO)-f(xf) 
zint=zero 

c 
do 100 i=2,nfpts-l 

zint=zint+zf(i) 
100 continue 
c 

c 

return 
end 

zint=zint+(zf(1)+zf(nfpts))/2.0 
zint=zint*dx 

c *************************************************~*********** 
subroutine savabs(zovlp,nFT,gamm,omega,Eprsq,jFTJ 

c ************************************************************* 
c 

implicit real*S (A-H,O-YJ 
implicit complex*16 (z) 
parameter(nFFT=8192) 
dimension zovlp(nFFT),omega(nFFTJ,Eprsq(nFFT) 
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common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye,pi,c,twopi,sqrtpi,pisq 
common/const3/tmax,ntmax,delt,iderflag 
common/const7/ Espmin,domega,novsav,npktsav 

c forward fourier transform for absorption (photoelectron) spectrum here 
c Include a dephasing constant gamm to give finite width to peaks or to 
C simulate experimental resolution. 
C Include C(-t) at tail end of array zovlp (in wrap around order) forcing 
c C(-t)=C(t) so that absorption spectrum is real ... 

do 872 iFT=1,nFT/2+1 
zovlp(iFTl=zovlp(iFT)*exp(-gamm*((iFT-1l*delt*novsav)**2) 

872 continue 
do 560 iFT=nFT/2+2,nFT 

jFT=nFT-iFT+2 
zovlp(iFT)=conjg(zovlp(jFTll 

560 continue 
call FFT(zovlp,nFT,1) 

c 
c At the moment making C(t) hermitean and then I(w) is real 
c 
C even if have done restart and skipped every other point in reading 
C autocorrelation back into zovlp, domega should be calculated correctly 
C as novsav has been updated. This is important otherwise spectrum 
C will be energy scaled incorrectly .. 

domega=2.00*pi/(nFFT*delt*novsav) 
open (file='absspec.out', unit=8) 
jFT=O 
absmax=O.O 
do 120 iFT=1,nFT 

iFT1=nFT-iFT+1 
v1=(iFT1-1)*domega 
eke=Espmin - v1 
if (eke .ge. 0.0) then 

jFt=jFT+1 
c convert v1 from a.u. to eV. 

omega(jFTl=eke*harev 
Eprsq(jFT)=real(zovlp(iFT1)) 
if (Eprsq(jFT) .gt. absmax) absmax=Eprsq(jFT) 
if (Eprsq(jFTl .lt. 0.0) Eprsq(jFT)=O.O 

endif 
120 continue 

write(8,900)0.0~0.0 
do 121 iw=1, jFT 

c convert omega from a.u. to eV. 
Eprsq(iwl=Eprsq(iw)/absmax 
write(8,900) omega(iw),Eprsq(iw) 

900 format (2x,fl0.4,2x,f20.10) 
121 continue 

c 

close(8) 
return 
end 

c ************************************************************ 
subroutine pktsav(zpsi,time,npkt,itype) 

c ************************************************************ 
c Save the wavepacket at several shots in time in the same file 

implicit real*8 (A-H,O-Y) 
implicit complex*16 (z) 
include "param.inc" 
dimension zpsi(nlpts,1),zpsiun(n1pts,n2pts) 
common/convert/harev,evwn,aO,amu,emu,harwn,amass;atu 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/flags/isavpotA,isavpotB,isavde,ireadwav,irestart,iabs 

C Append the new packet to the file 
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c And add extra record to the open file 
c 
900 

100 
200 

format(f16.10) 
tfs=time*atu 

if (itype .eq. -4) then 
call unwrap(zpsi,zpsiun,nxpts,nypts) 

ehdif 
do 200 iy=1, nYpts 

yi=ymin+(iy-1)*dy 
do 100 ix=1,nXpts 
xi=xmin+(ix-1)*dx 
if (itype .eq. -4) then 

write(9,900)abs(zpsiun(ix,iy)) 
else 

write(9,900)abs(zpsi(ix,iy)) 
endif 

continue 
continue 

return 
end 

6*************************************************************** 
subroutine initpkt() 

c**************************************************************** 

c 

implicit real*8 (A-H,O-Y) 
integer irec 

common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/const3/tmax,ntmax,delt,iderflag 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/const7/ Espmin,domega,novsav,npktsav 
common/flags/isavpotA,isavpotB,isavde,ireadwav,irestart,iabs 
common/mass/AM1,AM2,AM3,AMab,AMcxab,AJAcob 

irec=nXpts*nYpts*17 
isize=irec*(isavde+l)*ntmax/npktsav 
if (isize .gt. 4000000) then 
write(6,*)'Too many wavepackets to save- that is 

1 isize,' characters' 
end if 

if (irestart .eq. 1 ) then 
C Correct the initial data at top of file and reposition file pointer 
C so I can start appending new information on file 
C SUN DOES NOT LIKE THIS WAY OF APPENDING DATA 
C USE FILEOPT=EOF INSTEAD 

open(9,file='wavepkt.out' ,status='old') 
read(9,900)idesav,irec,xmn,xmx,ijunk,ymn,ymx,ijunk, 

+ tbegin,tinit,npktold 
backspace(9) 
if (idesav .ne. isavde) then 

write(6,*)'Wavepacket saving flag imcompatible with', 
# ' previous run: please fix' 

close(9) 
stop 

endif 
tlastpkt=tinit+int(ntmax/npktsav)*npktsav*delt 
npktfin=npktold+ntmax/npktsav 
write(9,900)isavde,irec,xmn,xmx,nXpts,ymn,ymx, 

nYpts,tbegin,tlastpkt,npktfin 
do 9677 i=1,16777215 

read(9,*,end=9676) 
9677 continue 
9676 backspace(9) 
C backspace over end-of-file marker and start app.ending here 

else 
open(9,file='wavepkt.out') 
tlastpkt=int(ntmax/npktsav)*npktsav*delt 
xmn=xmin*aO/sqrt(AMab) 
xmx=xmax*aO/sqrt(AMab) 
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ymn=ymin*aO/sqrt(AMab) 
ymx=ymax*aO/sqrt(AMab) 
write(9,900)isavde,irec,xmn,xmx,nXpts,ymn,ymx,nYpts,O.O, 

tlastpkt,ntmax/npktsav+1 
900 format(i1,2x,i6,2x,f~.3,2x,f9.3,2x,i4,2x,f9.3,2x,f9.3,2x,i4,2x, 

4 f6.3,2x,f12.3,2x,i3) 
endif 

return 
end 

c************************************************************** 
subroutine unwrap(zpsi,zpsiun,nx,ny) 

c************************************************************** 

C Unwrap the psi(k) wavefunction from FFT wrap round order •.. 
implicit real* 8 ( a-h, o-y) 

22 

implicit complex*16 (z) 
dimension zpsi(nx,ny),zpsiun(nx,ny) 

LX=nX/2 
LY=nY/2 
do 20 ky=O,nY-1 

if (ky .le .LY) then 
do 22 kx=O,nX-1 
if (kx .le. LX) then 

zpsiun(kx+LX,ky+LY)=zpsi(kx+l,ky+1) 
else · 

zpsiun(kx-LX,ky+LY)=zpsi(kx+l,ky+1) 
end if 

continue 
else 

do 23 kx=O,nX-1 
if (kx .le. LX) then 

zpsiun(kx+LX,ky-LY)=zpsi(kx+l,ky+l) 
else 

zpsiun(kx-LX,ky-LY)=zpsi(kx+l,ky+1) 
end if 

23 continue 
endif 

20 continue 
return 
end 

c************************************************************** 
subroutine wavedump(zpsid,time) 

c************************************************************** 
c 
c dumps the current wavepacket to its own file 
C for restart purposes ... 

implicit real*S (a-h,o-y) 
implicit complex*16 (z) 
include "param.inc" 
dimension zpsid(nlpts,l) 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 

C If time is a negative value assume that this is anion wave function 
C and save to "wave.anion" otherwise to wave.dump 

909 

10 
20 

if (time.1t.0.0) then 
open(3,file='wave.anion',form='formatted') 
time=O.O 

else 
open(3,file='wave.dump' ,form=' formatted') 

end if 
write(3,909)nxpts,nypts,xmin,xmax,ymin,ymax,time 

format(2x,i4,2x,i4,4(2x,f10.4),f14.5) 
do 20 iy=l,nypts 

do 10 ix=1,nxpts 
write(3,111) zpsid(ix,iy) 

continue 
continue 
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' I I 

111 format(e22.16,2x,e22.16) 

c 

c 

c 
c 
c 
c 
c 
c 

close(3) 
return 
end 

******************************************************* 
subroutine morsewf(zpsi,tinit) 

******************************************************* 

Calculate the product ground Wavefn for harmonic (X) and 
an anharmonic oscillator along Y 
Wavefn for Y has following form (see J. Res. N.B.S. A 65, 451 (1961)) 
psi(y) =norm* [K * expval(y)]~(0.5*(K-1)) * exp(-0.5*K * expval(y)) 
where : expval(y) = exp(-alpha*y) 

norm = sqrt (alpha/gamma(k-1)) 

implicit real*8 (a-h,o-y) 
implicit complex*16 (z) 
include "param.inc" 
common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/const1/ xmas,ymas,redmas,hb 
common/const2xA/xOA,xomegA,vOA,xwexeA,xdea,xalphaA 
common/const2xB/xOB,xomegB,xwexeB,xdeB,xalphaB,vOB 
common/const2yA/yOA,yomegA,fcupA,ywexeA,ydeA,yalphaA 
common/const2yB/yOB,yomegB,ywexeb,ydeB,yalphaB,fcupB 
common/anionqno/ivibx,iviby,irotcoor 
common/mass/AM1,AM2,AM3,AMab,AMcxab,AJAcob 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/transf/T(2,2) 
dimension zpsi(nxpts,nypts) 

C define statement functions 
AmstoRab(xx,yy)= yy/sqrt(AMab) 
AmstoRbc(xx,yy)=-yy*sqrt(AMab)/AM2 + xx/AMcxab 
AmstoQ1(xx,yyl=xx/AMcxab 
AmstoQ3(xx,yy)=AmstoRab(xx,yy) 
AmstoS1(xx,yyl=AmstoRab(xx,yy)+AmstoRbc(xx,yy) 
AmstoS3(xx,yy)=AmstoRab(xx,yy)-AmstoRbc(xx,yy) 
AmstoNC1(xx,yy,rabeq,rbceq)=T(1,1l*(AmstoRab(xx,yy)-rabeql 

~ +T (1, 2) * (AmstoRbc (xx, yy) -rbceq) 
AmstoNC3(xx,yy,rabeq,rbceq)=T(2,1)*(AmstoRab(xx,yy)-rabeq) 

~ +T(2,2)*(AmstoRbc(xx,yy)-rbceq) 

C calculate stuff for Morse coordin~te ... 
C This should be included as a function at a later date •.. (7/11/89) 
C Form K = we/wexe and calculate gamma function of (k-1) 

AK yomegA/ywexeA 
arg=AK-1.0 
APOLY=1+1/(12.0*argl+i/(288*arg*argl - 139/(51840*arg**3) 
gak=sqrt(twopi/arg)*(arg**arg)*exp(-arg)*APOLY 
Anorm=sqrt(yalphaA/gak) 
write(6,*)'Initial Wavepacket is anharmonic along y' 
if ( ( i v iby. gt . 1) . or. ( i v iby. 1 t . 0) ) then 

write(6,*)'Illegal anion quantum number in y' 
stop 

end if 

if (AM1.eq.AM3) then 
write(6,*)'Makes no sense to have an (asymmetric) Morse', 

1 ' potential along the Q3 coordinate for a symmetric system' 
stop 

else. 
do 23 iy=1,nYpts 

yi=ymin + (iy-l)*dy 
do 24 ix=l,nXpts 

xi=xmin + (ix-l)*dx 
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C perform conversion of coordinates 
if (irotcoor.€q.11 then 

x=AmstoNC1(xi,yi,xOA,y0A) 
y=AmstoNC3(xi,yi,xOA,yOA) 
temp=gauss(x,O.O,xomegA,amu,ivibx) 

else 
y=AmstoQ3(xi,yi)-yOA 
x=AmstoQ1(xi,yi) 
temp=gauss(x,xOA,xomegA,xmas,ivibx) 

end if 
expval=exp(-yalphaA*yl 
zpsi(ix,iy)=temp*Anorm*(AK*expvall** 

1 · ( (AK-1)/2)*exp(-AK*expval/2) 

C Set up to check for v=1 Morse wavefunction using recurrence 
C relationship- higher values- refer to above reference ... 

if (iviby .eq. 11 then 
zpsi(ix,iy)=zpsi(ix,iy)*sqrt(AK-3.0)* 

(AK*expval-AK+2.0)/(AK*expval) 
end if 

24 continue 
23 continue 

end if 
tinit=O. 0 
return 
end 

c ********************·************************** 
subroutine readwave(zpsi,time,irestart) 

c ********************************************** 
C This is designed to either read in anion wavefunction calculated elsewhere 
C or to capture the last wavepacket from. a previous run so 
C if a less ambitious job finishes, and user wishes to 
C restart, then user can load in this last position. 
C Note that the full wavepacket is normally only dumped at end of the job 
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C This can be altered if user worried that computer may crash over p~riod of job 

implicit real*S (A-H,O-YI 
implicit complex*l6 (z) 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/const2yA/yOA,yomegA,fcupA,ywexeA,ydeA,yalphaA 
dimension zpsi(nxpts,nypts) 

open(3,file='wave.dump' ,form=' formatted') 
read(3,909)nx,ny,xmn,xmx,ymn,ymx,time 

909 format(2x,i4,2x,i4,4(2x,f10.4),fl4.5) 

C Check the wave.dump file for compatibility 

if ((nx.ne.nxpts) .or. (ny.ne.nypts)) then 
write(6,*)'* Incompatible read wavepacket,', 

'nxpts/nypts in wave.dump' 
stop 

end if 
if ((abs(xmn-xmin) .gt. 0.001) .or. 

(abs(xmax-xmx) .gt. 0.001)) then 
write (6, *)' * Incompatible read wavepacket,', 

'xmin/xmax in wave.dump' 
write(6,*)xmn,xmin,xmx,xmax 
stop 

end if 
if ((abs(ymn-ymin) .gt.0.001) .or. 

(abs(ymx-ymax) .gt.0.001)) then 
write(6,*)'* Incompatible read wavepacket,', 

'ymin/ymax in wave.dump' 
write(6,*)ymn,ymin,ymx,ymax 
stop 

end if 

\ ' 



1 

1-

i 

C File oK for job, continue 

if (irestart.ne.1) then 
c if not restarting then wavefunction should be real 

20 
10 

do 10 iy=1,nypts 
do 20 ix=1,nxpts 
read(3,*)aps 
zpsi(ix,iy)=cmplx(aps,O.O) 
continue 

continue 
else 

C if restarting the wavefunction is complex & already normalised 
do 100 iy=1,nypts 

111 
200 
100 

do 200 ix=1,nxpts 
read(3,111)zpsi(ix,iy) 
format(e22.16,2x,e22.16) 

continue 
continue 

end if 
close(3) 

return 
end 

c ********************************************************* 
subroutine twodint(nXpts,nYpts,ff,dx,dy,xyint) 

c ********************************************************* 
implicit real*S (A-H,O-Y) 
include "param.inc" 
dimension ff(nxpts,nypts),temp(n2pts),ffcol(n1pts) 

C for every y value calculate the 1-d integral over x 
C note limits of integration are independent of y 

do 12 j=1,nYpts · 
do 13 i=l,nXpts 
ffcol(i)=ff(i,j) 

13 continue 
call simpint(nxpts,ffcol,dx,temp(j)) 

12 continue 

C Now calculate the integral over all y values 
call simpint(nYpts,temp,dy,xyint) 

return 
end 

c ********************************************************* 
subroutine ztwodint(nXpts,nYpts,zff,dx,dy,zxyint) 

c ********************************************************* 
implicit real*S (A-H,O-Y) 
include "param.inc" 
implicit complex*16 (z) 

dimension zff(nxpts,nypts),ztemp(n2pts),zffcol(n1pts) 

C for every y value calculate the 1-d integral over x 
C note limits of integration are independent of y 

do 12 j=1,nYpts 
do 13 i=1,nXpts 

zffcol (i) =zff ( i, j) 
13 continue 

call zsimpint (nxpts, zffcol, dx, ztemp·( j)) 
12 continue 

C Now calculate the integral over all y values 
call zsimpint(nYpts,ztemp,dy,zxyint) 
return 
end 

c ************************************************************ 
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subroutine relax(zpsiAO~delt,ntmax) 
c ******************************'****************************** 

implicit real*8(a-h,o-y) 
implicit integer(i-n) 
implicit complex*16(z) 
include "param.inc" , 
dimension zpsiAO(n1pts,1),zpsiA1(n1pts,n2pts) 
dimension zpsiAI(n1pts,n2pts),zHpsiAI(nlpts,n2pts) 
dimension zHpsiAOinlpts,n2pts) 
common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/const2xA/xOA,xomegA,vOA,xwexeA,xdea,xalphaA 
common/const2xB/xOB,xomegB,xwexeB,xdeB,xalphaB,v0B 
common/constl/ xmas,ymas,redmas, hb 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/mass/AMl,AM2,AM3,AMab,AMcxab,AJAcob 

C This method of finding the lowest eigenstate of a bound potential surface 
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C is described in R. Kosloff and H. Tal-Ezer, Chern. Phys. Lett. 127, 223 (1986) 
C It uses propagation of the initial guess wavefunction in IMAGINARY time to 
C let the wavefunction relax to the lowest eigenfunction of the Hamiltonian. 

C The advantage of the method is it uses nearly all the same routines as the 
C time dependent propagation method used in this program for the neutral 
C surface. However this wavefunction is everywhere real, unlike neutral psi. 
C Generate initial guess: 

C If the potential is morse/harmonic such that analytic solutions were not 
C implemented or the potential had linear coupling then uncoupled SHO x SHO 
C centered at xOA, yOA with frequencies xomegA and xomegB will suffice as good 
C initial guesses to the ground state wavefunction. 
C If the potential was read in or is a user supplied functional the form, 
C user is required to give the same information to generate an initial guess. 

C Produce this initial guess 
call initWF(zpsiAO,tinit) 

C Normalise 
rtJacobian=sqrt(AJAcob) 
do 47 iy=1,nypts 

do 48 ix=l,nxpts 
zpsiAO(ix,iyl=rtJacobian*zpsiAO(ix,iy) 

48 continue 
47 continue 

call chk(l,ti,zpsiAO,rsnorm,Have) 
write(6,*)'Norm of inital guess anion WF = ',rsnorm 
write(6,*)'<H> of inital guess anion WF ' 

A Have*harwn/rsnorm,' cm-1' 

C for the anion imaginary time propagation need delt and tmax, 
C at present use the same as for th~ neutral propagation 

C evolve the initial guess for time delt/2 on the anion surface 
call Hpsi(1,ti,zpsiAO,zHpsiAO) 
do 22 iy=l,nYpts 

do 20 ix=l, nXpts 
zpsiAI(i~,iy)=zpsiAO(ix,iy)-(delt/2.)*zHpsiAO(ix,iy)/hb 

20 contlnue 
22 continue 

c Second order Runge Kutta using the intermediate derivative. 
call Hpsi (1, ti, zpsiAI, zHpsiAI) 
do 32 iy=l,nYpts 

do 30 ix = 1, nXpts 
zpsiA1(ix,iy)=zpsiAO(ix,iy)-delt*zHpsiAI(ix,iy)/hb 

30 continue 
32 continue 

call Vcopy(nxpts,nypts,zpsiAl,zpsiAO) 
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C Now perform First Order Differencing in imaginary time for ntmax steps 

200 
100 

do 1000 it=1,ntmax 
ti=ti+delt 
call Hpsi(1,ti,zpsiAO,zHpsiAO) 
do 100 iy=1,nYpts 

do 200 ix=1,nXpts 
zpsiA1(ix,iy)=zpsiAO(ix,iy)-delt*zHpsiAO(ix,iy)/hb 
zpsiA1(ix,iy)=cmplx(real(zpsiA1(ix,iy)),0.0) 

continue 
continue 
call Vcopy(nXpts,nYpts,zpsiA1,zpsiAO) 
if (mod(it,SOO) .eq.O) then 

C Check the norm, and nearly always renormalise psi 
C before continuing relaxation 
C even ground state component will relax at rate exp(-E.t) 
C where E is the energy in a.u. above the absolute energy zero. 

call chknrm(zpsiAO,rsnorm) 
rtrsnorm=sqrt(rsnorm) 
if ((rsnorm.lt.0.5) .or. (rsnorm.gt.2.00)) then 

do 456 iy=1,nYpts 
do 457 ix=1,nxpts 

zpsiAO(ix,iy)=zpsiAO(ix,iy)/rtrsnorm 
457 continue 
456 continue 

endif 
endif 
if (mod(it, (ntmax/4)) .eq.O) then 
call chk(1,ti,zpsiAO,rsnorm,Have) 
write(6,*)'Time step=', it,' <H> 

Have*harwn/rsnorm,' cm-1' 
endif 

1000 continue 

C Hopefully have converged ground state wavefunction 
C Renormalisation will be carried out in initB 

write(6,*)ntmax,' propagation in imaginary time to find' 
write(6,*)'lowest eigenstate of anion potential completed' 
write (6, *) 

return 
end 

potread.2.f 

C****************************************************** 
I 

subroutine potread() 
C****************************************************** 
C This contains all routines to read and generate potential function 
C the full potential for upper and lower surfaces is stored in array xypot 
C This set of subroutines and functions is long and tedious but extremely 
C flexible. Some code cleaning could be done to avoid repetition of long 
passages 
C of code, but in the interests of vectorizing loops additional calls to 
subroutines and 
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c functions have been avoided. Note statement functions are standard FORTRAN 
and will 
C vectorize unlike regular function calls. 
c Many potential types have been added. (thanks to R. B. Metz and J. M. Bowman). 

c S. E. Br~dforth 1/1/91 

implicit real*B (A-H,O-Y) 
implicit complex*16 (Z) 
include "param.inc" 
common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/const1/ xmas,ymas,redmas, hb 



common/const2xA/xOA,xomegA,vOA,xwexeA,xdea,xalphaA 
common/const2xB/xOB,xomegB,xwexeB,xdeB,xalphaB,vOB 
common/const2yA/yOA,yomegA,fcupA,ywexeA,ydeA,yalphaA 
common/const2yB/yOB,yomegB,ywexeb,ydeB,yalphaB,fcupB 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/flags/isavpotA,isavpotB,isavde,ireadwav,irestart,iabs 
common/pot/xypot(nlpts,n2pts,2) 
common/anionqno/ivibx,iviby,irotcoor 
common/mass/AMl,AM2,AM3,AMab,AMcxab,AJAcob 
common/analytic/ianal 
common/transf/T(2,2) 

C This routine reads in potential parameters for both surfaces and then 
C stores potential at each grid point to save further computation. 

C Define functions as statement functions 

harmonic(xx,xmas,xO,xomeg)= O.SO*xmas*(xomeg*(xx-x0))**2 
dmorse(xx,xO,de,xalpha)=de*(l.O-exp(-xalpha*(xx-x0)))**2 
AmstoRab(xx,yy)= yy/sqrt(AMab) 
AmstoRbc(xx,yy)=-yy*sqrt(AMab)/AM2 + xx/AMcxab 
AmstoQl(xx,yy)=xx/AMcxab 
AmstoQ3(xx,yy)=AmstoRab(xx,yy) 
AmstoSl(xx,yyl=AmstoRab(xx,yy)+AmstoRbc(xx,yy) 
AmstoS3(xx,yy)=AmstoRab(xx,yy)-AmstoRbc(xx,yy) 
AmstoNCl(xx,yy,rabeq,rbceq)=T(l,ll*(AmstoRab(xx,yy)-rabeq) 

A +T(l,2)*(AmstoRbc(xx,yy)-rbceq) 
AmstoNC3(xx,yy,rabeq,rbceql=T(2,1)*(AmstoRab(xx,yy)-rabeq) 

A +T(2,2)*(AmstoRbc(xx,yy)-rbceql 

C Read anion potential first 

C set the potential by reading potential type 
read(l,*)ipottypA,ipottypAy,ivibx,iviby 
if ((ipottypA .gt. 4) .or. (ipottypA .lt. -1)) then 
write(6,*)'Problem with potential Ax type in input deck' 
st-op 

end if 
if ((ipottypAy .gt. 4) .or. (ipottypAy.lt. 0)) then 
· write(6,*)'Problem with potential Ay type in input deck' 

stop 
end if 
write(6,*)'Setting up 2d potentials in memory ........ ' 

C set the flag describing the potential as having analytic solutions or not 
ianal=O 

C check for a seperable potential or one with linear coupling 

if ( ( ipottypA.eq .1) .or. (ipottypA. eq. 0) . or. (ipottypA.eq. -1)) then 

C proceed to calculate potential 

C For each type read relevant parameters: 
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C (expect xO in Angs, omega, wexe and vO in cm-1 and De in eV, alpha in Angs-1) 
C x coordinate (Q1 like) first, where reduced mass is xmas 

C If ipottypA=-1 then expect potential parameters like those above, but 
C the coordinates along which the axes for potential and wavefunction are 
C defined are now not x,y or S1,S3 but NC1,NC3 defined in statement function 
C above. This allows use of ab initio normal coordinates. 
C Mass is assumed to be included in the transfromation coefficients, 
C IE a reduced mass of 1 amu will be assumed for both NC1 And NC3 
C xOA and yOA should be the equilibrium values of Rab and Rbc rather than 
C of r(ac) and R(ab) 

if (ipottypA.eq.-1) then 
irotcoor=1 



I 
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C rotated coordinates include mass in themr so reduced mass for each oscillator 
C is 1 amu. 

-xmasA=amu 
ymasA=amu 

C Read in the transformation matrix 
read(1,*)T(1,1),T(1,2) 
read(1,*)T(2,1l,T(2,2) 

else 
xmasA=xmas 
ymasA=ymas 

end if 

if (ipottypA .eq. 0) then 
read(1,*)x0A,xdeA,xalphaA,vOA 
xdeA=xdeA/harev 
xalphaA=xalphaA*aO 
xwexeA=xalphaA**2/(2.0*xmasA) 
xomegA=sqrt(4.0*xwexeA*xdeA) 

end if 

if ( (ipottypA.eq.1) .or. (ipottypA.eq.-1)) then 
read(1,*)x0A,xomegA,xwexeA,vOA 
xomegA=xomegA/harwn 
xwexeA=xwexeA/harwn 

C If Morse, convert potential parameters to reciprocal bohr and hartrees ... ' 
if (xwexeA .ne. 0.0) then 

xalphaA=sqrt(2.0*xmasA*xwexeA) 
xdeA=xomegA**2/(4.0*xwexeA) 
ipottypA=O 

endif 
endif 
xOA=xOA/aO 
vOA=vOA/harwn 

C y coordinate (Bound Q3 like), where reduced mass is ymasA •. 
C Expect the coupling constant in units of eV/(angs)**2 

if (ipottypAy .eq. 0) then 
read(1,*)yOA,ydeA,yalphaA,fcupA 

C convert to au 
ydeA=ydeA/harev 
yalphaA=yalphaA*aO 
ywexeA=yalphaA**2/(2.0*ymasA) 
yomegA=sqrt(4.0*ywexeA*ydeA) 

end if 

if (ipottypAy .eq. 1) then 
read(1,*)yOA,yomegA,ywexeA,fcupA 

C convert to au 
yomegA=yomegA/harwn 
ywexeA=ywexeA/harwn 

C If Morse, convert potential parameters to reciprocal bohr and hartrees ... 
if (ywexeA .ne. 0.0) then 

yalphaA=sqrt(2.0*ymasA*ywexeA) 
ydeA=yomegA**2/(4.0*ywexeA) 
ipottypAy=O . 

endif 
end if 
yOA=yOA/aO 
fcupA=fcupA*aO*aO/harev 

C If seperable potential (linear coupling is zero), and potential is anharmonic 
C along y, if at all; only, then this program can yield analytic wavefunctions 

if ((fcupA.eq.O.O) .and. 
((ipottypA.eq.l) .or. (ipottypA.eq.-1))) ianal=l 

C establish shelf as usual 
shelf=2.0/harev 
if(irotcoor.eq.l) then 

rrbceq=yOA 



rrabeq=xOA 
do 446 iy=1,nYpts 

yi=(iy-1)*dy+ymin 
do 445 ix=l,nXpts 

xi=(ix-1)*dx+xmin 
C convert from mass scaled coordinates to normal modes 

x=AmstoNCl(xi,yi,rrabeq,rrbceq) 
y=AmstoNC3(xi,yi,rrabeq,rrbceq) 

445 
446 

if (ipottypA.eq.O) tmpx=dmorse(x,O.O,xdeA,xalphaA) 
if (ipottypA.eq.-1) tmpx=harmonic(x,xmasA,O.O,xomegA) 
if (ipottypAy • eq. 0) tmpy=dmorse (y, 0. 0, ydeA, yalphaA) 
if (ipottypAy.eq.l) tmpy=harmonic(y,ymasA,O.O,yomegA) 
xypot(ix,iy,1)=tmpy+tmpx+fcupA*x*y+vOA 
if (xypot(ix,iy,1)-v0A.gt.shelf) xypot(ix,iy,1)=shelf+v0A 

continue 
continue 

else 
if (AM1 .eq. AM3) then 

do 146 iy=l,nYpts 
yi=(iy-1)*dy+ymin 
do 145 ix=1,nXpts 

xi=(ix-l)*dx+xmin 
C convert from mass scaled coordinates to normal modes of symmetric anion 

x=AmstoSl(xi,yi) 

145 
146 

y=AmstoS3(xi,yi) 
if (ipottypA.eq.O) tmpx=dmorse(x,xOA,xdeA,xalphaA) 
if (ipottypA.eq.1) tmpx=harmonic(x,xmasA,xOA,xomegA) 
if (ipottypAy.eq.O) tmpy=dmorse(y,yOA,ydeA,yalphaA) 
if (ipottypAy.eq.1l tmpy=harmonic(y,ymasA,yOA,yomegA) 
xypot(ix,iy,1l=tmpy+tmpx+fcupA*x*y+vOA 
if (xypot(ix,iy,1)-v0A.gt.shelf) xypot(ix,iy,1)=shelf+v0A 

continue 
continue 

else 
do 1426 iy=1,nYpts 

yi=(iy-1l*dy+ymin 
do 1425 ix=1,nXpts 

xi=(ix-1l*dx+xmin 
C convert from mass scaled coordinates to approx normal modes 
C of Asymmetric anion 

1425 
1426 

x=AmstoQ1(xi,yi) 
y=AmstoQ3(xi,yil 
if (ipottypA.eq.O) tmpx=dmorse(x,xOA,xdeA,xalphaA) 
if (ipottypA.eq.1) tmpx=harmonic(x,xmasA,xOA,xomegAl 
if (ipottypAy.eq.Ol tmpy=dmorse(y,yOA,ydeA,yalphaA) 
if (ipottypAy.eq.1) tmpy=harmonic(y,ymasA,yOA,yomegA) 
xypot(ix,iy,1l=tmpy+tmpx+fcupA*x*y+vOA 
if (xypot(ix,iy,1)-v0A.gt.shelfl xypot(ix,iy,1l=shelf+vOA 

continue 
continue 

endif 
endif 

end if 

C non separable potentials 
if (ipottypA .eq. 2) then 
write(6,*)'Leps not supported for anion' 
stop 

end if 

if (ipottypA .eq. 3) then 
read (1, * l vOA 

C This potential will require numerical solution of first eigenfn, if no 
C wavefunction is ~ead in form disk 
C Thus ask for a guess in terms of minimum position and frequency along 
C the x,y axes (which will NOT be the normal coordinates) 
C This will be used by the subroutine relax. 

if (ireadwav.ne.1) then 
read(1,*)xOA,xomegA 
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read(1,*)yOA,yomegA 
xomegA=xomegA/harwn 
yomegA=yomegA/harwn 
xOA=xOA/aO 
yOA=yOA/aO 

end if 
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C establish shelf as usual, this is necessary as anion wavefn. will need to be 
C found numerically for this potential surface 

shelf=2.0/harev 
vOA=vOA/harwn 
open(7,file='pot.in') 

do 822 iy=1,nYpts 
do 821 ix=l,nxpts 

read(7,*)tmp 
xypot(ix,iy,1)=tmp+vOA 

821 continue 
822 continue 

endif 

C User defined function as 2d anion potential surface 
C As set up V is a function of the primitive internal ccordinates Rab and Rbc 
C Note user must recognise that Rab and Rbc are not interchangeable 
C for asymmetric propagation 

if (ipottypA .eq. 4) then 
read (1, *) vOA 

C This potential will require numerical solution of first eigenfn, if no 
C wavefunction is read in form disk 
C Thus ask for a guess in terms of minimum position and frequency along 
C the x,y axes (which will NOT be the normal coordinates) 
C This will be used by the subroutine relax. 

if (ireadwav.ne.l) then 
read(1,*)xOA,xomegA 
read(1,*)y0A,yomegA 
xomegA=xomegA/harwn 
yomegA=yomegA/harwn 
xOA=xOA/aO 
yOA=yOA/aO 

end if 

C establish shelf as usual, this is necessary as anion wavefn. will need to be 
C found numerically for this potential surface 

shelf=2.0/harev 
shelfl=-0.2 
vOA=vOA/harwn 
do 924 iy=1,nYpts 

ay=(iy-1)*dy+ymin 
do 923 ix=1,nxpts 

ax=(ix-1)*dx+xmin 
axx=AmstoRab(ax,ay) 
ayy=AmstoRbc(ax,ay> 
xypot(ix,iy,l)=upotfn(axx,ayy)+vOA 
if (xypot(ix,iy,l)-vOA.gt.shelf) xypot(ix,iy,l)=shelf+vOA 
if (xypot(ix,iy,l)-vOA.lt.shelfl)xypot(ix,iy,l)=shelfl+vOA 

923 continue 
924 continue 

end if 

C Now read neutral (B) potential : 

read(l,*)ipottypB,ipottypBy 
if ((ipottypB .gt. 5) .or. (ipottypB .lt. 0)) then 
write(6,*)'Problem with potential Bx type in input deck' 
stop 

end if 
if ((ipottypBy .gt. 1) .or. (ipottypBy .lt. 0)) then 
write(6,*)'Problem with potential By type in input deck' 
stop 
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end if 
Cas for anion potential construct pot. from seperable parts if appropriate .. 

if ( (ipottypB .eq. 1) .or. (ipottypB .eq. 0)) then 

if (ipottypB .eq. 0) then 
read(1,*)xOB,xdeB,xalphaB,vOB 
xdeB=xdeB/harev 
xalphaB=xalphaB*aO 
xwexeB=XalphaB**2/(2.0*xmas) 
xomegB=sqrt(4.0*xwexeB*xdeB) 

endif 

if (ipottypB .eq. 1) then 
read(1,*)xOB,xomegB,xwexeB,vOB 
xomegB=xomegB/harwn 
xwexeB=xwexeB/harwn 
if (xwexeB .ne. 0.0) then 

xalphaB=sqrt(2.0*xmas*xwexeB) 
xdeB=xomegB**2/(4.0*xwexeB) 
ipottypB=O 

end if 
end if 
xOB=xOB/aO 
vOB=vOB/harwn 

C y coordinate, where reduced mass is ymas 
if (ipottypBy .eq. 0) then 

read(1,*)yOB,ydeB,yalphaB,fcupB 
C convert to au 

ydeB=ydeB/harev 
yalphaB=yalphaB*aO 
ywexeB=yalphaB**2/(2.0*ymas) 
yomegB=sqrt(4.0*ywexeB*ydeB) 

end if 

if (ipottypBy .eq. 1) then 
read(1,*)yOB,yomegB,ywexeB,fcupB 

C convert to au 
yomegB=yomegB/harwn 
ywexeB=ywexeB/harwn 
if (ywexeB .ne.·O.O) then 

yalphaB=sqrt(2.0*ymas*ywexeB) 
ydeB=yomegB**2/(4.0*ywexeB) 
ipottypBy=O 

end if 
end if 

yOB=yOB/aO 
fcupB=fcupB*aO*aO/harev 

C Note include shelf here for B potential, partie. for Morse, (6eV) 
shelf=6.0/harev 

if (AM1 .eq. AM3) then 
do 148 iy=1;nYpts 

yi=(iy-1)*dy+ymin 
do 147 ix=1,nXpts 

xi=(ix-1)*dx+xmin 
C convert from mass scaled to normal coordinates of symmetric neutral 

x=AmstoSl(xi,yi) 
y=AmstoS3(xi,yi) 
if (ipottypB.eq.O) tmpx=dmorse(x,xOB,xdeB,xalphaB) 
if (ipottypB.eq.l) tmpx=harmonic(x,xmas,xOB,xomegB) 
if (ipottypBy.eq.O) tmpy=dmorse(y,yOB,ydeB,yalphaB) 
if (ipottypBy.eq.l) tmpy=harmonic(y,ymas,yOB,yomegB) 
,xypot(ix,iy,2)=tmpy+tmpx+fcupB*x*y+vOB 
if (xypot(ix,iy,2)-v0B .gt. shelf) xypot(ix,iy,2)=shelf+v0B 

147 continue 
148 continue 

else 
do 1480 iy=l,nYpts 



• 

yi=(iy-l)*dy+ymin 
do 1470 ix=l,nXpt;s 

xi=(ix-l)*dx+xmin 
C convert from mass scaled to normal coordinates of Asymmetric neutral 

x=AmstoQl (xi,yi) 

1470 
1480 

y=AmstoQ3(xi,yi) 
if (ipottypB.eq.O) tmpx=dmorse(x,xOB,xdeB,xalphaB) 
if (ipottypB.eq.l) tmpx=harmonic(x,xmas,xOB,xomegB) 
if (ipottypBy.eq.O) tmpy=dmorse(y,yOB,ydeB,yalphaB) 
if (ipottypBy.eq.l) tmpy=harmonic(y,ymas,yOB,yomegB) 
xypot(ix,iy,2)=tmpy+tmpx+fcupB*x*y+vOB 
if (xypot(ix,iy,2)-v0B .gt. shelf) xypot(ix,iy,2)=shelf+v0B 

continue 
continue 

end if 
end if 

C NON SEPARABLE POTENTIALS 
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C Extended LEPS potential surface, with or without, zero point bend correction. 
C Note the value of ipottypBy denotes whether to include zero point bend 

if (ipottypB .eq. 2) call lepstore(ipottypBy) 

C Potential from file potB.in 
if (ipottypB .eq. 3) then 

write(6,*)'Reading the file potB.in' 
C Note include shelf here for B potential, at 2eV relative when vOB added 

shelf=2.0/harev 
read(l,*)vOB 
vOB=vOB/harwn 
open(7,file='potB.in') 

do 824 iy=l,nYpts 
do 823 ix=l,nxpts 

read (7, *) tmp 
xypot(ix,iy,2)=tmp+vOB 
if (xypot(ix,iy,2)-v0B.gt.shelf) xypot(ix,iy,2)=shelf+v0B 

823 continue . 
824 continue 

endif 

C User defined function as 2d potential surface 
C As set up, V is a function of the primitive internal ccordinates Rab and Rbc 
C Note user must recognise that Rab and Rbc are not interchangeable 
C for asymmetric propagation 

if (ipottypB .eq. 4) then 
read(l,*)vOB 

C establish shelf as usual 
shelf=2.0/harev 
vOB=vOB/harwn 
do 724 iy=l,nYpts 

ay=(iy-l)*dy+ymin , 
do 723 ix=l,nxpts 

ax=(ix-l)*dx + xmin 
axx=AmstoRab(ax,ayl 
ayy=AmstoRbc(ax,ay) 
xypot(ix,iy,2)=upotfn(axx,ayy)+v0B 
if (xypot(ix,iy,2)-v0B.gt.shelf) xypot(ix,iy,2)=shelf+vOB 

723 continue 
724 continue 

end if 

C Rotated Morse Oscillator Spline Potential 
if (ipottypB.eq.Sl call rmos() 

C Now xypot array contains A and B potentials at nXpts,nYpts on grid 
return 
end 

c 



C LEPS ROUTINES 
c*************************************************************************** 
C Create a LEPS potential for a triatomic system. 
C See Smith p. 44 
C Indices: 
c 
c 
c 

Variables: 

1 
2 
3 

ab 
be 
ca 

R(l) = ab distance (nm) 

c 
c 
c 
c Delta(l) = (1/S(l)) - 1, where Sis Sate 

De(l) = dissoc limit of ab (kJ/mol) 
Re(l) =equilibrium ab bond length (nm) 
B(l) width of potential for ab (nm -1) 
M(l) = mass of atom a (amu) 

Parameter 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Functions: 
V(R(l), R(2), R(3)) LEPS potential (kJ/mol) 
Q(l,R(l)) = Q for ab and Rab 
AJ(l,R(l)) = J for ab and Rab 
VM(l,R(l)) =Morse potential for ab and Rab 
VaM(l,R(l)) =anti-Morse potential for ab and 

C********************************************************** 
FUNCTION VM(I,R) 
IMPLICIT REAL*8(A-H,O-Z) 
REAL*8 LDE,LRE,LB 
COMMON/LEPS/LDE(3),LRE(3),LB(3),DELTA(3) 
X= -LB(I)*(R- LRE(I)) 
VM = LDE(l) * (EXP(2.0*X)- 2.0*EXP(X)) 
RETURN 
END 

c ----------------------------------------------
FUNCTION VAM(l,R) 
IMPLICIT REAL*8(A-H,O-Z) 
REAL*8 LDE,LRE,LB 
COMMON/LEPS/LDE(3),LRE(3),LB(3),DELTA(3) 

X= -LB(I)*(R- LRE(l)) 
VAM = LDE(I) * (EXP(2.0*X) + 2.0*EXP(X))/2.0 
RETURN 
END 

c ----------------------------------------------
FUNCTION Q (I, R) 
IMPLICIT REAL*8(A-H,O-Z) 
REAL*8 LDE,LRE,LB 
COMMON/LEPS/LDE(3),LRE(3),LB(3),DELTA(3) 

Rab 

Q =((1.0 + .OELTA(l))*VM(l,R) + (1.0- DELTA(!)) * VAM(l,R))/2.0 
RETURN 
END 

c ----------------------------------------------
FUNCTION AJ (I, R) 
IMPLICIT REAL*8(A-H,O-Z) 
REAL*8 LDE,LRE,LB 
COMMON/LEPS/LDE(3),LRE(3),LB(3),DELTA(3) 

AJ =((1 + DELTA(I))*VM(l,R) - (1- DELTA(!)) * VAM(l,R))/2.0 
RETURN 
END 

c ----------------------------------------------
FUNCTION JSIGN(l,K) 
IMPLICIT REAL*8 (A-H,O-Z) 
IF (I .EQ. K) THEN 
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JSIGN=1 
ELSE 

JSIGN=-1 
END IF 
RETURN 
END 

c-------------------------------------------------
FUNCTION ALV(RAB,RBC,RAC) 
IM?LICIT REAL*B(A-H,O-Z) 
REAL*B ~DE,LRE,LB 
COMMON/LEPS/LDE(3),LRE(3),LB(3),DELTA(3) 
DIMENSION R(3),T(3) . 
REAL*B JSUM 

R(1) RAB 
R(2) RBC 
R(3) RAC 
QSUM 0.0 

DO 10 I = 1,3 
T(I)=1.0/(1.0+DELTA(I)) 
QSUM = QSUM + Q(I,R(I))*T(I) 

10 CONTINUE 

JSUM = 0.0 
DO 20 I= 3,1,-1 

DO 30 K = 1,I 
JSUM = JSUM+AJ(I,R(I))*JSIGN(I,Kl*T(I)*AJ(K~R(K))*T(K) 

30 CONTINUE 
20 CONTINUE 

ALV = QSUM - SQRT(JSUM) 
RETURN 
END 

c ----------------------------------------------c 
C Asymmetric stretch potential 
c 

FUNCTION potlep(ibend,x,y) 
IMPLICIT REAL*B(A-H,O-Z) 
REAL*B LDE,LRE,LB 
common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
COMMON/LEPS/LDE(3),LRE(3),LB(3),DELTA(3) 

C x,y in au; RAB etc in nm 

RAB=x*a0/10. 0 
RBC=y*a0/10. 0 
RAC=RAB+RBC \ 

C Convert from bohrs to nanometers 
C evaluate bending correction if required 

bn=O.O 
C Convert from KJ/mol to hartrees 

potlepl = ALV(RAB,RBC,RAC)/2625.504 
if (ibend .eq. 1) then 

C bndh requires RAB RBC in au so use x,y and supplies correction in hartrees 
bn=bndh(x,y) 

end if 
potlep = potlepl+bn 

RETURN 
END 

C*************************************~******************** 

subroutine lepstore(ibend) 
c********************************************************** 
c 
c 

implicit real*B (A-H,O-Y) 
implicit complex*l6 (z) 
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include "param.inc" 
real*8 lde,lre,lb 

common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi,c, twopi,sqrtpi,pisq 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
COMMON/LEPS/LDE(3),LRE(3),LB(3),DELTA(3) 
common/pot/xypot(nlpts,n2pts,2) 
common/mass/AMl,AM2,AM3,AMab,AMcxab,AJAcob 

C define Statement functions 
AmstoRab(xx,yy)= yy/sqrt(AMab) 
AmstoRbc(xx,yy)=-yy*sqrt(AMab)/AM2 + xx/AMcxab 
AmstoQl(xx,yy)=xx/AMcxab 
AmstoQ3(xx,yy)=AmstoRab(xx,yy) 
AmstoSl(xx,yy)=AmstoRab(xx,yy)+AmstoRbc(xx,yy) 
AmstoS3(xx,yy)=AmstoRab(xx,yy)-AmstoRbc(xx,yy) 

read(l,*) vOB 
vOB=vOB/hareV 

C For each pair of atoms input the parameters De, Beta, Re, Sato 
C where De (in eV); Beta (in Angs. -1); Re (in Angs.) 
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C In the order atoml-atom2 (A-B), atom2-atom3 (B-C) and then atoml-atom3 (A-C) 
DO 2050 I=l,3 

IF (I.EQ.3) THEN 
J=l 

ELSE 
J=I+l 

END IF 
READ(l,*) LDE(I),LB(I),LRE(I),DELTA(I) 

C convert to kJ/mol and nm-1, nm 
lde(i)=lde(i)*96.485 
lb(i)=lb(i)*lO.O 
lre(i)=lre(i)/10.0 

2050 CONTINUE 

C determine shelf level where potl is cut offf to avoid high walls and thus 
C increase time step ..•.. (shelf in hartrees) 
C ~.30*de(HBr) above three atom dissociation ... 

shelf=0.3*lde(l)/2625.504 

C potential routine hardwired to expect kJ/mol and. nm, nm-1 

if (ibend .eq. 1) write(6,*)'Evaluating bending correction' 
do 148 iy=l,nYpts 

yi=(iy-l)*dy+ymin 
do 147 ix=l,nXpts 

xi=(ix-l)*dx+xmin 
C convert from mass scaled coordinates to internal coordinates of neutral 
C We are assuming linearity for this potential call, ie rac=rab+rbc 

x=AmstoRab(xi,yi) 
y=AmstoRbc(xi,yi) 
xypot(ix,iy,2)=potlep(ibend,x,y)+v0B 
if (xypot(ix,iy,2)-v0B.gt.shelf) xypot(ix,iy,2)=shelf+v0B 

147 continue 
148 continue 

return 
end 

c ********************************************** 
function poten3d(Rab,Rbc,Rac) 

c ********************************************** 

C This is 3d call to leps potl that does not make assumption that Rac=Rab+Rbc 
C Used by bndh correction term to potential to include zero-point bend 
CRab etc are supplied in au ... 

implicit real*8 (a-h,o-z) 
common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 



R1=Rab*a0/10.0 
R2=Rbc*a0/10.0 
R3=Rac*a0/10. 0 
poten3d=ALV(R1,R2,R3)/2625.504 
return 
end 

c ************************************ 
FUNCTION BNDH(RAB,RBC) 

c ************************************ 

c 
C ... PROGRAM TO CALCULATE THE BENDING EIGENVALUE FOR AN ABC TRIATOMIC 
C ... IN THE HARMONIC APPROXIMATION. WRITTEN BY J.M. BOWMAN 
c 
C ... THE BEND ENERGY BNDH IS CALCULATED IN THE HARMONIC APPROXIMATION 
C ... GIVEN BY: BNDH = HBAR*OMEGA*(1.0+NB) (IN ATOMIC UNITS). THIS 
C ... IS SPECIFIC FOR A TRIATOM WITH A LINEAR MINIMUM, I.E., BEND IS DOUBLY 
C ... DEGENERATE. FOR A DISCUSSION OF THIS AND A TEST OF THE METHOD SEE 
C ... J.M. BOWMAN, CHEM. PHYS. LETT. 124 (1986) 263. 
c 
C ... RAC=RAB+RBC FOR LINEAR GEOM. and lengths are in au. 
C ... GAMMA IS ABC BOND ANGLE. 
C ... ASSUME THAT POTENTIAL IS CALCULATED IN AU 
c 

IMPLICIT REAL*B (A-H,O-Z) 
REAL*B NB 
common/mass/AM1,AM2,AM3,AMab,AMcxab,AJAcob 
DATA H/0.01/ 
DATA PI/3.14159265/ 
DATA NB/0.0/ 

C ... CALCULATE THE G-MATRIX ELEMENT 
c 

G=1.0/(AM1*RAB**2)+1.0/(AM3*RBC**2)+(1.0/RAB+1.0/RBC)**2/AM2 
c 
C ... CALCULATE THE SECOND DERIVATIVE OF THE POTENTIAL WRT GAMMA USING 
C ... FIRST DERIVATIVE OF POT WRT·RAC HOLDING RAB AND RBC FIXED. 
C ... CALCULATED IN DPESDR AND FINITE DIFFERENCE APPROX AND CHAIN RULE. 
c 

GAM1=PI+H 
RAC=SQRT(RAB**2+RBC**2-2.0*RAB*RBC*COS(GAM1)) 

c 
C NOW GET THE FIRST DERIVATIVE OF THE POTENTIAL WRT RAC 
c 

CALL DPESDR(DEDR,RAB,RBC,RAC) 
C WRITE(7,100) RR,DEDR,H,H3iH43 

DPG1=DEDR*SIN(GAM1)*RAB*RBC/RAC 
FGAM=DPG1/H 
IF (FGAM.LT.O.ODO) GO TO 10 
OMEGB=SQRT(G*FGAM) 
BNDH=OMEGB*(l.O+NB) 
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C This is a check for ClHCl : should get 509cm-1 at barrier on BCMR surface .. 
if ((int(lO*RAB) .eq. 27) .and. (int(lO*RBC) .eq. 27) )then 

write(6,*)RAB,' ',RBC,' ',omegb 
end if 
RETURN 

10 BNDH=O.O 
RETURN 
END 

c ********************************************* 
subroutine dpesdr(DERIV,RAB,RBC,RAC) 

c ****************************************~**** 

C Find numerical first derivative of pot surface wrt Rae 
implicit real*B (A-H,O-Y) 
DATA H/1. OD-3/ 



el=poten3d(RAB,RBC,RAC-h) 
e2=poten3d(RAB,RBC,RAC+h) 
deriv=(e2-el)/h/2.0 
return 
end 

C End of LEPS stuff 

c ************************************************************* 
function upotfn(x,y) 

c ************************************************************* 
implicit real*8 (a-h,o-z) 
implicit integer (i-n) 
common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/mass/AMl,AM2,AM3,AMab,AMcxab,AJAcob 
real*8 upotfn,koh,kof 

C This should contain a general user supplied function 
C Here is a an example: 

C Potential for FHO- assuming n.c along oh and of 

c Transformation calculated from the ab initio cartesian force constant 
C matrix. The normal coordinates are transformed into internal coordinates 
C and then inverted without any normalisation. Then the Q's calculated 
C contain all mass information. 

c 

rtoQl(rhf,roh,rhfeq,roheq)=3.0*(rhf-rhfeq) +2.75 *(roh-roheq) 
rtoQ3(rhf,roh,rhfeq,roheq)=0.199*(rhf-rhfeq)+l.l59*(roh-roheq) 

rroheq=l.0781/a0 
rrhfeq=l.3456/a0 
koh=amu* (2015.0/harwn)**2 
kof=amu*(433.0/harwn)**2 
upotfn=O.S*(koh*(rtoQ3(x,y,rrhfeq,rroheq))**2 

+kof*(rtoQl(x,y,rrhfeq,rroheq))**2) 

C Here is another example: 
C This is the potential function for BrHBr- anion 
C as fitted from Ikuta et al. MP2 ab initio potential surface 
C al= distance of hydrogen from midpoint of two bromines 
C aR=distance between two bromines 

c 
c 
c 
c 
c 

al=aO*(x-y)/2 
aR=aO*(x+y)-3.48947 
upotfn=-0.126848 + 0.0473282*al**2+0.378163*al**4 

-0.0583723*al**6-.39206l*al**2*aR 
+0.0937135*aR**2-0.00197339*aR 

return 
end 

c ************************************************************ 
subroutine rmos() 

c ************************************************************ 
implicit real*8(a-h,o-y) 
implicit integer(i-n) 
implicit complex*l6(z) 
include "param.inc" 
real*8 le(30),le2(30),b(30),b2(30),d(30),d2(30),phi(30) 
real*8 curPhi,curL,curLe,curD,curB 

common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/constO/ zero,zeye, pi,c, twopi;sqrtpi,pisq 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/pot/xypot(nlpts,n2pts,2) 
common/mass/AMl,AM2,AM3,AMab,AMcxab,AJAcob 

C Define statement functions 
AmstoRab(xx,yy)= yy/sqrt(AMab) 
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AmstoRbc(xx,yy)=-yy*sqrt(AMab)/AM2 + xx/AMcxab 

C Rotated Morse Oscillator Spline Potential (RMOS): 
C See for example Wagner et al. JCP 74, 4960 (1981) or 
C Schatz Rev. Mod. Phys. 61, 669 (1989) 
C S. E. Bradforth, August 1990 

C Read in the RMOS parameters; expect distances and beta in a.u. 
C De is in eV. There will be ncut defined Morse curves a·nd natural spline 
C interpolation between them 

read (1,*)v0B 
vOB=vOB/harwn 
read(l,*)rabsw,rbcsw,Vab 

C Vab is the dissociation energy· of A-B and should be positive 
C and in units of eV. This sets the absolute energy before adding vOB and 
C thus sets energies with respect to bottom of the well AB 
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C In usual circumstances then vOB should be set to zero for this potential type 
C shelf set 0.3*Vab above three atom dissociation 

Vab=Vab/harev 
shelf=0.3*Vab+Vab 
read (1, *) ncut 
do 10 i=1,ncut 
read (1, *)phi (i), d (i), le (i) ,b (i) 

C set phi in radians 
phi(i)=phi(i)*acos(-1.0)/180.0 
d (i) =d (i) /harev 

10 continue 
py1=1.0e37 
pyn=py1 
call splin(phi,d,ncut,pyl,pyn,d2) 
call splin(phi,le,ncut,pyl,pyn,le2) 
call splin(phi,b,ncut,py1,pyn,b2) 

C Now calculate the potential on the mass weighted grid points 
do 20 iy=1,nypts 

yi=(iy-1)*dy+ymin 
do 30 ix=l,nxpts 

xi=(ix-1)*dx+xmin 
rab=AmstoRab(xi,yi) 
rbc=AmstoRbc(xi,yi) 
curL=sqrt( (rab-rabsw)**2 + (rbc-rbcsw)**2 ) 
curPhi=atan( (rbcsw-rbc) I (rabsw-rab)) 
if ((rab.lt.rabsw) .and. (rbc.lt.rbcsw)) then 
call splint(phi,d,d2,ncut,curPhi,curD) 
call splint(phi,le,le2,ncut,curPhi,curLe) 
call splint(phi,b,b2;ncut,curPhi,curB) 
xypot(ix,iy,2)=curD*(-(l-exp( curB* (curL-curLe) ))**2-1) 

+ Vab 
if (xypot(ix,iy,2) .gt.shelf) xypot(ix,iy,2)=shelf 
xypot(ix,iy,2)=xypot(ix,iy,2) + vOB 

else 
xypot(ix,iy,2)=shelf+v0B 

end if 
30 continue 
20 continue 

return 
end 

c ************************************************:************ 
subroutine splin(x,y,n,ypl,ypn,y2l 

c ************************************************************* 
C Numerical Recipes (Flannery et a!) 

implicit real*B(a-h,o-z) 
implicit integer(i-n) 
PARAMETER (NMAX=lOO) 
DIMENSION X (N)., Y (N), Y2 (N), U (NMAX) 
IF (YPl.GT .. 99E30) THEN 

Y2(1)=0. 



U(l)=O. 
ELSE 

Y2 (1) =-0. 5 
U (1) = ( 3 . I (X ( 2)-X ( 1) ) ) * ( ( Y (2)-Y ( 1) ) I (X ( 2)-X ( 1) ) - YP 1) 

END IF 
DO 11 I=2,N-1 

SIG=(X(I)-X(I-1))1(X(I+1)-X(I-1)) 
P=SIG*Y2(I-1)+2. 
Y21I)=(SIG-1.)1P 
U(I)=(6.*((Y(I+1)-Y(I))I(X(I+1)-X(I))-(Y(I)-Y(I-1)) 

* I(X(I)-X(I-1)))1(X(I+1)-X(I-1))-SIG*U(I-1))1P 
11 CONTINUE 

IF (YPN.GT .. 99E30) THEN 
QN=O. 
UN=O. 

ELSE 
QN=O.S 
UN=(3.1(X(N)-X(N-1)))*(YPN~(Y(N)-Y(N-1))1(X(N)-X(N-1))) 

END IF 
Y2(N)=(UN-QN*U(N-1))1(QN*Y2(N-1)+1.) 
DO 12 K=N-1,1,-1 . 

Y2(K)=Y2(K)*Y2(K+1)+U(K) 
12 CONTINUE 

return 
end 

c ************************************************************* 
subroutine splint(xa,ya,y2a,n,X,Y) 

c ************************************************************* 
c 

1 

Numerical Recipes (Flannery et al) 
implicit real*B(a-h,o-z) 
implicit integer(i-n) 
DIMENSION XA(N),YA(N),Y2A(N) 
KL0=1 
KHI=N 
IF (KHI-KLO.GT.1) THEN 

K=(KHI+KL0)/2 
IF(XA(K) .GT.X)THEN 

KHI=K 
ELSE 

KLO=K 
END IF 

GOTO 1 
END IF 
H=XA(KHI)-XA(KLO) 
IF (H.EQ.O.) PAUSE 'Bad XA ' 
A=(XA(KHI)-X)IH 
B=(X-XA(KLO))IH 
Y=A*YA(KLO)+B*YA(KHI)+ 

* ((A**3-A)*Y2A(KLO)+(B**3-B)*Y2A(KHI))*(H**2)16. 

return 
end 

c *************************************** 
subroutine potlsave(ipot) 

c *************************************** 
c 

c 

implicit real*B (A-H,O-Y) 
implicit complex*16 (z) 
include "param.inc" 
commonlconvertlharev,evwn,aO,amu,emu,harwn,amass,atu 
commonlconst41xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
commonlpotlxypot(n1pts,n2pts,2) 
c~mmonlmassiAM1,AM2,AM3,AMab,AMcxab,AJAcob 

if (ipot .eq. 1) open(1,file='potlA.out') 
if (ipot .eq. 2) open(1,file='potlB.out') 
do 20 iy=1,nYpts 
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do 10 ix=1,nXpts 
xi=(xmin+(ix-1)*dx)*a0/sqrt(AMab) 
yi=(ymin+(iy-1)*dy)*a0/sqrt(AMab) 
a=xypot(ix,iy,ipot)*harev 
write(1,930)xi,yi,a 

930 format(f9.3,2x,f9.3,2x,f15.6) 
10 continue 
20 continue 

close (1) 
return 
end 

graphicsy .f 

This file suitable for compilation on computer system that has DISSPLA., and 
GKS/NCAR graphics library, e.g. San Diego Cray Y/MP 

C Include automatic real time graphics (7/10/90) 
C Will graph the absolute wavepacket as a function of time 
C top of'the upper potential surface, and finally plot the 
C simulated photoelectron spectrum. 

on 

c 
c 
c 
c 

USE graph or wave keywords on the command line when invoking program. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

If require wavepackets drawn first command line argument should 
be "wave". If require only spectrum to be plotted then first 
command line argument should be "graph". 
No command line arguments give no graphics! 

Second argument determines graphical plot device. 
Options are Computer Graphics Metafile (cgm), default 
tektronix 4014 terminal (tek). 

***************************************************** 
subroutine argchk(igraph,iwdrw,arg) 

or 

c ***************************************************** 
c 
c 
c 

If require spectrum to be plotted then first 
command line argument should be "graph". 
No command line arguments give no graphics! 

implicit integer(i-n) 
implicit real*S(a-h,o-z) 
character arg*70 

nargs=iargc () 
if (nargs .gt. 0) then 
call getarg(1,arg) 
if (arg .eq. 'graph') igraph=l 
if (arg .eq. 'wave') then 

igraph=l 
iwdrw=1 

end if 
if (nargs .gt. 1) then 
call getarg(2,arg) 

else 
arg='cgm' 

end if 
endif 
return 
end 

c ************************************************************* 
subroutine wavdrw(zdat,t,rsnorm,Have) 

c ************************************************************* 
c 
C REAL TIME GRAPHICS USING DISSPLA 
C THIS ADDITION REQUIRES DISSPLA 10.0 OR HIGHER AND GKSNCAR 
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C LIBRARY AS ON SDSC Y/MP RUNNING UNICOS 
c 

implicit real(a-h,o-z) 
implicit integer(i-n) 
include "param.inc" 
complex zdat(n1pts,n2pts) 
CHARACTER*60 HEADER,HEADER1,HEADER2 
CHARACTER*60 HYAX,HXAX 
dimension absdat(n1pts,n2pts) 
common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
COMMON/mycon/ipotfl 
COMMON WORK(18000) 
common/draw/HEADER 
common/drawc/HXAX 
common/drawb/HYAX 
common/drawa/TLABHI,TAXHI,XAXIS,YAXIS 
common/draw1/XSC,YSC,IMS,ZINCR,ZPLANE,ZLO,ZHI 
common/draw2/pincr,pplane,potlo,pothi,ILABEL,THEIGHT 
common/potmin/pmin,pmax,pot(n1pts,n2pts) 
common/const4/xmin,xmax,nXpts,dx,ymin,ymax,nYpts,dy,npacket 
common/mass/AM1,AM2,AM3,AMab,AMcxab,AJAcob 

do 123 iy=1,n2pts 
do 123 ix=1,n1pts 

. absdat ( ix, iy) =abs ( zdat ( ix, iy)) 
123 continue 

iHav=int(Have*harwn/rsnorm) 
XMINA=xmin*aO/sqrt(AMab) 
XMAXA=xmax*aO/sqrt(AMab) 
YMINA=ymin*aO/sqrt(AMab) 
YMAXA=ymax*aO/sqrt(AMab) 
ENCODE(24,13,HEADER1)t 

13 FORMAT('wavepacket t=',f6.1,' fs.$') 
ENCODE(43,67,HEADER2)rsnorm,iHav 

67 FORMAT('!psi!= ',f5.3,10x,'<(H)> = ',i7,' cm-1$') 
IF (IMS .EQ. 1) THEN 

RATIO=(YMINA-YMAXA)/(XMINA-XMAXA) 
YAXIS=RATIO*XAXIS 

END IF 
CALL AREA2D (XAXIS,YAXIS) 
CALL HEIGHT(TLABHI) 
CALL HEADIN(HEADER,100,1.3,3) 
CALL HEADIN(HEADER1,100,1.1,3) 
CALL HEADIN(HEADER2,100,0.9,3) 
CALL HEIGHT(TAXHI) 

c Setup graph with origin at XMIN,YMIN and ticks at every XSC and YSC 
CALL GRAF (XMINA,XSC,XMAXA,YMINA,YSC,YMAXA) 

C SET CONTUR PARAMETERS 
CALL BCOMON (18000) 

if (pplane.eq.O) then 
CALL ZBASE(PMIN) 

else 
CALL ZBASE(PPLANE) 

end if 
ipotfl=O 
if (PINCR .eq. 0.0) then 

CALL CONMAK(POT,n1pts,n2pts,'SCALE') 
else _ 

CALL CONMAK(POT,n1pts,n2pts,pincr) 
end if 

CALL CONLIN (0,'MYCON','NOLABELS' ,1,10) 
CALL CONMIN(6.0) 
CALL CONANG (90.) 
CALL HEIGHT (THEIGHT) 
CALL CONTUR (1,'LABELS' ,'DRAW') 
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C now plot the wavefunction ************* 
CALL CONMIN(6.0) 
CALL CONANG (90.) 
CALL RESET('CONLIN') 
ipotfl=1 
call reset('zbase') 
if (zplane .ne. 0) then 
call zbase(zplane) 

end if 
IF (ZINCR .eq. 0.0) THEN 

CALL CONMAK (absdat,n1pts,n2pts,'SCALE') 
ELSE 

CALL CONMAK (absdat,n1pts,n2pts,ZINCR) 
END IF 
CALL CONLIN (O,'MYCON','NOLABELS' ,2,10) 
CALL HEIGHT (THEIGHT) 
CALL CONTUR (1,'LABELS','DRAW') 
CALL ENDPL(O) 

C CALL FLUSH(6) 
RETURN 
END 

c *********************************************************** 
subroutine iniplt(arg,itime) 

c *********************************************************** 

implicit real(a-h,o-y) 
implicit integer(i-n) 
implicit complex(z) 
character arg*70 
include "param.inc" 
common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
COMMON WORK(18000) 
common/draw/HEADER 
common/drawc/HXAX 
common/drawb/HYAX 
common/drawa/TLABHI,TAXHI,XAXIS,YAXIS 
common/pot/xypot(n1pts,n2pts,2) 
common/potmin/pmin,pmax,pot(n1pts,n2pts) 

if (itime .eq. 1) then 
C Initialise device 

if (arg.eq.'tek')then 
call tk4014(960,1) 

else 
if (arg.eq.'cgm') then 
call opngks 

else 
write(6,*)'arg=',arg,'-Not valid graphics device. Exiting ... ' 
stop 

endif 
end if 

C SET AXIS PARAMETERS AND ALPHABETS 

CALL RESET ('ALL') 
C SCRAP SUMMARY MESSAGES BUT DIRECT ERROR MESSAGES TO SCREEN 

CALL SETDEV(6,0) 

\ 

CALL PAGE (16.,14.) 
CALL INTAXS 
CALL BASALF ('L/CST') 
CALL MIXALF ('STAND') 
CALL HEIGHT(TLABHI) 
CALL YNAME (HYAX,lOO) 
CALL XNAME (HXAX,lOO) 
CALL YAXANG(O.) 

C Do some work on the potential array 
end if 
pmin=9.9e36 
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/ 

50 

60 
100 

pmax=-9.9e36 
DO 100 J=l,n2pts 

DO 50 I=1,nlpts 
if (xypot(i,j,itime) .lt. pmin) pmin=xypot(i,j,itime) 
if (xypot(i,j,itime) .gt. pmax) pmax=xypot(i,j,itime) 

CONTINUE 
DO 60 I=l,nlpts 

pot(I,J)=xypot(i,j,itime)*harev 
CONTINUE 

CONTINUE 

C Note currently being lazy here, should use an equivalence and save 
C memory for the extra potential array; however this loop is vectorized! 

RETURN 
END 

c *********************************************************** 
subroutine inidrw() 

c *********************************************************** 
implicit real(a-h,o-z) 
implicit integer(i-n) 
CHARACTER*60 HEADER,HYAX,HXAX 
common/draw/HEADER 
common/drawc/HXAX 
common/drawb/HYAX 
common/drawa/TLABHI,TAXHI,XAXIS,YAXIS 
common/drawl/XSC,YSC,IMS,ZINCR,ZPLANE,ZLO,ZHI 
common/draw2/pincr,pplane,potlo,pothi,ILABEL,THEIGHT 

C Read in parameters for plot from file 
C Parameters are HEADER - Title for system 
C TLABHI - title label height (inches) 
C HXAX - x axis label 
c HYAX - y axis label 
C TAXHI -axes label height (in.) 
C XAXIS - x axis length on plot (in.) 
C YAXIS -y axis length on plot (in.) 
C XSC x axis tick mark spacing 
C YSC - y axis tick mark spacing 
C IMS - scale axes to be equal magnitude 
C (overrides YAXIS value if set) 
C The following four parameters refer to psi (wavepacket) 
C ZINCR - contouring interval (0 automatic) 
C ZPLANE - base contour level for contour generation 
C ZLO - lowest contour level to plot 
C ZHI - highest contour level to plot 
C The following four parameters refer to potential function 
C PINCR - contouring interval (0 automatic) 
C PPLANE - base contour level for contour generation 
C POTLO - lowest contour level to plot 
C POTHI - highest contour level to plot 
C The remaining refer to optional labelling of both sets of contours 
C ILABEL - label all contours (1=yes) 
C THEIGHT- contour label height (in.) 

OPEN(19,FILE='par.dat' ,STATUS='OLD') 
READ(19,124)HEADER 

124 FORMAT(A60) 
READ(19,*)TLABHI 
READ(19,9)HXAX 
READ(19,9)HYAX 

9 format(a60) 
READ(19,*)TAXHI 
READ(19,*)XAXIS,YAXIS 
READ(19,*)XSC,YSC,IMS 
READ(19,*)ZINCR,ZPLANE,ZLO,ZHI 
READ(l9,*)pincr,pplane,potlo,pothi 
READ(19,*)ILABEL,THEIGHT 
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CLOSE(19) 
WRITE(6,*)'Read Drawing Parameters from file "par.dat"' 
RETURN 
END 

c ********************************************************** 
SUBROUTINE MYCON(RARAY,IARAY) 

c ********************************************************** 
implicit real(a-h,o-z) 
implicit integer(i-n) 
COMMON/mycon/ipotfl . 
common/draw1/XSC,YSC,IMS,ZINCR,ZPLANE,ZLO,ZHI 
common/draw2/pincr,pplane,potlo,pothi,ILABEL,THEIGHT 
DIMENSION RARAY(1),IARAY(1) 

C this routine determines levels that contour is plotted at. 
C See DISSPLA documentation for more details 

if (ipotfl .eq. 0) then 
call dash 

else 
call reset('dash') 

end if 

IF (ipotfl .eq. 1) then 
if ((RARAY(l) .GT. ZHI) .or.(RARAY(1) .LT. ZLO)) then 

IARAY(2)=0 
IARAY(3)=0 
IARAY(9)=0 

else 
IF (!LABEL .EQ. 1) THEN 

RARAY (2) =1. 0 
IARAY(2)=1 

ELSE 
IARAY(2)=0 

END IF 
IARAY (1) =1 

endif 
END IF 

IF (ipotfl .eq. 0) then 
if ( (RARAY(l) .GT.pothi) .or. (RARAY(1) .LT. potlo)) then 

IARAY(2)=0 
IARAY(3)=0 
IARAY(9)=0 

else 
IF (!LABEL .EQ. 1) THEN 

RARAY (2) =1. 0 
IARAY(2)=1 

ELSE 
IARAY(2)=0 

END IF 
IARAY (1) =1 

endif 
END IF 

RETURN 
END 

C************************************************* 
subroutine absdrw(omega,Eprsq,jFT) 

c ************************************************ 

C Draw the absorption spectrum after the run complete 
C On the tek or cgm device that may or may not of have been opened 
C for wavepakcets earlier! 
c 

implicit real (A-H, o-z) 
implicit integer(i-n) 
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parameter (riFFT=8192) 
dimension Eprsq(nFFT),omega(nFFTI 
common/convert/harev,evwn,aO,amu,emu,harwn,amass,atu 
common/const7/ Espmin,domega,novsav,npktsav 

C upper point on P.E. spectrum plotted is Espmin (in eV) 

Espev=Espmin*harev 
C use simple plot x-y primitive from DISSPLA 

call HEIGHT(0.20) 
call AREA20(12.0,10.0) 
call XNAME (' (E)lectron (E)nergy I (eV)$',100) 
call YNAME(' (I)ntensity$' ,100) · 
call HEADIN(' (S)imulated (P)hotoelectron (S)pectrum$',100,1.1,1) 
call graf(0.0,0.2,EspeV,0.0,0.2,1.0) 
call curve(omega,Eprsq,jFT,O) 
call endpl (0) 
return 
end 

c **************************************************** 
subroutine iniplt2(arg) 

c **************************************************** 

implicit real (A-H,O-ZI 
implicit integer(i-nl 
character arg*70 

C Initialise device 
if (arg.eq.'tek')then 
call tk4014(960,1) 

else 
if (arg.eq.'cgm') then 
call opngks 

else 
write(6,*)'Not valid graphics device. Exiting ... ' 
stop 

endif 
end if 

C SET ALPHABETS 

CALL RESET ('ALL' ) 
C SCRAP SUMMARY MESSAGES BUT DIRECT ERROR MESSAGES TO SCREEN 

CALL SETDEV(6,0) 
CALL PAGE (16.,14.) 
CALL INTAXS 
CALL BASALF ('L/CST'I 
CALL MIXALF ('STAND') 
CALL COMPLX 
return 
end 

c **************************************************** 
subroutine pltfin 

c ***************************************~************ 
C Close up plotting device 

call DONEPL () 
return 
end 
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