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Monte Carlo calculation of multi-electron effects on synchrotron radiation 

Chunxi Wang 

Lawrence Berkeley Laboratory, Advanced Light Source 
1 Cyclotron Road, Mail Stop 2-400, Berkeley, CA 94720 

ABSTRACT 

The phase space distribution and time structure of an electron beam have fundamental influences on synchrotron 
radiation properties. These influences are due to the superposition of radiation from all electrons, each following a different 
trajectory. When the radiation wavelength is longer than the electron bunch length, coherent superposition occurs and 
results in the observed coherent synchrotron radiation. Usually the wavelength_ we use is much shorter, so incoherent 
superposition occurs and the emitt'!nce effect is the dominant multi-electron effect. The Monte Carlo simulation is a 
straightforward and generally valid approach to compute the multi-electron effects on synchrotron radiation. In this paper, 
we show how the Monte Carlo method can model these multi-electron effects systematically and discuss the statistical 
principles governing such simulation and their implication on the computing power requirement. We also describe the 
implementation of an efficient algorithm to calculate a single electron radiation spectrum, which is important to make the 
Monte Carlo simulation practical. Some calculated results are shown to demonstrate the methods. Comments on the 
usefulness and limitation of the Monte Carlo method are presented. 

1. INTRODUCTION 

Synchrotron Radiation (SR) is generated by billions of electrons, usually bunched, in an electron beam. The multi­
electron effects dominate many features of the radiation. When the electrons radiate coherently, we observe coherent 
synchrotron radiation, 1 in which the radiation intensity is enhanced dramatically. Usually the electrons radiate incoherently 
and their effects, knowri as the beam emittance effects, tend to degrade the single electron radiation properties. In fact, the 
emittance effects are so important that a criteria for the third generation SR sources is based on the magnitude of electron 
beam emittance. Convolution of a single electron's radiation with electron phase space distribution is widely used to 
calculate the emittance effect. This method is based on the approximation that the radiation distributions of all electrons 
are related by a simple coordinate transformation. Another way to take into account all the multi-electron effects is the 
well-known Monte Carlo simulation method.2 

The Monte Carlo method is a straightforward and generally valid approach to accommodate systematicapy the multi­
electron effects in SR calculations. In fact, we can simulate an electron bunch, trace the trajectory of each electron and 
calculate its radiation, then superpose the radiation directly. However, such an approach is often too time consuming to be , 
practical because of the large number of individual calculations of single electron radiation. Thus, a clear understanding of 
the statistical principles governing the multi-electron radiation process is important to an efficient simulation algorithm. 
Moreover, reduction of the computing time for each electron is extremely important to a practical Monte Carlo simulation. 
In this paper, we discuss the implementation of the Monte Carlo method, especially the statistical model governing the 
simulation of coherence effects. According to the statistical model, it is necessary to average the radiation intensity in 
addition to superpose electric fields of different electrons. It turns out that the intensity averaging process is the most time 
consuming requirement for the Monte Carlo simulations. Coherent synchrotron radiation and emittance effects are 
demonstrated. Following the discussion on the Monte Carlo method, we describe. in detail the implementation of an 
efficient algorithm to calculate the single electron radiation. This algorithm, which is based on a recently reported concise 
expression of a classical radiation spectrum3 and the fast Fourier transform (FFT) method,4 can greatly reduce the 
computation required for the Monte-Carlo calculation. Algorithms discussed in this paper have been implemented in the 
program RADID.5 Some results calculated for the ALS US undulator are presented to show the capabilities of RADID in 
handling the effects due to magnetic field errors, beam emittance, and finite observation distance. Finally, we make some 
comments on the Monte Carlo method based upon our experience. 
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2. MONTE CARLO SIMULATION OF MULTI-ELECTRON EFFECTS 

2.1 Statistical model of the simulation 

/ 

A basic physical quantity in radiation calculations is the flux (power) density spectrum I(ro):6 

I(m) oc !J_:E(t)eimtdtl
2

, (1) 

where E(t) is the electric field at the observation point. In principle, E(t) should be a linear superposition of the electric 
fields from all electrons. Suppose we have N electrons, thus: 

N 
E(t) =I. E. (t) . (2) 

j=l J 

The summation can be performed either before or after the Fourier transform based on the linearity of the 
transformation. Since the Fourier transform is a major time consuming calculation, it would be logical to perform the field 
amplitude superposition first if a large number of such superposition were all we need to simulate the multi-electron effects. 
In the following, we discuss the basic requirements in a simulation and evaluate the Jeasability of the above approach . 

. To simplify our discussion, let us consider the case that all Ej have the same form E(t) but with different arrival time 
tj; i.e. 

N 
E(t) =I. E(t+ti) 

j=l 

According to the Fourier transform time shifting theorem, the spectrum becomes, 

I(m) oc 1'7 E(t) eimtdt 1
2 

x I ~ eimti 1

2 

-oo J-1 

(3) 

(4) 

= ( single electron spectrum ) · x '11[_ , 

where the multi-electron effects are included in the factor 9{. and we have, 

. 'lll=lnl2=1~;imtil2 =N+ I,eim(tj-tk) (5) 
j=l . j-k 

Generally, fj is a random variable. It is a common argument that, when fj is distributed over a range larger than 21t/ro, the 
large number of terms in the summation of Eq. (5) will cancel each other and result in an incoherent superposition with the 
expectation value "i£ = N; on the other hand, if m tj « 1 , coherent superposition occurs and "i£ = N 2. 

When the distribution of tj is known, one can cal~ulate the average value of '11[_ in detail. Let us assume that mtj has a 
Gaussian distribution with variance a, it is easy to verify that: 

- ...-2 { N 2 , a~ 0 91£= N +N(N -J)e-v = 
N ' (j~oo 

(6) 

So far, only standard procedures 7 • ~ have been used. Although the superposition of field amplitudes seems to account 
for the coherence effect, if one tries to implement the procedure, a subtle statistical problem is encountered. No matter how ' 
large N, 9{ does not converge to the expected average value N of Eq. (6) in the incoherent limit. 

To understand what the problem is, we calculate the variance of 9{ in the above Gaussian distribution case and find, 

a~ = N(N -1) + 2N(N -1)(N- 2)e-0"2 - 2N(N -1)(2N .:..3)e-2CJ2 + 2N(N -l)(N -2)e-3CJ2 + N(N -l)e-40"2 
(7) 

0" ~ 0 

0" ~ 00 

We see that the fluctuation 0"?£ is nearly equal to the expectation value N. In fact, this result is quite independent of 
the detailed distribution of the random variable tj. Here, we give the general statistical properties of n and 9{without 
proof. 8,9 ' · 
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• For a series of' independent random variables fj the -quantity .n =I ei'rJJt; is a rand0m vatiiable:; in the ,case <Of .N.-:t:eo_, 
1=1 

Re { n} and Im { n} are independent random variables that follow ;the ·Gaussian distribution law. 

• In the above Gaussian limit, 9{. = lnl2 is a random variable, whose probability ,distribution is :the :negative .exponentiaUaw: 

PnJ (x) = !. e-x('if. .(8) 
' J'(. 9{. 

with expectation 9{_ = N and variance aN. =N. 

The statement on n can be understood intuitively through the weH known central limit theorem though a rigorous proofis 
rather involved. The statement on 9{. can be derived from the properties of n. 

The reason we do not observe such fluctuations in experiments (In fact, similar fluctuations do exist in the laser 
speckle phenomena) can be explained by the intensity average over a long observation interval or a finite bandwidth, etc. 
Detailed explanation involves fundamental measurement theories.9,10 

FoMour modeling purpose, let us simply consider a summation over M similar experiments. The observed quantity now 
is D =I, l; , which is a random variable resulting from the summation of M independent random variables that have the 
same iifegative exponential distribution. From standard probability theory we know that, U follows a Chi-square 
distribution, 8,10 

P. ( . ) I I M-1 -x/9{ 
X ==---X e 

D g,(_M r(M) 
(9) 

with expectation Ji = MN and variance a0 = {M N . We see that the signal to noise ratio is ...Jfi after the intensity 
averaging. 

From the above discussion we see that, in order to simulate the multi-electron effects resulting from superposition of 
the radiation fields of N electrons, two averaging steps are involved. One is the summation of the electric fields of N 
electrons, the other is the summation of M independent intensity observations. So the total electrons needed in a simulation 
is NM. Because the computation required for such simulation is proportional to NM, a reasonable choice of Nand M is very 
important. As we know that 1 I .JM determines the calculation accuracy, it should be on the order of 1000. This is a very 
strong requirement that limits the efficiency of the Monte Carlo simulation method. One may think that N should also be a 
large number according to the argument following Eq. (5). Fortunately, this is not the case. From. the above discussion we 
see that N may need to be large enough to guarantee that the random variable n approaches the limit determined by the 
central limit theorem. Nonetheless, N =4 usually gives a good approximation.8 This means that it does not help much in 
reducing the computation by performing the electric field superposition in the time domain. Although our discussion is 
based on a special case Eq. (3) instead of Eq. (2), it is clear that the two step averaging procedure is appropriate for the 
general simulation of multi-electron effects. The intensity averaging process is indispensable and turns out to be the main 
factor that limits the efficiency of the Monte Carlo method. The general signal to noise ratio is proportional to (though not 
exactly equal to) 11-JM, which provides a rough estimate of the amount of computation required and the simulation 
accuracy. 

2.2 Implementation of the Monte Carlo method 

Following the above model, the implementation of the Monte Carlo method is quite straight forward. In fact, the 
simplicity in implementation and the general applicability of the method are an attractive aspect of the Monte Carlo 
method. We simulate an electron bunch with a large number of samples, which are generated randomly according to the 
beam transverse and longitudinal phase space distributions. For each sample, we use its position and velocity as the initial 
conditions, trace its trajectory through the magnetic field of a device and then calculate_ its radiation field Ej- Such a 
routine is repeated for the NM electron samples. The electric fields of every successive N samples are superposed and then 
their radiation intensity is calculated. Finally, the M intensity values are summed and averaged by the number of samples. 
In the following, we discuss some details concerning each process. -

In a storage ring, the transverse phase space distributions of an electron beam are given by: 

P(x,x') = _l_e -2~x (rxx2+2axxx'+.Bxx'2)dxdx', 
2.1r Ex · 

(10) 
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where 

(x2 )=/3xEx; (x'
2

)=rxex; Yx = (1+a~)!f3. 
ex is the beam emittance, f3x is the amplitude function and rx. ax. are the Twiss parameters~ lbe subscript X represents 
either horizontal or vertical direction. Transforming to a standard binary norma_! distribution, we have: 

I 1 ( x
2 xx' x'

2 
) 

P(x,x')= ne-z(l-p2) a2 -Zp~+ a2, dxdx', {11) 
27CGxGx' }-p2 X X· x 'X 

where 

Gx=~f3xex; Gx'=~rxex; p=~1-(ex/axax')2· 
This form of random distribution can be simulated by standard library routines using the transformation:2 

x = x0 + Gx~ (~1-p2 cos2rcv + psin21t'v). 

x'=x0+ax,vf-2lnu sin2rcv, 

where u andv are random variables uniformly distributed in the interval (0,1). 

(12) 

The longitudinal or time structure of a bunch is simulated independently by using a Gaussian distribution with an rms 
bunch length O"z. Of course, there are many other possible bunch structures in a linac. In fact, we can accommodate as 
much information as necessary (e.g. beam energy spread) for the electron beam simulation. 

A major task in the simulation is to trace each electron trajectory in the magnetic device. in principle, the trajectories 
·can be calculated numerically. However, such a process is usually rather time consuming because thousands of iterations 
are required. A us'eful approximation is to relate all electt:on trajectories to a reference central orbit through a simple linear 
transformation: 

x(z) ::= f3ox (z-zo) + X(z) 
y(z) ::= /3oy (z-zo) + Y(z) . _ (13) 

Dp(z) =ct-z ::= Dp0(z)+t<f36x +f3cry)(z-zo)+[/3oxX(z)+/3oyY(z)] 

where X(z), Y(z) and DpO(z) specify the central orbit. Such an approximation is basic to the convolution method of 
calculating the emittance effect. However, in the Monte Carlo simulation method, it is just a useful approximation to save 
computation. The central orbit can be calculated in many ways and a measured magnetic field can be used also, which is 
important in order to take into account the field error effects. · 

The main task of calculating the radiation field of each electron is necessary though rather time consuming. The 
transformation trick similar to that used in the trajectory calculation usually does not help because of the vast amount of 
information (both spatial and energy domain) involved in the radiation spectra. Here, we are talking about a general 
spectrum that has no analytical expression. A complete discussion of the single electron radiation calculations is a topic 
beyond this paper. However, because of its importance to a practical simulation, we describe in detail the implementation 
of an efficient algorithm to calculate a single electron spectrum in section 3._ 

2.3 Simulation of coherent synchrotron radiation 

Coherent synchrotron radiation was observed in an experiment using the Tohoku 300 MeV electron linac in 1989 for the 
first time. It supports the simple theory that: when the radiation wavelength is longer than the electron bunch, all electrons 
in the bunch radiate coherently like a single particle. This phenomena is well accommodated in the statistical model 
presented in section 2.1 .' Here we show some simulation results to demonstrate our discussion about the statistics. 

In these simulations, we use parameters similar to the experiment in Ref. 1. The electron beam energy Ee=150 MeV 
and the bending radius R=2.44 Iil. The electron bunch length O"z=0.25 mm and beam emittance is zero. In Fig. 1, we show 
the influence of different M on the simulation with constant N=10. The coherent and incoherent Superposition results appear ;, 
naturally in the same simulation routine. The coherence occurs in tqe wavelength range that is longer tpan the bunch 
length. The maximum coherence enhancement is exactly 10, the number of electrons involved in the electric field 
superposition. The fluctuations discussed in section 2.1 also appear and go down with the increase of M. We also see that 
the fluctuations occur only in the incoherent regime. This is because the linear superposition process converges to the 
average value in the coherent regime; see Eq. (6). 
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Fig. 1. The intensity averaging process. Three curves use 
the same N=lO but different M values as labeled. They 
are shifted vertically to show the fluctuations clearly. 

10000 

1000 M=5,000 

No1 

10 0.1 O.G1 

Photon wavelength in mm 

Fig, 2. Linear enhancement of intensity with the increase 
of N in the coherence regime. Influence of N on the 
statistical fluctuations is barely noticeable. 

In Fig. 2, we show the increase of coherence enhancement with N while M=5000. As expected, the intensity goes up 
quadratically (linearly relative to the incoherent values) with N in the coherence regime. The influence of N on statistical 
fluctuations is barely noticeable. We also see that the N=l case, in which no electric field superposition process is 
involved, gives the incoherent result. This allow us to neglect completely the field superposition process and makes the 
simulations of other multi-electron effects more efficient when we are interested in the incoherent regime. 

Though the above procedure works well to simulate 
the coherence effect between electrons, it seems 
impractical to simulate the millions of electrons in a real 
bunch. However, we can use this procedure to extract the 
electron bunch form factorl by using the result obtained 
with a small number of N. The problem with this method is 
that we may lose some information around the region that 
the coherence enhancement just begins to build up. With 
small N, such enhancement may be lower than the 
simulation fluctuation errors. There is. a tradeoff between 
accuracy arid efficiency. 

In Fig. 3 we show a result simulated in this way. As 
above, we use the same reported case. The parameters 
used are N=lO, M=lOOO. If the coherent enhancement is 
less than 10%, it is disregarded and considered to be 
noise. The number of electrons in a bunch in this case is 
3.6x106 and crz=0.054mm (correspo~ding to the reported 
0.25mm full length half maximum bunch length). 
The average beam current is lJ.l.A. The solid curve is the 

le+ll 

1,;,+10 
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::1 1e+09 ... 

...... 

"' < 1e+08 "0 

"' ~ 1e+07 ...... 

"" '"! 
o 1e+06 
...... 
Ill 

~ 100000 
0 .., 

_g 10000 

"' 1000 

100~--~--~~~_u~--~--~~~-W--~~ 

100 1000 10000 100000 le+06 1e+07 
Photon wavelength in A 

le+08 le+09 

Fig.3 Simulation of a coherent SR experiment. 

simulation result. The dashed curve is the single electron spectrum. All of the main features are comparable with 
experiment. One can also see the cutoff at the edge. Here our purpose is to show the Monte Carlo method rather than 
explain the experiments, so some factors such as acceptance angle, beam size, and energy spread have not been taken into 
account. 

Although it may not be necessary to use the relatively inefficient simulation method to calculate the coherence 
enhancement of bending magnet SR, the method described in this paper. has the potential to simulate much more 
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complicated experiments in which coherent superposition of radiation from different electrons is important whereas 
analytical analysis may be too involved. 

2.4 Simulation of emittance effects 

Unlike the above coherence effect between electrons, the emittance effects are much more familiar in most SR 
applications and it is of practical importance to be able to calculate these effects accurately. Through a very simple 
mechanism--incoherent superposition of the radiation from different electrons, the electron beam emittance can affect most 
aspects of the radiation properties of all kinds of devices. The general applicability of the Monte Carlo simulation, as 
described in section 2.2, makes it an appealing method to calculate emittance effects. Since ou.r purpose here is to examine 
the Monte Carlo method rather than electron beam emittance effects in general, we just show a few simulations of an 
interesting case: the transitio!l of a high K undulator spectrum to a wiggler spectrum, in which the beam emittance plays an 
important role. · 

The periodic field structure in an undulator or wiggler makes its radiation spectrum consist of discrete harmonics, 
which results from the coherent interference of the radiation from different parts of a single electron trajectory. However, we 
usually observe the harmonic spectrum in a low K undulator and a broad bending. magnet like spectrum in a high K wiggler. 
This is because the relative spacing between the harmonics decreases as K-3 (K>>I) at the critical energy, around which 
most power is radiatedll,l2. So for a large enough K, the harmonics become so close that they are smoothed by the beam 
emittance or finite observation resolutions. In Figs. 4-7, we show transition from an undulator to a wiggler through the on­
axis flux density spectra of a 14 period sinusoidal device with A.u=20cm, K=IO and Ee=l.5 GeV. 

Fig. 4 shows the single electron spectrum calculated with the algorithm described in the next section. There are 
hundreds of equally spaced undulator harmonics with a bending magnet spectrum-like envelope (a few glitch-like spikes at 
high energy have been removed). Only odd harmonics are present. The blowup shows the well~defined harmonics in detail 
at high energy. The following three graphs show the on-axis spectrum including emittance effects with Ex=620nmrad, 
O'x=2.6mm, crx•=0.58mrad and Ey=48nmrad, <Jy=0.47mm, cry•=0.17mrad. 
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Fig. 4. On-axis flux density spectrum of a single 
electron. See details in blowup. 
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Fig. 5. Emittance included spectrum calculated 
with 3600 electron samples. · 

Fig. 5 shows the spectrum of Fig. 4 including the emittance effects. At low energy, as in a typical undulator, ·the 'harmonics 
are broadened and even harmonics appear also. The peak reduction due to the emittance can roughly be accounted for by 

I/~(l+(O'x'/O'r')2)(1+(cry'/O'r')2), where O'r' is the angular width of a harmonic. As the energy increases, the harmonics 

merge into a broad bending magnet like spectrum. The peak reduction at high energy is roughly 1/" l+(O'y'lO'r')2fN, but r. 

here O'r' is the bending magnet vertical angular distribution width. The factor liN means that the coherence enhancement 
among the radiation of different parts of the trajectory is killed by the beam emittance. So this device behaves like an 
undulator at low energy and like a wiggler at high energy. The fluctuations are still quite noticeable even with 3600 
electron samples in this case. 
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In order to examine the electron ensemble size influence, we calculate the same spectrum with a much smaller M=400 
and show the result in Fig. 7. The first few harmonics are plotted in Fig. 6. The two curves correspond to differentM, 3600 
vs. 400. We see that, in the undulator regime, the much smaller ensemble size gives nearly the same result, especially at 
the odd harmonics. This is very important to practical applications of the Monte Carlo method. Comparing Fig. 7 and Fig. 5, 

especially the blowups, we see that the fluctuation decreases as 11{/i, which is the expected result. In the wiggler regime, 
it is possible to extract a much more accurate spectrum from the fluctuations by a least squares fit or other methods. From 
Figs. 5 and 7 we see that the transition starts around 50 eV, which is about 0.5AuCT} in wavelength and independent of the 

deflection parameter K and the harmonic number n. This gives an upper photon energy limit for a certain storage ring, 
above which no undulator harmonics .can be generated. 

3 .Se+l4 ..--..---..---..---..---,--..---..---r---, 

..: 3e+l4 

"' 
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.;::. 2.5e+H 
~ 
~ 
a 2e+l4 

' .., .... 
~ l.Se+14 ., 
' " g le+l4 

~ ..: 
"' 5e+l3 

Photon energy in eV 

M=3600-
M=400-

. Fig. 6. The first few harmonics of the emittance included 
spectra calculated with a different ensemble size. 
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" e ..... .. .... 

0 ..... ., 
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..... 
" c 
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'5 ..: .. 

Photon energy in eV 

Fig. 7. Same as Fig. 5;but using a much smaller 
M=400. So the fluctuations is 3 times larger. 

3. AN EFFICIENT ALGORITHM TO CALCULATE A SINGLE ELECTRON SPECTRUM 

3.1 Theoretical and computational background 

The primary goal of most radiation calculations is to obtain the energy spectrum. As discussed above, an efficient 
method to calculate a single electron spectrum is very important to the Monte Carlo simulation. It is well known that the 
spectrum, which is the energy radiated by an electron into a unit frequency interval and unit area, is given by:6 

d2I 1 e2 I Joo{nx[(n-~)x~] (n-~)c } iw(-r+ R(-r))d 1
2 

-------- + e -r 
dcodA- 4nt:o 4n2c -= (l-n·~)2R y2(l-n·~)2R2 c 

(14) 

The far field approximation form is: 

_Q_L=-1-L!!L Jnx(nxP)euo T--c- d-r 2 2 2 1 co . ( D-Xe ) 1
2 

da>dQ 4n-Eo 4tr2c -co 
(15) 

Despite a few analytical results for some ideal cases, such as the bending magnet or the sinusoidal undulator radiation 
spectra, it is often necessary to calculate Eq. (14) numerically. In order to take into account the magnetic field errors, finite 
observation distance, etc., an algorithm capable of computing the spectrum of an arbitrarily moving electron is required. 
Usually such calculations are rather complicated and time consuming. 

The main difficulty of numerical calculation of Eq. (14) comes from the fast oscillating phase term which makes 
ordinary integration routines very inefficient or even unworkable. A natural idea is to use the FFT method because a 
spectrum is basically determined by a Fourier transform of the electric field, and the FFT method is a well known efficient 
numerical algorithm to perform such a transformation. However, Eq. (14) is developed mainly for analytical calculations 
and is rather awkward for numerical computation. In search of a better way to calculate a spectrum, a much more concise 
expression of a single electron radiation spectrum was found:3 

I 1

2 
2 atzw4 oo . 

_dd I = -- J n(ret)e'rot dt 
rodA 4n2c2 

-oo 
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The expression in Eq. (16) is generally equivalent to Eq. (14) and provides a much more efficient way to calculate the 
spectrum. 

As discussed in Ref. 3, Eq. (16) has several advantages for numerical radiation calculations. First, it is equivalent to 
Eq. (14) under the condition R » yA., where y is the relativity factor and A. is the radiation wavelength. It i~ clear that this 

condition is satisfied in most practical SR applications even in the region where the near field effectl3 is significant. So 
Eq.(16) can be used for all situations in SR calculations. Secondly, it is in an exact form of the Fourier transform and we 
can take advantage of the FFT method directly. Usually we can get the entire spectrum with the FFT method in the time to 
calculate one frequency point by ordinary integration routines. Thirdly, the function to be transformed is much easier to 
calculate, which is Important for an efficient algorithm. Moreover, to calculate n, only trajectory information is required. 
This may be important when the amount of required compQter memory is of concern. Considering all the advantages of 
Eq.(16), we believe that it provides the most efficient algorithm to perform SR spectrum calculations when the FFT is 
applicable. In the following section, we discuss several important issues in the implementation of this algorithm. Some 
results calculated with this algorithm are shown in section 4. 

3.2 Implementation of the algorithm 

To use Eq. (16) numerically, we first change the integration limits because they are impractical for numerical 
calculations. A natural choice is the physical boundaries of a device. Unlike Eq.(l4), the integrand n(t) usually does not 
vanish outside a magnetic field. So we have to include two boundary terms and Eq. (16) can be changed to: 

d
2
I _ ah I nx(nx~) irorltb .(0 irorltb ro2Jtb irord 1

2 

----- e -z-ne -- ne t 
drodA 4n2 (1-n·~)R ta c ta c ta (17) 

For a detailed discussion of the boundary terms, please refer to Ref. 14. The integration term in Eq. (17) is suitable for 
numerical calculation while the boundary terms are easy to take care of. 

In order to use the FFT method to calculate the integration of Eq: (17), we must sample the function n(t) at equally 
spaced discrete points in the time domain. To do this, we first calculate the direction vector n. Noticing that n should be 
calculated in the electron time frame and the Fourier transform is done in the observer time frame, we have to change. the 
time frame first. Usually, the trajectory is calculated with the longitudinal coordinate z of a magnetic device as the 
independent variable. Both the trajectory and t(z) are calculated at a constant increment of z and this information is stored 
in arrays. Then we interpolate these data to obtain n(t) at the sampling points. The sampling interval Llt is chosen to satisfy 
the Nyquist criteria.4 

There is another issue before we do the FFT. Generally, n(t) is not equal to zero at the boundary points ta and tb. This 
turns out to cause a serious problem for the FFT method. To solve this problem, we introduce a new quantity ii by 
subtracting a linear vector term from n: 

ii(t) =·n(t)-n{ta)- n(tb)-n(ta) (t-ta) (18) 
tb -ta 

The new function ii(t) is suitable for FFT while the linear term can be integrated analytically and combined with the 
boundary terms. 

The computing accuracy of both ii and t is very important but not easy to maintain, because the leading term of ii is a 
constant and the absolute error of mt has to be much smaller than one while its magnitude may change several orders. 
Fortunately, the accuracy still can be maintained even with single precision variables through careful programming. There 
are several other typical issues about the usage of FFT routines to make the calculation more efficient. For example, 
usually only the two transverse components, Ex and Ey, need to be calculated. So we combine the two real 'quantities into 
a complex one and perform the FFT only once to get all the information required. 

3.3 Limitation of the algorithm and other approaches 

Although the above algorithm is quite versatile, it has limitations and disadvantages which are due to the Fourier r, 

transform method. The main limitation comes from the Nyquist criteria. To avoid aliasing, there should be at least 2 
sampling points in each period at the highest frequency. Usually, the radiation spectrum is not band-limited and we have to 
choose a cutoff frequency. Let us consider a typical case, an N period undulator with deflection parameter K. The critical 
harmonic number Nc is given by)l 
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Nc =-K 1+- - -K3 3 ( K2) 3 
4 2 8 

for Klarge (19) 

Suppose we choose lONe as the cutoff frequency, the number of sampling points Ns should be 20NNc- 7.5NK3, which 
goes up very fast with K. For example, if N=lOO and K=IO, the required sampling points is on the order of 220 or 106, 
which may cause difficulties for limited computer memory resources. The calculation speed is approximately proportional · 
to Nslog2Ns, so the calculation will be slowed down very quickly also as K increases. This means that methods based on 
the FFT are not suitable for wiggler type, high-K devices. 

To overcome this difficulty, the FFT -Filon methodS may be a useful algorithm. Another option is to follow a 
completely different idea. In general, for high K devices, the phase term in Eq. (14) is oscillatingso fast that the stationary 
phase methodS gives a good approximation. This· idea has been developed into another efficient algorithm for high K 
devices with arbitrary beam trajectory. 

4. SOME APPLICATIONS AND COMMENTS ON THE MONTE CARLO METHOD 

4.1 RADID: software for synchrotron radiation calculation 

RADID is software developed by the author for general SR radiation calculations including all relevant factors, such as 
magnetic field errors, beam emittance, and near field effects. The radiation properties that can be calculated include all the 
information available in the Stokes description 7 of a radiation field. All kinds of 2D or 3D insertion devices can be 
calculated. Measured magnetic fields can be used in order to take into account the field error effects. Various flux or power 
distributions in the photon energy and/or angular space can be obtained. The described Monte Carlo simulation method and 
the single electron radiation calculation algorithm have been integrated into RADID. So all kinds of multi-electron effects, 
especially the emittance effects, ·Can be evaluated. Absorption of windows, filters, and so on, can be included by using a 
database of the atomic scattering factors of all elements. Despite versatility, efficiency of the software is of concern also. 
Special efforts have been put into the development of efficient algorithms. The algorithm discussed in section 3 forms the 
basis of the undulator radiation calculation method employed in RADID. An algorithm, based on the stationary phase 
method, is used to calculate wiggler type radiation. In the following we show some results of the application of RADID on 
the ALS U5 undulator spectrum. 

4.2 Beam emittance, field error, and near field effects on the ALS US undulator spectra 

To show the usefulness of the Monte Carlo simulation method and the single electron spectrum calculation algorithm 
addressed above, we present some applications for a real device, the ALS IDA, which has 89 periods of 5 em each. Again, 
our main purpose here is to examine the calculation methods; only a few interesting cases are presented. Due to the length 
of the U5, many practical factors become significant to the radiation spectra. So the radiation calculations become a real 
challenge. As shown in the following, the method presented in this paper works well. 
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The physics of the effects shown below is well known, so only a brief description of each graph is included. In ali the 
following calculations, we choose a medium magnetic gap _23mm, at which a precisely measured magnetic field is 
available.l5 The deflection parameter Keff = 2.13. In Figs. 8-11, we show the on-axis spectra at an observation distance 
lOOm. These graphs clearly show the magnetic field error and emittance effects on the spectrum. 

Fig. 8 shows the on-axis spectrum calculated using the ideal effective field which consists of a sinusoidal field and one 

half peak pole at each end. The peak field value is Beff = 1Bl+Bj 19+Bg 125+-.. , where the B ], B3, B5 etc. are the harmonics 
in the measured field. We see rich harmonics in the spectrum due to a relatively large deflection parameter. Fig. 9 shows 
the same spectrum but using the measured magnetic field. The spectrum is calculated at 18.8 J..Lrad off-axis because of the 
trajectory drift due to random field errors and a dipole kick at the end. Compared to Fig. 8, the field error effect is 
significant at high harmonics. 
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Fig. 10 shows the same case but with ALS emittance included. We see that the emittance effect is very large. Both the 
field errors and the beam emittance tend to kill the higher harmonics. Fig. 11 compares the Figs. 8-10 at the 5th harmonic 
in detail. Up to the 5th harmonic, the flux density reductions satisfy the specification requirement for \the device. A much 
more complete evaluatimi of the field error effect on the spectral quality of U5.0 is presented in Ref. 16. 
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In the next two graphs, we show the spectra calculated at 0.15mrad off-axis and an observation distance· D=16m. 
," According to R.P. Walker,l3 there should be significant near field effects. The Walker's parameter W=L2e2f2A.D=7 at the 

5th harmonic in this case, while WmaX.=nL2/A.uD=124. As claimed in section 3.1, the algorithm is capable of handling the 
near field effects, which is demonstrated in Figs. 12-13. 

Fig. 12 shows the near field effect without emittance. This result is comparable to Walker's result. The inserted graph 
shows the 5th harmonic in detail. Fig. 13 is the same as Fig. 12 but with ALS emittance included. We see that the fine 
peak structure due to near field effect is smoothed in this case. Both the near field and emittance effects are rather 
significant. Results presented here confirm that our method can accommodate all these effects. 

4.3 Comments on the Monte Carlo method 

As shown above, the Monte Carlo simulation method is capable of taking into account the multi-electron effects in SR 
spectrum calculations. Combining it with the single electron radiation calculation algorithms, we obtain a rather versatile 
method to compute the radiation properties. However, the efficiency of the Monte Carlo method is still a problem. As 
discussed in section 1, the typical CPU time needed for a Monte Carlo simulation is several thousands of similar runs of a 
single electron. Depending on the device parameters used, the single electron spectrum calculation takes from a few 
seconds to a few minutes on a SUN IPX workstation. So a simulation for a long device like US, usually takes a few hours to 
obtain an entire emittance-included spectrum at one observation point for a large K value. Most difficult is calculations of 
emittance included angular (integrated) spectra. Usually, the angular integration process is as time consuming as the 
Monte Carlo simulation. So in some cases, other methods based on ideal analytical single electron spectra and various 
approximations may be more suitable. A representative program in this class is URGENT17. However, many factors like the 
field error effects can not be taken into account in this way. A promising approach to obtain an angular integrated spectrum 
is to introduce a suitable phase space distribution of electrons in the Monte Carlo simulation method. The efficiency of 
such a Monte Carlo integration is similar to the simulation of multi-electron effects. However, the angular integration and 
the simulation of emittance effects are naturally combined in the same routine; so there is no extra cost. 

In addition to the Monte Carlo simulation, another well known method to perform the emittance average is the 
convolution of a single electron spectrum with the electron phase space distribution as shown in Eq. (20).11 

d2I d2/0 
d2<p (<p)= J d2!p (cp-<pe) g(<pe)d

2
<Jle (20) 

Here 10 is the single electron spectrum and g is the angular distribution of the electron beam. Strictly speaking, the 
convolution method is not as generally valid as the Monte Carlo method; but in practical applications, both methods can be 
used to compute the emittance effect and a numerically calculated single electron spectrum can be used. So an important 
issue is which method is more efficient. To perform the convolution for one observation point, the two dimensional angular 
distribution is required. So a large number of single electron spectra at different angular positions have to be calculated. 
This makes the convolution method as time consuming as the Monte Carlo method to obtain an emittance included 
spectrum at one photon energy and observation point. For a few photon energies, the convolution method is perhaps 
somewhat more efficient. But for an entire spectrum, the convolution method is much slower because the convolution 
process has to be done for each photon energy; moreover, the 3D spectrum information has to be stored or recalculated, 
which is very difficult in either case. So, whenever the single electron spectrum has to be calculated numerically, the 
Monte Carlo simulation is a very competitive method to calculate the emittance effects. 

The simulation calculation discussed in this paper neglects all interactions between electrons, . which is valid for SR. It 
is possible to extend the Monte Carlo method to accommodate the interactions (e.g. in the trajectory calculation routine) 
and simulate the self-amplified spontaneous emission process. However, this most likely requires a super-computer. 

5. CONCLUSION 

In this paper, we described the Monte Carlo simulation method used in our SR calculations. The two step averaging 
procedure (amplitude superposition and intensity averaging) works well to simulate the multi-electron effects. A statistical 
model of our simulation is discussed and the computing power requirement is estimated. Different aspects of the multi­
electron effects on synchrotron radiation can be accommodatea systematically in our simulations, especially the coherence 
processes between electrons or different parts of the trajectory of a single electron. The transition from coherent SR to 
incoherent SR and from coherent undulator radiation to incoherent wiggler radiation are simulated. We also described the 
implementation of a very efficient algorithm to calculate the general single electron radiation spectrum. This algorithm 
makes it practical to calculate a radiation spectrum by the Monte Carlo simulation on workstation level computers. All 

-11-



these algorithms have been integrated into the program RADID, which aims at a generally applicable and efficient 
numerical tool to calculate the SR properties. Some results calculated for the ALS US undulator demonstrate the power of 
RADID. 
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