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Abstract 

It has long been known that in general relativity the centrifugal force on an 
element in a rotating star involves the frequency of the star relative to the frequency 
at which the local inertial frame is dragged by the rotation. Intuitively, one would 

. expect that this would increase the critical frequency at which rotation disrupts the 
star. Our analysis shows the opposite to be true and gives theoretical underpinning 
to a commonly used empirical formula for the Kepler frequency of a rotating star. 

fThis work was supported by the Director, Office of Energy Research, Office of High Energy and 
Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under Contract 
DE-AC03-76SF00098. We had a usefull conversation with Prof. Lee Lindblom concerning this 
work. 
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Impact of Frame Dragging on the Kepler 
Frequency of Relativistic Stars 

N. K. Glendenning and F. Weber 

1 Introduction 

Dynamical effects of rotation in gravitational fields in some cases seem strange, 
and none more strange than the reversal of the centrifugal force in the vicinity of 
a Schwarzschild black hole [1, 2]. In this paper we discuss another but unrelated 
phenomenon associated with the rotation of a star which, though less spectacular, 
runs counter to classical expectation and accounts in part for a numerical observa
tion concerning the Kepler frequency. Two groups independently made the usefull 
observation that the fully relativisitic computation of the Kepler frequency of a 
rotating neutron star at the mass limit of a sequence can be approximated to an 
accuracy of better than ten percent by a factor, less than unity, times the classical 
expression for the Kepler frequency of a satellite in circular orbit around the cor
responding spherical non-rotating star [3, 4]. The observation has been utilized in 
papers too numerous to cite, and provides an enormous simplification of the problem 
because the solution of the numerically intensive and complicated general relativis
tic equations for a rotating star can be replaced by the solution of the much simpler 
Oppenheimer-Volkoff (OV) equations. The two groups of authors who provided this 
valuable observation did so on the basis of numerical solutions, and no hint was 
provided as to how this result could emerge from the GR expression of the Kepler 
frequency of a rotating star, which is actually a self-consistency condition on the 
solution and is a very different expression from the classical one. We have given 
a partial explanation elsewhere [5], and that work provided the hint that frame 
dragging plays an important role, and one that is counter to our classical intuition. 

A satellite in stable circular orbit at the equator of a non-rotating star has a 
frequency in general relativity that is precisely equal to the classical one [6], 

(1) 

In classical mechanics this expresses the balance of gravitational and centrifugal 
forces. Here M and R are the gravitational mass and radius of the star, and n 
is the uniform angular velocity of the satellite. In classical mechanics the same 
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expression holds for the Kepler period of a satellite .at the equator, R, of a rotating 
axially symmetric star, but in general relativity the situation is drastically altered, 
as is well known. Among the important effects is the phenomenon of dragging of 
local inertial frames by the rotating star [7, 8, 9, 10]. Mach's critical attention 
to the concept of inertial forces no doubt played an important role in ultimately 
focussing attention on the effects of rotating matter. Thirring appears to have been 
the first to realize that in Einstein's theory, a rotating mass shell drags the local 
inertial frames [7]. The effect was studied in greater generality by Brill and Cohen 
[10]. Shortly thereafter, Hartle incorporated the effect into his calculation of the 
equilibrium configurations of rotating stars [11]. He notes that the centrifugal force 
acting on a fluid element of the star is governed by the rate of rotation of the star, 
assumed to be uniform, relative to the local inertial frames, which are dragged by the 
star's rotation, in the same direction. The frequency with which the local inertial 
frames are dragged is largest at the center of the star, never exceeds the frequency 
of the star itself, and goes to zero at great distance from the star. It is this problem 
that we revisit in this paper. The above statement by Hartle is correct, but the 
words by themselves imply that inasmuch as the centrifugal effects are governed by 
the difference of two frequencies of the same sign, that the effects should be smaller, 
that is· to say, the Kepler frequency is correspondingly increased, and larger than 
the value given by (1 ). This turns out to be incorrect. The reason that the quoted 
words of a quarter century ago do not convey the correct implication is discussed in 
the next section. 

Of course there are other factors that effect the Kepler frequency of a relativistic 
star but they are not at issue, and have been analyzed elsewhere [5]. Our analytic 
discussion progresses in three stages, with an improvement in the metric at each. 

2 Analytic treatment 

While the classical result (1) holds for a particle in orbit around a non-rotating star 
also in general relativity, it is easy to understand why it cannot hold, for several 
reasons, for a rotating star in general relativity. The radially dep~ndent dragging 
of local inertial frames must perforce effect the actual distribution of matter in the 
rotating star and hence the metric of spacetime is altered by the rotation, that is 
by the particular distribution of matter, det~rmined by the condition of equilibrium 
or balance of forces. In classical mechanics space and time are assumed to be 
absolute. In general relativity the metric functions are dynamically determined 
by the distribution of mass, which itself responds to the metric. It should not be 
surprising therefore that the expression for the Kepler frequency does not resemble 
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the classical one. Instead it is (cf. Appendix A) 

w' [ v' w' 2] 112 
OK = W + - + ev-1/; - + (-e,P-v) 

2'1/J' '1/J' 2'1/J' 
(2) 

The primes denote derivatives with respect to Schwarzschild radial coordinate r, and 
all functions on the right are evaluated at the star's equator. More than this, they 
depend also on OK, SO that the above is not an equation for OK, but a transcendental 
relationship which the solution of the equations of stellar structure must satisfy if 
the star is rotating at its Kepler frequency. The frame dragging frequency, w(r ), 
satisfies a particular boundary condition at the equator of the star that has been 
written before and is derived in Appendix D. 

2.1 Restriction to Schwarzschild metric 

To obtain an analytic solution to the problem, we shall, in a first step, take the 
metric which corresponds to that of a static spherically symmetric star, i.e. the 
Schwarzschild metric. This will provide a first orientation. Corrections to this 
metric will be considered in the next sections. Thus at the equator we take 

e2"' 1-2M (3) 
R 

(4) 

where for our approximate solution to Eq. (2) we take M to be the mass of the 
rotating star and R its equatorial radius. (The second of these equations looks 
strange, but we follow an old precedent so as not to introduce confusion [12, 13, 14]. 
See Appendix A for the general form of the metric.) Combined with the condition 
that outside the star, w(r) must obey (cf. Appendix D) 

2/ 
w(r) = r 3 n, r > R (5) 

(where I is the moment of inertia) we are able to write an approximate solution to 
the transcendental equation for OK, namely 

n2 -K -

(6) 

This approximate result has a very interesting structure, for it shows the classical 
result modified by a pre-factor. The pre-factor leads to a reduction in the relativistic 
Kepler frequency when w(R)/OK < 1/2 or equivalently 41/ R3 < 1. There is no 
apparent reason why this limit must be obeyed, even if in practice it is ( cf. Ref. 
[5, 14, 15]). Therefore we proceed to an improved metric. 
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2.2 Monopole corrected metric 

Here, we carry the analytic investigation one step further by taking monopole cor
rections to the Schwarzschild metric into account [11, 16] (see Appendix B). In this 
case Eq. ( 3) reads 

(7) 

while Eq. (4) remains unchanged. Here J = If! is the angular momentum. From 
Eq. (2) one finds for the Kepler frequency 

(1+ WA:)- (WA:)rr :. , 
( 

21 (21) 2
)-

1 
M 

- 1 + R3 - R3 R3 . (8) 

The pre-factor in Eq. (8) always leads to a reduction of the Kepler frequency below 
its classical value because w(R)/f!K < 1. The dragging frequency cannot exceed the 
star frequency [11]. This universal limit is what the improved metric has bought. 

It may be of some interest that Eq. (5) places a limit involving the moment of 
inertia and radius of a star, 

(9) ' 

2.3 Quadrupole corrected metric 

At the level of quadrupole corrections there are certain terms that we can investigate 
only numerically. We describe this in the Appendix C. For a broad sample of 17 
equations of state (see Ref. [5]) the terms not susceptible to analytic analysis are 
shown to alter the Kepler frequency generally by less than 3%. So we ignore them. 
Then the metric through to quadrupole corrections due to rotation are, 

(10) 

where M 8 is the mass of the star at the mass limit of the non-rotating and therefore 
spherical sequence (solution to the OV equations). After considerable algebra, an 
equation similar to those derived above is obtained, 

2 ( (w(R)) (w(R))2) -
1 

M nK= 1+(1+€) nK -(2+77) nK R3' (11) 
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Table 1: The model dependent parameters f, TJ and the ratio w(R)/0 all computed 
in GR. The last column is the limiting value of the ratio that leads to a reduction 
in Kepler frequency due to frame dragging. 

Label f f TJ w/OK (1 + f)/(2 + TJ) 
1 0.031 0.356 0.17 0.44 
2 0.040 0.110 0.20 0.49 
3 0.025 0.358 0.16 0.43 
4 0.022 0.448 0.15 0.42 
5 0.035 0.191 0.19 0.47 
6 0.021 0.468 0.15 0.41 
7 0.049 0.058 0.22 0.51 
8 0.026 0.388 0.16 0.43 
9 0.029 0.318 0.17 0.44 
10 0.078 -0.209 0.28 0.60 
11 0.084 -0.217 0.29 0.61 
12 0.050 -0.024 0.22 0.53 
13 0.078 -0.102 0.27 0.57 
14 0.087 -0.234 0.29 0.62 
15 0.119 -0.415 0.35 0.71 
16 0.128 -0.418 0.36 0.71 
17 0.073 -0.201 0.27 0.60 
f These labels refer to the equations of state 

of Ref. [5]. 

The expressions for f. and TJ are. derived in the Appendix C. For a wide selection of 
models [4, 5, 14], we have computed these parameters which we record in Tables 1 
and 2, together with the ratio of frame dragging to Kepler frequency of the limiting 
mass star as computed in GR. The phenomenon of frame dragging causes a reduction 
in the Kepler frequency if w/OK < (1 + f)/(2 + TJ) (obtained from Eq. (11)), which 
we see is indeed satisfied by a comfortable margin in all cases. 

The results of the above three sub-sections reduce to Eq. (1) for a particle in 
stable orbit around a static relativistic star, since in that case w(r) _ 0. 

2.4 The empirical formula 

We have shown above how the effect of frame dragging on the Kepler frequency can 
be expressed as a factor, slightly model dependent, times the classical expression for 
the balance between gravity and centrifuge at the equator R of a rotating star of 
mass M at the termination of the stable sequence. The empirical expression involves 
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\ Table 2: See caption to Figure 1. -· 

EOSf f TJ w/f!K (1 + f)/(2 + TJ) 

L 0.060 0.074 0.23 0.51 
PALl 0.015' 0.660 0.10 0.38 

D 0.028 0.390 0.14 .0.43 
c 0.041 0.232 0.17 0.47 

PAL3 0.021 0.445 ' 0.13 0.42 
FP 0.061 -0.013 0.21 0.53 
F 0.023 0.348 0.13 0.44 
A 0.052 0.082 0.20 0.51 
1r 0.063 -0.040 0.22 

"" 
0.54 

B 0.049 0.100 0.19 0.50 
G 0.046 -0.003 0.20 0.52 
f The notation for the equations of state is 

the same as in Ref. [4]. 

the radius and mass of the corresponding spherical non-rotating star [3, 4], 

(
M8 )1/2 

nK = a R3 ' 
s 

a:::::::: 0.625 . (12) 

Elsewhere we have shown how theM/ R3 term in (11) is reduced to this final form 
by accounting for the radius and mass augmentation due to rotation [5]. 

3 .summary 

In this work we showed that the dragging of local inertial frames caused by the 
rotation of any massive star, reduces its Kepler (mass shedding) frequency relative 
to the Kepler period of a satellite in circular orbit around a non-rotating star, 
contrary to the intuitive expectation that naturally follows from the fact that the 
centrifugal force on fluid elements of the star are determined by the frequency of 
the star relative to the local inertial frames which are dragged in the direction of 
the star's rotation. 

This counter-intuitive behavior can be understood mathematically as following 
from the fact that Eq. (2) is not a formula for nK' but a transcendental equation, 
in which all quantities on the right depend also on nK and on w(r). Thus to say 
that the centrifugal effect on a fluid element of the star at r depends on nK -w(r), 
while true, does not inform us that there is a reduction in the centrifugal effect 
with corresponding incre~e in the Kepler frequency. We mention that this counter
intuitive behavior of the role of frame dragging, though a peculiar effect of rotation, 
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has nothing to do with the still more bizarre "change in sign of the centrifugal force" 
in the vicinity of black holes which, as the discoverers of this latter effect emphasize, 
has nothing to do with frame dragging since it holds for a satellite in orbit around 
a Schwarzschild black hole [1, 2]. · 
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Appendices 

A Kepler frequency in general relativity 

We are interested in models of compact stars that are uniformly rotating, axi
symmetric fluid configurations. Therefore, the spacetime is stationary and axi
symmetric, which corresponds to respectively time translation and rotational sym
metry. The line element can be written as [17, 14, 18] 

ds2 = e2v(r,6;0)dt2 + e2?/l(r,6;0) [d</>- w(r, 9; 0) dt]2 

(13) 

As a consequence of the underlying symmetries, the metric functions v, 1/;, p., and >. 
are independent oft and </>. The function w(r, 9; 0) denotes the angular velocity of 
the local inertial frames (dragging of the local inertial frames). As indicated, it de
pends on the radial coordinate r and the azimuthal coordinate 9, and is proportional 
to the star's rotational velocity n. 

The frequency 0 is assumed to be constant throughout the star's fluid. The 
frequency w(r, 9; 0) = 0-w(r, 9; 0), which is the star's rotational frequency relative 
to the frequency of the local inertial frames, is the one on which the centrifugal 
force acting on the mass elements of the rotating star's fluid depends [11). It is this 
frequency relative to which the fluid inside the star moves. 

From Eq. (13) one finds for a material particle rotating at the star's surface 
(constant r and 9 coordinates) 

1 (14) 

For the purpose of brevity, the arguments of the functions here and in the following 
are omitted. From uti> = Out, where uti> = d</>fdr and ut = dtjdr, one obtains 
d</>/dr = 0 dtjdr. Thus the time-component of the particle's four-velocity is given 
by 

where 

dt 
dr 

(15) 

(16) 

denotes the particle's orbital velocity (ur = u 6 = 0). Equation (16) serves to express 
the star's rotational frequency in terms of V and the frame dragging 'frequency, 

n = ev-..Pv + w' (17) 
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which, in other words, is the expression for the rotational frequency of a massive 
particle rotating in a stable orbit of constant radial distance, i.e., r = Rect and 
(} = 1r /2, from the star's origin. For its evaluation, knowledge of V is necessary. 
The relevant mathematical expression for V will be derived now. Since the particle 
path is a circular orbit, we can determine V simply as the extremal of ds2 (t,r,</>), 
i.e., ds2 jdr = 0. From Eq. (13) one obtains 

(18) 

where according to Eq. (16), d</>- wdt = (!!- w) dt = V ev-1/1 dt. Equation (18) 
constitutes a quadratic equation in the equatorial velocity V. Its solutions are 

I 

v: W 1/J-v .± 
+,- = 2t/;' e ( )

2 
v' w' 
t/J' + 2 t/;' e1/J- v . (19) 

The solution, V+ corresponds to co-rotation which is the desired one in connec
tion with the stability of the star to mass shedding. The other solution corresponds 
to a counter-rotating satellite at its Kepler frequency. 

In summary, Eqs. (17) and (19) are to be solved simultaneously in combination 
with the stellar structure equations by means of a self-consistent iteration procedure 
in order to find the general relativistic Kepler frequency of a rotating star model of 
given central density [14, 15]. 

B Monopole correction to the metric 

For our purpose we recall only the metric functions v and t/J occurring in Eq. (13). 
These are given by [11, 16], 

where 

e2v(r,8;0) 

e21/l(r,8;0) 

- ea(r) [1 + 2 (.h0 (r; !!) + h2(r; !!) P2(cos 0))], 

r 2 sin20 [1 + 2 (v2(r; !!) - h2(r; !!)) P2(cos0)], 

e24i(r) = (1 - 2M) ' 
r 

r?:_R. 

{20) 

(21) 

(22) 

The functions h~, m1, (l = 0,2) and v2 of Eqs. (20)-(21) stand for the monopole 
and quadrupole perturbation functions, and the quantity P2 is the second order 
Legendre polynomial, P2 (x) = (3x 2

- 1)/2. In the non-rotating limit, the pertur
bation functions vanish identically, and the metric functions reduce to those of a 
Schwarzschild star. 
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The monopole function h0 is given by 

2~(r) ) D..M J2 
e h0 (r = ---+-

· r r 4 
r?::. R. (23) 

Neglecting the quadrupole perturbation functions in Eqs. (20) and (21), one obtains 
for the metric functions at the star's equator 

2M 212 

1-R+ R4 ' 
R2 . 

(24) 

(25) 

The quantity D..M in Eq. (23) denotes the mass increase of a rotating star caused 
by rotation, J ( = I!l) refers to the star's angular momentum. 

,c Quadrupole correction to the metric 

The quadrupole functions h2 and v2 of Eqs. (20) and (21) are given by 

} 2 r r 
h2(r) - 4 (1 + M) + A Qi(M -1) , r?::.R, {26) 

r 8 8 

v2(r) _ 1
2 

+ A 2M8/r Ql{ _!_ _ 1) 
r4 J1 - 2M8/r 2 M8 

r ?::. R {27) 

The quantities Q~ and Q~ denote associated Legendre polynomials of the second 
kind, and A is a constant [11]. 

As mentioned in Sec. 2.3, at the level of quadrupole corrections there are terms 
in the metric that can be investigated only numerically. These are the expressions 
proportional to the associated Legendre polynomials. From a numerical study we 
find that these modify the value of the general relativistic Kepler frequency, Eq. {2), 
by less than 2-3%, depending on the equation of state. Ignoring them, the auxiliary 
functions f and 7] occuring in Eq. {11) are given by 

~ (1 + ~ :
8

) R
2
w

2
(R), (28) 

7] = f + - 1 + - - R w R - 1 - - 1 + -- - -- . 29 1 ( 1 R ) . 2 2 ( ) ( !lk ) 3 ( 5 M8 1 R ) ( ) 
2 4 M 8 w 2(R) 2 6 R 4 M 8 

By means of the empirical formula of Eq. {12) one obtains for Eqs. (28) and (29) 
(a= 0.625 ~ J2j5): 
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~ ( 1 t::.R)
3 

( 10 Ms) (w(R)) 2 

5 + Rs 
1 + 4 R OK ' 

(30) 

~ ( 1 + l::t.R)
3 

[ 1 + 4 Ms + 7 ( 1 + 16 Ms) (w(R)) 2

] 

20 Rs R 7 R OK 

_ ~ ( 1 + ~ Ms _ !~) 
2 6 R 4Ms ' 

(31) 

with the definition l::t.R = R- Rs, where R11 denotes the radius of the non-rotating 
maximum-mass star. 

D Frame dragging frequency at the equator of a 
rotating star 

We derive the expression for the frequency of the local inertial frames, w, at the 
equator of a rotating star, which rotates with frequency n. The result is accurate 
to order O(Jfr4 ) [17], where J denotes the star's angular momentum (cf. Appendix 
B). We begin by deriving an expression for the moment of inertia of a stationary 
rotating, axi-symmetric, relativistic star in equilibrium. Under these restrictions, 
the expression for the moment of inertia is given by [19] 

I(A,!l) ~ L drdOd</> 1;0 F9 . (32) 

In the above equations, A denotes an axially symmetric region in the interior of a 
body where all matter is rotating with the same angular velocity n. The quantity g 

refers to the determinant of the metric tensor. For the metric of Eq. (13) one finds 
( cf. Ref. [20] for details) 

F9-
7:0 

3 
- ( f + P) w(r, n) e,P(r,O) [ ev(r,O) - w(r, !1)2 e,P(r,O)] -l 

· The expression for the moment of inertia of Eq. (32) then leads to 

_ r/2 . {R(9) Je>.(r,O) eJ.I(r,O) ev(r,O) [E+P(€)] w(r,!l) 
I - 47r Jo dOsmO Jo dr r ev(r,O)-,P(r,O) - w(r,!l)2 n ' 

which reads in the case of a rotationally non-deformed star 

J = I !l = S1r {R drr4 €+ P(€) w(r,!l) e-~(r) 
3 Jo J1-2m(r)/r 

11 
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(34) 

(35) 

(36) 



The quantity J denotes the star's angular momentum. From the field equation 
'Rg = 81r1j> one obtains a differential equation for w [11], 

where 

J · 2m(r) 1- . 
T 

From Eq. (38) it follows that 

dj = -47rr(t+P)e-~ /·/1-2m/r 
dr V 

which is used to find 

4·&;; 6J 
T J- = ' dr 

T = R 

T 5: R' (37) 

(38) 

(39) 

(40) 

from Eq. (37). Throughout, R is used to denote the equatorial radius in the case 
of a rotating star, and simply the radius of a non-rotating spherical star, when no 
confusion would arise; otherwise in the latter case, Rs is used. Here use of Eq. (36) 
has been made. For r ~ R one has j = 1, and one obtains from Eq. (37) 

A 
w = -- + B r3 

(41) 

Since w-+ n for T -+ 00 (frame dragging vanishes at infinity) one gets B = n. To 
determine the constant A in Eq. (41), we compute dW/dr from Eq. (41) and make 
use of Eq. ( 40), evaluated at r = R, leading to A = 2J. Thus, the angular velocity 
of the dragged inertial frames at the star's equator is given by 

w= (42) 
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