
LBL-33410

OPM Schema Editor 2--A Graphical Editor for
Specifying Object-Protocol Structures

I-Min A. Chen, Victor M. Markowitz, Francis Pang, and Ofer Ben-Shachar

Information and Computing Sciences Division
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

July 1993

*Issued as Technical Report LBL--33410. _ais work is supported by the Office of Health and Environmental
Research Program of the Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-
76SF00098.

tAuthor's e-mail address: ichen@csr.lbl.gov phone: (510) 486-7264, fax: (510) 486-4004

*Author's e-mail address: VMMarkowitz@lbl.gov phone: (510) 486-6835, fax: (510)486-4004 _ _ ¢[_'__
i **Author's e-mail address: fran@csr.lhi.gov phone: (510)486-4743, fax: (510)486-4004 I_|_0 _ L

ttAuthor's e-mailaddress:ofer@netcom.com phone:(415)325-1214, fax: (415)322-7470

OPM SCHEMA EDITOR 2 Contents

Contents

1 Introduction ... 1
1.1 The Object-Protocol Model ... 1
1.2 The OPM Schema Editor... 3

2 Starting the OPM Schema Editor .. 5

3 Tutorial ... 6

3.1 Basic EditorUsage .. 6
3.1.1 StartingtheEditor ... 6
3.1.2 Looking atan Existing Schema... 7

3.2 Specifying and Saving Schemas.. 10
3.2.1 Specifying Object Classes ... 11
3.2.2 Specifying Protocol Classes .. 13

3.3 Specifying Attributes... 14
3.3.1 Specifying Simple Attributes.. 14
3.3.2 Specifying Composite Attributes .. 15
3.3.3 Composing and Decomposing Attributes ... 16
3.3.4 Specifying Input/Output Attributes... 17

3.4 Specifying ValueClasses ... 18
3.4.1 Specifying Controlled ValueClass .. 18
3.4.2 Specifying AbstractValueClasses .. 19

3.5 Specifying AttributeDerivations ... 21
3.5.1 Specifying Attribute Inverse Derivations .. 21
3.5.2 Specifying Attribute Match Derivations ... 22
3.5.3 Specifying Arithmetic ExpressionDerivations ... 24
3.5.4 Specifying Aggregate Function Derivations ... 25
3.5.5 Specifying AttribuleComposition Derivations ... 26
3.5.6 Specifying Attribute Subvalue Derivations .. 27
3.5.7 Specifying Atlribute Union Derivations ... 28

3.6 Specifying Protocol Expansions .. 28
3.7 Specifying Protocol Connections .. 30

3.7.1 Specifying Input or Output Is-a Connections.. 30
3.7.2 Specifying Input From Connections ... 31

4 OPM Schema Editor Windows .. 33
4.1 GeneralWindow Structure .. 33

4.2 Window Flow .. 35

4.3 Main Window .. 35

4.4 Define Object Class ... 37
4.4.1 Add Object Class ... 38
4.4.2 Modify Object Class ... 38
4.4.3 Delete Object Class ... 38

' 4.5 Define Protocol Class .. 39
4.5.1 Add Protocol Class.. 39
4.5.2 Modify ProtocolClass..40
4.5.3 Delete Protocol Class .. 40

4.6 Define Superclass .. 40

OPM SCHEMA EDITOR 2 Contents

4.7 Define Protocol Expansion .. 41

4.8 Define Simple Attribute ... 43 ."
4.8.1 Add Simple Attribute .. 43
4.8.2 Modify Simple Attribute ... 45
4.8.3 Delete Simple Attribute ... 45 4

4.9 Define Composite Attribute ... 45
4.9.1 Add Composite Attribute .. 45
4.9.2 Modify Composite Attribute ... 47
4.9.3 Delete Composite Attribute ... 47

4.10 Define Component Attribute ... 47
4.10.1 Add Component Attribute ... 47
4.10.2 Modify Component Attribute .. 49
4.10.3 Delete Component Attribute ... 49

4.11 Include Attributes into a Composite Attribute .. 49

4.12 Define Input/Output Attribute ... 50
4.12.1 Add Input/Output Attribute ... 50
4.12.2 Modify Input/Output Attribute .. 52
4.12.3 Delete Input/Output Attribute ... 52

4.13 Define Controlled Value Class ... 52
4.13.1 Add Controlled Value Class .. 53

4.13.2 Modify Controlled Value Class ... 53
4.13.3 Delete Contrr-_lledValue Class .. 54

4.14 Select Attribute Controlled Value Class .. 54

4.15 Select Primitive Value Class .. 56

4.16 Select Abstract Value Class ... 56

4.17 Select Metaclass Value Class ... 57

4.18 Define Attribute Inver_ Derivation .. 57

4.19 Define Attribute Matching Derivation ... 59

4.20 Define Arithmetic Expression Derivation ... 62

4.21 Define Aggregate Function Derivation .. 63

4.22 Define Attribute Composition Derivation ... 64

4.23 Define Attribute Subvalue Derivation ... 65

4.24 Define Attribute Union Derivation .. 66

4.25 Define Input/Output Attribute Is-a Connection ... 67

4.26 Define Input Attribute From Connection ... 68
4.26.1 Add Attribute Input-From Connection.......................,.. 69
4.26.2 Modify Attribute Input-Frc_mConnection .. 70
4.26.3 Delete Attribute Input-From Connection .. 70

References .. 71

A The Object-Protocol Model ... 72
A.1 Atwibutes ... 72

A.2 Object Classes .. 73
A.3 Protocol Classes ... 73

A.4 Input and Output Attributes ... 74
A.5 Derived Attributes ... 76 '

Abstract

This document describes an X-window based Schema Editor for the Object-Protocol Model

" (OPM). OPM is a data model that supports the specification of complex object and protocol classes.

Objects and protocols are qualified in OPM by attributes that are defined over (associated with) value

classes. Connections of object and protocol classes are expressed in OPM via attributes. OPM supports

the specification (expansion) of protocols in terms of alternative and sequences of component (sub) pro-

tocols.

The OPM Schema Editor allows specifying, displaying, modifying, and browsing through OPM

schemas. The OPM Schema Editor generates an output file that can be used as input to an OPM schema

translation tool that maps OPM schemas into definitions for relational database management systems.

The OPM Schema Editor was implemented using C++ and the X11 based Motif toolkit, on Sun

SPARCstation under Sun Unix OS 4.1.

This document consists of the following parts:

1. A tutorial consisting of seven introductory lessons for the OPM Schema Editor.

2. A reference manual describing all the windows and functions of the OPM Schema Editor.

3. An appendix with an overview of OPM.

OPM SCHEMA EDITOR 2 Introduction

1 Introduction

• This document describes the Object-Protocol Model (OPM) Schema Editor, a user-friendly inter-

active tool for specifying, displaying, modifying, and browsing OPM schemas.

The introduction describes briefly OPM and overviews the OPM Schema Editor. Section 2 contains

instructions on starting the OPM Schema Editor. Section 3 contains a tutorial for the OPM Schema Edi-

tor. The main window as well as all the dialog windows of the editor are described in detail in Section

4. The OPM data model is described in Appendix A.

1.1 The Object-Protocol Model

The Object-Protocol Model (OPM) is a data model for specifying complex object and protocol

structures. Such structures are specific to scientific applications such as molecular biology laboratory

information management systems (LIMS). OPM supports the specification of object and protocol

classes, object and protocol attributes, class hierarchies, derived attributes, and protocol expansion.

In OPM, an object class is identified by a class name, has a class description, and is associated with

attributes that qualify the object class. Attributes take values from value classes that are either other

object classes or system provided primitive value classes such as INTEGERor TEXT.For example, an

object class CHROMOSOMEcan have attributes name, map, and owner with value classes CHAR(80),

MAPand PERSON,respectively. A_,tributescan be associatednot only with single value classes,but also

with union of value classes.

Attributes in OPM can be simple or composite. A composite attribute consists of multiple com-

ponent simple attributes. For example, attribute address of class PERSON can be modeled using com-

posite attribute (number, street, city, state, zip_code).

Note that the support for composite attributes and for associating unions of value classes with

attributes allows OPM schema designers to avoid the creation of object classes that are artificial, that is,

object classes that do not represent entities in the underlying application.

OPM supports the specification of subclass-superclass relationships in an object class (ISA) hier-

archy. A subclass is a specialization of its superclasses, and inherits all the attributes associated with its

superclasses. Multiple inheritance is supported in OPM.

, OPM supports the specification of derived attributes using derivation rules involving attribute

inverse, attribute matching, attribute composition, attribute subvalue, attribute union, arithmetic expres-

• sions, and aggregate functions. Attribute inverse and matching provide capabilities for cross referencing

values of two or more attributes. For example, let publiccrtion be an attribute of object class AUTHOR,

OPM SCHEMA EDITOR 2 Introduction

and let authors be an attribute of object class PUBUCATION,where publication is associated with value

class PUBI.ICATION,and aOhors is associated with value class AUTHOR.If publication is specified as the

inverse of at_hots, then for every (value of) pubUcotion, say paper, of a given AUTHOR,say John, the

value of attribute aOhots for PUBUCATIONpaper is John.

Protocol classes in OPM are used to model pr_ such as laboratory protocols. Each instance

of a protocol class is an individual experiment. Given an input, a protocol instance (experiment) results

in an output, where both input and output consist of objects. OPM supports the recursive specification

(expansion) of protocols. Protocol expansion in OPM allows specifying a protocol in terms of alter-

native subprotocols, sequences of subprotocols, and optional subprotocols. A protocol class can be

associated with regular as well as input and output attributes. Input and output attributes are used for

specifying input and output connections between protocols. An input (or output) attribute is a regular

attribute with additional input (or output) statements indicating its relationship with other input or out-

put attributes. For example, if the result (output) of a CUTprotocol is cta__oel, and CUTis followed by a

PURIFYprotocol that takes cO_gel (input) for purifying DNA, then CUTand PURIFYare related via their

input and output attributes, that is cO_gel.

OPM has constructs similar to other semantic and object-oriented data models. Thus, in OPM

(1) objects (instances) are classified into object classes and are qualified by attributes that take val-

ues from value classes;

(2) object classes are interrelated via attributes and specialization (isa) relationships;

(3) attributes can be defined using various derivation mechanisms, such as inverse and matching.

OPM has two constructs that do not appear in other semantic or object-oriented data models:

(1) the association of attributes with union of value classes;

(2) the definition of protocol classes.

The OPM data model is described in more detail in Appendix A. A full description of OPM can be

found in [1].

We intend to implement OPM interfaces on top of relational and object-oriented database manage-

ment systems (DBMSs). Currently, we develop an OPM interface on top of the Sybase relational

DBMS. For relational DBMSs such as Sybase, we use the Extended Entity-Relationship (EER) model

as an intermediate level between OPM and the underlying relational DBMS. Thus, we map OPM sche-

mas into EER schemas and queries, and subsequently map EER schemas and queries into relational ,

database schema definitions and SQL queries using existing EER to DBMS translation tools [3, 4]. The

mapping of OPM schemas into EER schemas and queries is described in [2].

OPM SCHEMA EDITOR 2 Introduction

" 1.2 The OPM Schema Editor

Tile OPM Schema Editor is used to specify, display, modify, and browse OPM schemas. An OPM

schema generally consists of objects and protocol classes. Each class is associated with attributes.

The main menu of the OPM Schema Editor provides commands to create a new schema, load an

existing schema, save a current schema to a file and to invoke dialog windows for defining or modifying

OPM classes and attributes.

The OPM Schema Editor starts by default a new schema. If an existing schema is needed, then

Open menu item must be used in order to load the schema. The current definition of the OPM schema

earl be viewed via the editor windows. The New menu item resets the editor for a new schema. In order

to save the current schema, Save or Save As menu items can be used.

In order to add new object classes to the current schema, Define or,,M Object Class menu item is

used. A new (empty) Object Class Definition Window (see Figure 4) will pop up for defining a new

object class. Define OPM Protocol Class or Define Controlled Value Class are used to add a new pro-

tocol class or a controlled value class, respectively.

The editor supports the definition of the following main OPM meta entities:

1.Object Class,

2.Protocol Class,

3.Controlled Value Class,

4.Simple Attribute (for an object or a protocol class),

5.Composite Attribute (for an object or a protocol class), and

6.Input/Output Attribute (for a protocol class).

The OPM Editor supplies a dialog window to define, display and modify each of the constructs

above. Each dialog window has buttons (such as New, Clear or Help) that invoke different actions or

functions. It is important to note that invoking New or Modify commands in a window associated with

one of the main OPM meta entities, entails changing the current internal definition of the schema. When

a Modify command is invoked in another window of the editor, only the content of one of the main

OPM meta entities is changed without changing the current definition of the schema; the schema will be

changed only when the New, Modify or Delete button on the main OPM meta entity is invoked. Thus,

the state of each of the OPM meta entities as always reflected by the dialog window that represents it.

Print OPM in Latex and Print PostScript menu items output the current schema definition in

OPM SCHEMA EDITOR 2 Introduction

OPM schema definition language to a Latex file and a PostScript file, respectively.

Quit menu item allows leaving the editor. If there are schema changes that have not been saved, the

user will be required to confirm the quit action.

OPM SCHEMA EDITOR 2 Starting the OPM Schema Editor

2 Starting the OPM Schema Editor

The current version of the OPM Schema Editor can be run on a Sun SPARCstation running Sun OS

4.1 (or above) and X-Window RI 1.2 (or above). It is recommended to run the editor using the Motif

window manager (mwm). The editor supports all the standard X toolkit command line options plus one

of its own: nobeU or nobeUs turn warning and error beeps off.

The editor requires the following four files: the file containing the editor executable code, the X

application defaults file, the UID file, and the configuration file. The editor executable code is called

editor, the X application defau!ts file is called SchemaEditor, the UID file is called Editor, uid, and the

configuration file is called metadb.i. The editor, Editor.uld, and metadb.i files should be in the current

working directory. However, if you have the rnetadb.i and Edltor.uid files stored in, for example /

home/editor directory, you can use the following command to specify them to the editor:

setenv EDITOR_UID/home/editor/Editor.uid

setenv EDITOR_META/home/editorlmetadb.i

The directory where SehemaEditor is installed is indicated using the following command:

setenv XAPPLRF__DIR <directory>

If the SehemaF_Aitor is installed at a certain location in the system, such as:/usr/lib/X 1l/app-defaults/

SchemaEditor, then it is loaded automatically and this step is not required.

In order to run the editor, first load the default environment with the following command

xrdb -load SchemaEditor

next, start the editor by typing

editor

then click Continue on the copyright notice window.

For new users we recommend first the tutorial, a step-by-step, hands-on introduction to the editor

and its features (see next section).

OPM SCHEMA EDITOR 2 Tutorial

3 Tutorial

This section contains a tutorial designed to help learning the OPM Schema Editor. The first part of

the tutorial presents a predefined schema that represents a brief outline of the editor. The second part of

the tutorial is a guided step-by-step specification of a schema for a simple database. This part consists

of six lessons, each providing step-by-step instructions for completing the tasks.

3.1 Basic Editor Usage

3.1.1 Starting the Editor

The files required to run the editor as well as the command starting the editor are described in the

previous section. For running this partof the tutorial an additional file, called Tutoriai.OPM is needed.

For simplicity, put this file in the current working directory.

After starting the editor and clicking on the Continue button of the copyright notice, the editor's

main window is brought up.

The main window contains the main menu bar across the top, the classes listbox and its associated ,

option menu at the left, and the main window drawing area in the remainder of the window.

The first thing you can explore is the help tree: from the Help menu, select Help. The Help window ',

displays the topic of the main window. Help about other windows can be obtained by clicking on the

6

OPM SCttEMA EDITOR 2 Tutorial

topics listed in the Help Items List Listbox.

For details on a topic (i.e., on its sub-topics) click Down; to return to a higher level, click Up.
'1,

HeapParmu Lt,t H,apXt_r, tajt/llll I Ill II Ill I ,,

IHel p He1 P Wlndow
About DB Schema Edttor

I upII II ! i ll Help
..............................

I

3.1.2 Looking at an Existing Schema

This section illustrates the schema specification process of the OPM Schema Editor.

Select Open from the Schema menu in the main menu bar. All the OPM schema files used by the

editor are assumed to have file extension .OPM. Therefore, a standard Motif file selection dialog box

listing all the files *.OPM in its Files Listbox will appear. Double clicking on Tutoriai.OPM loads the

file into the editor.

Note that the Object Classes Listbox contains several entries: this is an alphabetically ordered list

of the object classes defined in this schema. The list of the protocol classes in this schema can be dis-

played by selecting Protocol Classes from the option menu heading the listbox. Similarly, the list of

controlled value classes in this schema can be displayed by selecting Controlled Value Classes from

the option menu heading the listbox.

Display the list of object classes and click on PERSON.A graphical representation of the PERSON

• object class and its superclass is displayed in the main window drawing area. Now switch to Protocol

Classes in the option menu heading the listbox, and click on C_EATE._SCHEMA_FILE.For protocol classes

OPM SCHEMA EDITOR 2 Tutorial

such as CREATE_SCHEMA_FILE,a graphical representation of their expansion (i.e., their decomposition :

into alternative or sequences of protocol steps), is shown (if specified, of course). Expansions are

explained in more detail later.

There axe three modes for the graphical display in the main window. The default mode, which you

arc seeing now, is called Class Links mode. Bring down the Display menu from the main menu bar and

switch to Class Hierarchy mode. Notice that now a complete hierarchy tree of the OPM object classes

is displayed. Switch to Detailed Links mode. This looks very much like Class Links mode.

Double clicking on any of the buttons displayed in the main window in any of the graphical display

modes will open the class definition window for that class. This is an alternative to double clicking in

the main window listbox.

In Class Links mode or Detailed Links mode, single clicking on any button that represents a class,

for example clicking on the SAVE FI[£ button in the expansion diagram of CREATE_$CHEMA_FIt£,will

cause the graphical representation of that class to expand, that is, to replace the button. Clicking again

will reverse this expansion. The expansion of the graphical display is IJxnited to a maximum of six lev-

els.

Unlike in Class Links mode, in Detailed Links mode (sub)protocols that are expanded inside the

expansion of another protocol are displayed without their attributes. Class Links mode therefore pro-

rides a more concise graphical representation.

,"Class

Object C_lassName: TPERSON At_Ibutes
.......... address: (COMPOSITE)

Descriptlor_ lhdorrnaxlonabou_apexson i name: (TEXT)
" sex: (SEX: .("fema'le

Sup_rctasses

suPERCLASS I

J

Return now to the list of object classes. You can look at the details of the PERSONclass by double '

OPM SCHEMA EDITOR 2 Tutorial

clicking on its name in the listbox. The editor opens the Object Class Definition window.This window

displays the name of the class, a description, its superelasses, and its attributes.

Look at the name attribute of object class PERSONby double clicking it in the Attributes Listbox

of the Object Class Definition window. Attribute nome is a simple attribute, and a Simple Attribute

Definition window is brought up.

The attribute home and the name of the class for this attribute are displayed at the top of the win-

dow. The value class of name is listed in the Value Class Listbox (it is primitive value class TEXT).The

attribute constraints displayed in the upper right part show that home is not an Identifier attribute, it is

Single valued, it is not allowed to have Null values. The Derivation Listbox is empty because home

does not have a derivation.

If you have tried to modify something in these windows and want to close them, a warning message

indicates that your work is not saved. Go ahead and close them anyway, up to the main window. In the

main window, switch to the Protocol Classes option for the listbox_ Double click on the CREATE_SCHE-

MA_FILEprotocol.

Protocol Class Definition window is very similar to the Object Class Definition window. Proto-

• col classes do not have superclasses, but have protocol expansions displayed in the Protocol Expansion

area. This window has an expansion expressing the fact that the CREATE_SCHEMA_FILEprotocol consists

• of three sub-protocols (steps), LEARN_OPM_EDITORfollowed by ENTER_DEFINITIONSand SAVE_FILE.

Close the CREATE_SCHEMA_FILEProtocol Class Definition window.

OPM SCHEMA EDITOR 2 Tutorial

In the main window, display the controlled value classes by switching to the Controlled Value

Classes option of the main window Object Classes Listbox. Double click on the first entry.

The Controlled Value Class/Value window displays a controlled value class called SEX,consisting •

of two values: male andfemale. The Value Type of both male and female is Character String. Any time

an attribute can take values from a finite set of predefined (controlled) values, its value class can be

defined as a controlled value class. Close this window.

From the Schema menu in the main menu bar, select New. This selection clears the editor (i.e.,

removes the current schema, if any) and allows specifying a new schema from scratch. You are ready

for the second part of the tutorial.

3.2 Specifying and Saving Schemas

This part of the tutorial guides you through a step-by-step specification of a schema for a simple

database. Suppose that you need to fill a position in your group.You will specify the schema of a data-

base that can be used by interviewers, keeping track of people, resumes, and the steps in the interview

process. The tutorial consists six lessons regarding the specification of:
I

1. object classes and protocol classes;

2. attributes for object and protocol classes; p

10

OPM SCHEMA EDITOR 2 Tutorial

i J • i i ii iml i

IsHx I
Vnlu= Type: I Ohera_er String =:a I

i i i iii i ii i lUll liB i i

V_lue.,s In _ r.le_s:

real e

_1 _ Jli ii i . j il __. . i ii ILII IL I _ __

N =w' Value:

i i

! 'rhtz huron will close r._s d.talos. I

3. controlled value classes, a,ad associating attributes with value classes;

4. derivation expressions for attributes;

5. expansions for protocol classes;

6. connections for input/output attributes of protocol classes.

Each stage of the schema specification process is based on the previous ones, so the lessons should

be done in order. It is worth saving from time to time partially specified schemas.

3.2.1 Specifying Object Classes

In order to define an object class, select OPM Object Class from the Define menu in the main

menu bar. An empty Object Class Definition window is brought up.
b

Call this class TRYby typing the name in the Object Class Name area. Note that you cannot type

in lower-case characters. Class names are always in upper-case characters, and the window automati-

cally converts the characters into upper-case. Type a short description in the Description area, and click

11

OPM SCHEMA EDITOR 2 Tutorial

the New button. This new object class has been added to your schema. The schema will consist of more

than one object class, so you may want to change the name of this class. In the Object Class Name area

backspace over TRY,and type DOCUMENT.Try clicking Close to close this window. The name change

has not been recorded, therefore a warning dialog box is brought up. Click Cancel in the warning dialog

box, then click Modify to change the name of the class.

If you want to reuse a class definition, then you can use a previously defined class and change the

name. Starting with the DOCUMENT class definition, change the name to RESUMEand click New. Now

you have two classes.

Click the Modify Superelass button for defining a su_relass for RESUME.

The Superelass De§nltion window shows that only DOCUMENTis a potential superclass for

RESUME,because it is the only other class defined so far. Click on DOCUMENTin the Potential Super-

classes Listbox. DOCUMENTis moved from this listbox to the Selected Superelasses Listbox. Click

Modify in the Superelass Definition window. Note that the newly defined superclass is now displayed

in the Superelasses Listbox of the Object Class Definition window. Click Close in the Superelass

Definition window.

Before proceeding with the schema specification, hit F1 on the keyboard. This is the help key; the ,

Help window is brought up. The topic shown is the Superdass field of the Object Class Definition

window. Anywhere in the application, if you are not sure how to use a button or what is the function of

12

OPM SCHEMA EDITOR 2 Tutorial

a menu, etc., you can click F1 when keyboard focus is on the widget in question. The help is context

sensitive and will display the appropriate topic. Click Modify in the Object Class Definition window,

to save the newly defined superclass, and close this window.

3.2.2 Specifying Protocol Classes

Protocol classes are used to keep track of procedures and processes. For this database, you may

want to keep track of interviews and phone calls. Bring up the Protocol Class Definition window by

selecting OPM Protocol Class from the Define menu in the main menu bar. An empty Protocol Class

Definition window is brought up.

Call this protocol class EVALUATEby entering this name into the Protocol Class Name area. Enter

a short description(e.g. "Evaluate a potential employee.") in the Description area. Click New to add

this protocol class to database schema. Clear the window by clicking Clear, and enter a new protocol

class name, TELEPHONE.Click New. Clear the window again and enter INTERVIEW.Click New. Clear the

window once more and enter HIRE.Click New. Three more protocol classes have been added to the

schema.

You then realize that hiring a successful candidate is done only for one person, so it is not necessary

to keep track of the hiring in the database. To delete the HIREprotocol class, click the Delete button. A

warning is issued: "Are you sure you want to delete the current class?". You confirm the deletion by

clicking OK, and the class is deleted.

You will define an expansion for a protocol class later. Now it is worth saving your work. From the

13

OPM SCHEMA EDITOR 2 Tutorial

....... IIIIIII III

Protocol Expansion

I I = I
i i!111 i i iii i iiii i i iiii

The list of attributes defined fur this class.

Schema menu, select Save As. The file selection listbox allows you to choose a name for your new

schema. Remember to use a file name with extension .OPM such as Example.OPM or Employee.

OPM. Now that you have chosen a name for the schema, using Save instead of Save As will save sub-

sequent schema versions to the same file.

3.3 Specifying Attributes

3.3.1 Specifying Simple Attributes

Open an empty Object Class Definition window from the main menu. Specify an object class

called PERSONby typing this name in Object Class Name area. Click New to add this object class. In

order to define a simple attribute for a PERSON,click Simple in the Define Attribute option menu. A

Simple Attribute Definition window is brought up.

Call this attribute experience by typing this name in the Attribute Name area. A person can have

lots of job experience, so this attribute should be specified as multi-valued. Select Multiple from the

Values option menu. If you click New now, you will get an error. Attributes cannot be created without
I

a value class. You do not know what the value class is for this attribute, so you can try choosing a very

general value class. Select Metaclass from the value class Select Type option menu. In the Attribute

Metaelass Value Class window there are two choices: OBJECT_CLASSESand PROTOCOL_CLASSES

14

OPM SCHEMA EDITOR 2 Tutorial

(besides Undefined). Job experience refers to performing tasks in general, so let us choose PROTOCOl._-

CLASSES.Click Modify and close the Attribute Metaclass Value Class window. Now click New in

order to add this attribute to the schema.

Note that the attribute and its value class are displayed and highlighted now in the Attributes List-

box of the Object Class Definition window. The highlighting indicates that this is the selected (current)

attribute. If you wish to delete or modify an attribute now, this is the one that would be affected.

3.3.2 Specifying Composite Attributes

The persons interviewed have addresses, and addresses axe composite rather than simple attributes.

Select Composite from the Define Attribute option menu in PERSONObject Class Definition window.

Call this attribute odOress by typing it in the Attribute Name area.

Now we show how to add the new component attribute stroet_oddress. After you click the Define

Component button, a new Component Attribute Definition window is brought up.

Type in the attribute name in Component Attribute Name area in this window. This attribute is

, associated with primitive value class TEXT.Click Primitive in Select Type option menu. Select TDff in

Primitive Classes Listbox in Attribute Primitive Value Class window, click Modify, and then close

, this window. Click New in the Component Attribute Definition window to add this component

attribute.

15
l

OPM SCHEMA EDITOR 2 Tutorial

Change the attribute name in Component Attribute Definition window to city and crick New. A

second component with value class TEXThas been defined.

Clear the component window by clicking Clear, enter a new name state and associate the attribute

with primitive value class CHAR(n). In the Length area of the Attribute Primitive Value Class Window

enter the length for the CHAR(n) - in this case, 2. Click Modify, and state now is associated with value

class CI-IAR(2).Click New again in the Component Attribute Definition window. Close the Compo-

nent Attribute Definition window.

Remember to click New in the Composite Attribute Definition window to add the new composite

attribute to object class PERSON.

3.3.3 Composing and Decomposing Attributes

A composite attribute, such as the addressattribute you have just created, can be broken into sim-

ple attributes. Display the composite attribute address by double clicking on its name in the Attributes

listbox of the PERSONObject Class Definition window.

Click on the button Decompose. As a result, the composite attribute address is replaced by its cam- 4

ponents, streot_adclress, c_y, and state, that are now simple attributes of the PERSONclass. Close the

composite attribute window and verify this by looking in the Attributes listbox. There is no composite

attribute named address, but there are new simple attributes named street odclress, city, and state.

16

OPM SCHEMA EDITOR 2 Tutorial

The reverse action is also very easy to carry out. Instead of specifying components for a composite

attribute one by one, a composite attribute can be defined by selecting its components from the list of
q,.

existing simple attributes.

In order to restore the composite attribute address, open the Composite Attribute window and

type the name address in the name field. Open the Include Components window by clicking on the

Include Components button below the Components Listbox.
I

Corn

SP...1¢ccedA't'trtbute, I Pote._tial Act_butes

cttv: (TEXT) I ex_pert ence : (PROTOC

state-. (CHAR(2?) I
s'Cr'ee't:_add tess. (TE I

.--:--_..... _. "---':::.__. ---:-:--_-T:--'-_ _::::_ :::------:----:_r _ _ _...-. - ---atr----'-_-_- -__--. -;___:. - :--__-

The Include Components window allows you to select the attributes that will be moved from the

list of attributes to the list of component attributes for this composite attribute. Select street_address,

city, and stQte by clicking on them in the Potential Attributes Listbox. Confirm these selections by

clicking on the OK button. The Include Components window will be closed and the Composite

Attribute window will show that you have selected three new components. Click the New button now

in order to create the address attribute.

Close the Composite Attribute Definition window and verify the changes in the Attributes list-

box of the Object Class Definition window. PERSONclass now has a new attribute called address,

while streoLaddross, ci_, and slate attributes have been removed.

3.3.4 Specifying Input/Output Attributes
i

Only protocol classes can have input or output attributes. Double click on TELEPHONEto bring up

the Protocol Class Definition window. Select Input/Output in the Define Attribute option menu, and

the Input/Output Attribute Definition window is brought up.

17

OPM SCHEMA EDITOR 2 Tutorial

,e

Dcltnition Conslzaints .s

!'i "IIIlll' ' Ill 'Ill ' i II! IlL I_ I , , , I []]II.....I I IIIIII]H

............................... I

Let us specify an attribute called meeting_time that represents a meeting time set up by telephone

for an interview. Bring up the Attribute Primitive Value Class window, select DATETIME,click Modify,

and then Close. The attribute has a name and a value class. This represents the result of an action (tele-

phone call), so it is an output attribute. Select Output in the Connection option menu. Click New in

order to associate this attribute with the TELEPHONEprotocol class.

3.4 Specifying Value Classes

Four types of value classes arc supported by the OPM Schema Editor: controlled, primitive,

abstract, and metaclass. Several primitive value classes and a metaclass have been already associated

with attributes up to now. The other two types of value classes arc explained below.

3.4.1 Specifying Controlled Value Class

You need to keep track of the interview results. An interview can result in hiring the candidate

immediately, reject the candidate immediately, or postpone the decision (perhaps set up another inter-

view). Open the INTERVIEWProtocol Class Definition window, and specify an input/output attribute

called cleelsion. Select Controlled from the value class Select Type option menu.

An empty Attribute Controlled Value Class window is brought up, because there are no con- 0

trolled value classes defined for this schema.

18

OPM SCHEMA EDITOR 2 Tutorial

" Click on the Define Controlled Value Class button to bring up the Controlled Value Class/Value

window; this window can also be brought up from the main menu bar, by selecting Controlled Value

" Class under the Define menu.

Specify a controlled value class called DECISIONby entering the name of the value class in the

Controlled Value Class Name area at the top of the window. The first (controlled) value for DECISION,

Hire,must be entered in the New Value area. Click the New Value button; Hireappears in the Values in

this dau Listbox. Enter Reject in the New Value area and click New Value again. Similarly, enter

value Uncertain. Click the New button and then close the window. The new controlled value class DECI-

SIONis added to the schema.

This new controlled value class is listed in the Controlled Value Class Listbox in the Attribute

Controlled Value Class window. In order to associate this value class with attribute Oec_lon, select the

DI'CISIONin the listbox, and then click Modify. Close the Attribute Controlled Value Class window.

In the InpuffOutput Attribute Definition window, the new value class is now displayed. Select the

Output option for Connection and click New in order to associate this attribute with the INIEI'CClEWpro-

tocol class.

3.4.2 Specifying Abstract Value Classes

Clear the Protocol Class Definition window and specify a new protocol class called

READRESUME.Click New in order to add this class to the schema. Open the Input/Output Attribute
_t

Definition window, and specify input attribute resume, specify this attribute so that it is not allowed to

19

OPM SCHEMA EDITOR 2 Tutorial

have null values. The value class of this new attribute should be RESUME,of course. Such a value class •

(defined as an OPM class) is called abstract. Select Abstract from the value class Select Type option

menu. The Attribute Abstract Value CIm window is brought up.

The Potential Value Classes Listbox contains all the classes that have been defined so far. Select

RESUMEfrom this listbox. RESUMEis moved from the Potential Value Classes Listbox to the Selected

Value Classes Listbox. Click Modify and Close in this window. Click New in the Input/Output

Attribute Definition window in order to associate the attribute with its protocol class.

An attributecan have more than one abstract value class. For example, suppose that a candidate has

as reference a recommendation from a previous manager or co-worker. This reference could be in the

form of a person to contact or in the form of a recorded reference letter. Open the PERSONobject class.

Open the Simple Attribute Definition window to add a simple multi-valued.attribute roferonco. Open

the Attribute Abstract Value Class window, and select two object classes DOCUMENTand PERSON.

Click Modify. A roforonco attribute can be now either a DOCUMENTor a PERSON.

Note that an attribute does not need to be multi-valued in order to be associated with several value

classes. For example, a candidate can have only one reference, but the reference can be either a letter or

a person.

Troubleshooting: If you ever see the Abstract Value Class Definition window completely empty

when you are trying to indicate an abstract value class, then you have not defined any classes yet. This

window will be empty as long as there are no defined classes.

20

OPM SCHEMA EDITOR 2 Tutorial

t

3.5 Specifying Attribute Derivations

. Derived attributes are associated with object or protocol classes, and are derived from other

attribute(s) using a derivation rule. An attributecan be associated with at most one derivation rule. Each

type of derivation has constraints and is defined in its own separate window. The seven types of deri-

vations rules are:

1. Inverse: the derived attribute is the inverse of an attribute associated with another object or protocol

class;

2. match: the derived attribute matches an attribute of another object or protocol class on a component

attribute;

3. arithmetic: the derived attribute is computed from an arithmetic expression involving arithmetic

operators, constants, and other numeric attributes of the same object or protocol class;

4. aggregate: the derived attribute is computed by applying an aggregate function on a numeric

attribute of the same object or protocol class, or by counting the values of another attribute of the

same object or protocol class;

5. composition: the derived attribute is a composition of other attributes;

6. subvalue: the derived attribute is defined as a subvalue of another attribute from the same class,

7. union: the derived attribute is defined as the union of other attributes from the same class.

A derived attribute cannot be an identifier, nor an input or output attribute of a protocol class. Com-

posite derived attributes arc allowed in OPM only using attribute matching.

3.5.1 Specifying Attribute Inverse Derivations

Create a simple attribute candidate for object class RESUME,and associate this attribute with

abstract value class PERSON.Also create a simple attribute resume for object class PERSON;associate it

with abstract value class RESUME.After clicking New to add the attribute, do not close the Simple

Attribute Definition window. Instead, select inverse in the Define Derivation option menu. The

Attribute Inverse Definition window is brought up.
|

Because attribute resume is associated with only one value class RESUME,its inverse attribute must

be.associated with RESUME.Conversely, the potential inverse attribute must be associated with value
t,

class PERSON.RESUMEis listed in the Classes Listbox in Attribute Inverse Definition window. The

RESUMEobject class has only one attribute, candidate, whose value class is PERSONand is listed in the

21

OPM SCHEMA EDITOR 2 Tutorial

.f

Attributes Listbox.

Select candid_e in the Attributes Listbox. The new inverse definition, I_SUME.candidote, is

listed in the Inverse of Listbox. Click Modify in order to update the attribute definition.

Inverse specifications can be mutual, therefore the editor asks if you want to specify PERSON.

resume as an inverse of attribute candidcfle of RESUME.Select Yes, and close the Attribute Inverse

Definition window. The inverse derivation is displayed in the Derivation area in the Simple Attribute

Definition window.

Note that a simple or component attribute associated with an abstract value class can have an

inverse derivation, provided the attribute is not specified as an identifier.

3.5.2 Specifying Attribute Match Derivations

In the simplest case of matching, a simple attribute A of object or protocol class Cx can match an

attribute B of object or protocol class C_on attribute M only if (B, M) is defined as a composite attribute

of C_,A and B have identical value classes, and the value class of M includes C:.

Suppose that there are several positions available, and the positions are offered to all qualified

applicants by sending them letters on different dates. Furthermore, every applicant receiving an offer ,

letter records the letter date and the letter. First, create a new object class called LETTERwithout

attributes. Create a new object class called OFFERSassociated with a composite attribute consisting of t

22

OPM SCHEMA EDITOR 2 Tutorial

three components: applicant,associated with abstract value class PERSON,senddate,associated with

primitive value class DATETIME,and letter, associated with abstract value class LETTER.Save the OFFERS
lu

object class, and then associate object class PErsoN with a new composite attribute consisting of two

components: letter..clate, associated with primitive value class DATETIME,and reply, associated with

abstract value class LETTER.Click New on the Composite Attribute Definition window to make the

change. Select match in the Define Derivation option menu in order to bring up the Attribute Match

Definition window.

In the Attribute Match Definition window, the Matching Class Listbox lists only object class

OFFEr, since only OFFERSis qualified to be involved in an attribute matching with an attribute of object

class PERSON.The Attribute Match Listbox lists components (letter_dote and reply) of the new com-

posite attribute of PERSON;they are used to match component attributes of OFFERS.

Select OFR_RSin the Matching Class Listbox. Component attribute opplicont appears in the On

Attribute Listbox. After selecting applicant in this listbox, the other two components of the same com-

posite attribute appear in the Matching Attributes Listbox: they are send_date and letter.

. Select letter_.date in the Attribute Match Listbox and send_date in the Matching Attributes

Listbox, and then click the Add Match button in order to match these two component attributes. Select

; reply in the Attribute Match Listbox and then letter in the Matching Attributes Listbox, and then

click the Add Match button again. Click the Modify button in order to record this match derivation for

23

OPM SCHEMA EDITOR 2 Tutorial

the composite attribute of _I'_:)N. The matching expression appears in the Derivation area in Com-

posite Attribute Definition window. Click Modify button on the Composite Attribute Definition

window in order to update schema.

Note that only non-identifier simple or composite atwibutes can have a match derivation.

3.5.3 Specifying Arithmetic Expression Derivations

An arithmetic derivation defines the value of a numerical attribute in terms of the values of other

numerical attributes of the same class. For example, an applicant can request a certain salary. In order to

represent such a request, a new simple attributecalled salary_requestedis created for object class PER-

SON;this attribute is associatedwith primitive value classMONEY.

iii i

The cost of a person, however, includes, in addition to the salary, benefits and overhead. Suppose

that on the average, an employee costs twice her/his salary. Create a new simple attribute called

totol..cost for PERSONwith value class MONEY.Click New to add this attribute. In the Simple Attribute

Definition window, select arithmetic in the Define Derivation option menu. The Arithmetic Expres-

sion Definition window is brought up.

Specify the arithmetic expression salary_requested * 2 by first selecting salary_requested in

Attributes Listbox, then clicking on the * function button, and finally by editing in the Arithmetic

Expression area in order to add number 2. All this can be also done by typing directly the expression in

24

• i

lOPM SCHEMA EDITOR 2 Tutorial :

" the Arithmetic Expression area. Click Modify in order to update the definition of attributetotoLcost

The derivation is displayed in the Derivation area in the Simple Attribute Definition window.

" Remember to click Modify in order to save the change. Only simple attributes with numerical primitive

value classes U_ffEOER,SMAU.U_ff,REAL,FLOAT,or MONEYcan have arithmetic derivations, and such

attributes cannot be specified as identifiers.

3.5.4 Specifying Aggregate Function Derivations

Similar to arithmetic derivations, aggregate function derivations define the value of a numerical

attribute in terms of other attributes of the same class. However, an aggregate derivation involves only

one multi-valued attribute that is not restricted to have numerical value classes. For example, an appli-

cant can have job experience from several positions. The number of positions held by an applicant can

be represented using an attribute that counts the number of different values associated with (multi-val-

ued) attribute experience.

llefir

II I I IlII I

Class Neme: ! 'pE3_soN " I reference

Create a new simple attribute for PERSONcalled positions, associated with primitive value class

SMALUNT.After clicking New in order to specify this attribute, open the Aggregate Function Defini-
L

tion window by selecting aggregate in the Define Derivation option menu. The Aggregate Function

Definition window is brought up.

The Function option menu allows choosing one of several aggregate functions. Select the count

25

OPM SCHEMA EDITOR 2 Tutorial

aggregate function. The Attributes Listbox lists all the multi-valued attributes of PERSONthat could be

involved in this derivation. Select experience from the listbox. Click Modify, and then close this win-

dow. The new aggregate function derivation is displayed in the Derivation area in the Simple -

Attribute Definition window. Remember to click Modify in this window in order to associate the

attribute definition with the new derivation expression.

An attribute associated with an aggregate function derivation cannot be an identifier.

3.5.5 Specifying Attribute Composition Derivations

Create a simple attribute cover_letter for the object class PE_N, and associate this attribute with

abstract value class LErIER.Click the New button on the Simple Attribute Definition window and

select composition in the Define Derivation option menu. The Attribute Composition Definition

window is brought up.

The Attributes Listbox displays all simple or component attributes of class PERSONthat arc non-

derived or derived by inverse derivation and that arc abstract. Click resume on the Attributes Listbox,

and it will be displayed in the Composition Derivation area. The value classes of resume will bc dis-

played in the Value Classes Listbox. For every value class selected in the Value Classes Listbox, its

attributesthat are non-derived or derived by inverse derivation will be displayed in the Attributes List-

box. If you click on an attribute in the Attributes Listbox, the same composition procedure is repeated. ,

Click on condido?e, and then click on reply. The Attributes Listbox now is empty because there is no

26

OPM SCHEMA EDITOR 2 Tutorial

" valid attribute associated with class I._TER.

Click New in the Attribute Composition Definition, and then click Modify in the Simple

Attribute Definition windows in order to save the changes.

3.$.6 Spedfylnll Attribute Subvalue Derivations

First specify an object class MEMORANDUMwith superclass LETTER,and then create a simple

attribute responsefor the objectclassPERSON,and associatethis attributewith the abstractvalueclass

MEMORANDUM.Click the New button on the Simple Attribute Definition window and selectsub-

value in theDefine Derivation optionmenu. The Attribute Subvalue Definition window is brought

up.

All simpleor componentattributesof classPERSONthat can bedefined as subvaluesof attribute

responsearedisplayedin the Attributes Listbox. For thecurrentschema,only attribute reply is dis-

played in the listbox. The value class of response (i.e., MEMORANDUM)is an immediate subclass of the

value class of attribute reply (i.e., LETTER).Click reply on the Attributes Listbox, and it will be displayed
t

in the Derivation: subvalue of area. Click both Modify in the Attribute Subvalue Definition and the

Simple Attribute Definition windows in order to save the changes.

27

OPM SCHEMA EDITOR 2 Tutorial

3.5.7 Specifying Attribute Union Derivations

Specify three simple attributes for object class DOCUMENT:author, with abstract value class _-

SON, evaluate, with abstract value class EVALUATE,and contact, with abstract value class TELEPHONE.

Then specify another simple attribute, person_selected, and associate this attribute with abstract value

class PERSON or EVALUATEor TELEPHONE.Click the New button in the Simple Attribute Definition

window and select union in the Define Derivation option menu. The Attrlbute Union Definition win-

dow is brought up.

Attributes author, contact, and evaluate will be displayed in the Potential Attributes Listbox.

The value class for attribute petsorLselected is the union of the value classes of attributes author, corv

tact, and evaluate. Click on each of the attributes displayed in the Potential Attributes Listbox, and

the) will be entered into the Derivation area and listed in the Selected Attributes Listbox. Click Mod-

ify in the Attribute Union Definition and in the Simple Attribute Definition windows in order to save

the changes.

3.6 Specifying Protocol Expansions

Protocol EVALUATEcan be expressed in terms of (expanded into) simpler (sub-)protocols (steps) that
e

are involved in the evaluation process.

28

OPM SCHEMA EDITOR 2 Tutorial

' First, specify an additional protocol class caUed REJECTrepresenting the writing of rejection letters.

After specifying REJECT,open the EVALUATEProtocol Class Definition window. Click the Define

" Expansion button in order to bring up the Protocol Expansion window.

The Protocol Expansion area is empty, and the Protocols Listbox lists four protocols that can

potentially be involved in this expansion. Note that EVALUATEis not listed because a protocol cannot be

defined iv terms of itself. The expansion can be specified by typing directly in the Protocol Expansion

area or by using the Syntax buttons and selecting protocols from the Protocols Listbox.

The evaluation process consists of reading a resume, then either rejecting the applicant immediately
!

or deciding to telephone for arranging an interview. If the telephone conversation is not successful, you

may not wish to arrange an interview. Thus, EVALUATEis expanded as follows:

READ_RESUME,(REJECTORTELEPHONE,(INTERVIEW))

The parentheses group elements together. Commas represent sequential steps: first read the resume,

then either reject or telephone. The square parentheses indicate an optional step: an interview may or

may not he arranged. This expansion can be expressed as follows using the Syntax butlons: click on

29

OPM SCHEMA EDITOR 2 7htorial

READ_RESUMEin the Protocols Listbox, click the comma button, click the left parenthesis button, click .

on REJECT,click theor button,click on TELEPHONE,click thecommabutton,click the left squareparen-

thesisbutton, click on INTERVIEW,click the right square parenthesis button, click the right parenthesis

button.

Click on Modify to associate EVALUATEwith the new protocol expansion. The new protocol expan-

don will appear in the Protocel I_pandon area in EVALUATEProtocol Class Definition window. More-

over, a graphical representation of the expansion is represented graphically in the drawing area of the

Protocol Expansion window. Remember to click Modify in the Protocol Class Deanltion window to

save the change.

Troubleshoodnll: Without parentheses the expansion (READ_RESUME.REJECTORTELEPHONE,

[INTERVIEW])is quitedifferent:it specifiestheevaluationprocessasconsistingof the following sequence

of steps:either readthe applicant'sresumeand thenreject the applicant,or telephonetheapplicantand

possiblyarrangean interview (operator"," hashigher precedenceover or)l

How try revertingall parenthesesinto squareparenthesesin the expansiontext. Click Modify. The

protocolexpansionparsercannotinterpret this newexpression,andwarnsyouof the errorby indicating

the locationof the error.

3,7 Specifying Protocol Connections

Connections between protocols are specified using input and output attributes. If an input or output

attribute A of a protocol class P is identical to an input or output attribute B of one of the subprotocols

of P, Q (i.e., Q is involved in the expansion of P, and B represents A in Q), then B is specified as an

Input Is-a or Output ls-a relative to A. If an input attributeA of protocol class P takes its input from an

output attribute B of another protocol class Q, then A is specified as an input from relative to B.

3.7.1 Specifying Input or Output Is-a Connections

The EVALUATEprotocol class should have an input attribute representing resumes. Bring up the

EVALUATEProtocol Class Definition window, and specify an input attribute called resume with abstract

value class RESUME.

Clearly, inputattributeresumeof sub-protocolREAD_RESUMEis identicalto inputattributeresume

of thehigher-level protocolEVALUATE.Bring up theREAD_RESUMEProtocol Class Dcllnltlon window, •

and then the Input/Output Attribute Definition window for resume. Select Input is,a from the Define

Connection option menu. The Input/Output Is-a Definition window is brought up.

3O

OPM SCHEMA EDITOR 2 Tutorial

I

The higher-levelprotocolclass, in this caseEVALUATE,is automatically displayedin the Protocol

area.The input attributesof this higher-levelprotocol class(in this case only one) are listedin the

Attributes Listbox. Selectresumefrom this listbox,click Modify, andclosethis window.The inputis-

a definition is displayed in the Connection area of the Input/Output Attribute Definition window.

Remember to click Modify before closing Input/Output Attribute Definition window.

An input attribute can have an input is.a connection if it is part of a higher level protocol, and the

connection must refer to an input attribute of that higher level protocol. In the example above the names

and value classes are identical for the connected attributes, but this is not a requirement. Similar con-

straints apply to the output is-a connection. As an exercise, create an output attribute decision for the

EVALUATEprotocol classwith a controlled value class DECISION,and connect output attribute decisionof

protocol class INTERVIEWto it.

3.7.2 Spedfytng Input From Connections

The TELEPHONEprotocolclasshasa meeting_timeoutputattribute.A similar attributecanbecon-

sideredas an input attribute for the INTERVIEWprotocol class.Accordingly, specify an input attribute
i

time for protocolclass INTERVIEW,andassociateit with primitive value class DATETIME.In the Input/

Output Attribute Definition window selectInput from from the Define Connection optionmenu.

The Input From Definition window is broughtup.

31

OPM SCHEMA EDITOR 2 Tutorial

......... [l[ll!I J Illll I LIIIII

I I "ii_iiiiiilj i_ iiiii.......................i_

The From Protocol Listbox in this window lists all the protocol classes having output attributes

that can be connected to the current attribute. Select TELEPHONEin the From Protocol Listbox. The

name of the selected protocol appears in the The attribute Input from area, and the Attributes Listbox

lists the output attributes of the selected protocol class: in this case, meeting_time is listed. Select this

attribute by clicking on it; its name is displayed in the via area. Click New, and the input from definition

is displayed in the Connection area of the Input/Output Attribute Definition window. Remember to

click Modify before closing the Input/Output Attribute Definition window.

An input attribute of protocol class P can have an Input from connection either (1) if P is not a

sub.protocol of a higher-level protocol class, or (2) if P is a sub-protocol of protocol class Q, and there

are other sub-protocols of Q preceding P in the expansion definition. The via attribute must be an output

attribute of the From Protocol. In some cases, there is a sequence of via attributes. In order to continue

adding via attributes, the most recent via attribute must be of abstract value class and the new via

attribute must be an attribute,of that class.

32

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

, 4 OPM Schema Editor Windows

This section describes every window one may encounter while using the editor. The layout of every

" window, buttons in the window, and the functionality of each button are described.

We start by presenting the general window structure, which is generic for all the windows in the
t

editor (see Figure 1). Then we pre_ent the OPM Schema editor window flow diagram in Figure 2.The

main menu, the functionality of each menu item, and how to use the main menu to start or end an appli.

cation is then explained• Finally, we will concentrate on specific functions for every individual window.

4,1 General Window Structure

All the windows in the OPM Editor follow the general window structure shown in Figure 1.

III III _ I 3ll_ IIll I I II Itl " S _ _ IIII I IIIIm I IIII [11 III I IIIIIIII .. I II11 IIII I II1 [II [11 I

TITLE
iirll i iI i irl i iiiiiii! i -- i i i i iiiiiiii i l iiiinll, .,,.11 fill, L I , _ !11 iii II III

Specific Part

.... iii llll _ I i ii111 . i i i ii ,f,lll 111 11 ii ,1, i ii 11 llllllJ

Und0 I 11 Clo -II...... .ep I
U....... jIll _ . jl Ill I II Ill I lflllIllll I II I1111 Ill [l[II II I

Status Line
--. III ILl- [lljllll I II I IIIlll I I I[llllllllll I II _ I I _ Ill I I _ -

FIGURE 1• General Window Structure
I

i

A window can be divided into two parts: a window-specific part and a generic part. The latter is

(almost) identical in all the windows except themain window. In the generic part of a window, there are:

1. a window title

2. a status line with instructions for next action;

3. an Undo button (undo the previous action);

• 4. a Close button (close this window);

33

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

5. a Help button (provide help for this window); and

6. an optional Clear button (clear this window).

All the command buttons are shown on the same row. Buttons common to all the windows are

grouped to the right hand side of the command button row.

4,2 Window Flow

The window flow for the OPM Editor is shown in Figure 2. Each box represents an editor window.

Two boxes are connected by an arrow if the window represented by the box to which the arrow is

directed, can be reached from the window represented by the box where the arrow starts, by selecting a

menu item or clicking a button.

4.3 Main Window

The main window of the OPM Schema Editor is shown in Figure 3.

FIGURE 3. OPM Schema Editor Main Window

We list only the functions of all the menu items in this subsection.

1. Schema

(a) New - create a new OPM schema.

34

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

Q

EDITOR
" MAIN

l WINDOW

OBmCT mt_L CONI_OI,t_D
Ct_JS CLASS VALUE

DI_FINrrIoN DEFINITION CAI_$NALUE
WINDOW WINDOW WINDOW

COMI_SITE PROTOCOL
SUPERCLASS ATTRIBUTE EXPANSION

DEFINITION DF.FLNITION WINDOW
WINDOW WINDOW

SIMPLE COMPONENT INCLUDE INFUTK)Ifrlq]TATTRIBUTIB
ATTRIBUTE ATI_IBUTE COMPONENTS DEPlNrFION
DEFINrrIoN DE._NITION
WINDOW WINDOW WINDOW WINDOW

ARrIIIMEFIC ATTRIBUTE ATTRIBUTE INPUT_OU'rI_rr INFUT
EXPRESSION COMPOSrrE MATCH IS-A FROM
DEFINITION DEFINITION DEFINrrIoN DEFINITION DEFINITION

WINDOW WINDOW WINDOW WINDOW WINDOW

ATIItmUTE
CONTROLLED

AOOREOATB ATIRIBUTE VALUECLASS
FUNCTION SUBVALUE WINDOW

DEFINmON DEFINrnON
WINDOW WINDOW

ATrRmUTE
ABSTRACT

ATTRIBUTE VALUECLASS
UNION WINDOW CONTROLLED

DEFINITION VALUE
CLASS/VALUE

WINDOW A'FrRIBUTE WINDOW
PRIMrrIVE

VALUE CLASS
WINDOW

ATTRIBUTE ATTRIBUTE
INVERSE METACLASS

DEFINITION VALUECLASS
WINDOW WINDOWi

FIGURE 2. Window Flow Diagram

35

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

(b) Open - open an existing schema.

(e) Append - append an existing schema to the current one.

(d) Save - save current schema.

(e) Save As - save current schema to a file.

(f) Print OPM in Latex- output current OPM schema into a Latex file.

(g) Print in PostScript - output current OPM schema into a PostScript file.

(b) Quit- quit OPM editor.

2. Display

(a) Clear - reset (clear) the display window.

(b) Class Hierarchy - the object class hierarchy of the current schema is graphically displayed if

this mode is on.

(c) Class Links - classes and their attributes are graphically displayed if this mode is on.

(d) Detailed Links - attributes of subprotocols involved in an expansion am also graphically dis-

played if this mode is on.

3. Define

(a) OPM Object Class - define a new object class. After this option is selected, a new (blank)

Object Class Definition window (see Figure 4) is brought up for adding a new object class. If

an existing object class is selected by double clicking the class name in the Object Classes

Listbox, then the definition of the selected object class will be displayed in the Object Class

Definition window (Figure 3).

(b) OPM Protocol Class - define a new protocol class (similar operation as define object class, but

using Protocol Class Definition window (see Figure 5) and Protocol Classes Listbox).

(c) Controlled Value Class - define a new controlled value class (similar operation as define object

class, but using Controlled Value Class/Value window (see Figure 13) and Controlled Value

Classes Listbox).

4. Help

(a) About.

(b) Help.

The main window contains a listbox for listing in alphabetical order object classes, protocol classes

and controlled value classes. The listbox is headed by an option menu that allows selecting one of the

following display types:

36

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

• 1. Object Classes for displaying the object class names.

2. Protocol Classes for displaying the protocol class names.
6

3. Controlled Value Classes for displaying the controlled value class names.

If an object class is selected in the listbox (and the Class Links mode is on), a diagram representing

the selected class, its superclasses, its subclasses, and its attributes is displayed in the main window

drawing area. If a protocol class is selected in the listbox, a graphical representation of its expansion (if

any) is displayed in the main window drawing area. These diagrammatic representations have buttons

representing class names. Double clicking on these buttons, just like double clicking on list elements,

brings up the class definition window for the selected class.

If a controlled value class is selected in the listbox (and the Cla_s Links mode is on), then the con-

trolled value class name together with all the values and/or ranges of this class are displayed in the main

window drawing area.

4.4 Define Object Class

An object class has a class name, an optional class description, and a set of associated attributes. A

specialization class (subclass) has one or more superclasses.

ect, Class Deflnttto_

Object Class Name: i! i Attributes

]:>escripti°n: I................... : I

_,, J,...... , i _ . ,1...... J............. 1. J, ,..... ,, , , ,L_

' i Choose aname for this class. !

• FIGURE 4. Object Class Definition Window

37

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

A new object class can be added and an existing object class can be modifie.d or deleted using the ,

Object Class Definition window (Figure 4)

4.4.1 Add Object Class

Before being added, an object class must be associated with a non-null distinct (unique) class name.

The class name must be in upper case letters and cannot exceed 32 characters. Class description is

optional and cannot exceed 256 characters.

The attributes and/or superclasses of an object class can be specified either before adding the class,

or after adding the class using the New button.

An object class can have multiple object superclasses. All the superclasses defined for the current

object class are listed in the Superdasses Listbox. After Modify Superclass button is used, a Super-

class Definition window (Figure 6) is brought up for adding new superclasses or for deleting existing

superclasses.

The attributes of the current object class are listed in the Attributes Listbox. An attribute can be

added/modified/deletezt using the Define Attribute button. If no attribute in the listbox is highlighted,

then using the Simple button brings up a new Simple Attribute Definition window (Figure 8), and

using the Composite button brings up a new Composite Attribute Definition window (Figure 9). If

there is a selected attribute, then using the above mentioned buttons brings up an attribute window for

the selected attribate.

4.4.2 Modify Object Class

Object class names, descriptions, superclasses and attributes can all be modified. The text in Object

Class Name or Description area can be edited in order to change the class name or description, respec-

tively. Clicking Modify Superclass or Define Attribute button allows modifying the superclasses or

attributes of a class. The procedure to modify the superclasses and attributes is the same as the proce-

dure described in previous subsection. After all the desired changes have been made, the schema is

updated using the Modify button.

4.4.3 Delete Object Class

Delete button allows deleting the current object class definition after the user confirms the action. ,

38

OPM SCHEMA EDITOR 2 OPAl Schema Editor Windows

. 4.5 Define Protocol Class

A protocol class has a class name, an optional class description, and a set of associated attributes.

If the protocol can be expanded into several subprotocols, then a protocol expansion is also specified. A

new protocol class can be added and an existing protocol class earl be modified or deleted using the Pro-

to¢oi Class Definition window (Figure 5).

l"owI I
l Choosea nara¢ford-z[$class.

FIGURE 5. Protocol Class Definition Window

4.5.1 Add Protocol Class

Before being added, a protocol class must be associated with a distinct non-null class name. The

class name must be in upper case letters and cannot exceed 32 characters. Class description is optional

and cannot exceed 256 characters.

The attributes of a protocol class can be specified before adding the class, or after the class has been

added using the New button.

The attributes of the current protocol class are listed in the Attributes Listbox. An attribute can be

added/modified/deleted using the Define Attribute button. If no attribute in the listbox is highlighted,

' then using the Simple button brings up a new Simple Attribute Definition window (Figure 8), using

the Composite button brings up a new Composite Attribute Definition window (Figure 9), and using

the Input/Output button brings up a new Input/Output Attribute Definition window (Figure 12). If

39

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

there is a selected attribute, then using the above mentioned buttons brings up an attribute window for
.e

the selected attribute.

Protocol expansion can be specified only filer an expanded protocol has been added to the _hema

using the New button. The protocol expansion is displayed in the Protocol Expansion area. Click the

Define Expansion button to bring up a Protocol Expansion window (Figure 7) for specifying or mod-

_g a protocol expansion.

4.$.2 Modify Protocol Class

Protocol class names, descriptions, expansions and attributes can all be modified. In order to

change a class name or a description, the text can be edited in the Protocol Class Name or the Descrip-

tion area, respectively. Click Define Expansion or Define Attribute button to modify protocol expan-

sion or attributes of the class. The procedure to modify expansion and attributes is the same as the

procedure described in previous subsection. Changes are finalized (i.e., recorded as schema updates)

using the Modify button.

4.5.3 Delete Protocol Class

The current protocol class can be deleted using Delete button, after the user confirms the action.

4.6 Define Superdass

A subclass has one or more superclasses, and it inherits all the attributes of its superclasses.A class

cannot be specified as a superclass of itself. Moreover, subclasses of a class cannot be specified as

superclasses of this class.

The Superclass Definition window (Figure 6) is used to define superclasses of an object class.

There are two lists of class names displayed in this window. The Selected Superdasses Listbox and the

Potential Superclasscs Listbox are complementary. An object class (except for the current one and its

subclasses) is listed in exactly one of the listboxes. The Selected Superdasses Listbox contains all the

superclasses of the current class. Transitive superclasses can be either included or not. Clicking on a

class name in the Selected Superdasses Listbox moves this class from the Selected Superdasses List-

box to the Potential Superclasses Listbox, and vice versa.

The Delete All button allows clearing the Selected Superclasses Listbox, and moving all the object ,

classes to the Potential Superdasses Listbox.

After all the superclasses are properly selected, the Modify button must be used in order to update .

40

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

!

FIGURE 6. Superdass Definition Window

the Object Class Definition window with the new superclass information.

4.7 Define Protocol Expansion

Protocol expansion allows specifying alternative protocols, sequences of protocols, and optional

protocols; "or", ",", "[" and "]" are used to denote alternative, sequences of, and optional protocols,

respectively, and parentheses are used for specifying complex protocol compositions. Operator "," has

higher prezeAence than or. For example, if P is a protocol whose expansion is (A, B, [C]) or D, then pro-

tocol P is defined as either (i) the sequence of protocols A followed by B and followed by optional pro-

tocol C, or (alternative) (ii) protocol D alone. The protocol expansion must be acyclic, that is, if a

protocol class Pj is involved in the expansion of protocol class Ps, then P_cannot be involved in the

expansion of P_or any subprotocol of P,.

The protocol expansion is displayed in the Protocol Expansion working area in the Protocol

Expansion window (Figure 7). Protocol expansion can be directly specified in the working area, or can

be specified using the listbox and function buttons provided for defining protocol expansion.

The protocol class names that can appear in the protocol expansion of the current protocol class P,

' are listed in the Protocols Listbox. A protocol Ps can be used in the expansion of P_if P_and Psare dif-

ferent, and P_does not appear in the expansion of Ps or any subprotocol of Pj (transitively).

When a protocol name is clicked in the listbox, the selected protocol class name will be highlighted

and inserted into the Protocol Expansion working area. Clicking the six function buttons ("or", ",",

41

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

"_', "]", "(", ")") causes the corresponding symbol to appear in the working area. In a protocol expan-

sion expre_ion, two protocol names must be separated by operators "or" or ",". If a protocol name is

appended immediately after another protocol name in the expansion, then the editor automatically adds •

a "," betw_n the two protocol names.

FIGURE 7.ProtocolExpansionWindow

A protocolcanhaveatmostonehigherlevelprotocol.Thatis,ifa protocolclassP_iscontainedin

theexpansionofprotocolclassP,,thenPjcannotbe containedintheexpansionofotherprotocol

classes.

A graphicalrepresentationoftheprotocolexpansionisalsodisplayedinthe"protocoldrawing

area".Thisdrawingareawillbe updatedeverytimea new andcorrectprotocolexpansionisentered

afterModifybuttonispressed.

ClickingtheClearbuttonclearstheProtocolExpansionworkingareaandthe"protocoldrawing "

area".

After the protocol expansion is specified, the Modify button must be used in order to update the

42

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

' Protocol Class Definition window with the new pro'.ocol expansion.

" 4.8 Define Simple Attribute

Each simple attribute has an attribute name, an associated value class, and a set of attribute con-f

stralnts. If the attribute is derived, then an attribute derivation is also specified.

D_on Corseu'ein_

i, ^uow i
Value Class: Derivation:

....................... :, ,,:, : =_. :........... .. -

Selec_Type: l_eoncroU.d:_il De.fine.Deriver:ion: [;j_non£ _i iC__i

[[[HH[[[]1 [[[.................... I"
IM'"I ,, ,a,

............... -. - , , ,,, _ ,......... - :
II _ Ill Ill I IlllJl] I [lllll I II Illll]llllIFI IIIlllllll II[lll

i, ,,-niLii]1(i11i r, i11_ i I]1I ! 11 ,iii,!,,l,! i11 '"'L :

FIGURE 8. Simple Attribute Definition Window

4,8.1 Add Simple Attribute

The name of the current (object or protocol) class is displayed in the Class Name area. An attribute

name, a value class and associated constraints must be provided before a new attribute can be added.

All the explicitly defined and inherited attributes of a class must have distinct, non-null names.

Attribute names are in lower case letters and cannot exceed 32 characters.

The Yes option for the Identifier button indicates that the attribute is (part of) an object identifier;

No indicates that the attribute is not (part of) an object identifier. The Single option of the Values button

indicates that the attribute can have only one value associated wsth it; if an attribute is associated with
L

a set of values, then the Multiple option must be selected.

The Allowed option of the Null button indicates that the attribute can have null values; if the

attribute is not allowed to have null values, then the Not Allowed option must be selected. Note that an

43

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

attribute that is (partof) an object Identifier, cannot have null values.

Each attribute must have an associated value class. The value class of the current attribute is listed

in the Value CIm Listbox. The Select Type option menu can be used for defining or modifying the •

value class. An attribute can be wtociated with one of the following four types of value classes:

1. Controlled: An Attribute Controlled Value CIMmwindow (Figure 14) is brought up.

2. Primitive: An Attribute Primitive Value Class window (Figure 15)is brought up.

3. Abstract: An Attribute Abstract Value Class window (Figure 16) is brought up.

4. Metada_: An Attribute Metadaa Value Class window (Figure 17) is brought up.

When the type of value class is changed, the user is informed that the previously defined value class

is destroyed. After the attribute name, value class and attributeconstraints are specified, the attribute is

associated with the current class using the New button.

For a derived attribute the derivation rule can be specified after the attribute has been associated

with a class using the New button.

The derivation rule of an attribute (if any) is displayed in the Derivation box. In order to define or

modify a derivation rule, the Dellne Derivation option menu must be used. An attribute can have at

most one derivation. There are eight options for attribute derivations:

1. none: This attribute has no derivation. A previously defined derivation will be removed.

2. arithmetic: An Arithmetic Expression Definition window (Figure 20) is brought up.

3. aggregate: An Aggregate Function Definition window (Figure 21) is brought up.
i
!

4. composition: An Attribute Composition Definition window (Figure 22) is brought up.

5. Inverse: An Attribute Inverse Definition window (Figure 18) is brought up.

6. match: An Attribute Match Definition window (Figure 19) is brought up.

7. subvalue: An Attribute Subvalue Definition window (Figure 23) is brought up.

8. union: An Attribute Union Definition window (Figure 24) is brought up.

If an attribute has been previously defined as derived and its derivation type is changed (e.g., from

an inverse attribute to an arithmetic expression derived attribute), then a confirmation of the change will
J

be required.

Note that an attribute which is (part of) an identifier cannot be a derived attribute. Moreover, only

simple, single-valued attributes can have arithmetic expression or aggregate function derivation. These

44

OPM SCHEMA EDITOR 2 OPM SchemaEditor Windows

attributesmustbeprimitive andassociatedwith oneof the following valueclas._,,s:INTEGER.SMALIJNT,

REAL.FLOAT.or MONEY.

4.¢2 Modify Simple Attribute

Attribute nzmea, value classes, constraints and derivation rules can lyemodified. ChanlleS one final-

ized (i.e., are recorded as schema updates) using the Modify button.

The modification of attribute constraints, value classes, and derivation specifications are carried out

as described in the subsection Add s Simple Attribute.

4.8.3 Delete Simple Attribute

An attribute can be deleted using the Delete button. Deletion is carried out only aJ'terthe user con-

firmstheaction.

4.9 Define Compodte Attribute

Each composite attribute has an optional attribute name, a set of component attributes, and associ-

ated constraints. The constraints on composite attribute axe applied to each of the components. A com-

posite attribute can be associated with an attribute matching derivation.

4.9.1 Add Composite Attribute

The name of current (object or protocol) class is displayed in the Class Name area. The name for

a composite attribute is optional. If such a name is provided, then it must be unique within the class, in

lower case letters, and must not exceed 32 characters. Constraints are defined as follows. The Yes option

for the Identifier button indicates that the composite attribute is (part of) an object identifier; No indi-

cates that the attribute is not (part of) an object identifier.

The Single option of the Values button indicates that every component attribute can have only one

value associated with it; if all component attributes can be associated with sets of values, then the Mul-

tiple option must be selected. The Allowed option of the Null button indicates that the attribute can

have null values. Note that if the attribute is (partof) an object identifier, then it cannot have null values.

• The component attributes of a composite attribute are listed in the Components Listbox. Compo-

nent attributes can be added/modified/deleted using the Define Component button. If a component

• attribute is highlighted, then Define Component button brings up a Component Attribute Definition

window (Figure I0) for modifying the attribute. Otherwise, a new Component Attribute Definition

45

OPM SCHEMA EDITOR 2 OPM SchemaEditor Windows

window (Figure 10) is displayed for the definition of a new attribute. After all the necessary information .

(except the derivation) is specified, the attribute can be associated with the cu_nt class using the New

button. If the composite attribute is derived, then the derivation can be specified after associating the .

attribute with the current class.

FIGURE 9. Composite Attribute Definition Window

The derivation rule of a composite attribute (if any) is displayed in the Derivation box. The deri-

vation rule can be defined or modified using the Define Derivation button:

1. none: This attribute has no match derivation. A previously defined match derivation will be

removed.

2. match: An Attribute Match Definition window (Figure 19) is brought up.

Whenever thederivationtypefor an attributeis changed,the useris askedto confirm the change.

Note that an attributewhich is (part of) an identifier cannothave a derivation.

Component attributesof a compositeattributecan also be defined by including existingsimple

attributesof the targetobjector protocolclass.SelectingInclude Components buttonwill bringup an

Include Components window (Figure 11)for includingsimple attributesascomponentsof thecurrent ,

composite attribute.

The Decompose button decomposes the composite attribute. That is, all the component attributes .

46

OPM SCHEMA EDITOR 2 OPM Schemo Editor Windows

' _ome simple attributes of the target class.

" 4.9.2 Modify Composite Attribute

Attribute names, component attributes, constraints and derivation rules can be modified. Changes

are finalized (i.e., recorded as schema updates) using the Modify button.

The modification of attribute constraints, components, and derivation specification is carried out as

described in the subsection Add a Composite Attribute.

4.9.3 Delete Composite Attribute

An attribute can be deleted using the Delete button. Deletion is carried out only after the user con-

firms the action.

4.10 Define Component Attribute

Each component attribute must have a distinct attribute name, and must be associated with a value

class. A component attribute can have an attribute derivation.

4.10.1 Add Component Attribute

In order to add a component attribute to the composite, a name for the component attribute must be

specified first. Although the name of the composite attribute is optional, every component attribute of a

composite attribute must have a name. Such a name must be distinct, in lower case letters, and should

not exceed 32 characters.

Every component attribute must have an associated value class. The value class of the current com-

ponent attribute is listed in the Value Class Listbox. The Select Type option menu can be used for

defining or modifying the value class. A component attribute can be associated with one of the follow-

ing four types of value classes"

1. Controlled: An Attribute Controlled Value Class window (Figure 14) is brought up.

2. Primitive: An Attribute Primitive Value Class window (Figure 15) is brought up.

3. Abstract: An Attribute Abstract Value Class window (Figure 16) is brought up.
t

4. Metacl_: An Attribute Metaclass Value Class window (Figure 17) is brought up.

• When the type of value class is changed, the user is informed that the previously defined value class

is destroyed.

47

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

i nlI i ill I : - I I I III I Ill I I II! I! II Jl_ I - " I] I IfllllflI I IIIII I _:_ : I' I IllIlll IIII I I II1| [

FIGURE 10. Component Attribute Definition W'mdow

After all the necessary, inform,tion (except the derivation) is specified, the component attribute is

added to its composite attribute using the New button. If a component attribute has an attribute deriva-

tion, then this derivation can be specified after adding the attribute.

The derivation of a component attribute (if any) is displayed in the Derivation box. The derivation

rule can be defined or modified using the Define Derivaeon button:

1. none: This attribute has no derivation. Previously defined derivation will be removed.

2. arithmetic: An Arithmetic Expression D, anieon window (Figure 20) is brought up.

3. aggregate: An Aggregate Function Delinition window (Figure 21) is brought up.

4. composition: An Attribute Composition Dean,ton window (Figure 22) is brought up.

5. inverse: An Attribute Inverse Dean/t/on window (Figure 18) is brought up.

6. subvalue: An Attribute Subvalue Dennltion window (Figure 23) is brought up.

7. union: An Attribute Union n_anltion window (Figure 24) is brought up.

A component attribute can have at most one derivation. If the composite attribute containing the '

component attribute is an identifier or is derived using attribute match, then the component attribute

cannot have a derivation. After attribute derivation is defined, click Modify button to associate the com-

48

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

. ponent attribute with the new derivation.

• 4.10.2 Modify Component Attribute

Attribute names, value classes and derivation rules of component attributes can be modified.

Changes are finalized (i.e., recorded as schema updates) using the Modify button.

The modification of value class associations and derivation specifications is carried out as

described in the subsection Add a Component Attribute.

4.10.3 Delete Component Attribute

A component attribute can be deleted using the Delete button. Deletion is carried out only after the

user confirms the action.

4.11]Lndude Attributes into a Composite Attribute

Component attributes of a composite attribute can be defined one by one using the Component

Attribute Definition window. Alternatively, existing simple attributes of the target object or protocol

class can be included as components of a composite attribute using the Include Components window

(Figure 11).

' FIGURE 11. Include Components ._ '_dow

• The Selected Attributes Listbox and the Potential Attribt,:,.J Listbox are complementary. An

existing simple attribute of the current class is displayed in one (and only one) of the two listboxes.

49

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

!

Selected Attributes Listbox contains all the attributes that will be included as components of the com- ."

posite attribute.

Initially, the Selected Attributes Listbox is empty, and the Potential Attributes Listbox contains "

all the simple attributes defined for the current class. When an attribute name is selected in the Potential

Attributes Listbox, this attribute is moved from the Potential Attributes Listbox to the Selected

Attributes Listbox, and vice versa.

After all the included attributes are properly selected, the OK button must be used in order to

record the change to the schema.

4.12 Define Input/Output Attribute

Input/output attributesare associated only with protocol classes. Every inpuffoutputattribute has an

attribute name, attribute constraints, is associated with a value class, and has an input/outputconnection

specification.

FIGURE 12. Input/Output Attribute Definition Window

4.12.1 Add Input/Output Attribute

The name of the current protocol class is displayed in the Class Name area. A new attribute must

have an attribute name, a value class, defined constraints and an input/output connection specification

before being associated with the protocol class.
5O

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

: An input/output attribute must have a distinct non-null name within a protocol class. Such a name

is in lower case letters and cannot exceed 32 characters.

The Single option of the Values button indicates that the attribute can have only one value associ-

ated with it; if the attribute can be associated with sets of values, then the Multiple option must be

selected.

The Allowed option of the Null button indicates that the attribute can have null values; if the

attribute is not allowed to have null values, then the Not Allowed option must be selected.

Every attribute must have an associated value class. The value class of the current input/output

attribute is listed in the Value Class Listbox. The Select Type option menu can be used for defining or

modifying the value class. An input/output attribute can be associated with one of the following three

types of value classes:

1. Controlled: An Attribute Controlled Value Class window (Figure 14) is brought up.

2. Primitive: An Attribute Primitive Value Class window (Figure 15) is brought up.

3. Abstract: An Attribute Abstract Value Class window (b]gure 16) is brought up.

When the type of value class is changed, the user is informed that the previously defined value class

is destroyed.

After all the necessary information is specified, the input/output attribute is associated with the pro-

tocol class using lhe New button.

An input/output attribute can have an associated connection statement. In order to define a correct

input/output connection, the protocol expansion of the current protocol class should be first defined and

saved, and the input/output attribute should be (correctly) associated with a value class.

Input/output connections are listed in the Connection box. Connections are defined or modified

using the Define Connection option menu:

1. Input is.a: An Input/Output Is-a Definition window (Figure 25) is brought up.

2. Input from: An Input From Definition window (Figure 26) is brought up.

3. Output is-a: An Input/Output Is-a Definition window (Figure 25) is brought up.

An attribute can be either an input attribute or an output attribute, but not both. If an attribute is

changed from an input attribute to an output attribute, then the from-statement will be lost and the user

is notified of this loss.

• After the input/output connection is specified, click Modify button to associate the connection to

the current attribute.

51

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

4.12.2 Modify Input/Output Attribute

Attribute names, value classes, constraints and input/output connections of input/output attributes

can be modified. Changes are finalized (i.e., recorded as schema updates) using the Modify button.

The modification of attribute constraints, value classes, and connection specifications is carried out

as described in the subsection Add an Input/Output Attribute.

4.12.3 Delete Input/Output Attribute

An input/output attribute can be deleted using the Delete button. Deletion is carried out only after

the user confirms the action.

4.13 Define Controlled Value Class

A controlled value class is a primitive value class with enumerated atomic values or ranges. For

example, a controlled value class COLORwith Character String type has values: red, yellow and green.

Another controlled value class AGE_GROUP with Numeric Constant type has values 20-55.

A controlled value class can be defined or modified using the Controlled Value Class/Value win-

dow (Figure 13).

FIGURE 13. Controlled Value Class/Value Window

52

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

" 4.13.1 Add Controlled Value Class

Before being added, a controlled value class must be associated with a distinct non-null (unique)
i¢

class name. This name must be in upper case letters and cannot exceed 32 characters.

A controlled value class can have Character String or Numeric Constant value type. The value type

determines the data type of user's input. Thus, an input value n is considered as a number if the value

type is Numeric Constant, and is considered as a string "n" if the value type is Character String.

The values of a controlled value class are added one by one as follows: first the new value is

entered in the New Value area; then the insertion is finalized using the New Value button. The entered

new value is listed in the Values in this class Listbox.

Values in a controlled value class with Character String value type are distinct character strings that

do not exceed 80 characters. Values in a controlled value class with Numeric Constant value type are

numbers or ranges. A range is represented as: a - b, where a and b are both numbers. Negative numbers

are enclosed in parentheses. For example, (-5) - 10 is a range with lower bound -5 and upper bound 10.

A value is modified or removed from the current value class as follows:

1. the value is first selected by clicking on it in the Values in this class Listbox;
, ,

2. the selected value is highlighted and copied to the New Value area;

3. ff the value is modified then

(a) the value is modified in the New Value area, and the change is finalized using the Modify

Value button; the highlighted value in the listbox is replaced by the new value;

(b) if the New Value button is used instead of the Modify Value button in the previous step, then

the edited value is inserted as a new value into the controlled value class;

4. the highlighted value in the listbox can be removed by using the Delete Value button.

The Clear Input button clears the New Value area.

After all the values of a controlled value class are defined, the controlled value class is added to the

current schema using the New button.

4.13.2 Modify Controlled Value Class
t

An existing controlled value class can be modified using the Modify button. All the values in a

controlled value class as well as the name of the controlled value class can be modified. The procedure

to add, modify or delete a value in an existing controlled value class is the same as the value modifi-

53

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

cation procedure described in Add a Controlled Value Class.

The value type of a controlled value class can also be modified. It is always possible to convert

Numeric Constant type to Character String type. All the numbers and ranges defined in the controlled -

value class are converted into strings. A controlled value class with Character String value type can be

converted into Numeric Constant type only when all the values defined in this class can be converted

into numbers and/or ranges; otherwise, an error message will be issued and the value type remains

Character String.

4.13.3 Delete Controlled Value Class

An existing controlled value class can be deleted using the Delete button. Deletion is carried out

only after the user confirms the action.

4.14 Select Attribute Controlled Value Class

All the predefined controlled value classes together with their values are listed in the Controlled

FIGURE 14. Attribute Controlled Value Class Window

Value Class Listbox. For example, if there is a controlled value class called COt.OR with three values:

red, yellow and green, then it is displayed as: COl_OR: {"red ","yellow ","green"} (for the definition and "

54

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

,. modification of controlled value class see section Define Controlled Value Class).

The highlighted value class in the listbox will be the value class associated with current attribute,

, For adding or modifying a controlled value class of an attribute, the desired value class name must be

first selected in the listbox (the class name will be highlighted), and then the Modify button must be

used.

If the attribute is associated with a new (not previously defined) controlled value class, then the

Define Controlled Value Class button must be used first in order to define the controlled value class.

The Define Controlled Value Class button brings up the Controlled Value Class/Value window

(Figure 13) for the definition of a new controlled value class. After the new controlled value class is

added, the name of this new class is listed and highlighted in the Controlled Value Class Listbox. The

Modify button is then used in order to associate the attribute with this value class.

The value class of an attribute is deleted using the Delete button. A controlled value class is pre-

served in the current schema after such a deletion.

55

OPM SCHEMA EDITOR 2 OPM SchemaEditorWindows

4.15SelectPrlmltlveValueClass .

Inordertoallowselectingaprimitivevalueclass,thePrimitiveClassesListboxlistsallthesystem

definedprimitiveclasses.

A primitivevalueclasscanbeselectedby clickingonitinthelistbox.The selectedprimitivevalue

classwillbehighlighted.Ifthisprimitivevalueclasshas"(n)"attheend,thentheattributelengthmust

bespecified;alengthisa positiveinteger.

Aftera valueclassisselected(anda lengthdefined),theattributeisassociatedwiththevalueclass

usingtheModifybutton.

4.16 Select Abstract Value Class

An attributecan be associated with one or several abstract value classes (i.e., value classes that are

defined as object classes).

FIGURE 16. Attribute Abstract Value Class Window

The Selected Value Classes Listbox and Potential Value Classes Listbox are complementary. The

name of an OPM class (including the current one) is listed in exactly one of these listboxes. The

Selected Value Classes Listbox contains the value classes selected for the attribute.

A class selected (clicked on) in the Selected Value Classes Listbox, is moved from the Selected

Value Classes Listbox to the Potential Value Classes Listbox, and vice versa.

56

I

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

The Delete All button can be used to clear the Selected Value Classes Listbox, and thus move all J

the classes to the Potential Value Classes Listbox.
o

The selected value classes are associated with the attribute using the Modify button.
I

4.17 Select Metadass Value Class

There are two Metaclassesin OPM: OBJECT_CLASSESand PROTOCOL_CLASSES.

FIGURE 17. Attribute Metadass Value Class Window

A user can select a metaclass using the Metaclass option menu; the default option is Undefined.

The selected (option) metaclass is highlighted. The highlighted value class in the Metaclass option

menu is associated with the attribute using the Modify button.

A metaclass can be deleted as the value class of an attribute using the Delete button.

4.18 Define Attribute Inverse Derivation

The current class name and attribute name are displayed in the Attribute Name and Class Name

areas, respectively (at the top of the window). An attribute can be specified as inverse of multiple

attributes; all these attributes are listed in the Inverse of Listbox.The object classes that are defined as

value classes of the current attribute are listed in the Classes Listbox. When a class name in the Classes

Listbox is selected (clicked on), the (simple or component) attributes of that class will be listed in the

' Attributes Listbox.

In order to define an attribute A as an inverse of the current attribute, class Oa of A must be first

57

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

FIGURE 18. Attribute Inver"_ Definition Window

selected. As a result, the attributes of 04 are listed in the Attributes Listbox. Subsequently, the name of

attribute A is selected in the Attributes Listbox and the name of the select attribute prefixed by the

name of its class (i.e., O,.A) is inserted into the Inverse of Listbox

An attribute inverse definition can be removed by selecting (clicking on) the attribute name in the

Inverse of Listbox. In order to remove all attribute inverse definitions (i.e., clear the Inverse of List-

box), the Delete All button is used.

After the inverse derivation of the current attribute is defined, the derivation is associated with the

attribute using the Modify button. A message will be brought up to ask whether you want to make this

attribute an inverse of corresponding attribute(s) of the selected class(es). Click Yes will add the current

attribute to the attribute inverse derivations of all the attributes specified in the Inverse of Listbox.

The following constraints must be satisfied when an attribute inverse is defined:

1. The value classes of the attributes defined as inverses of the current attribute must contain (or be

equal to) the object class of the current attribute.

2. Attributes defined as inverses must either be non-derived, or defined as inverses of the current
t

attribute.

3. Only one attribute can be selected from each class.

58

I

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

'. 4. If the current attribute is associated with the union of value classes V, or ... or V., then only sim-

ple attribu_ of these classes 'ca, ..., V, are listed in the Attr/butes Listbox (no composite or

" componentattributes).

4.19 Define Attribute Ma_nlg Derivation

The name of the current class is displayed in the Class Name area at the top of the window. The

name of the attribute that is to be matched (i.e., the attribute is associated with a match derivation) is

' listed in the Attribute Match Listbox as follows: if the attribute is a simple attribute, then its name is

listed in the listbox; if the attribute is a composite attribute, then all the names of the component

attributes are listed in the listbox.

FIGURE 19, Attribute Match Definition Window

The Matching Class Listbox lists the classes that can be used in the matching derivation; how to

determine whether a class can be used or not in the matching derivation of the current attribute is

explained in more detail later in this subsection.

The matching is defined as follows:
t

59

OPM SCHEMA EDITOR 2 OPM SchemaEditorWindows

I. A class name is selected in the Matehln| Class Listbox, and as a result the components of a

compositeattribute of that class satisfying the matching constraints are listed in the On

Attribute Listbox.

2. Next, a match on attribute Ba is selected in the On AttribuW L,isthox, and asa result the compo-

nent attributes that belong to the same composite attribute as B,, except B_, are listed in the

Matching Attributes Listbox.

3. An attribute is selected in the Attribute Match Listbox(listing the simple or components

attribu_,i to be matched) and then its matching attributeis selected in the Matching Attributes

Listbox;

4. The matchassociationin thepreviousstepis definedusingtheAdd Match button.As a result,

theselectedmatchingattributeis included in parenthesesin the Attribute Match Listbox

appendedafter the matchedattribute,andis removedfrom Matching Attributes Listbox.(For

example,if attributeAa matchesAs, thenA, (As) will replacethe originalitem A, in theAttribute

Match Listbox;A= is removedfrom Matching Attributes Listbox.) If an attributealreadyhasa

matchingattribute,thenAdd Match replacesthe matchingattribute.

The matching attributeof an attributeselectedin theAttribute Match Listbox can be removed

usingthe Delete Match button.A removedmatchingattributeis returnedto the MaW.htngAttributes

Listbox.

All thematchingattributescan be removedfrom all attributeslistedin theAttribute Match List-

box using the Delete All button. The removed matching attributes are returned to the Matching

Attributes Listbox.

Note that after a matchingis specified,theMatching Class Listbox cannotbe changed.This list-

box can be changed only if all matching attributes are removed (using Delete All).

After the matching derivation is correctly defined, the match derivation is associated with the cur-

rent attribute using the Modify button.

The attribute matching derivation must satisfy the following additional constraints:

I. In the Matching Class Listbox only classes that have a composite attribute that contain a com-

ponent attribute whose value class includes the class of the current attribute are listed.
d

2. A simple attribute can match only a composite attributewith two components. A composite

attributeA with n components can match only another composite attribute B with (n+l) compo-

nents. Consequently:

60

OPM SCHEMA EDITOR 2 f_PM SchemaEditor Windows

O

(a) For a simple attribute match, only component attributes of binary composite attributes are listed

in the On Attribute Listbox.
e

Co) For a composite attribute match, if the attribute is an n-ary composite attribute, then only com-

ponent attributes of (n+ l)-ary composite attributesare listed in the On Attribute Listbox.

3. An attributeA can match an attribute B from the Attribute MaW.h listbox only if A and B have

the _e value class.

4. The value class of an On Attribute must include the current object class. Consequently, in the

On Attribute IAsthox are listed only the names of attribuw._that are associated with value

classes that include the current object class.

An matching example is given immediately below.

,An _zemple,.

Let object classesTRANSLATESand('4ENEbe definedas follows:

OBJECT CLASS TRANSLATBS:

DESCRIPTION: gene translatesproteinat somecell

[D: (gene, at_cell, protein)

A'[TRIBUTE (gene, at_cell, protein):(GENE, CELL, PROTE]N) single-va[ued not null

OBJECT CLASS GENE:

DESCRIPTION: gent

ID: gene_name

ATTP,IBU'I_ gene_name: CHAR(80)

A_UTE (translate_protein, translate_at): (PROTEIN, CELL)

Suppose a match derivation for the compositeattribute(translate_proteln,translate_at) of object

classGENEis definedas:match (protein,at_ceU)of_ANSLATESon gene. Componentstranslate..proteln

andtranslate_atare listedin the Attribute Match Listbox.

. All the (object and protocol) classes that have attributes that satisfy the matching constraints arc

listed in the Matching Class Listbox. Suppose that mANSL_TESis selected in the Matching Class List-

, box. Since the current composite attribute has two components, only a composite attribute of TRANS-

t.ATESconsisting of three components can be selected for matching, that is, composite attribute (gone,

61

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

at_cell, protein).

Amonll the componentattributesof (gene, at.cell, protein) only attribute genehas value class

GENE, andthereforeonly attribut_geneis listed in the On Attribute Listbox.

If attributegene is selectedin the On Attribute Listbox, then the othertwo components,at_cell

and protein, are listed in the Matchinll Attributm IAstbox.

Next, tramlate..proteln is selected in Attribute Match Listbox, and protein is selected in the

Matching Attribute Listbox; using the Add Match button the attribute name translate, protein in

Attribute Match Listbox is replaced by: translate_protein (protein), and attribute protein is then

removed from the Matching Attributes Listbox.

The same procedure is repeated in order to match tramlate_at and at_celL

4.20 Define Arithmetic Expression Derivation

The current class name and attribute name ate displayed in the Class Name and Attribute Name

areas, respectively, at the top of the window. The arithmetic expression derivation to be associated with

the attribute is displayed in the Arithmetic _presston working area. The arithmetic expression can be

FIGURE 20. Arithmetic Expression Definition Window

directly edited in the Arithmetic Expression working area, or can be expressed using the Attributes

Listbox and the operator buttons.

OPM SCHEMA EDITOR 2 OPM SchemaEditor Windows

q

All the single-valued simple and componentattributes of the current class(except the current

attribute), associatedwith an INTEGER,SMAll.INT,REAL,FLOAT,or MONEY value classare listed in the

Attributes Listbox. Only theseattributescanbe used in thearithmeticderivation.

An attributenameselectedin the Attributes Listbox is insertedinto the AHthmetlc Expression

working area.Selecting(clicking on) a specialoperatorbutton(+, -, *,/, (,)) resultsin insertingthecor-

respondingsymbolinto theArithmetic Expressionworking areaas well.

The AHthmetic Exp_on working areacan be cleared using theDelete All button.

After the arithmetic expressionderivation hasbeen defined, the attribute is a._sociatedwith the

arithmeticexpressionderivationusingtheModify button.
i

4.21 Define Aggregate Function Derivation

The current class name and attribute name are displayed in the Class Name and Attribute Name

areas, respectively, at the top of the window. An aggregate function derivation consists of an aggregate

function (count, rain, max, sum, average) and an attribute name. All the multi-valued (simple or com-

ponent) attributes of the current class arc listed in the Attributes Listbox.

L.... iAmdbmeName: Am'ibute_:
-- - - II IfilI lB, II I I Ill 111,llllll, . Z

/LILIIIIIll J [L --

.. :_; , .,. -::1,_.u,l- -:_ :_:

Undo Close Help
- .- _• _._ .. :--:-. : __ _. '-

LI I I III I! L.... J IlJl _._ I _l lU 11111 II111 _ ilnl , I11 _ ii111111I I II Ull I, II , 111111"1,q ±U,l

Sele,c_ a Primitive,Value Class to be th_ valu_ class ofthe am'ibute.

' FIGURE 21. Aggregate Function Definition Window

. First, one of the functions in the Function option menu (count, min, max, sum, average) must be

selected. Then, an attribute name listed in the Attributes Listbox is selected (clicked on); the selected

63

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

attribute is highlighted, r

If the selected function is rain, max, sum or average, thenonly multi-valued attributesassociated
d

with an INIEGER,SMAWNToREAL,FLOAT,or MONEYvalue class axe listed in the Attributes Listbox.

The Function selection and the attribute selection in the Attributes Listbox can be cleared using

the Delete All button.

After the aggregate function derivation has been defined, the attribute is associated with the deri-

vation using the Modify button.

4.22 Define Attribute Composition Derivation

A simple or component attribute C can be derived as:A,.A_ A, (n > 2), where A_ is an attribute

associated with the current class, As is an attribute associated with the value class(es) of As, etc.

Attributes A,, At, ..., A, are all simple or component attributes; they are either non-derived or derived

by inverse derivation. Attribute A, can either be an abstract attribute or a primitive attribute.

Attribute composition derivation is defined in the Attribute Composition Definition window

(Figure 22).

(_orrlposLl:lon :D_-tvalcLon: [[

_,t'ta'tbtal:_s: Xfadu__. Cl_s s _.s:

- I __ _ I I lllt l I|lP I I J _ _ [(i..... llll _ [. i1

l I

FIGURE 22. Attribute Composition Definition Window

The current attribute name and class name are displayed at the top of the window in the Attribute

Name area and Class Name area, respectively. The attribute composition derivation is displayed in the

64

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

Composition Derivation area.

In the beginning, all local (i.e., not inherited) non-derived or inverse derived, simple or component
$

attributes (not composite attributes) associated with the current class, 0_, except the current attribute are

displayed in the Attributes Listbox.

When an attribute is selected in the Attributes Listbox, this attribute is highlighted and displayed

in the Composition Derivation area. The value class(es) of this selected attribute will be listed in the

Value Classes Listbox. This Value Classes Listbox is for display only; it is non-selectable.

In the case of controlled value class, primitive value class or metaclass value class, the Attributes

Listbox remains unchanged.

In the case of an abstract value class:

- if the value class consists of a single abstract object class, Oj, then all locally simple or component

attributes of Oj are displayed in the Attributes Listbox.

- if the value class consists of a union of the object classes, O_lor ... or Oj,n, then local simple or

component attributes that are associated with Oil and ... and Oj,n are displayed in the Attributes

Listbox; for each such attribute,A, OjIA, ..., and Oj, A must be associated same value class.

The selection in the Attributes Listbox can be repeated. The selected attribute name is appended at

the end in Composition Derivation area. (A dot "." is automatically added between any two attribute

names.) The value class of a newly selected attribute is again displayed in the Value Classes Listhox.

The definition of composition derivation stops either at a non-abstract attribute, or when the user

ends selecting attributes.

After the derivation has been defined, the attribute is associated with the new derivation using the

New button. The Delete button removes the composition derivation.

4.23 Define Attribute Subvalue Derivation

An attribute A_ of an object or protocol class O, can be defined as: subvalue of As, if the value class

of As is a subclass or subset of the value class of A_. Attribute subvalue derivation is defined in the

Attribute Subvalue Definition Window (Figure 23).

The current class name and attribute name are displayed in the Class Name area and Attribute
" a

Name area, respectively. Derivation. subvalue of area displays the attribute subvalue derivation.

Suppose A is the current attribute. A simple or component attribute of the current class (except for

the current attribute), B, is listed in the Attributes l.,istbox if:

65

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

I 1

i

i Jim H .__ i l_
_...--1 I I IIII II II II nl • L I. I

..... t .,,, _ , ,,u . _ _ ,,,,,,_,- , ,,,,tu,,,l,i , , i,, ,

FIGURE 23. Attribute Subvalue Definition Window

1.attribute B is associated with a value class consisting of a single class, Os , attribute A is asso-

ciated with a value class consisting of a single class, On , andO B is an immediate or transitive

superclass of 0 n ;

2.attribute B is associated with a value class consisting of a union of value classes, Osz or ...

or On, . Attribute A is associated with a value class consisting of a single or a union of classes,

OA,and 0 n is containedin Ost or... or Os.

After an attribute is selected in the Attributes Listbox, the selected attribute name is displayed in

the Derivation: subvalue of area. The attribute is associated wi_ the derivation using the Modify but-

ton.

Delete button removes the subvalue derivation.

4.24 Define Attribute Union Derivation

Attribute union derivation is defined in the Attribute Union Definition window (Figure 24).

The current class name and attribute name are displayed in the Class Name area and Attribute '

Name area, respectively. Derivation area displays the attribute union derivation.

Selected Attributes Listbox and Potential Attributes Listbox are complementary. Suppose that '

66

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

'(.

FIGURE 24. Attribute Union Definition Window

the current attribute is B. Simple or component attributes (except B) associated with the current class

and that have value classes that are subsets of (or equal to) the value class of B are displayed in one (and

only one) of the two listboxt, s. Selected Attributes Listbox contains the attributes that will be included

in the derivation.

An attribute that is selected (clicked on) in the Potential Attributes Listbox is moved from the

Potential Attributes Listbox to the Selected Attributes Listbox, and vice versa.

Delete All button removes the attribute union derivation; the Derivation area and Selected

Attributes Listbox are cleared, where the attributes in Selected Attributes Listbox are moved to the

Potential Attributes Listbox.

After the union derivation has been defined, the attribute is associated with the derivation using the

Modify button.

4.25 Define Input/Output Attribute Is-a Connection

, This attribute is specified as associated with an input/output is-a connection; the type of connection

(input is-a or output is-a) is displayed at the top of the window.

, If the protocol expansion of a protocol class P_ contains another protocol class P_, then protocol P_

is a direct generic (higher-level) protocol of P,. A protocol class can only have one direct generic pro-

67

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

tocol. An input (output) attribute cannot have an input (output) is-a statement unless the current protocol

class has a genetic protocol. If an input attributeAa of protocol class Pz/s-a P, Aa, then Pa must be the

direct generic protocol of P2,and A_ must be an input attribute of P_. A similar constraint applies to out-

put attribute with is-a statement.

The Protocol area displays the name of the direct generic protocol of the current protocol. Input

attributes or output attributes (depending on whether the attribute is an input or an output attribute) of

the generic protocol are listed in the Attributes Listbox. The input (output) is-a connection is specified

by selecting an attributefrom the Attributes Listbox; the selected attribute is highlighted in the listbox.

The input (output) is-a connection is removed by using the Delete button; the highlight for the pre-

ls-a

The atlzibure" s input is- a

Protocol Attributes

ISHOTOUNPP,OTOCOL I :clones

FIGURE 25. Input/Output Is.a Definition Window

viously selected attribute in the Attributes Listbox removed.

After the input/output attribute connection has been defined, the attribute is associated with the con-

nection using the Modify button.

4.26 Define Input Attribute From Connection

An input attribute from connection must satisfy the following constraints: if attribute A of protocol

P_is an input attribute specified as input from Pj via BI, B,,..., B,, then:

68

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

IL
1. if P, is mentioned in the protocol expansion of a protocol class Pj, then PImust also be mentioned

in the same protocol expansion, and Pj must immediately precede Pj;
O

2. Bj must be an output attribute of Pj;

3. For every B.., 2 < m < n: B= is an attribute of class O., where O., is a value class of attribute B.a.

4.26.1 Add Attribute Input-From Connection

The From Protocol Listbox lists the names of the protocol classes that can be used in the input-

from connection statement of the current attribute. If the current protocol class, P. has been mentioned

in a protocol expansion, then the From Protocol Listbox lists only the names of the protocol classes

that immediately prec_e P_ in the protocol expansion; otherwise, the From Protocol Listbox fists the

names of all the protocol classes except P_.

F_-n

The attrlbute Lnput fr°m I............... [via i

From Prototml Classes Attributes

.... ii _

L. iii i lilt

I .. I

FIGURE 26. Input From Definition Window

An input attribute from connection is added as follows:

1. A protocol name is selected (clicked on) in the From Protocol Listbox; the selected protocol

name is highlighted, and is displayed in The attribute input from area. As a result of this selec-

tion, the output attributes of the selected protocol class are listed in the Attributes Listbox.

69

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

2. An attribute, B, is selected in the Attributes Listbox. As a result, the name of attribute B is listed p

in the via part (only the attribute name, not class-name.attribute-name, is listed). Following this

selection, the value classes of B are listed in the Classes Listbox with the first value class high-

lighted (selected by default).

3. A class is selected in the Classes Listbox. The attributes of this highlighted class are listed in the

Attributes Listbox. An attribute name is selected in Attributes Listbox. As a result of this selec-

tion, the name of the selected attribute is appended to the list of attributes already in the via area;

attribute names in the via area are separated by commas (,).

4. The selection of a class name in the Classes Listbox and of an attribute name in the Attributes

Listbox can be repeated until the input attribute from connection specification is completed.

After the input attribute from connection has been defined, the attribute is associated with the con-

nection using the Modify button.

4.26.2 Modify Attribute Input-From Connection

An input attribute from connection can be modified following a procedure similar to that described

in the previous subsection. After the input attribute from connection has been modified, the attribute is

associated with the modified connection using the Modify button.

4.26.3 Delete Attribute Input-From Connection

Delete button deletes this input-from connection. An input attribute from connection can be deleted

using the Delete button.

70

OPM SCHEMA EDITOR 2 References

References

[1] Chen, l-Min A., and Markowitz, V.M., The Object-Protocol Model, Lawrence Berkeley Labo-

ratory Technical Report LBL-32738, 1993.

[2] Chen, I-Min A., and Markowitz, V.M., Mapping Object-Protocol schemas into Extended

Entity-Relationship Schemas and Queries, Lawrence Berkeley Laboratory Technical Report

LBL-330A8 1993.

[3] Markowitz, V.M., Wang, J., Fang, W. SDT 6.1.. A Schema Definition and Translation Tool for

Extended Entity-Relationship Schemas, Lawrence Berkeley Laboratory Technical Report

LBL-27843, 1993.

[4] Markowitz, V.M., and Shoshani, A., Object Queries over Relational Databases: Language,

Implementation, and Applications, Proceedings of the 9th International Conference on Data

Engineering, 1993.

71

OPM SCHEMA EDITOR 2 TheObject-ProtocolModel

A The Object-Protocol Model

In the Object-Protocol Model, objects are qualified by attributes and are classified into object
,t

classes. Certain objects, called protocols, have additional specific characteristics and therefore are clas-

sifted into protocol dasses. Each object or protocol class has a distinct class name. An OPM schema

consists of one or several object and/or protocol classes.

Object and protocol class names are classified in OPM into two system metadasses called OBJECT_-

CLASSESand PROTOCOL.CLASSES,respectively. OBJECT_CLASSEScontains the names of the object

classes defined in the current OPM schema, and PROTOCOL_CLASSEScontains the names of the protocol

classes in the OPM schema. The content of the system metaclasses reflects the status of an OPM schema,

and cannot be changed directly by users.

A.1 Attributes

Attributes in OPM are identified by attribute names, take values from value classes, and can be char-

acterized by attribute constraints. All the (local and inherited) attributes associated with an object or pro-

tocol class must have distinct names.

An attribute can be simple or composite. A simple attribute is assigned an attribute name and is asso-

ciated with either a single value class or a union of several value classes. A composite attribute consists

of several component attributes enclosed within parentheses. The name of a composite attribute is

optional. However, each component attribute must have a distinct name and an associated (single or

union) value class. The constraints associated with a composite attribute apply to all the component

attributes. Composite attributes in OPM cannot be nested; that is, a component attribute cannot be a com-

posite attribute.

Depending on the type of the associated value class, an attribute can be primitive or abstract. A

primitive attribute is an attribute associated with one of the following primitive value classes:

1. a controlled value class of enumerated atomic values, such as integers (e.g., cO_rROU.ED VALUE

CLASSNUMBER_I{ 1, 2, 3)), or strings(e.g.,CONTROLLEDVALUECLASSPROJ_TYPE{"overlap",

"homologs","single","nonoverlap"});

2. aclassofatomicvaluesofoneofthefollowingtypes:BOOLEAN, BINARY(n),CHAR(n),

VARCHAR(n),INTEGER,SMALLINT,REAL,FLOAT,DATETIME,TIMESTAMP,MONEY,TEXT,IMAGE;

3. one of the system metaclasses.

An abstract attribute is an attribute whose associated value class is an OPM class or a union of OPM

72

OPM SCHEMA EDITOR 2 The Object-Protocol Model

t

classes.

Attributes can be characterized by the following types of constraints: single-valued (the defaul0 or

mulli-valued; and can be null (the default) or not null.

A.2 Object Classes

An object class is identified by a unique object class name, and can be d_-scribed using a dus

description. Each object class is associated with one or several (member) attributes.

An attributecan be associated directly only with one object class. However, subclasses inherit all the

attributes of their superclasses. A subset of the attributes associated with an object class is specified as the

identifier for the objects in that class; object identifiers are used to distinguish among the objects

(instance.s) of an object class.

There are two main types of object classes in OPM: base object classes and specialization (subset)

object classes. Spedalizatton is an abstraction mechanism that allows defining object classes consisting

of subsets of objects of other (generic) object (super) classes. A base object class is an object class that

is not specifiedas a specialization (subclass) of any other object class. A base object class must be asso-

ciated with an object identifier. A specialization object class is not associated directly with an identifier,

and inherits the attributes of all its (direct and transitive) object superclasses, including the identifier,

these attributes are called its inherited attributes. The specialization object classes form directed acyclic

graphs.

The following is an example of a base object class called PI_OJECT:

OBJ'EC_ CLASS PROIECT

DESCRIPTION: Defines laboratory projects.

ID: project_id

ATTRIBUTE project_id: INTEGER single-valued not null

ATTRIBUTE project_parent: PROJECT multi-valued can be null

ATrRIBUTE sponsored: SPONSOR multi-valued

ATrRIBUTE project_team: PERSON multi-valued not null

A.3 Protocol Classes

Laboratory (and other) protocols are modeled by protocol classes. Like base object classes, protocol

, classeshaveclassnames,(optional)classdescriptions,identifiersand areassociatedwith(member)

attributes.

73

OPM SCHEMA EDITOR 2 The Object-Protocol Model

A protocol may consist of several steps or subprotocols. Protocol modeling is characterized by the ,

recursive specification of protocols in terms of component subprotocols, called protocol expansion. Pro-

tocol expansion allows specifying alternative protocols, sequences of protocols, and optional protocols; .

"or", ",", and "[]" are used to denote alternative, sequences of, and optional protocols, respectively, and

parentheses are used for specifying complex protocol compositions. For example, if P is a protocol

whose expansion is (A, B, [C]) or D then protocol P is defined as either (i) the sequence of protocols A

followed by B and followed by optional protocol C, or (alternative) (ii) protocol D alone.

In addition to regular attributes (e.g., representing various protocol parameters, such as time and tem-

perature), a protocol class has in general attributes representing the input and output of the protocol.

These input and output attributes can only be associated with protocol classes. Input and output attributes

of protocol classes are defined immediately below.

A.4 Input and Output Attributes

Input and output attributes of a protocol class specify the input and output of this protocol, and the

relationship between the protocol and its subprotocols and/or inter-protocol relationships (connections).

Input and output attributescan be only simple attributes, and can be associated only with protocol classes.

If a protocol Pa is expanded into several sub-protocols, then the input and output attributesof Pa must

be referenced in the input and output attribute definitions of its sub-protocols. Relationships between

input and output attributes of sub-protocols and input and output attributes of higher level protocols are

expressed in OPM using input is.a . . . and output is-a ... statements.

If a protocol Pa is followed by protocol PI, then the input of P_will include some or all of the output

of Ps. Input-output protocol connections are expressed in OPM using input from.., via.., statements.

For example, suppose that a protocol for DNA packaging consists of three sub-protocols: PACKAGE,

DIGESTand ADD. Part of the input of DIGESTcomes from the output of PACKAGE.Therefore, protocol

DIGESTis defined as:

PROTOCOL CLASS DIGEST

DESCRIPTION: digest

ID: digest_id

ATI'RIBUTE digest_id: INTEGER single-valued not null .

ATTRIBUTE enzyme: ENZYME input

ATTRIBUTE dna: PACKAGED_DNA input 0
from PACKAGE via packaged dna

74

OPM SCHEMA EDITOR 2 The Object-Protocol Model

ATTRIBUTE linear_dna: LINEAR_STICKY_DNAoutput

As already mentioned above, input and output attributes specify how sub-protocols are connected.

" When an input or output attribute corresponds to an attribute of a higher-level (generic) protocol, this cor-

respondence needs to be specified as shown in the following example:

PROTOCOL CLASS DNA_PACKAGING

DESCRIPTION: packaging DNA for insertion

ID: protocol_id
EXPANSION: PACKAGE, DIGEST, ADD

A'ITRIBUTE protocol_id: INTEGER single-valued not null I

ATTRIBUTE dna_sample: DNA_SAMPLE input

ATII_BUTE vector: VECTOR input

ATTRIBUTE enzyme: ENZYME input

ATTRIBUTE markers: MARKERS input

ATTRIBUTE repackaged_dna: REPACKAGED_DNA output

PROTOCOL CLASS PACKAGE

ID: package_id

ATTRIBUTE package..id: INTEGER single-valued not null

ATTRIBUTE dna_sample: DNA_SAMPLE input

isa DNA_PACKAGING.dna_sample

ATTRIBUTE vector: VECTOR input

isa DNA_PACKAGING.vector

ATTRIBUTE packaged_dna: PACKAGED-DNA output

PROTOCOL CLASS DIGEST

ID: digest_id

ATTRIBUTE: INTEGER single-valued not null

ATTRIBUTE enzyme: ENZYME input

isa DNA_PACKAGING.enzyme

ATT-RIBUTE dna: PACKAGED_DNA input

, from PACKAGE via packaged_dna

A1"rRIBUTE linear_dna: LINEAR_STICKY_DNA output

75

OPM SCHEMA EDITOR 2 The Object-Protocol Model

PRO_3COL CLASS ADD I

ID: add_id

A'ITRIBUTE add_id:INTEGER single-valued notnull .

ATTRIBUTE markers:MARKERS input

isaDNA_PACKAOlNO.markers

ATTP_rBUTElinear_dna: LINEAR_STICKY_DNA input

from DIGEST via linear_dna

A'FYPdBUTE repackaged_dna: REPACKAGED_DNA output

isa DNA_PACKAGING.repack_aged_dna

A.$ Derived Attributes

Derived attributes are associated with an object or protocol class and are derived from other

attributes using a derivation rule. There are seven types of derivation rules:

I. arithmetic expression involving other attributes,

2. aggregate functions involving other attributes;

3. attribute inversion;

4. attribute match;

5.attributecomposition;

6. attributesubvalue;

7. attributeunion.

A simpleattributecanbeassociatedwithoneoftheseventypesofthederivationruleslistedabove.

A compositeattributecanbeassociatedonlywithattributematching.However,compositeattributesthat

arenotspecifiedusingattributematchingcancontaincomponentsthatarespecifiedusingattribute

inverse,attributecomposition,attributesubvalue,attributeunion,arithmeticexpressionoraggregate

functionderivation.

An arithmeticderivationrulefora derivedattributeassociatedwithobjectorprotocolclassO_con-

sistsofoperators(+,-,*,/),constants,andothernumericattributesofO, Attributesinvolvedinanarith-

meticexpressionmustbe single-valued,simpleorcomponentattributesthatarenotassociatedwith

derivation rules.

An aggregate function derivation rule for a derived attribute associated with object or protocol class

O_consists of aggregate functions min, max, sum, or avg applied on a numeric attribute of O. or aggre- ,

76

OPM SCHEMA EDITOR 2 The Object-Protocol Model

gate function count applied on an attribute of 0,. Attribute.sinvolved in an aggregate function derivation

rule must be sin, pie or component attribute.sthat are multi-valued and are not associated with derivation

, rules.

The following object class definition contains two examples of derived attributes involving aggre-

gate function expressions:

OB/ECT CLASS SPONSOR

DESCRIPTION: sponsor of a project

ID: sponsor_id

ATTRIBUTE sponsor_id: INTEGER single-valued not null

ATTRIBUTE sponsor_name: CHAR(g0)

ATTRIBUTE (account, project, amount): (ACCOUNT, PROJECT, MONEY) multi-valued

ATFRIBUTE total_amount: MONEY

DERIVATION: sum of amount

ATI'RIBUTE no_of_projects: INTEGER

DERIVATION: count of project

We use below the following notation: if A denotes an attribute of object or protocol class O, and x

denotes an object instance of O, then A (x) denotes the set of A values for x.

An attributeA of object or protocol class O_can be defined as the inverse of an attribute B of object

or protocol class O1 iff

1. the value class associated with A, V(A), is O1and the value class associated with B, V(B), is Oj;

2. if A is a simple atu'ibute, then B can be either specified as inverse of A or it is not specified as a

derived attribute;

3. if A is a component attribute, then B must be specified as inverse of attribute A.

If A is defined as the inverse of B, then for every object x of O,, whenever object y of O1belongs to

A (x), x belongs to B(y).

An attributeA of object or protocol class O_can be defined as the inverse of attributes B..., B., where

B, is associated with class O, and has value class V(B_), 1 < k < m, iff

t

1. A is associated with a union of value classes V(Aa),..., V(AJ, so that m = n and for every pair

, V(Aj) and V(B_), 1 < k _ m, V(A_) is O, and V(BJ is O1;

77

OPM SCHEMA EDITOR 2 The Object-Protocol Model

2. B can be specified as inverse of A or it is not specified as a derived attribute.
#

If A is defined as the inverse of B_ or... or B= then for every object x of O, whenever object y of -

Oj, 1 < k <_.m, belongs to A (x), x belongs to B_ (y).

The following object class definitions contain examples of derived attributes defined using inversion:

OBJECT CLASS CHROMOSOME

ID: chromosome_number

ATI'RIBUTE chromosome_number: INTEGER single-valued

ATI'RIBUTE has_map: MAP multi-valued

DERIVATION: inverse of MAP.has_chromosome

ATFRIBUTE owner: PERSON single-valued

OBJECT CLASS MAP

I13: map_id

ATrRIBUTE map_id: INTEGER single-valued

ATrRIBUTE has_chromosome: CHROMOSOME multi-valued

DERIVATION: inverse of CHROMOSOME.has_map

ATTRIBUTE owner: PERSON single-valued

OBJECT CLASS PERSON

ID: social_security_no

ATrRIBUTE social_security_no: CHAR sing!e-valued not null

ATTRIBUTE owns: MAP or CHROMOSOME multi-valued

DERIVATION: inverse of (MAP.owner or CHROMOSOME.owner)

A simple attribute A of object or protocol class O_can be defined as matching an attribute B of

object or protocol class Oj on attribute, C, iff (B, C) is defined as a composite attribute of O_,the value

class of C includes O, and the value classes of A and B are identical.

If A is defined as matching B of Oj on C then for every object x of O,:

1. if there,exists an object y of Oj so that object x of O, belongs to C(y), then A(x) and B(y) are equal;

78

I
OPM SCHEMA EDITOR 2 The Object-Protocol Model I

t 2. if there does not exist an objecty of Or so that object x of O, belongs to C(y), then A(x) is empty; if

A does not allow null values, then for every objectx of O, there must exist an objecty of Ojso that

" x belongs to C(y).

A composite attribute A = (AI, •.., A.) of object or protocol class O_can be defined as matching

composite attribute (Bi,..., B.) of Oj on attribute C, iff (B_,..., B,, C) is defined as a composite

attribute of O_,the value class of C includes O, and the value classes of A_ and B_, 1 < k < n, are identical.

If A = (Aa,..., A,) is defined as matching (BI,..., B,) of Ot on attribute C, then for every object

x of 0,:

1. if there exists an object y of Oj so that object x of O, belongs to C(y), then the set of tuples (A_(x),.

.., A.(x)) and the set of tuples (B_(y),..., B.(y)) are equal;

2. if there does not exist an object y of Oj so that abject x belongs to C(y), then A(x) is empty; if A

does not allow null values, then for every object x of O, there must exist an object y of O_so that x

belongs to C(y).

The following object class definitions contain examples of derived attributes defined using match:

OBJECT CLASS TRANSLATES

DESCRIPTION: gene translates protein at some cell

ID: (gene, at_cell, protein)

ATTRIBUTE (gene, at_cell, protein): (GENE, CELL, PROTEIN) single-valued not null

OBJECT CLASS GENE

ID: gene_name

ATI'RIBUTE gene_name: VARCHAR(80) single-valued not null

AITRIBUTE (translate, at_cell): (PROTEIN, CELL)

DERIVATION: match (protein, at._cell) of TRANSLATES on gene

OBJECT CLASS PROTEIN

ID: protein_name

AT/'RIBUTE protein_name: VARCHAR(80) single-valued not null

ATI'RIBUTE (gene, at_cell): (GENE, CELL)

, DERIVATION: match (gene, at_cell) of TRANSLATES on protein

79

OPM SCHEMA EDITOR 2 The Object-Protocol Model

I

OBJECT CLASS CELL

ID: cell_name

ATTRIBUTE cell_name: VARCHAR(80) single-valued not null

ATTRIBUTE (gene, protein): (GENE, PROTEIN)

DERIVATION: match (gene, protein) of TRANSLATES on at_cell

An attribute of an object or protocol class O_, A, can be derived by composing attributes Aa, As, ..

• ,A,, n >2, where each Aj (1 _j<n)

1.is a local attribute (not an inherited attribute);

2.is either a simple or a component attribute;

3.is either non-derived or an inverse attribute;

4.cannot be an input or output attribute of a protocol class.

The composition of attributes At, Aj, ..., A, is denoted Aj. At A,.

Attribute Aa must be a simple or composite attribute of O,. If the value class of Aj (1 <j _ n - 1) con-

sists of class Oa:, then A/+lmust be an attribute of OAj. If Aj is associated with a value class consisting

of a union of classes, OA. or ... or OAi,,' , then classes Oa. ,..., and OAjm must have an attributeAj.jJl Jl

associated with the same value classes.

The following object class definition contains an example of a derived attribute defined using com-

position:

OBJECT CLASS PERSON

ID: social_security_no

ATIRIBUTE social_security_no: CHAR(11) single-valued not null

AqTRJBUTE primaryaccount: ACCOUNT single-valued

ATI'RIBUTE sponsor_names: CHAR(80) multi-valued

DERIVATION: primaryaccount.sponsor.sponsor_name

OBJECT CLASS ACCOUNT

ID: account_no i

ATI'RIBUTE account__no: INTEGER single-valued not null

ATTRIBUTE sponsor: SPONSOR multi-valued

8O

OPM SCHEMA EDITOR 2 The Object-Protocol Model

1

OBJECT CLASS SPONSOR

• ID: sponsor_name

ATFRIBUTE sponsor_name: CHAR(80) single-valued not null

In the example above, the composition derivation for sponsor_names involves attribute

prlmary_accountwhich is an attribute of PERSONand has value class ACCOUNT;attribute sponsorwhich

is an attribute of ACCOUNTand has value class SPONSOR;and attribute sponsor_name which is a prim-

itive attribute of SPONSOR.

Let B be a simple or component attribute of an object or protocol class O_, so that B is not a derived

attribute, nor an input or output attribute. A simple or component attribute A of O_can be defined as a

subvalue attribute of B, if the value class of A is VA , the value class of B is Vn, and

1.0 A = 0 B , VB = O n , and 0 A is an immediate or transitive subclass of On ; or

2. Vn consists of a union of classes, OBt or ... or Onk, and V,t (consisting of a single class or a
union of classes) is a subset of Vn .

The following is an example of an attribute defined using the subvalue derivation:

OBJECT CLASS DEPARTMENT

ID: department_name

ATI'RIBUTE department_name: CHAR(20) single-valued not null

ATFRIBUTE employees: EMPLOYEE multi-valued not null

ATFRIBUTE engineers: ENGINEER multi-valued

DERIVATION: subvalue of employees

Class ENGINEERis a subclass of EMPLOYEE.The range of attribute employees consists of the

employees in a given department, and the range of attribute en01neers consists of the subset employees

who are engineers in the same department.

A simple or component attribute A of an object or a protocol class O, can be defined as the union

attribute of other attributes, B,, ..., B, (n > 2) if

I.B_, ..., and B, are simple or component attributes of O_;

; 2.B_, ..., and B, are not derived, nor input or output attributes of a protocol;

81

OPM SCHEMA EDITOR 2 The Object-Protocol Model

3.the union of the value classes of B_, ..., B. is equal to the value class of A.
W

The following is an example of an attribute specified using union derivation:

OBJECT CLASS PROJECT

1D: project_id

ATTRIBUTE projeet_id: INTEGER single-valued not null

A'ITRIBUTE company_sponsors: COMPANY multi-valued

ATFRIBUTE government_sponsors: GOV_DEPARTMENT multi-valued

ATrR_WFE all._sponsors: COMPANY or GOV_DEPARTMENT multi-valued

DERIVATION: company_sponsors or govemment..sponsors

82

