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Abstract 

After extensive investigations over three decades, the linear-coupling model and its 

equivalents have become the standard microscopic models for quantum harmonic Brow­

nian motion, in which a harmonically bound Brownian particle is coupled to a quantum 

dissipativ~ heat bath of general type modeled by infinitely many harmonic oscillators. 

The dynamics of these models have been studied by many authors using the quantum 

Langevin equation, the path-integral approach, quasi"probability distribution functions 

(e.g., the Wigner function); etc. However, the quantum Langevin equation is only appli­

cable to some special problems, while other approaches all involve complicated calcula­

tions due to the inevitable reduction (i.e., .contraction) operation for ignoring/eliminating 

the degrees of freedom of the heat bath. 

In this dissertation, I propose an improved methodology via a modified phase-space 

approach which employs the characteristic function (the symplectic Fourier transform of 

the Wigner function) as the representative of the density operator. This representative is 

claimed to be the most natural one for performing the reduction, not only because of its 

simplicity but also because of its manifestation of geometric meaning. Accordingly, it is 

particularly convenient for studying the time evolution of the Brownian particle with an 

arbitrary initial state. The power of this characteristic function is illuminated through 

a detailed study of several physically interesting problems, including the environment­

induced damping of quantum interference, the exact quantum Fokker-Planck equations, 

and the relaxation of non-factorizable initial states. All derivations and calculations are 

shown to be much simplified in comparison with other approaches. 

In addition to dynamical problems, a novel derivation of the fluctuation-dissipation 

theorem which is valid for all quantum linear systems is presented. With the help of 

this theorem, the mechanism of this model is examined and the correspondence with 

classical phenomenological theories is discussed. 
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Introduction 

In the past ten years, there has been a great deal of renewed interest in the dissipative 

mechanism of quantum open systems. This resurgence is motivated by the possible obser­

vations of macroscopic quantum phenomena in quantum optics ( coher.ent and squeezed 

states) [34, 106], quantum non-equilibrium statistical mechanics (low-temperature and 

strong-damping anomalies) [44, 45], quantum measurement (quantum tunneling and 

SchrOdinger's cat in SQUID) [11, 13], and quantum gravity as well as quantum cosmol­

ogy (quantum-to-classical transition) [54, 107], etc. Among the problems of quantum 

open systems, quantum Brownian motion is a paradigm since the corresponding classical 
( 

phenomenological theories are well established. The original Brownian motion refers to 

a. heavy "Brownian particle'-' moving in a viscous fluid; today this term indicates the 

time evolution of any macroscopic degree of freedom under the influence of a dissipative 

heat bath (or "environment" for short). 

For a closed (i.e., isolated) quantum system with a given Hamiltonian or Lagrangian, 

the time evolution of physical states can be studied from first principles of quantum 

mechanics, e.g., the Schrodinger equation. However, until now there has not been a 

fundamental theory for quantum open systems. Existing theories fall into the following 

three categories: 

(I) New quantum theories with non-standard quantization rules, e.g., stochastic 

quantization, complex canoniCal variables, and several kinds of non-linear Schrodinger 

equations [20]. 

(II) (Semi-) phenomenological theories, which start with a model Hamiltonian and 

employ the Markovian approximation to derive a quantum master equation as the equa­

tion of motion for the density operator of the open system. The quantum Fokker-Planck 

equation usually serves as a c-number representation of the master equation. The quan-
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tum Langevin equation (in the Heisenberg picture) is also derivable from the model 

Hamiltonian hence is equivalent to the quantum master equation and the quantum 

Fokker-Planck equation [4, 19, 65]. 

(III) Microscopic-model approach, which deals with an explicitly defined model 

Hamil~onian for the "total system" (the open system and the environment as well as 

their interactions). A necessary condition for the model Hamiltonian is that, with certain 

conditions imposed, the appropriate classical limits of the open system may be recov­

ered. This approach has- become more and more popular recently since it allows us to 

study quantum dynamics at arbitrarily low temperature and/or with strong damping, 

and the model environment can be of general dissipative character (ohmic, sub-ohmic, 

or supra-ohmic). Because the model Hamiltonian contains the degrees of freedom of 

both the open system and the environment, and only the open system is of interest, a 

reduction (i.e., contraction) operation is necessary in order to ignore or eliminate the 

details, and only keep the influence of the environment. Coarse graining, one of the fun­

damental principles in statistical mechanics, is manifested by this reduction operation 

in the microscopic-model approach. 

In the following, we shall discuss in detail the microscopic-model approach to quan­

tum harmonic Brownian motion, where the open system is a harmonically bound Brow­

nian particle. Just as the quantum Brownian particle is the paradigm of quantum 

open systems, quantum harmonic Brownian motion is a paradigm among all quantum 

Brownian motions. For quantum harmonic Brownian motion, the simplest and most 

successful microscopic model i,s the linear-coupling model [10, 16, 22, 25, 40, 44, 45, 

48, 73, 76, 85, 95], in which the environment is modeled by an infinite set of harmonic 

oscillators linearly coupled to the Brownian particle. In the literature, there are several 

equi~ent formalisms fqr studying microscopic models, the most oft-used ones are the 

quantum Langevin equation, the (orthodox) phase-space approach, and the path-integral 

approach, among them the first is in the Heisenberg picture and the other two are in 

the Schrodinger picture. 

(i) Quantum Langevin equation: This is similar to the phenomenological quantum 

Langevin equation, but all par~eters and coefficients of this equation are explicitly and 

ix 
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exactly defined [8, 22, 28, 30, 63]. As we will discuss in Chap. 8, the applicability of this 

quantum Langevin equation is limited to some special problems. 

(ii) Phase-space approach: This approach employs the quasi-probability (quantum) 

phase-space distribution functions as the representatives of the density operators of the 

total system as well as the Brownian particle. In the classical regime these distribu­

tion functions behave like classical distribution functions over the phase space, among 

them the Wigner function [47, 101] is the most studied. As long as the Hamiltonian is 

(inhomogeneously) quadratic, i.e., the quantum system is linear, the time evolution of 

these distribution functions is completely determined by the classical phase flow. Hence 

in this approach the classical-quantum correspondence is most clear. The phase-space 

approach to quantum harmonic Brownian motion has a long history [95], but has mainly 

been applied to ohmic dissipation. 

(iii) Path-integral approach: The path-integral (or functional-integral) description of 

quantum open systems was pioneered by R. Feynman and F. Vernon in the early 1960's 

[25, 26], and was modified by A. Caldeira and A. Leggett twenty years later [10]. The 

applicability of this approach was first limited due to the factorization assumption for the 

initial condition introduced by Feynman and Vernon, where the initial quantum states 

of the Brownian particle and the environment are independent of each other. Since this 

factorization is not practical from the experimental point of view, it is more reasonable 

to consider non-factorizable initial states. Generalization of the path-integral approach 

to include non-factorizable initial states has been successfully accomplished during the 

past few years [40, 85]. 

In the literature, in addition to the-~bove three formalisms, there have been other 

equivalent formalisms for quantum (harmonic) Brownian motion. They empioy the pro­

jection operator [37, 69], the continued-fraction expression [89], the closed-time-path 

integral (closed-time Green's function) [16, 83, 87], etc. 

In the path-integral approach, the so-called influence functional, which can be cal­

culated systematically for a given model Hamiltonian, carries information about the 

environmental influence on the Brownian particle after reduction. Due to its systematic 

calculational nature, the path-integral approach soon became the standard microscopic-

X 
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· model approach to quantum Brownian motion. Many physically interesting problems 

have been studied using this approach, and several generalizations have been proposed 

[16, 17, 40, 49, 85]. It is widely believed nowadays that this approach is the best, if 

not the only one for dealing with quantum (harmonic) Brownian motion in a general 

environment. In contrast, the phase-space approach seeins obsolete in the 1990's. 
. I 

The aim of this dissertation is to introduce a modified phase-space approach to 

· quantum harmonic Brownian motion, which is claimed to be more efficient than both 

the orthodox phase-space approach and the path-integral approach. Before introducing 

this novel approach, let us first take a closer look at the limitations and difficulties of 

those conventional approa:ches . . 
For the microscopic-model approaches to quantum Brownian motion, the reduction 

usually involves complicated calculations, especially with respect to the non-factorizable 

initial states, since the total number of the environmental. degrees of freedom is essentially 

infinite. The only exception is in the quantum Langevin equation approach, where the 

reduction is done by eliminating the degrees of freedom of the heat-bath oscillators from 

the Heisenberg equation of motions [22, 28, 30]. But the price paJ.d is the limitation of 

its applicability. 

Since th~ complexity of microscopic-model approaches is mainly due to the reduction 

operation, the calculations promise to be simplified if we can find an appropriate repre­

sentative. In the literature, a few authors have noticed that the characteristic function, 

which is the symplectic (or double) Fourier transform of the Wigner function, is the most 

suitable representative for the reduction operation [33, 43, 96]. (Since the Wigner func­

tion is a quantum analogue of the probability density function, its symplectic Fourier 

transform is called the characteristic function by analogy to probability theory.) The 

characteristic function is not a quasi-probability distribution function and hen<:e has no 

direct physical meaning even in the classical limits. However, as we will show in Chap. 5, 

" it gives an illuminating goometric meaning to the reduction operation in phase space. 

In the modified phase-space approach, the characteristic function takes the place of 

"the traditional Wigner function as the representative of the density operator. In the 

following, it will be shown through many practical examples that quantum harmonic 

Brownian motion in a generai environment can be studied with great efficiency in this 

xi 
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modified phase-space approach. 

This dissertation consists of three main parts: Part I (Chap. l.,.-5) contains a review 

of all related general theories, Part II (Chap. 6-8) discusses the mechanism and validity 

of the model, and Part III (Chap. 9-11) formulates the dynamics of quantum harmonic 

Brownian motion via the modified phase-space approach. The organization is as follows: 

Chap. 1 formulates all necessary mathematics. Chap. 2 gives a review of classical 

theories of Brownian motion. Chap. 3 studies three different representatives of the den­

sity operator: the coordinate representation, the Wigner function, and the .characteristic 

function. The first two are the conventional representatives for quantum Brownian mo­

tion, and the third one is the representative to be used in our modified phase-space 

approach .. Chap. 4 reviews the phase-space approach to quantum mechanics, i.e., the 

Weyl-Wigner-Moyal formalism. Aspects of similarity and the contrast between. the 

Wigner function and the characteristic function are discussed. Chap. 5 investigates 

the general theory of reduction. The advantage of using the characteristic function in 

performing reduction is shown through explicit formulas. 

In Chap. 6, we derive and solve the classical as well as quantum equations of motion 

for the position of the Brownian particle. All results in this chapter are useful for the 

subsequent discussion, among which the fundamental solution (the Green's function) and 

generalized susceptibility are of special importance. In Chap; 7, we study the thermal 

(equilibrium) state 6f the model system. A novel derivation of the fluctuation-dissipation 

theorem for this model, which is valid for all quantum linear systems, is proposed. 

Using the fluctuation-dissipation theorem, without diagonalizing the model Hamiltonian, 

we are able to calculate the correlation functions of the Brownian particle from the 

results of dynamical problems in the previous chapter. The explicit form of the thermal 

equilibrium state of the Brownian particle, which is defined as a reduced state of the 

thermal state of the total system, is consequently obtained. In Chap. 8, we begin to 

take the thermodynamic limit and construct the quantum dissipative heat bath model . 

by specifying the spectral density. The .quantum Langevin equation for the position 

operator of the Brownian particle is constructed. explicitly, and from it the validity of 

the model is verified. 

xii 



In Chap. 9, general formulations of the time evolution of the Brownian particle from 

an arbitrary initial state in- terms of the characteristic function are summarized. The 

results are then applied to the following two chapters: Chap. 10 studies the dynamics 

of the Brownian particle with factorizable initial states, whi4 covers many important 

results previously obtained via· the path-integral approach in the literature; Chap. 11 

analyzes the time evolution ef non-factorizable initial states, with three explicitly solved 

examples following the general formulation. 

Fimilly, several possible generalizations of this modified phase-space approach are 

discussed in the Conclusion and Outlook. 

, 
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Chapter .1 

Mathematical Preliminaries 

1.1 Notations and Conventions 

Throughout this paper the Boltzmann cbnstant ks is set equal to unity and {3-1 

denotes the temperature, with 1i = 1 unless otherwise specified. The symbol * denotes 

complex conjugate, t denotes Hermitian conjugate, T denotes transpose of a matrix, and 

- T denotes inverse of the transpose of a matrix. Wherever € appears, it is understood 

that the limit E-+O+ has been taken. 

The physical system under consideration is an N-mode system, which contains ex­

actly N = ( n + 1) coupled harmonic oscillators, among which the 0-th mode correSponds 

to the one-dimensional Brownian particle and the other n modes to the heat bath. The 

indices or subscripts i and j always run from 0 to n, while .e runs from 1 to n. The 

subscript for the 0-th mode, i.e., the Brownian particle, will be dropped if there is no 

ambiguity. 

We use a::= (x, x 1 , x2 , • • ·, Xn) and k= (k, k1 , k2 , • • ·, kn) to denote theN-dimensional 

canonical coordinate and momentum, respectively, and q and p for the N -dimensional 

position and mome~tum operators corresponding to :z: and k. The canonical commuta­

tion relations are 

{1.1) 

where i is the identity operator. The Hilbert space upon which these operators act is 

the tensor product of the Hilbert space corresponding to each of the quantum harmonic 

2 



oscillators of the system. Note that we shall never employ creation or annihilation 

operators in this paper. 
' 

We then use z = ( :z:, k) to denote a row vector in the 2N -dimensional phase space, 

and use r = ( q, p) for the operator-valued vector corresponding to z. Following this con­

vention, we shall always use the lower case, bold-faced letters to denote the row vectors 

unless otherwise specified. These row vectors work as the row matrices in matrix multi­

plications. The two-dimensional phase space spanned by (x, k), the canonical coordinate 

and momentum of the Brownian particl~, will be called the Brownian phase plane. 

To each harmonic oscillator of the system we assign a characteristic mass mi and 

a characteristic frequency Wj > 0, so that it acquires a characteristic length ( mjWj )-~. 

The 2N x 2N scale matrix g is defined accordingly as 

(1.2) 

This g is a symplectic matrix since it satisfies 

gTJg = J, and det(g) = 1, (1.3) 

where 

(IN = N x N unit matrix) (1.4) 

is the 2N X 2N metric matrix in. a 2N -dimensional symplectic vector space with the 

~ollowing properties: 

J-1 = jT = -J. (1.5) 

The 2 x 2 matrix gj is a submatrix of the scale matrix g defined as 

(1.6) 

and the 2 x 2 analogue of the metric matrix J is denoted by 

j=(o 1)· 
. -1 0 

(1.7) 

The elements of every 2Nx2N matrix are labeled by the indices 0, 1, ...... , (2N-1), 

e.g., the upper-left element is (0,0) and the lower-right element is (2N -1, 2N -1). For 

3 



a given 2N X 2N matrix M, the matrix ~ M~ is a 2 x 2 sub matrix of M defined as 

hence 

~J~ =j~M~, etc. 

The Heaviside unit step function 9(w) is defined as 

• { 1, w ~ 0; 
9(w) = 

0, w< 0. 

(1.8) 

(1.9) 

(1.10) 

The Dirac delta function of X is denoted by S(X), where X can be either a scalar or a 

vector variable. Since 8(t) is symmetric with respect to t=O for a scalar t, we have · 

loA dtS(t)x(t) = tx(O), (1.11) 

where A>O, and x(t) is an arbitrary function oft. 

For dynamical problems, the initial conditions are always chosen with respect to 

timet= 0. The symbol X denotes the time derivative of X, etc. The (asymmetric) 

Fourier transform of f ( t) in the time domain to F( w) in the frequency domain is defined 

according to the convention in linear response theory: 

+oo 
F(w) = j dtexp(iwt)j(t), (1.12) 

-00 

hence the inverse transform is 

+oo 

f(t) = 2~ j dwexp(-iwt)F(w), (1.13) 
-oo 

and we say that f(t) and F(w) form a Fourier transform pair. 

The Laplace transform of f(t) is defined as 

.Cs{f(t)} = J[s] = fo00

dt exp( -st)f(t), (1.14) 

where s is a complex variable with Re(s) bounded from below. The Fourier-Laplace 

transform of f(t) is defined as the Laplace transform of f(t) with s= -iw. 

In contrast- to using 6 for an operator, the notation W will be used for a random 

variable. Therefore (W) denotes the expectation value of the random variable W with 

4 
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respect to a probability density, which is analogous to (0) for the expectation value of 

the operator 6 with respect to a quantum state. If it is necessary, a subscript will follow 

the bracket ( ) to specify the probability density or the quantum state. 

All integral formulas used in this paper can be found in [41]. For improper integrals, 

the symbol Pr indicates the Cauchy principal value. 

1.2 Symplectic Algebra and Group 

1.2.1 Inhomogeneous Symplectic Group 

We adopt the definition of canonical transformations as transformations which pre­

serve the Poisson brackets· [5, 36] of the canonical variable z defined in Sec. 1.1. Ac­

cording to this definition, the linear canonical transformation contains the following two 

transformations as special cases: 

(1) Translation in phase space: 

Z~Z-Zc 1 (1.15) 

where Zc is a constant vector in the 2N -dimensional pl}ase space. The group corre­

sponding to this transformation is the translation group T(2N). It is a 2N -dimensional 

Abelian Lie group. 

(2) S~plectic transformation: 

(1.16) 

where M is a 2N x 2N real symplectic matrix that satisfies M TJ M = J. The group which 

corresponds to this transformation is the symplectic group and is denoted by Sp(2N, R) 

[32]. It is an N (2N + 1 )-dimensional Lie group. 

It is obvious that the combination of the above two transformations gives the most 

general linear canoni~al transformations in the 2N -dimensional phase space, and the cor­

responding group is the semi-direct product of T(2N) and Sp(2N, R), which is usually 

denoted by T(2N) @8 Sp(2N, R). We will call this group the inhomogeneous symplectic 

group and denote it by 1Sp(2N, R). The action of 1Sp(2N, R) on z is the general linear 

canonical transformation defined according to 

(1.17) 
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If we take the scale of each mode into account, it is convenient to decompose M into 

M -~s 1 = g 2 g2. 

Since g is a symplectic matrix, so are g~, g-~, and hence S. 

1.2.2 Weyl-metaplectic Group 

(1.18) 

According to the canonical commutation relations (1.1 ), the vector space spanned 

by {i, tJi, Pi, tlilii, PiPj, tliPj + f>iqi} is a Lie algebra. It will be shown below that the 

group of unitary operators correspond~ng to this Lie algebra is the quantum analogue of 

1Sp(2N,R). 

First, we shall study the quantum analogue of T(2N). It is a (2N + 1 )-dimensional 

Lie group of unitary operators with its algebra spanned by {i, qi, f>i}, i.e., the Weyl 

(or Weyl:-Heisenberg) algebra. We will call this group the Weyl group and denote it by 

W(2N). It is a central extension of the Abelian group T(2N) [88). 

The elements of W(2N) are the unitary operators with the form 

T(fJ, zc) = exp { iOi + irJz~}, (1.19) 

where 0 is a real number and Zc is the same constant vector as in (1.15). The action of 

T(fJ, Zc) on r is defuied according to 

(1.20) 

This operation is fornially isomorphic to (1.15), the translation in phase space made by 

the group T(2N). Therefore we obtain the following group isomorphism: 

W(2N)/{exp(ifJi)} ~ W(2N)/U(l) ~ T(2N). (1.21) 

Next, we study the quantum analogue of Sp(2N, R). It is an N(2N +!)-dimensional 

Lie group of unitary operators with its algebra spanned by· {qitJ.i, PiPj, tliPi + f>it/i}· 

We shall show that this Lie algebra is isomorphic to sp(2N, R)-the Lie algebra of 

Sp(2N, R), and thus the group acquires the n~e metaplectic group Mp(2N, R) [27, 

64, 92). The elements of the Lie algebra of Mp(2JY, R) are the anti-Hermitian operators 
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of the form 

;~lj l~T = trg2 mg2r 

(1.22) 

where a and b are N X N symmetric real matrices, and 

(
-cT' -b) 

m = a c E sp(2N,R) (1.23) 

is a 2N X 2N real matrix [32]. Introducing the scale matrix g is necessary since we have 

to distinguish squeezed states from coherent states in the following discussion. Note that 
~ 1 

g-2mg2 E sp(2N,R). 

From the canonical commutation relations, we have 

(1.24) 

and 

(1.25) 

thus the Lie algebra of Mp(2N, R) is isomorphic to sp(2N, R). 

The action of exp{~(m)} E Mp(2N, R) on r can be defined and calcUlated from 

(1.24) as 

exp { ~(m)} rT exp { -~(m)} = g-~ exp(-m)g~rT, (1.26) 

where exp( -m) E Sp(2N, R), hence g-~ exp( -m)g~ E Sp(2N, R). Therefore this action 

induces an element in Sp(2N, R). 

Let ~s next generalize (1.26) by replacing g-~ exp( -m)g~ in (1.26) by a general 

element M in Sp(2N, R) which is defined as in (1.18), we then try to find a unitary 

operator S(M) in Mp(2N, R) such that 

(1.27) 

From linear algebra· and group theory, we know th~t there is a unique polar decompo­

sition 5 = RP for any element 5 of Sp(2N,R), where R is orthogonal, P is symmetric 
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and positive definite, and both R and P are in Sp(2N, R). Therefore we can always put 

5=exp(mR)exp(mp), where R=exp(mR) and P=exp(mp), and both mR and mp are 

elements of sp(2N, R) (mp is symmetric and unique, while mR is anti-symmetric and 

not unique) [64]. The element S(M) in Mp(2N, R) which is unitary and satisfies (1.27) 

can be constructed as 

S(M) = exp { q,( -mp) }exp { ~( -mR)}. '(1.28) 

However, among all elements of Mp(2N, R), there are exactly two which give the 

same matrix M in (1.27), i.e., ±S(M). The reason that -S(M) also belongs to Mp(2N, R) 

is because of the following identity: 

(1.29) 

where cis any non-zero real number. Hence we see that Mp(2N, R) is~ doubly covering 

group of Sp(2N, R): 

Mp(2N,R)/{±i} ~ Sp(2N,R). (1.30) 

Now we are ready to define the group which corresponds to 1Sp(2N, R). It is the 

semi-direct product of W(2N) and Mp(2N, R), i.e., W(2N) @8 Mp(2N, R). We will 

denote this group by WMp(2N, R) and define its element as the unitary operator 

T(B, Zc)S(M). The transformation of r under WMp(2N, R) is defined as 

(1.31) 

which is formally isomorphic to (1.17). 

1.2.3 Diagonalization by Symplectic Congruence Transformations 

Theorem [93, 102]: If M is a symmetric and positive definite 2Nx2N real matrix, then 

there exist two matrices 5b 52 E Sp(2N, R), such that 

(1.32) 
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Remarks: 

(1) 5 E Sp(2N,R) if and only if 5TJ5=J by definition. 

(2) nj's are not eigenvalues of M in general. We will call them the "symplectic · 

eigenvalues" of the matrix M. 

(3) The eigenvalues of JM are ±inj's, hence we can calculate the symplectic eigen­

values nj 's from J M as an ordinary eigenvalue problem. 

(4) If the matrix Cj corresponds to a two-dimensional rotation on the (xj, kj) phase 

plane, then 

CJ (~ ~) Ci = CJCi (~ ~) = (~ ~). 
Therefore 51 in (1.32) can be replaced by Cj51 and is not unique. 

(5) 52 can be constructed from 51 as 

s, = c1~~ 
hence 52 is not unique either. 

1.3 T_he Weyl Operator and the Wigner Operator 

1.3.1 Squeezed Coherent States and the Weyl Operator 

(1.33) 

(1.34) 

Let IO) denote the direct product of the ground states of N independent harmonic 

oscill~tors with masses mj and frequencies Wj defined in Sec. 1.1. In the coordinate 

representation this ground state takes the form 

[(
m·w·)I/4 { }] (xiO) = IJ ~ 3 exp -imjWjXj , 

J 

(1.35) 

where xis a vector in the N:..dimensional configuration space. 

According to the theory of generalized coherent states [74, 106], we define the N­

mode squeezed coherent state as the generalized coherent state corresponding to the 

group WMp(2N, R) with IO) as the fiducial state: 

T((J, Zc)S(M)IO), (1.36) 

where T(B, zc)S(M) is an element of WMp(2N, R) as defined in Sec. 1.2.2. Since the 

fiducial state IO) is invariant under the action of some elements of WMp(2N, R), the 
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squeezed coherent state defined above is equivalent to [66, 104] 

A A A A ~ 1 
. D(zc) exp{'ll'( -mp)}jO) = D(zc)S(g-2 exp(mp )g2 )jO), (1.37) 

where D(zc) is called the Weyl operator (or the phase-space displacement operator): 

(1.38) 

which is an element of W(2N) with 8 = 0, and exp( mp) is a positive definite symmetric 

2N X 2N. symplectic matrix. 

As a special case of theN-mode squeezed coherent state defined above, theN-mode 
-

coherent state is defined as [34, 55, 81]: 

(1.39) 

Because zc is a vector in the 2N-dimensional phase space, there is a one-to-one corre­

spondence between lzc) in (1.39) and the phase space made of Zc· 

The set of coherent states {lz) I zER2N} forms an overcomplete basis ofthe Hilbert 

space for the total system because of the following resolution of the identity: 

+oo 
j £fNzlz)(zl = (21r)Ni. (1.40) 

-oo 

The following formulas are useful for later discussion: 

iJt(z) = b-1 (z) = D(-z), (1.41) 

D(z)rD(-z)=r-z; (1.42) 

(1.45) 

(1.46) 

(1.47) 

(1.48) 
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1.3.2 The Parity Operator and the Wigner Operator 

We define the parity operator fi as a unitary operator which generates the following 

transformation on r [42]: 

fi r fit = -r. · (1.49) 

By the uniqueness theorem of von Neumann, fi is determined up to a phase. If we also 

dema.Iid that 

(1.50) 

then the parity operator fi is uniquely determined as a special element ofWMp(2N, R) 

[78]: 

+oo 

fi = (411")-N j ~NzD(z) = exp { ~ 1r(rgrT -Ni)}, (1.51) 
-oo 

where t(rgrT-Ni) is usually called the number operator for the total system. 

The Wigner operator Aw(z) is defined as the symplectic Fourier transform of the 

Weyl operator D( -z): 

+oo 

Aw(z) = (21r)-2N J ~N ( exp { -i(JzT}b( -(), (1.52) 
-oo 

·i.e., A_w(z) and D( -z) form a symplectic Fourier transform pair. The inverse of the 

above relation is 

+oo 

b(-z) = j ~N(exp{-i(JzT}Liw((). (1.53) 
-oo 

· Using (1.46) and (1.51), the explicit form of the Wigner operator can be obtained as 

[9, 68] 

(1.54) 

hence Aw(z) is an element of WMp(2N, R); It is easy to prove that Aw(z) is a 

Hermitian operator, and 

+oo 

[ 
N A ]2 J J2N A A 

11" ~w(z) = a Z~w(z) = 1. (1.55) 
-oo 
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The transformation of the Wigner operator under WMp(2N, R) is defined as 

[tee, Zc)S(M) r ~w(z) [tee, Zc) S(M)] 

= st(M)bt(zc).6.w(z)D(zc) S(M) 

= .6.w((z- Zc)MT), (1.56) 

hence this transformation induces a linear canonical transformation on the argument of 

the Wigner operator, which is isomorphic to the linear canonical transformation (1.17). 

1.3.3 '!race and Pseudo-trace of Operators 

The pseudo-trace of an operator ](r) is defined in terms of the coherent state basis 

as follows: 

+oo 

tr(](r)) = (2rr)-N j cfNz(zi}(r)iz). (1.57) 
-oo 

Using (1.40), we can prove that if ](r) is in the trace class [75], i.e., the ordinary trace 

Tr(i ( r)) is a finite complex number and is independent of the choice of the basis, then 

(1.58) 

Therefore the pseudo-trace of a trace-class operator is identical to the ordinary trace of 

this operator. 

Although the parity operator, Weyl operator, and Wigner operator are not in the 

trace class, we still have well-defined pseudo-traces of these operators. The following 

formulas will be useful in later discussion: 

(1.59) 

(1.60) 

(1.61) 

(1.62) 
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(1.63) 

In the following context, we will also need to use the general result that if ]( r )g( r) 
is in the trace class, then 

(1.64) 

1.4 Stochastic Processes 

In this section we shall review the theory of stochastic processes with a continuous 

parameter and a continuous state space. The continuous parameter will be denoted by 

t ~ 0 and interpreted as time. For the stochastic process formulations, we shall always 

use m, n E N for the subscripts, and 0 :::; t1 :::; t2 :::; t3 · ··· · · · for the time moments 

throughout this paper. 

1.4.1 Definitions and Theorems 

A (stochastic) process y(t) can be naively defined as a time dependent random 

variable which is described by a set of probability densities Pn(Yii t1,Y2i t2, .. ·, Yni tn), 

among which P1(y1; t 1) = P(y1 ; t 1) is the probability density that y(t) has the value y1 

at time t1 (which is usually called the distribution function by physicists), and in general 

Pn(Yli tb Y2i t2, · · ·, Yni tn) is the joint probability density that y(t) has the value Yl at 

timet~, y2 at time t2, · · ·, and Yn at time tn. These (joint) probability densities satisfy 

the following consistency conditions (53]: 

(1.65) 

+oo 

j dymPn(Yii tb Y2i t2, · · ·, Yni t~) . 
-oo 

(1.66) 

+oo 

j dy1P(y1; t1) = 1, (1.67) 
-oo 
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and Pn(Yli tt, Y2i t2, · · ·, Yni tn) is symmetric with respect to the exchange of any two 

pairs (Yai ta) and (Ybi tb), where 1 ~a, b ~ n. A stochastic process y(t) is called a multi­

variate process if y(t) is a random-variable-valued vector with more than one component, 

otherwise it is called a one-variable (or one-dimensional) process. In the following, we 

shall deal with one-variable real-valued stochastic processes unless otherwise mentioned. 

The mean of a process y(t) is defined as 

+oo 

(i!(t)) = j dyP(y; t)y. (1.68) 
-oo 

. The m-th moment of y(t) is defined as 

+oo 

= J dy1dY2 · · ·dymPm(Yli tt, Y2i t2, · · ·, Ymi tm)Y1Y2 · · ·Ym (1.69) 
-oo 

if the integral converges, otherwise we say that there is no m-th moment for this process~ 

A process with an m-th moment is called an m-th order process. The (auto)-correlation 

function of a second-order process y(t) is defined as 

{:iJ(tl)y(t2))) = ((iJ(t2)y(tl) )) 

= \ [i!(tl)- (y(tl))] [i!(t2)- (Y(t2))]) 

= (il(tl)y(t2))- (i!(tl))(i!(t2)). 

The conditional probability densities of a process are defined as 

= 

among which 

Pmln(Yli t1, Y2i t2 · · · Ymi tmiYm+li tm+b · · ·, Ym+ni tm+n) 

Pm+n(Yli tt, Y2i t2 · · ·, Ym+ni tm+n) 
Pm(Yli t1, · · ·, Ymi tm) 

(1.70) 

(1.71) 

(1. 72) 

is usually called the transition probability density because of the following identity: 

+oo 

I P(Y2it2) = J dylP(yl;hiY2it2)P(yl;t1)· (1.73) 
-00 
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It then follows that P(yl; tly2; t) = c(yl - Y2), which is independent oft. 
' . 

A stochastic process y(t) is called stationary if for all n: 

'(1.74) 

or equivalently, 

(1.75) 

For a stationary process, P(Yli t1) = P(y1) is time-independent, and P2(y1; t~, y2; t2) = 

P2(Y1i 0, Y2i t2-t1 ). In other ~ords, the mean of a stationary process is time-independent, 

and the correlation function 

'(1.76) 

is an even function of (t1 - t2). 

A stochastic process y(t) is called Gaussian if the (joint) probability density Pn(y1; t1 , 

Y2i t2, · · ·, Yni tn) of this process is an n-dimens_ional Gaussian distribution in (y~, · · ·, Yn) 

for every n. A Gaussian process is completely determined by its mean and correlation 

function. 

A stochastic process y(t) is called Markovian if 

(1.77) 

for every m, hence it is fully determilled by P(y1 ; t1) and P(y1 ; t1IY2i t2). For a Markovian 

process, the transition probability density P(y1 ; t 1IY2i t2) must satisfy the (Bachelier­

Smoluchowski-) Chapman-Kolmogorov equation, 

+oo 

P(y1;t1IY2it2) = j dyP(Y1it1IY;t)P(y;tly2;t2), (1.78) 
-oo 

where t1 :$ t :$ t2. 

A stationary Gaussian process y(t) is Markovian if and orily if 

((il(t)y(O)~ = ((il(?)i/(O)~exp(-!ltl), 1 > 0. (1.79) 

This is usually called Doob's theorem [97]. 
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The power spectrum (or the spectral density) of a stationary process y(t) is defined 

as the Fourier transform of its correlation function ((y(t)y(O))): 

+oo 

Iy(w) = j dtexp(iwt)«y(t)y(O)~ 
-oo 

+oo 

= j dt cos(wt)((i!(t)y(O) l (1.80) 
-oo 

The power spectrum Iy(w) is an even function. of w because the correlation function is 

an even function oft. Note that there is an equivalent definition for the power spectrum 

in terms of the Fourier transform or Fourier series of y(t). If we use this alternative 

definition, then (1.80) follows as the famous Wiener-Khinchin theorem. 

For a given stochastic process y(t), if we have an explicit expression y(t) = Y(a; t), 

where a is a .A-dimensional multivariate random variable (.A EN), and the probability 

density P(a) for a is given. Then the probability density for the process y(t) can be 

obtained as 

+oo 

P(y;t) = j d).aP(a)6(y-Y(a;t)) = (6(y-Y(a;t))), (1.81) 
-oo 

and in general; for those joint probability densities: 

+oo 

= j d).aP(o:)6(yl- Y(a:; t1) )6(Y2- Y(a:; t2)) · · · 6(Yn- Y(a; tn)) 
-oo 

(1.82) 

Hence we have 

+oo 

(i!(t)) = j d).aP(o:)Y(o:;t) = Y((a);t), (1.83) 
-oo 

and 

+oo 

(i!(ti)y(t2) .. ·y(tn)) = j d).aP(o:)Y(o:;tl)Y(o:;t2) .. ·Y(o:;tn), (1.84) 
-oo 

which are analogous to the quantum-mechanical formulations in the Heisenberg picture. 

16 

.. 



• 

.. 

1.4.2 Stochastic Differential Equations 

Roughly speaking, a stochastic differential equation is a differential equation which_ 

connects two or more stochastic processes. For example, the following is a second-order 

stochastic differential equation: 

~(t) + c1~(t) + eoy(t) = W(t), (1.85) 

where W(t) ·is a given process and y(t) is the unknown one, and Co and c1 E R. If the 

given W(t) is stationary, although the stationary solution always exi!)ts, in general there 

are many other non-stationary solutions for (1.85). For the stationary solution of (1.85), 

its power spectrum can be deterinined by Fourier analysis as follows [103]: 

(1.86) 

Hence the correlation function of the stationary solution is determined according to the 

above algebraic relation. 

As a generalization of the stochastic differential equation (1.85), let us consider the 

following stochastic integra-differential equation for y(t): 

~(t) + j_too drb(t- r)~(r) + eoiJ(t) = W(t), (1.87) 

where W(t) is a given process and b(t) is the memory kernel. It is obvious that (1.87) 

contains (1.-85) as a special case. We can also Fourier analyze (1.87) and get the power 

spectrum for the stationary solution as 

Iy(w) = 
1 

_ , 
12

, 
-w2 - iwb[-iw] +Co 

Iw(w) 
(1.88) 

' where b[-iw] is the Fourier-Laplace transform of b(t). Hence the correlation function of 

the stationary solution for (1.87) is determined by the above relation . 
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Chapter 2 

Classical Theories of Brownian 

Motion 

2.1 Historical Remarks 

Brownian motion [71] was first discovered by the English botanist R. Brown in 1827 

from the observations of tiny pollen grains immersed in a liquid. The cau'se of this kind 

of motion was in debate fqr decades until A. Einstein proposed a sound kinetic theory 

in 1905 [24]. Einstein considered Brownian motion of many identical free particles as a 

diffusion process, and derived the diffusion equation as the equation of motion for the 

number density of the Brownian particles under certain approximations. At the same 

time, and at first independently, the Polish physicist M. Smoluchowski used the same 

approach but a different mathematical formulation to study this problem. In a paper 

published in 1906, Smoluchowski generalized Einstein's theory of Brownian motion to a 

particle in an external force field. 

In 1908, P. Langevin derived the first phenomenological dynamical equation for Brow­

nian motion, in which the force from the environment acting upon a Brownian particle 

is separated into two terms-the friction and the random force [60]. On the other hand, 

in the 1910's A. Fokker, and later M. Planck, derived the equation of motion for the 

distribution function of the Brownian particle, which is now called the Fokker-Planck 

equation and is mathematically equivalent to the Langevin equation. The generalization 

of the Fokker-Planck equation was made by H. Kramers, and later by J. Moyal, in the 
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1940's [53, 77]. 

In 1923, N. Wiener studied the mathematical model for Brownian motion and gave 

a concise and rigorous definition of the stochastic process corresponding to the dis­

placement of a Brownian particle, known as the Wiener process [100]. Later, other 

.mathematicians including A. Kolmogorov, W. Feller, P. Levy, and J. Doob also made 

important contributions to the mathematical theory of Brownian motion. 

In 1930, L. Ornstein and G. Uhlenbeck modified the Langevin equation by giving · 

an explicit definition of the random force [94]. Their thebry then became the most 

well-known classical theory of Brownian motion. In the 1960's, H. Mori, and later 

R. Kubo, made a further modification to the Langevin-Ornstein-Uhlenbeck theory by 

generalizing the Langevin equat~on to an integra-differential equation, which is now 

called the generalized Langevin equation [56, 69]. 

In the following we shall give a short review of these classical theories. This review 

does not exactly follow the historical development, and the discussions will be restricted 

to one-dimensional Brownian motion. 

2.2 Einstein-Smoluchowski Theory 

In the Einstein-Smoluchowski theory, Brownian motion is treated as a diffusion 

process of many identical Brownian particles, with the assumption that the cause ofthis 

diffusion is the random bombardment from the environmental molecules due to thermal 

motion. The mathematical model they considered is essentially the one-dimensional 

continuous-time random walk. 

In Einstein's original theory [24], he considered the Brownian particles as an ensemble 

of many initially identical free particles in thermal equilibrium with the environment. 

The distribution of these Brownian particles is described by the number density n(x; t), 

where x is the coordinate in configuration space and t is the time elapsed. Einstein 

then showed that the equation of motion for the number density n(x; t) is the diffusion 

equation· 

[
{) [)2] . 
ot - Dx ox2 n(x; t) = 0. (2.1) 

Using theories in thermodynamics and hydrodynamics, Einstein was able to give an 
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explicit expression for Dx, the configuration-space diffusion coefficient, as 

(2.2) 

where J.L is the mobility of a Brownian particle and {3-1 is the temperature of the envi­

ronment. Eq. (2.2) is known as the Einstein relation. 

For the initial condition that all Brownian particles are at the origin when t = 0, i.e., 

n(x, 0) =Nb(x) with N being the total number of the Brownian particles, the solution 

of the diffusion equation (2.1) is 

n(x; t) = .J N exp {- Dx
2 

} • 
411"Dxt . 4 xt 

(2.3) 

It then follows that the mean displacement of a Brownian particle is zero, while the 

root-mean-square displacement is 

(2.4) 

which is the main result in Einstein's theory. 

In Smoluchowski 's paper, instead- of using the number density, he discussed the tran­

sition probability density P(x0 ; Olx; t) for the probability density that a Brownian particle 

makes a transition from x0 at t=O to x at t. The Smoluchowskiequation for P(x0 ; Oix; t) 

takes the form [52] 

(2.5) 

where 

- V'(x) =- a~~x) (2.6) 

is the extermil force acting upon the Brownian particle, and J.L and Dx are the same 

as those in Einstein's theory. The initial ~ondition of the Smoluchowski equation is 

obviously P(x0 ; Oix; 0) = b(x- x0 ). If the external force is set equal to zero, then (2.5) 

reduces to 

[a a2
] at - Dx ax2 · P(xo; Oix; t) = 0, (2.7) 

which can be interpreted as the equation for the Green's function of the diffusion equation 

(2.1) in Einstein's theory since 

+oo 

n(x; t) = j dx0 P(x0 ; Oix; t)n(xo; 0) (2.8) 
-oo 
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for an arbitrary initialnumber density n(x0 ; 0). 

From the general theory of random walks, we know that the displacement of a Brow­

nian particle in the Einstein-Smoluchowski theory is a Markovian process. However, the 

momentum of a Brownian particle is not well-defined in this theory. 

2.3 Wiener Process and White Noise 

The Wiener (or Wiener-Levy) process W(t) [53, 100, 103] is a stochastic process 

which models the displacement of a free Brownian particle in the Einstein-Smoluchowski 

theory. It is defined by the following conditions: 

(i) W(t) is almost everywhere continuous; 

(ii) W(O) = 0; 

(iii) [W(t2)-W(h)] has a Gaussian distribution with mean 0 and variance 2Dw(t2 -t1 ); 

(iv) W(t) has independent increments, i.e., [W(t2)- W(t1)], [W(t3)- W(t2)], · · · · · · , 

[W(tn) - W(tn-I)] are mutually independent. 

It can be proved that the probability density for the Wiener process defined above 

takes the form 

1 { W
2 

} P(W;t) = J47rDwt exp - 4Dwt . (2.9) 

The Wiener process W(t) is both Gaussian and Markovian, but it is not a stationary 

process. Although the original Wiener process is designed for describing the displacement 

of a free Brownian particle, wherein Dw = Dx for this interpretation, the time derivative 

of the Wiener process serves as the mathematical model of the idealized random force, the 

so-called white noise. Rigorously speaking, white noise thus defined is not an ordinary 

stochastic process, but it can be understood as a generalized stochastic process just as 

the delta function may be regarded as a generalized function. 

2.4 Langevin-Ornstein-Uhlenbeck Theory 

Langevin's approach to Brownian motion is a phenomenological dynamical theory 

[60]. For a single Brownian particle in thermal equilibrium with the environment, the 

time-dependent force that the environment acts upon the Browillan particle is due to the 
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incessant impacts from the environmental molecules. Langevin's idea was to separate 

this time-dependent force into two parts: (i) a time-average-out part, which represents 

the time-i!!_dependent friction experienced by the Brownian particle, and (ii) a rapidly 

fluctuating part, usually called the random force, which is time-dependent with zero time 

average. The most general Langevin equation for one-dimensional Brownian motion 

takes the form 

mx(t) + m1x(t) + V'(x(t)) = f(t), (2.10) 

~here m and x are the mass and position of the Brownian particle, respectively, f(t) 

is the random force, -V'(x) represents the external force due to a given potential as 

defin~d in (2.6), and -m1x corresponds to the friction which is proportional to the 

veloci,ty x according to Stoke's law in hydrodyriamics ( m1 > 0 ,is usually called the 

friction constant). If the external force is zero, then (2.10) can be simplified into 

k(t) + !k(t) = f(t), (2.11) 

where k = mx. is the momentum of the Brownian particle. 

Using (2.11), with the assumption that the Brownian particle is in thermal equilib­

rium with the environment, Langevin was able to rederive the Einstein relation with 

Dx = (ml/3)-1
• 

In the Ornstein-Uhlenbeck theory [94, 97], the Langevin equation is implicitly re­

interpreted as a stochastic differential equation with a well-defined random force. In our 

notation, the Langevin equation (2.10) in the Ornstein-Uhlenbeck theory becomes 

mi(t) + m1t(t) + V'(x(t)) = ](t), (2.12) 

with the random force ](t) defined explicitly as a generalized stochastic process which 

is characterized by [53, 56, 57, 77]: 

(I) {](t))=O from Langevin's original p.ssumption. 

(II) {{](t1)](t2))) = {](tl)](t2)) = 2Dk6(t1- t2) with Dk > 0, which means that there 

is no correlation between the random forces at different times, i.e., the random force 

is purely random hence stationary. The power spectrum of this random force is 2Dk, 

which is frequency-independent. Therefore this random force acquired the name white 

noise. 
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(III) ](t) is a Gaussian process according to the central limit theorem. Since it is 

assumed that Brownian motion is the result of a great number of successive impacts due 

to thermal motion of the environmental molecules. 

The white noise defined above is exactly the time derivative of the Wiener process· dis­

cussed in Sec. 2.3 with Dw=Dk. It will be shown later that Dk is the momentum-space 

diffusion coefficient. In the following,. we shall discuss two examples of the Langevin­

Ornstein-Uhlenbeck equation [97]: 

(I) Brownian motion of a free particle: 

k(t) + 1 k(t) = ](t), (2.13) 

which is an analogue .of (2.11). According to the discussionin Sec. 1.4.2,we have for the 

·stationary solution: 

(2.14) 

and the correlation function follows as 

. (2.15) 

Because the white noise ](t) is a Gaussian process, so is this stationary momentum 

process k(t). Hence we see that this k(t) is a Markovian process according to Doob's 

theorem. On the other hand, it follows that the corresponding position x(t) of the 

Brownian particle is non-Markovian. This stationary momentum process k(t), or the 

corresponding velocity process, is usually called the Ornstein-Uhlenbeck process. 

Taking the mean of (2.13), we get the differential equation for (k(t)) as 

d v v 

dt (k(t)) + 1(k(t)) = o. . (2.16) 

From the solution to the above equation, 

(k(t)) = (k(O)) exp( -1t), (2.17) 

it is obvious that (k(t)) = 0 for the stationary solution of (2.13), which corresponds to 

(i) (k(O))=O, or (ii) t-HXJ. Hence we find that for the stationary solution:. 

(k(t)k(o)) = ((k(t)~(O)~ = ~k exp( -rltl). (2.18) 
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Setting t=O in (2.18), we get- the momentum variance of the Brownian particle: 

(2.19) 

Comparing with the equipartition law in classical statistical mechanics, we can determine 

the explicit form of Dk as 

(2.20) 

(II) Brownian motion of a harmonic oscillator: 

.. . ](t) 
x(t) + 1x(t) + w~x(t) =-, 

m 
(2.21) 

where xis measured from its balanced position with respect to the Hooke force, and w0 

is the characteristic frequency of the Brownian particle as a harmonic oscillator. For the 

stationary solution: 

(2.22) 

hence 

I ( ) 2Dkw2 
. 

k w = (w2 -w~)2 + (Jw)2. (2.23) 

From the above two power spectra for x(t) and k(t), we find that neither x(t) nor k(t) 

is Markovian. However, it will be shown in Sec. 2.6 that (x(t), k(t)) is a multivariate 

Markovian process with respect to this harmonic Brownian motion. 

2.5 Generalized Langevin Equation · 

The limitation of the Langevin-Ornstein-Uhlenbeck eq';lation can be easily seen from 

the correlation function (2.15). As an even function oft, it is not differentiable at t = 0 

since there is a cap at that point. It then follows that the correlation function 

(2.24) 

is not well-defined. This defect is due to the idealized assumption that the random force 

is a white noise. For small t, Eq. (2.15) represents the C?rrelation between two momenta 

separated by a very short time interval. But from physical· considerations, the Brownian 
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particle suffers only a few or even no impacts during a very short time, and the white 

noise assumption is obvious invalid for this situation [56, 59]. 

In order to take into account the phenomena involving small time intervals, wherein 

the time scale of thermal motion of the environmental molecules is not very much shorter 

than that of the Brownian particle, the assumption that. the random force is purely ran­

dom, i.e., delta-correlated, has to be abandoned. Accordingly, we also have to abandon 

the assumption that the friction is determined by the instantaneous velocity of the Brow'­

nian particle, "the so-called ohmic dissipation, and replace it by a retarded friction which 

corresponds to non-ohmic dissipation [57]. 

The generalized Langevin equation, proposed by Mori and Kubo [56, 57, 69], is a 

natural generalization of the Langevin equation which comprises the above more delicate 

considerations. The generalized Langevin equation corresponding to (2.13) takes the 

form 

(2.25) 

and that corresponding to (2.21) is 

t . v - j · FW x(t) + -oo drf(t- r)x(r) + w~x(t) = ---:;;;:' (2.26) 

where F(t) is the counterpart of the white noise ](t), and f(t) is the memory kernel 

which satisfies [30] 

lim r(t) = 0. 
t-+oo 

(2.27) 

Conventionally, f(t) is defined as an even function of t. This does not violate the 

causality principle since the upper limitEi of the integral terms in these two generalized 

Langevin equations are t instead of +oo. 

Eqs. (2.25) and (2.26) reduce to. (2.13) and (2.21), respectively, when F(t) = ](t) and 

f(t)=2'i'8(t) acc6rding to (1.11). 

For the random force F(t) in the generalized Langevin equation (2.25) and (2.26), it 

is still reasonable to assume that F(t) is Gaussian, stationary, and zero centered, hence 

it can also be characterized by its correlation function. In order to ensure that the 

system achieves an equilibrium state, whose characterization is independent of f'(t), it 
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is necessary to assume that the memory kernel r(t) and the correlation function of F(t) 

are related by the following relation [18, 57): 

« F(t)F(O)} = m~(t). (2.28) 

The Fourier transform of the above relation gives the power spectrum of F(t): 

+= 
lp(w) = .; J dt exp(iwt)r(t) = 

2
;Ref'[-iw), (2.29) 

-oo 

where f'[-iw) is the Fourier-Laplace transform of r(t). Since lp(w) is frequency­

dependent, the random force F(t) is usually called colored noise in contrast to the 

white noise defined in Sec. 2.4. Therefore we conclude that in general the white noise is 

associated with ohmic dissipation, while the colored noise is associated with non-ohmic 

dissipation. 

From the results in Sec. 1.4.2, we have for the stationary solution of (2.25): 

I ( ) 
_ lp(w) 

k w - I _ 

1

2, 
-iw + r[-iw) . 

(2.30) 

which corresponds to a correlation function which is smooth at t = 0 in general [103). 

Similarly, for the stationary solution of (2.26), we have 

Ix(w) = lp(":_)fm2 2. 

l-w2
- iwr[-iw) +w5l 

(2.31) 

2.6 Fokker-Planck Equation 

Conventionally, the terms Fokker-Planck equation, Kramers-Moyal expansion, and 

master equation are usually defined only for Markovian processes, but the non-Markovian 

generalizations of these equations have also been discussed in the literature, e.g., the 
' ~ 

non-Markovian Fokker-Planck equation [2) correspo~ding to the generalized Langevin 

equation (2.26). In this paper, we shall use these terms in the general sense, and take 

the Markovian versions of these equations as special cases. 

For a stochastic process y(t), the Fokker-Planck equation and its generalization 

the Kramers-Moyal expansion of this process are partial differential equations for the 

probability density P(y; t) or the transition probability density P(yo; Oiy; t). In the 
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following, we shall first derive the Kramers-Moyal expansion from (1. 73), and then take 

the Fokker-Planck equation as its approximation. From now on we shall always use the 

term distribution funCtion instead of probability density for P(y; t). 

Rewriting (1. 73) as 

+oo 

P(y;t+.t.t) = j dz'P(z';tjy;t+ . .t.t)P(z';t), 
. -oo 

it is then easy to obtain the time derivative of P(y; t) as [77] 

where 

[ 

[) 00 ( -l)t' [)t'. ] 
~- L -,-~at'(y;t) P(y;t) = 0, 
ut t'=l J.L • uyt' 

+oo 

at'(y; t) = lim _!_ j dzP(y; tiz; t + .t.t)(z- y)t' 
.t.t--+0 .t.t 

-oo 

= lim [_!_ ((i!(t + .t.t)- y(t))t')] 
.t.t--+0 .t.t (y(t))=y 

(2.32) 

(2.33) 

(2.34) 

is called the J.L-th order jump moment ofthe process y(t). Eq. (2.33) is the so-called 

(forward) Kramers-Moyal expansion. 

If we assume that among all the jump moments only a1(y; t) and.a2 (y; t) are finite, 

which corresponds to y(t) always changing by small amounts in a short time interval, 

then the Kramers-Moyal expansion (2.33) reduces to the Fokker-Planck equation for 

the distribution function P(y; t) over y-space: 

[
[) [) 1[)2 ] 
ot + oy a1(y; t)- 2 oy2 az(y; t) P(y; t) = 0. (2.35) 

In stochastic process theory, Eq. (2.35) is called the forward Kolmogorov equation. 

In general, if the process y(t) is non-Markovian, then at'(y; t) depends on (y(r)) for 

T < t. On the contrary, for a Markovian process at'(y; t) only depends on the instanta­

neous expectation value (y(t)). This difference serves as a criterion for determining the 

Markovianness of a process defined by a given Fokker-Planck equation . 

The Kramers-Moyal expansion, hence the Fokker-Planck equation, can also be de­

rived through the master equation, 

+oo 

[)P~~;t) = j dz[W(z,y;t)P(z;t)- W(y,z;t)P(y;t)], (2.36) 
-oo 
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which is essentially the differential version of (1. 73). W(z, y; t) and W(y, z; t) in (2.36) are 

defined according to the expansion of the transition probability density P(y; t!z; t + ~t): 
·+oo 

P(y;t!z;t+~t)=:8(z-y)+ [w(y,z;t)-8(z-y) j dz'W(y,z';t)]~t+O((~t)2). 
I -oo 

(2.37) 

W(y, z; t) is called the transition rate for the state jumping from y to z during the time 

interval (t, ~t + t), it is independent of the previous history of the process if and only if 

the process is Markovian. Using the transition rate, the jump moment aJ.I.(y; t) in (2.34) 

can be expressed as 

+oo 

aJ.I.(y; t) = j dzW(y, z; t)(z- y)J.I.. (2.38) 
-oo 

Since the transition probability density P(y0 ; O!y; t) can be interpreted as the Green's 

function for P(y; t) according to (1. 73), the Fokker-Planck equation for P(y0 ; O!y; t) is 

of the same form as that for P(y; t): 

(2.39) 

In the Einstein-Smoluchowski theory of Brownian motion, the diffusion equation 

(2.1) and the Smoluchowski equation (2.5) are both special cases of the Fokker-Planck 

equation, where the distribution functions are over the configuration space. 
~ 

In the Langevin-Ornstein-Uhlenbeck theory, it can be proved that the Fokker-Planck 

equation is exact instead of an approximation to the Kramers-Moyal expansion [57, 77, 

97]. The Fokker-Planck equation for free Brownian motion corresponding to (2.13) takes 

the form 

(2.40} 

where P(k; t) is the distribution function over momentum space. Hence we see that Dk 

is the momentum-space diffusion coefficient. 

As for the harmonic Brownian motion described by (2.21) in the Langevin-Ornstein­

Uhlenbeck theory, the corresponding Fokker-Planck equation is 

(2.41) 
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where P(x; k; t) is the distribution function over phase space. From (2.41), it is obvious . . . 
that (x(t), k(t)) is a multivariate Markovian process. 

To solve the Fokker-Planck equation (2.41), it is easier to employ the symplectic 

Fourier transform of the distribution function P(x, k; t) [97]: 
' 

+oo 

C(x,k;t) = j dx'dk' exp[-i(x'k- k'x)]P(x';k';t), (2.42) 
-oo 

which is the (classical) characteristic function corresponding to P(x, k; t). The corre­

sponding equation for C(x, k; t) takes the form 

(2.43) 

In contrast to (2.41), which is a second-order partial differential equation, Eq. (2.43) is 
' 

of first order. Thus it can be solved exactly by using the method of characteristics. 
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Chapter 3 

Representatives of Density 

Operato:rs 

In quantum mechanics the states of a system, either pure or mixed, can always be 

described by the Hermitian non-negative density operator (or density matrix) g. The 

density operator g is in the trace class and is always normalized, i.e., 

Tr(§) = 1. (3.1) 

From this normalization condition, it follows that 

(3.2) 

where the equal sign holds if and only if g corresponds to a pure state. 

Once the density operator of a quantum system is determined, all physical observables 

of the system can be obtained via this density operator. For example, with respect to 

the state represented by §~ the expectation value of a physical observable 6 is 

(O) = Tr(e6). (3.3) 

Since g is an abstract operator, most of the time we need to use a representative 

(or representation) to perform practical calculations. In the literature there are many· 

equivalent representatives [31], e.g., the coordinate representation, momentum represen­

tation, P-representation, Q-representation, R-representation, Fock-space representation, 

Wigner function, and characteristic function. The representative that has been used 
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most for the quantum Brownian motion is the coordinate representation which is most 

. suitable for the path-integral approach. The orthodox phase-space approach employs the 

Wigner function as the representative since it serves as a quasi-probability distribution 

over phase space. However, as we will show below, the best representative for problems 

involving reduction is the characteristic function, which is the symplectic Fourier trans­

form of the Wigner function. In the following, we shall study in detail the aforementioned 

three representatives of the density operator. 

3.1 Definitions of the Representatives 

3.1.1 Coordinate Representation 

In the coordinate representation, anN-mode density operator§ is represented by the 

kernel function g( re, y) which is written symbolically as 

e(re, y) = (rel§ly), (3.4) 

where re and y are two vectors in the N -dimensional configuration space. We shall 

call e( re, y) the coordinate representation of § for short. 

corresponding to (3.1) is 

The normalization condition 

1 +oo 

Tr(§) = I dN xe(re, re) = 1. (3.5) 
-oo 

3.1.2 Wigner FUnction 

The Wigner function [6, 47, 70, 86, 90, 101] W(z) = W(re, k) of anN-mode density 

operator § is defined via e( re, y) of the same density operator: 

+oo 

W(re, k) = 1r-N I dN y exp {2ik · y} e(re- y, re + y). (3.6) 
-oo 

The normalization condition of the Wigner function corresponding to (3.1) is 

+oo I <fNzW(z) = 1. (3.7) 
-oo 
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The Wigner function defined above can be expressed in the following representation­

independent form [9, 68, 78]: 

(3.8) 

where Aw(z) is the Wigner operator defined in Sec. 1.3.2. Since Aw(z) is a Hermitian 

operator, the Wigner function is real-valued. However, it is not_ always positive definite 

and is thus called the (quantum) quasi-probability distribution function over the "phase 

space" z = ( x, k ). 

For the coherent state (1.39) with the density operator § = lzc)(zcl, the Wigner 

function can be calculated using (3.8) as 

(3.9) 

3.1.3 CharaCteristic Function 

The characteristic function [3, 9, 33, 43, 47, 65, 68, 70, 96] 4i(z) = 4i(x, k) of an 

N-mode density operator§ is defined as the symplectic Fourier transform of t~e Wigner 

function W(z) of the same density operator: 

+oo 

4i(z)= j <fN(exp{-i(JzT}W((). (3.10) 
-oo 

The normalization condition ofthe characteristic function corresponding to (3.1) can be 

easily derived from (3. 7) as 

41(0) = 1. (3.11) 

Corresponding to (3.8), the characteristic function of a density operator § can also 

be expressed in the following representation-independent form: 

4i(z) = Tr[e.b(-z)], (3.12) 

which is a direct consequence of (1.53). Since D( -z) is a unitary operator, 4i(z) is 

complex in general. From (3.10), it is obvious that 4i*(z)=4i(-z). 

Corresponding to (3.9), the characteristic function of the coherent state (1.39) is 

4i(z) = exp { --;tzgzT + izJz~}. (3.13) 
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3.2 Transformations among the Representatives 

Let us :first list _all of the transformations among g(x, y), W(z), and <I>(z) as follows: 

+oo 

g(x,y) = j dNkexp{ik·(x-y)}W(x~y ,k) 
-oo 

+oo 

= (21rtN j dNkexp{fk·(x+y)}<P(x-y,k), (3.14) 
-00 

+oo 
W(x, k) =: 1r:_N j dN y exp {2ik · y} g(x- y, x + y) 

-oo , 

+oo 
= W(z) = (21r)-2

N j ~N ( exp { -i(JzT} <P((), (3.15) 
-'00 

+oo 
<P(x, k) = j dNyexp { -iy · k} g(y + x/2 ,y- x/2) 

-oo 

+oo 
=<P(z) = j ~N(exp{-i(JzT}W((). (3.16) 

-00 

In order to discuss the physical interpretation of the relations among these three 

representatives, we first make a change of variables in g(x, y): 

With 

g(x,y)- g(o:,c5), 

x+y o:=-­- 2 ' c5::x-y. 

(3.17) 

(3.18) 

We can then express both the Wigner function and the characteristic function as the 

(ordinary) Fourier transforms of g(a, c5) in the following way: 

W(o:, k) <X Fc5_.k{ g(o:, c5)}, (3.19) 

where F o:-.k and Fc5-.k denote the Fourier transforms on the variables o: and c5, 

respectively, to anew space correspondingto k. Hencewe see that W(z) and <I>(z) form: 

a symplectic Fourier transform pair via the following correspondence: 

(o:, k) E W(o:, k) ¢::::::> (k, c5) E <P(c5, k). (3.20) 
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Since the Wigner function W(a, k) behaves as a quasi-probability distribution over the 

"phase space" (a, k), we find that a corresponds to the classical coordinate, and k, 

which is from the Fourier transform of 6, corresponds to the classical momentum. By 

contrast, neither of the two arguments in ~(6, k) has a classical correspondent. 

3.3 Mean Vectors and Covariance Matrices 

For anN-mode (pure or mixed) state with the den~ity operator·§, the mean vector 

in the 2N -dimensional phase space is defined as 

(r) = Tr(§r ), 

and the covariance matrix is defined as a 2N x 2N symmetric matrix: 

with 

E = ((r-(r>f(r~(r)))-fJ 

= (rTf)- (r?(r)- fJ 

= ~ (<rTr) + (rTr)T)-(r)T(r) 

- (U:q Uqp)' 
Uqp Upp 

u qq,ij = < ( tli- (qi)) ( tlj- (qj))) = (tlitb)- (qi)(qj)' 

u w,ij = ((Pi - (Pi)) (Pi - <Pi))) = <PiPi) - (Pi){Pj), 

Uqp,ij = t( ( tli- (qi))(Pj- {Pj)) + (Pj- {Pj)) (t1i- (qi))) 

_ ( tliPi + Pit/i) _ ( ~·)(·~ ·) - 2 q~ PJ • 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

There is no constraint on the mean vector (3.2i), while the covariance matrix (3.22) 

must satisfy the "generalized uncertainty relations," i.e., all of the symplectic eigenvalues 

(as defined in Sec. 1.2.3) of E must be greater than·or equal to ~ [21, 84]. 

For the elements· in the 2 x 2 covariance matrix ~E~ which correspond to the 0-th 

mode, i.e., the Brownian particle, we shall use the following notations: 

~E~ = (Uqq,oo Uqp,oo) = (aqq aqp). 
U qp,oo u pp,oo a qp a pp 

(3.26) 
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3.4 Gaussian States 

The Gaussian state is defined as a quantum state whose Wigner function is a Gaussian 

distribution in z: 

(3.27), 

where CN = 1r-N Jdet(M) is the normalization constant, zc is a ~onstant vector in the 

2N-dimensional phase space, and M is a symmetric and positive definite matrix. The 

mean vector of (3.27) is zc, and thecovariance matrix is 

~- .!.M-1 
"""- 2 • (3.28) 

According to the generalized uncertainty relations discussed in Sec. 3.3, each sym­

plectic eigenvalue of M must be smaller than or equal to 1, otherwise (3.27) will not 

· correspond to a physical state [84]. Hence we have 

0 < det(M) ::; 1, (3.29) 
( 

where the equal sign holds if and only if (3.27). corresponds to a pure state, which is in 

general a squeezed coherent state as defined in (1.37). As a special case, the Gaussia:n 

Wigner function (3.27) becomes (3.9), the Wigner function for coherent states, when 

M=g . 

. Since a Gaussian distribution is completely determined by its first and second mo­

ments, the Gaussian state (3.27) can ·be determined solely by Zc and :E. Therefore, 

instead of using the density operator or its representatives, we can simply use the 

representation-independent Zc and :E to represent a Gaussian state. 

The Wigner ellipsoid corresponding to (3.27) is defined as 

(z- zc)M(z- zc? = 1, (3.30) 

which is an ellipsoid in the 2N -dimensional phase space with its center at Zc and its 

shape determined by M. Eqs. (3.27) and (3.30) are mathematically equivalent since, as 

just mentioned, a Gaussian distribution is completely determined by its first and second 

moments. Therefore we can use the Wigner ellipsoid as a geometric representation of 

the Gaussian Wigner function, hence the Gaussian state, in phase space [64]. 

35 



The characteristic function corresponding to the Gaussian Wigner function (3.27) is 

a complex Gaussian function of z: 

(3.31) 

By analogy to the Wigner ellipsoid, the characteristic ellipsoid for a Gaussian charac­

teristic function is defined as 

(z- Zc):E(z- Zc)T = 1. (3.32) 

The center of the characteristic ellipsoid is the same as that of the Wigner ellipsoid, 

while the shape is determined by the covariance matrix :E. This characteristic ellipsoid 

can also serve as a geometric representation of the Gaussian state in phase space [105]. 

3.5 Thermal States 

We define the thermal state of a time-independent quantum system immersed in an 
ideal (non-dissipative) heat bath of temperature (3-1 as the canonical ensemble with the 

canonical density operator 

(3.33) 

where fi ~ fi ( r) is the Hamiltonian of the system. 

Consider anN-mode system with the inhomogeneously quadratic Hamiltonian 

(3.34) 

where M is a symmetric and positive definite matrix as defined in Theorem 1.2.3, and n 

is an arbitrary 2N -dimensional row vector. The Wigner function and the characteristic 

function of the thermal state of this system can be calculated using the results in Sees. 1.2 

and 1.3 as follows (104]: 

Firstly, let us transform the Hamiltonian H(r) in (3.34) into the following form: 

H~ c· ~) 1 c· ~ )MC~ )T 1 M T 1' = 2 r - Zt r - Zt - 2 Zt z 1 

(3.35) 
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where 

and 

with 51 and n defined as in .Theorem 1.2.3. 

Secondly; substitute (3.35) into (3.33), then the latter becomes 

~ D(z1)S(S1) exp{ -f3HN }st(S1)Dt(z1) 
{!{3 = [ ~ ] · Tr exp{ -f3HN} 

= D(zl)S(SI)i>{3,Nstcsl).Dtczl), 

where 

exp{ -f3iiN} 
Tr (exp{ -f3HN} J . 

Thirdly, according to (3.8) the Wigner function of the density operator §13 is 

w13(z) = Tr [n(zi)S(SI)i>13,Nst(si)nt(zi).&w(z)] 

= Tr [e13,Nst(SI)bt(zi).&w(z)D(zi)S(S1)] 

= Tr [e13,N.&.w ( (z- z1)Si)], 

where (1.56) has been used. 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

Finally, recall that for a one-dimensional harmonic oscillator with the Hamiltonian 

~ f? 1 2~ H = -+-mw.:j 
2m 2 

. = ~ (q,fi)J (6 :) J (!)' (3.41) 

the Wigner function of the thermal state is [4'Z] 

w13(x, k) = tanh~w/2) exp {- tanh(f3w/2)( mwx2 + ~~)} (3.42) 

_ tanh(f3w/2) {-( ·) ~ (tanh(f3w/2) 0 ) ~ (x)} - exp x, k go go . 
· 7r 0 tanh(f3w/2) · k 
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It follows that the explicit expression of (3.40) is 

{ (
tallh(,B!l/2) 0 ) } 

W,e(z) = CN(,B) exp -:-(z- zl)SJ 
0 

· tanh (,B!l/
2

) S1(z- z1)T 

(3.43) 

where 

tanh (,B!l/2) = diag{ tanh(,Bn0 j2), tanh(,Bn1/2), · · ·, tanh(,Bnn/2) }, (3.44) 

and 

(3.45) 

Therefore we find that the thermal state is a Gaussian state if fi is (inhomogeneously) 

quadratic. The covariance matrix corresponding to (3.43) is 

1 (coth (,B!l/2) 0 ) 
:E,e = ~ cot(,BJM/2)J = -

2 
5!1 S!T· 

0 coth (,B!l/2) 
(3.46) 

According to (3.31), the characteristic function corresponding to (3.43) takes the 

form 

<P,e(z) = exp {- ~ zJT:E,eJzT + izJz1} 

-- exp {-_!_zSTl (coth(,B!l/2) 0 ) } 51zT + izJzT . · (3.47) 
4 · 0 coth (,B!l/2) · . 

The one-mode characteristic function corresponding to (3.42) is a special case of (3.47): 

(3.48) 

which will be useful for later discussion. 
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Chapter 4 

Phase-Space. Approach to - . . 

Quantum Mechanjcs 

It is well known that the uncertainty principle makes the concept of phase space 

improper in quantum mechanics, since we cannot have a well-defined point in the phase 

space which corresponds to precise and simultaneous measurements of both the position 

and momentum of a particle, Therefore a genuine probability distribution function over 

phase space does not exist in quantum mechanics. Nevertheless, the Wigner fu:riction 

defin~d in Chap. 3, which serves as a quasi-probability distribution function over the 

"phase space" made of its arguments z =(a::, k), has proved to be very useful in many 

branches of quantum mecharucs, especially in those problems involving classical-quantum 

correspondence. 

The phase-space approach (or picture) to quantum mechanics, also known as the 

Weyl-Wigner-Moyal formalism [3, 70, 86, 90, 99, 101], serves as an alternative formal-

. ism of quantum mechanics that incorporates the Weyl correspondence rule with the 

Wigner function. In this approach the Wigner function plays the central role, as the 

wave function or the density operator does in other approaches to quantum mechanics 

(Schrodinger, Heisenberg, density-operator or path-integral). In contrast to other ap­

proaches, there is no operator in the phase-space approach. In other words, the phase­

space approach resembles classical statistical mechanics; all operators are replaced by 

the corresponding c~number variables, known as the Weyl symbols, and the expecta­

tion value of an oper.ator becomes the average of the corresponding symbol over phase 
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space with respect to the Wigner function. This approach is particular useful when the 

Hamiltonian is (inhomogeneously) quadratic, i.e., when the system is linear, wherein 

all formulas are formally isomorphic to those in classical mechanics, and the solutions 

of the corresponding classical equations of motion completely determine the quantum 

dynamics. 

4.1 Weyl Symbols and the Weyl-Wigner Correspondence 

As we discussed above, all operators have to be transformed into the equivalent Weyl 

symbols in the phase-space approach. There are many equivalent definitions of the Weyl 

symbol; in this paper we define the Weyl symbol fw(z) corresponding to an N-mode 

operator ](r) via the following relation: 

+oo 
](r) = j cJ?N zfw(z)b..w(z), (4.1) 

-00 

where b.w(z) is the Wigner operator defined in Sec. 1.3.2. The Weyl symbol is mathe­

matically equivalent to the original operator since ( 4.1) is inve~tible: 

(4.2) 

where (1.63) has been used. 

Comparing ( 4.2) with (3.8), we see that the Weyl symbol of a density operator § 

is proportional to the Wigner function of the same density operator (the Weyl-Wigner 

correspondence): 

W(z) = (27r)-N(Weyl symbol of e). (4.3) 

From the formulas in Sec. 1.3.3, we have the following two useful relations: 

+oo 
tr(](r)) = (27r)-N j cJ?Nzfw(z), (4.4) 

-00 

+oo 
tr(](r)g(r)) = tr(g(r)}(r)) = (27r)-N j cJ?Nzfw(z)gw(z). (4.5) 

-oo 

40 



.. 

.Eq. (4.5) contains the following two formulas as special cases: 

+oo 

Tr(e2
) = (2tr)N J <fNz[w(z)r, (4.6) 

-00 

+oo 

(J(r)) = Tr(§](r)) = J <fNzW(z)fw(z). (4.7) 
-oo 

Using (4.7), we are able to calculate the expectation value of an operator as the average 

of its Weyl symbol over phase space with respect to the Wigner function. 

From (1.53), we see that the Weylsymbol of the Weyl operator D(zc) is exp {izJz~}, 

which is formally isomorphic to D(zc)· As a special case, the Weyl symbol of the identity 

operator i is 1. 

The Weyl symbol fw(z) of the operator f(r) is also known as the Weyl correspon­

dent of j(r) by the Weyl correspondence rule (the symmetrization rule) [99]. This 

correspondence can be obtained via the isomorphism between D(zc) and exp {izJz~} 

by comparing their series expansions in Zc. The following Weyl correspondence will be 

useful in later discussion: 

ij X 

p k 

fl <===* x2 (4.8) 

r k2 

ijp + pij 2xk 

4.2 Characteristic Symbols 

The characteristic symbol f;p(z) of anN-mode operator ](r) is defined analogously 

to the Weyl symbol via the relation 

+oo 
](r) = J <fNzf;p(z)D(z). (4.9) 

-oo 

From (1.62), the inverse of the above relation is 

(4.10) 
. J 
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hence the characteristic symbol is also mathematically equivalent to the original opera­

tor. Moreover, the characteristic symbol and the Weyl symbol for a given operator form 

a symplectic Fourier transform pair: 

+oo 

fw(z)= j £fN(exp{-i(JzT}fcJJ(() (4.11) 
-oo 

according to (1.52). 

From (4.9), it is obvious that the characteristic symbol of the Weyl operator D(zc) 

is 8(z- zc)· As a special case, the characteristic symbol of the identity operator i is 

8(z). The following six formulas are the analogues of (4.3)-(4.8): 

<I? ( z) = ( 21r )N (characteristic symbol of §) , (4.12) 

(4.13) 

+oo +oo 

= (21r)N j £fNzfcJJ(z)gcJJ(-z) = (21r)N j £fNzfcJJ(-z)gcJJ(z), (4.14) 
-oo -oo 

+oo 

Tr(e2
) = (21r)-N j £fNzi<P(z)l2

, (4.15) 
-oo 

+oo 

(J(r)) = Tr(ef(r)) = j £fNz <P(z)fcJJ( -z), (4.16) 
-00 

q i8(z),k 

p -i8(z),x 

q2 -8(z),kk (4.17) 

r -8(z),xx 

qp+f>q 28(z),xk 

where 

_ 88(z) _ 828(z) 
8(z),k = ----;)k, 8(z),xk = axak , etc. (4.18) 
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From (4.16) and (4.17), it follows that 

( A) T (A A) . [8~(z)] q = r eq = 'l -- ' ok Z=O 
(4.,19) 

·(A) T (AA) ·[8~(z)] p = r ep = -'l -- ' 
. OX Z=O 

(4.20) 

(4.21) 

( A2 ) _ T (A A2 ) __ [02~(z)] 
p - r ep - J:'l 2 ' 

vX Z=O 
(4.22) 

jf;.f>+fiq)=Tr(e(qfi+M)) = [82~(z)] . 
\ 2 2 OXOk Z=O 

(4.23) 

4.3 Time Evolution of the Wigner and Characteristic 

Functions 

For a general quantum system with the Hamiltonian ii = H(r; t), the quantum 

dynamics of this system can be completely determined by the von Neumann-L~dau 

equation (also known as the quantum Liouville equation), which is the equation of motion 

of the density operator§ [86]: 

d§ 8§ '[HA A] 0 -=-+z e = . dt 8t ' 
(4.24) 

This equation can be taken as the fundamental equation of quantum mechanics since 

it is equivalent to the SchrOdinger equation and the Heisenberg equation. The formal 

solution of (4.24) is 

§(t) = U(t)§(o)ut(t), (4.25) 

where U(t) is the unitary time-evolution operator which satisfies the Schrodinger equ·a­

tion 

U(O) = i. (4.26) 
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The equation of motion of the Wigner function can be derived from (4.24) as [6, 47, 86] 

:t W(z; t) + 2n(z; t) sin (ta) W(z; t) = o, (4.27) 

where n(z; t) is the Weyl symbol of H(r; t), and 

(

+---+ +- --+) - aa aa 
a= E. Ok-ax·- ax-ak· ' 

j .3 .3 .3 .3 

(4.28) 

with the arrows indicating in which direction the derivatives act. 

If we restrict the Hamiltonian H(r; t) to be (inhomogeneously) quadratic, then (4.27) 

degenerates to the classical Liouville equation, 

a an a an a -a W(z;t) + E !lk· ~W(z;t)-E -a . !lk_W(z;t) =·o, 
t . u .3 uX3 . x 3 u .3 

.3 .3 

(4.29) 

wher~ n = n ( z; t) is (inhomogeneoilsly) quadratic in z and is in general time-dependent. 

Using Hamilton's canonical equations in classical mechanics, 

. an 
Xj= ak·' 

.3 

Eq. (4.29) can be rewritten as 

(
a a .. a) d . 
at+ ~Xj axj + ~kj akj W(z;t) = dt W(z;t) = 0. 

(4.30) 

(4.31) 

Therefore the time evolution of z, i.e., the solutions of the corresponding classical equa­

tions of motion ( 4.30), completely determines the solution of ( 4.31 ). 

In general, the solutions of ( 4.30) with respect to a (inhomogeneously) quadratic 

n ( z; t) can be denoted as 

(4.32) 

Since the time evolution of the classical canonical variables is a canonical transforma-

tion, R(t) is a 2Nx 2N symplectic matrix. a(t) is a time-dependent vector in the 2N­

dimensional phase space, which vanishes for all t if and only if n(z; t) is homogeneously. 

quadratic. The geometric meaning of a(t) is the trajectory traced by the point which is 

initially at the origin in phase spaee. Eq. ( 4.32) is essentially a time-dependent inhomo­

geneous linear canonical transformation, and we will call it "phase flow" hereafter. 
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Using (4.32), the general solution of (4.31) can be expressed as 

W(z; t) = W([z--' a(t)]R-T(t); t = 0), (4.33) 

and we say that the time evolution of the Wigner function follows the phase flow in 

phase space. 

The time evolution of the corresponding characteristic function can be obtained from 

(4.33) via (3.10): 

(4.34) 

4.4 Time Evolution of the Mean Vectors and the 

Covariance Matrices 

For a qu~tum linear system, the time evolution of the operators r in the Heisenberg 

picture is formally isomorphic to (4.32) via th~ Weyl correspondence: 

(4.35) 

For an arbitrary initial state with the mean vector (r(O)) and the covariance matrix 

:E(O), the time evolution of the mean vector is a direct consequence of (4.35): 

(4.36) 

and the time evolution of the covariance matrix can be derived by substituting ( 4.35) 

into (3.22): 

:E(t) = R(t):E(O)RT(t). (4.37) 

Note that (4.37) is determined solely by R(t) and :E(O), and is independent of (r(O)) and 

a(t). This relation can also be obtained by using (4.7). 
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Chapter 5 

Reduction of Density Operators 

5.1 General Theory 

Consider a quantum system made of two subsystems (A) and (B) whose density 

operator is denoted by §AB· With respect to this division, a reduction of ignoring the 

subsystem (B) is a commitment that no measurement on (B) will be made. After we 

perform this reduction, an operator 6 originally corresponding to a measurement on the 

total system reduces to OAQSd, where 6A corresponds to a measurement on (A). The 

expectation value of 6 A can be calculated as 

= TrATrB(eAB(OA ® i)) 

= Tr A ([TrB(§ AB )]0 A) 

= Tr(§AOA), (5.1) 

where Tr A denotes the partial trace operation with respect to the degree( s) of freedom in 

(A), and TrB is defined in a similar manner. §A ::TrB(§AB) is called the reduced density 

operator for the subsystem (A) which includes the influence from (B). The normalization 

conditi~n (3.1) is an extreme case of TrB(§AB)=§A, where (A) is empty and (B) is the 

total system. 
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5.2 fteduction of a Density Operator via Its 

Representatives 

For the quantum system (A)+(B) discussed in Sec. 5.1, let us assume that the 
( 

number of degrees of freedom in (A) is (N -.A) and that of (B) is .A, and define ::c = 
(::cA, ::cB), y = (yA, YB), and k = (kA, kB) according to this division. The corresponding 

representatives of the reduced density operator fjA =TrB(i2AB) can be easily obtained as 

+oo 

!?A(::cA, YA) = I d>.xB flAB(::cA, ::cB, YA, ::cB), 
-oo 

+oo 

WA(::cA, kA) = I d>.xBd>.kB WAB(::cA, ::cB, kA, kB), 
-oo 

(5.2) 

(5.3) 

(5.4) 

As we mentioned earlier, the normalizatio~ conditions (3.5), (3.7), and (3.11) can be , 

taken as the extreme cases of (5.2), (5.3), and (5.4). Note that (5.3) is an analogue of 

the marginal probability density in probability theory [53]. 

Since (5.4) is simply a restriction of the original «P(::cA, ::cB, kA, kB) to a subspace in the 

2N -dimensional phase space, the reduction becomes a geometric operation (a projection 

in phase space) via the characteristic function. Compared with· (5.2) and (5.3), it is 

obvious that the easiest way to perform the reduction is using the characteristic function. 

5.3 Reduction of the Gaussian States 

As we discussed in Sec. 3.4, a Gaussian state is completely det~rmined by its mean 

vector and covariance matrix. Therefore the reduction of a Gaussian state can be realized 

by the corresponding reductions of these two entities. Using the same assumptions as in 

Sec. 5.2, the reductions of the mean vector Zc,AB and the covariance matrix :EAB can be 

obtained by substituting (3.31) into (5.4): 

(5.5) 
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and 

( 

CT qq CT qp ) ( CT~q CT~p) 
:EAB = . ~ lJA := ' 

T 1T I 
CT qp CT pp CT qp CT pp 

(5.6) 

when~ :EA is a 2(N -.A) x2(N -.A) matrix with the elements 

I 
CT qq,JJ.V = .CT qq,JJ.V, (5.7) 

I 
CT pp,JJ.V = CT pp,JJ.V ' (5.8) 

I 
CT qp,JJ.V = CT qp,JJ.V ' (5.9) 

for J.L, v = 0, 1, ... , (n- .A). 
-

Hence we see that the reduced mean vector is a projection of the original mean vector, 

and the reduced covariance matrix is a submatrix of the original covariance matrix. If we 

use the characteristic ellipsoid (3.32) as the geometrical representation of the Gaussian 

state in phase space, then the reduction becomes the restriction of this ellipsoid to a 

· . 2(N -.A)-dimensional subspace. 

5.4 Time Evolution of the Reduced Density Operators 

For a quantum linear system, the tlme evolution of the Wigner function is given by 

(4.33) and that of the characteristic function is (4.34). Using the same assumptions as 

in Sec. 5.2, Eqs. (5.3) and (5.4) give the time evolution of the reduced Wigner function 

and the reduced characteristic function as follows: 

+oo 

= j d>..xsd>..ks WAs(xA, Xs, kA, ks; t) 
-oo 

+oo 

= j d>..xsd>..ks WAB ([(xA, Xs, kA, ks)- a(t)] R-T(t); t = 0), (5.10) 
-oo 

(5.11) 
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Similarly, from (5.2) we have the time evolution of the corresponding reduced coor­

dinate representation: 

+= 
!>A(:z:A,yA; t) = J d).XB!>AB(:z:A,:z:B,YM :z:B;t), 

-?O 

(5.12) 

where e(xA, xB, yA, xB; t) can be solved exactly in terms of the classical action for a 

quantum linear system [26, 82]. The complexity of (5.12) is similar to th~t of (5.10). 

From (5.11), we see that once the initial (total) characteristic function is obtained, 

we can write d<;>wn the time evolution of the characteristic function in terms of the phase 

flow without doing any integrations. Among all representatives of the density operator, 

only the characteristic function possesses this advantage. Therefore we conclude that the 

characteristic function is the best representative for the problems involving reduction. 
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Part II 

The Model'-
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Chapter 6 

Equations of Motion and the· 

Solutions 

NOTE: Unless otherwise mentioned, the timet;::: 0 throughout this chapter. 

6.1 The Model Hamiltonians 

In the literature, there have been several successful models for the quantum dissipa-
\ 

tive heat bath (30]. For quantum harmonic Brownian motion, the one used most often is 

the linear-coupling model (10, 16, 22, 25, 40, 44, 45, 48, 73, 76, 85, 95]. Since the Hamil­

tonian of the linear-coupling model is not positive definite, a renormalization procedure 

is necessary. Mter the reno~alization is performed, the linear-coupling model is then 

equivalent to the independent-oscillator model (28, 29, 30], in which the heat bath is 

modeled by an infinite set of mutually independent oscillators attached to the Brownian 

particle by Hooke springs. In this paper, we shall use the independent-oscillator model 

exclusively without loss of generality. 

In the independent-oscillator model, the total system of a harmonically bound Brow­

nian particle immersedin a quantum dissipative heat bath is described by the Hamilto-

nian 

HA f? 1 2 A2 "" [ p~ 1 2( A A)2] = - + -mw q + L.J -- + -m.ew.e q.e- q , 
2m 2 ° .e 2m.e 2 

(6.1) 

wher~ q = q0 and p =Po are the operators for the Brownian particle, m = mo and m.e's 
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are the characteristic masses, and Wj 's are the characteristic frequencies defined as in 

Sec. 1.1. (From now on we shall never drop the subscript "o" in w0 .) Among the terms 

in (6.1), 

is the Hamiltonian of the harmonically bound Brownian particle, 

[ Pl 1 2A2] lt 2mt + 2mlw£q£ 

is the Hamiltonian of the heat-bath oscillators, 

L: -mtwiiltil 
l 

(6.2) 

(6.3) 

(6.4) 

corresponds to the interaction, i.e., the linear coupling, between the Brownian particle 

and the heat bath, and 

(~ L:mtwi)~ (6.5) 
l 

corresponds to the renormalization counterterm in the linear-coupling model. It is ob-

vious that the Hamiltonian (6.1) is positive definite as long as Wj > 0. Without loss of 

generality, we shall assume that all Wt's are different. The mechanical analogue of (6.1) 

i's shown schematically in Fig. 1. 

Without changing the essential structure of the Hamiltonian in (6.1), we can linearly 

couple the Brownian particle to a classical time-dependent external force by adding the 

linear term -ilfx(t) to (6.1) and get 

fi'(t) = fi- ilfx(t). 

Hence the time-independent fi in (6.1) becomes a special case ofthis H'(t). We shall use 

both (6.1) and (6.6) as the model Hamiltonians, but note that only the former represents 

the "total system." The total number of heat-bath oscillators is assumed at first· to be · 

finite, and the thermodynamic limit n~oo will be taken starting in Chap. 8. 

6.2 Classical Equations of Motion 

From the discussion in Chap. 4, we know that for a quantum linear system the 

dynamics is completely determined by the corresponding classical equations of motion. 
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Figure 6.1: Mechanical analogue of the independent-oscillator model. Note that qj 
. . 

locates the center of mass of the j-th oscillator with respect to its balanced position. 
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Therefore our study of the model Hamiltonians begins with the equations of motion for 

the classical correspondent of the quantum system described by (6.6). 

The corresponding classical Hamiltonian, i.e., the Weyl symbol, of the model Hamil­

tonian ( 6.6) is 

'( ) k
2 

1 2 2 ~ [ k~ 1 2( )2] f ( ) H t = 2m + 2mW0 X + Le 2mt + 2mlw£ X£ - x - x x t . (6.7) 

Using Hamilton's canonical equations (4.30), we have the following equations of motion 

for this corresponding classical system: 

mx=k, 

k = -mw~x + 2: mtwi(xt- x) + fx(t), 
l 

mtit = kt, 

kt = -mtwlext- x). 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

From (6.10) and (6.11), the equations of motion for the heat-bath oscillators take the 

form 

.. + 2 2 X£ WtX£ = WtX, (6.12) 

which indicates that each heat-bath oscillator is driven by a time-dependent force wzx(t). 

The formal solution to the above equation is 

sin(wtt) 1t . 
Xt(t) = Xt(O)cos(wtt)+kt(O) +wt drx(r)sm(wt(t-r)) 

ffi£W£ o 

sin(wtt) -
= xt(O) cos(wtt) + kt(O)--'---'--"-

mtW£ . 

+ x(t)- x(O) cos(wtt)- 1t drx( r) cos(wt(t- r)). (6.13) 

Combining (6.8), (6.9), and (6.13), we get the classical equation of motion for the position 

of the Brownian particle: 

mx(t) + mw~x(t) + 1tdrx(r) [2tmtwicos(wt(t- r))] (6.14) 

~ [ · sin(wtt)J = -x(O)l:mtwicos(wtt)+ L...tmtwi .xt(O)cos(wtt)+kt(O) +fx(t), 
l l ~~ 
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or equivalently, 

mx(t) + 1tdrry(t- r)x(r) + mw~x(t) = -x(O)ry(t) + f(t) + fx(t), (6.15) 

where 

ry(t) := 2: ffl£Wl COS(W£t). 
£ 

serves as the memory kernel, and 

f(t) = L [xt(O)mtwi cos(wtt) + ke(O)w£ sin(wtt)] 
£ 

(6.16) 

(6.17) 

is a time-dependent force acting on the Brownian particle. From the Weyl correspon­

dence rule, the quantum analogue of (6.15) is 

m~(t) + 1tdrry(t- r)~(r) + mw~q(t) = _:_q(O)ry(t) + }(t) + fx(t), (6;18) 

where 

](t) = L [clt(O)mtWl cos(wtt) + fi£(0)wtsiil(wtt)]. 
£ 

(6.19) 

Eq. (6.18) can also be obtained from (6.6) using the Heisenberg equation of motion 

[22, 28, 30]. 

6.3 Solutions of the Classical Equations of Motion 

· In this section, we shall apply the Laplac;e transform method to solve the classical 

equation of motion (6.15) in terms of fx(t) and the initial values Xj(O) and kj(O). Firstly. 

we make a Laplace transform on (6.15): 

~ { ( )} _ mx(O) + mx(O)s + J[s] -t ]x[s] 
J...,s x t - Z(s) , (6.20) 

where the variable s is complex with Re ( s) > 0, 

, ][s] = ""' wj[mext(O)s + kt(O)] 
LJ s2+w2 ' 

£ ' £ 

(6.21) 

fx[s] = .Cs{fx(t)}, (6.22) 
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and 

Z(s) = m(s2 +w~) + srj[s], 

with 

Note that Z(s) is an even function of s, and 

with 

Z(r) > 0, 'Vr E R, 

( ) 
2 • Z(r) 

Z 0 = mw0 , and hm-- = m. 
r-+oo r2 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

Since (6.7) is anN-mode Hamiltonian with its homogeneous part positive definite, 

there are exactly N real normal mode frequencies corresponding to those N normal 

modes of the corresponding classical system, which will henceforth be denoted by nj > 0. 

From the Laplace transform of x(t) in (6.20), we know that if nj is a normal mode 

frequency of (6.7), then both ±inj are zeroes of Z(s), i.e., 

(6.27) 

is the equation for those normal mode frequencies. Using the graphical method (referring 

to Fig. 2, where N = 1 + 3), we see that as long as the we's are all different from each 

other, those N normal mode frequencies Oj's are also mutually different. The claim that 

all nj 's are real is also confirmed since Oj > 0. Moreover, we find that 

(6.28) 

Because ( 6.27) is of the form 

N-degree polynomial in 0 2 = 
0 

11(02
- wi) ' 

(6.29) 

.e 

it is guaranteed that (6.27) has no other roots in addition to ±inj. Therefore we conclude 

that Z(s)- 1 contains exactly 2N simple poles which lie on the imaginary axis of the 

complex s-plane and are symmetric about the origin. It is worthwhile to emphasize 
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0 

Figure 6.2: Graphical method for determining the roots of Eq. (6.27) with N = 1 + 3, 

which is equivalent to YI = Y2, where 
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again that Z(s)- 1 is analytic on the s-plane except for these 2N simple poles lying on 

the imaginary axis. 

We then define the fundamental solution u(t) of (6.15) as 

-1 {· 1 } 1 re+ioo exp( st) 
u(t) = £ · Z(s) = 27ri Je-ioo ds Z(s) ' (6.30) 

where~ is an arbitrary positive real number since Z(s)- 1 is analytic for Re(s)>O. Since 

this fundamental solution u(t) is defined in terms of the inverse Laplace transform, it 

vanishes for t<O. From (6.15) and (6.20), we can determine the initial conditions of the 

fundamental solution u(t) as 

u(O) = 0, u(o) = ~' 
m 

ii(O) = 0. (6.31) 

Using this fundamental solution u(t), the time evolution of x(t) can be expressed as 

where 

··and 

x(t) = mx(O)u(t) + mx(O)u(t) + ltdru(r)[f(t- r) + fx(t- r)] 

= mu(t)x(O) + u(t)k(O) + l:[m£U£(t)x£(0) + u£(t)k£(o)] 
£ 

U£(t) :w£ 1tdru(r)sin(w£(t-r)), 

U£(t) = w11t dru(r) cos(w£(t- r)) 

= W£ ltdru(r) sin(w£(t- r)). 

The time evolution of k(t) can be obtained from (6.32) straightforwardly: 

where 

k(t) = m 2 ii(t)x(O) + mu(t)k(O) + m l:[m£ii£(t)x£(0) + U£(t)k£(o)] 
£ 

+ m 1tdru(r)fx(t- r), 

ii£(t) = w11t dru( r) cos(w£(t- r)) 

58 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 



.. 

according to (6.34). 

In principle, we can substitute (6.32) into (6.13) to calculate the explicit solutions 

of x.e(t) and then k.e(t) in terms of u(t), fx(t), and the initial values Xj(O) and kj(O). 

However, it will be clear later that it is not necessary to obtain the explicit solution of 

x.e(t) or k.e(t) for determining the dynamics of the Brownian particle. 

6.4 Linear Responses and the Generalized Susceptibility 

According to the Weyl correspondence rule, the solution of the operator e'q_uation of 

motion (6.18) is formally isomorphic to (6.3~): 

q(t) = mit(t)q(O) + u(t)p(O) + 1t dru( r) [J(t- r) + f~(t- r)] . (6.37) 

= mit(t)q(O) + u(t)p(O) + 2: [m.eit.e(t)q.e(O) + u.e(t)p.e(O)] 
. .e 

(6.38) 

+ 1tdru(r)fx(t- r), 

and the.time evolution of the momentum operator p(t) is 

p(t) = m2 il(t)q(O) + mit(t)p(O) + m 1t drit(r) [f(t- r) + fx(t- r)] (6.39) 

=. m~il(t)q(O) + mit(t)p(O) + m 2: [m.eil.e(t)q.e(O) + it.e(t)p.e(O)] (6.40) 
.e 

From .the above two expressions, we can calculate the responses of the Brownian 

particle with respect to an applied force which corresponds to fx(t) in the model Hamil­

tonian (6.6). Taking the expectation value of (6.38) with respect· to a given initial 

quantum state, we get 

(q(t)) = mit(t)(q(O)) + u(t)(P(O)) + l:::[m.eit.e(t)(q.e(O)) + u.e(t)(p.e(O))] 
.e 

(6.41) 

If the mean vector of this initial state is zero, then the above expectation value reduces 

to 

(6.42) 
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where u(t<O)=O has been used. As a comparison, the linear response of the momentum 

expectation value for the same initial state is 

(p(t)) = m 100 

drit(t- r)fx(r). (6.43) 

In (6.42), if we interpret u(t< 0) =0 as the causality condition, then the fundamental 

solution u(t) serves as the retarded Green's function for (q(t)) with respeCt to the applied 

force f x ( t). From linear response theory, we know that it is convenient to consider the 

retarded Green's function as a Fourier transform of the so-called generalized suscepti­

bility a(w). The explicit expression for a(w) corresponding to u(t) can be obtained by 

setting €=€ in (6.30): 

i.e., 

+oo 
u(t) = __!_ jdwexp[(E+iw)t] 

21r Z(€ + iw) 
-oo 

+oo . 
= __!_ j dw exp( -iwt) 

21r Z(€- iw) 
-oo 

+oo 
. 1 J = 

2
7r dw exp( -iwt)a(w), 

-00 

l 
a(w) = Z(€- iw) 

1 
Z(-E+iw) 

(6.44) 

(6.45) 

is the generalized susceptibility of the total system for the response (q(t)) with respect 

to the applied force fx(t). Note that in (6.44) we have made a change of variable w-+-w 

in order to follow our convention for the Fourier transform. 

The reason that we took € in (6.30) to be the infinitesimal € is because otherwise we 

will not be able to put the fundamental solution u(t) in (6.30) as a Fourier transform 

of a function of w, and accordingly it is impossible to determine the explicit form of 

the susceptibility a(w) in terms of Z(s). The physical meaning of this limit is the 

manifestation of the resonant behavior of the total system, which is analogous to the 

resonant absorption in electrodynamics [50, 57], the continuous-spectrum transition in 

quantum perturbation theory [58], and Landau damping in collisionless plasmas [62], etc. 

This resonance is also the physical mechanism which allows us tq construct a dissipative 

environment out of a conservative model· Hamiltonian. 
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Conversely, we can take a(w) as the Laplace transform of the fundamental solution 

u(t): 

a(w) = fo00

dtexp[i(w+iE)t]u(t), (6.46) 

where iE guarantees the convergence of the integral. This i€ can be omitted if and only 

if we take the thermodynamic limit, which will be discussed in Chap. 8. 

Following the convention in linear response theory, we use the notations a' ( w) and 

a"(w) to denote the real and imaginary parts of a(w), individually. From (6.45) or 

(6.46), it is obvious that a'(w) and a"(w) are even and odd functions of w, respectively. 

Moreover, from (6.45) we find that 

. 1 1 
'(O) a"(O) .= 0, a = Z(O) = mwg ' (6.47) 

and 

lim a"(w) = O(w). 
w-->0 

(6.48) 

In linear response theory, it is more convenient to take the generalized susceptibility 

as a function of the complex frequency. Hence we shall now extend the frequency w into 

a complex variable tv:=w +iw". It is necessary to emphasize that, although the original 

·· real w is the imaginary part of the complex variable s, the complex tv-plane does not 

overlap with the complex s-plane! According to (6.46), a( tv) is analytic for w" 2:: 0 on 

the complex tv-plane, which is a generic property of the generalized susceptibility as a 

consequence of the causality principle. 

Since a( tv) is analytic for w" 2::0, a'(w) and a"(w) are related via the dispersion 

relation: 

+oo 
1 j a"(v) a'(w) = -Pr dv-~ 
1r v-w 

-oo 

Using the well-known formula in complex analysis: 

+oo ( ) +oo J( ) . 

f d fv =Prjdv v +irrf(w), 
v v -w- iE v-w 

-oo -oo 

or the symbolical expression 

-
1
- = Pr( v

1
) + irr8(v), v-iE 

61 

(6.49) 

(6.50) 

(6.51) 



we have 

a(w) = ...!:._ +j00

dv a"(v) 0 0 

1r v-w-u 
(6o52) 

-oo 

It then follows that the fundamental solution u(t) in (6o44) can be expressed as 

+oo 

u(t) = ! j dw exp( -iwt)a"(w) 
-oo 

+oo 

= ~ j dw sin(wt)a"(w)o (6053) 
-oo 

Note that when t < 0, the right hand side of (6053) is equal to -u( -t) i- Oo This is 

because a"(w), unlike a(w), is not analytic for w" 2:: Oo Fort E R, we define another 

fundamental solution w(t) as 

w(t) = u(t)- u( -t) 

/ 

+oo 
= .i_ j dw exp( -"iwt)a"(w) 
. 7r 

-oo 

+oo 

= ~ j dw sin(wt)a"(w), (6054) 
-oo 

which is an odd function oft E Ro 
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Chapter 7 

Thermal Equilibrium State 

NOTE: Unless otherwise mentioned, t E R and 0 < /3 < oo throughout this chapter. 

7.1 Diagonalization of the Model Hamiltonian 

As a preparation, we consider the diagonalization of the model Hamiltonian (6.1) 

[8, 29, 95] in this section. First let us put (6.1) into the matri~ form 

(7.1) 

where U and V are two N x N symmetric and positive definite matrices defined as 

f . {1 1 1 1} U-diag---···-- ' ' ' ' ' mm1 ~ mn 
(7.2) 

l:miwj -m1w~ -~w~ -mnw~ 
J 

-mlw~ m1w~ 0 0 

V= -~~ 0 ~w~ 0 (7.3) 

.-mn~ 0 0 mnw~ 

According to Theorem 1.2.3, the matrix K can be diagonalized by a congruence 

symplectic. transformation: 

(7.4) 
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where S is a 2N x 2N symplectic matrix, and the diagonal N x N matrix n has the 

normal mode frequencies D-j's as its diagonal elements. The explicit form of S can be 

calculated via an orthogonal transformation as follows: 

5 =-(n~ o ) (x o) (u-~ 0
1

) = (n~xu-~ 
o n-~ o X o , U2 o 

(7.5) 

with 

(7.6) 

i.e., the square of each normal mode frequency nj is an eigenvalue of the symmetric 

· matrix U ~VU ~. Since we will only use (7 .4) formally in the following, it is not necessary 

to calculate the explicit form of the matrix X or S. 

7.2 Phase Flow of the Classical System 

We shall now derive the'phase flow ( 4.32) for the classical system corresponding to the 

quantum Hamiltonian (6.1) [8, 44, 45, 95] using the results obtained in the last section. 

First of all, we can make sure that a(t)=O since the Hamiltonian (6.1) is homogeneous. 

Because this Hamiltonian is time-independent, the time-evolution operator defined by 

( 4.26) is simply 

U(t) = exp { ~itii}, (7.7) 

which is an element of the group Mp(2N, R). According to the Weyl correspondence 

rule, R(t) in (4.32) can be calculated via the time evolution ofr. Using the results in 

Sec. 1.2.2, we have 

(7.8) 

where 

· ( cos(nt) 

R(t) = exp {tJK} = s-1 

' - sin(nt) 

sin(nt)) . 
s, 

cos(nt) 

(7.9) 

with 

(7.10) 
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and sin(Ot) defined in a similar way. 

Comparing the definition ofthe phase flow in (4.32) with (6.32) and (6.35), the latter 

two equations give the explicit expressions for the elements in the 0-th and N-th rows 

of R(t > 0), which will be the only elements we need for studying the dynamics of the 

Brownian particle. Hence it is not necessary to obtain the explicit form of R(t) in (7.9). 

From the solutions (6.32) and (6.35), along with the explicit form of the phase flow 

(7.9), we find that the two-dimensional restricted phase flow on the Brownian phase 

plane takes the form 

( 

mw(t) 

~R(t)] = 

m 2 w(t) 

w(t) ) ' 

mw(t) 

where w(t)is defined by (6.54). For t~O, Eq. (7.11) reduces to 

( 

mu(t) u(t) ) 

~R(t)] = 
m 2 u(t) 'fl),u(t) 

7.3 Correlation Functions of the Brownian Particle 

(7.11) 

(7.12) 

If the total system described by the Hamiltonian (6.1) is immersed in an ideal (i.e., 

non-dissipative) phenomenological heat bath of temperature {3-1 , the state of the total 

system will finally approach the thermal state with the canonical density operator (3.33), 

which will hereafter be called the "model thermal state." After the total system reaches 

the model thermal state, i.e., reaches thermal equilibrium with the phenomenological 

heat bath, the total system can be isolated and the phenomenological heat bath can be 

removed. Conceptually, in order to define the model thermal state of the total system, 

the introduction of this phenomenological heat bath is necessary. 

The correlation matrix C,e(tb t2 ) of the total system with respect to the model ther­

mal state is defined as 

C,e(tb t2) = (-rT (tl)r(t2) >.e 

= R(t1)(rT(O)r(o))
13

RT(t2), (7.13) 
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where ( ) {3 denotes the expectation value with respect ~o the model thermal state, the 

same notation will be used throughout the remainder of this paper. Since the model 

Hamiltonian (6.1) is homogeneous, the mean vector of the model thermal state is zero. 

Therefore it is not necessary to include the mean vector in the above definition of the 

correlation matrix. 

Since the Hamiltonian fi in (6.1) is time-independent, the model thermal state is a 

steady state. Hence we have 

(7.14) 

according to (3.22), where :Ef3 denotes the covariance.matrix of the model thermal state 

which satisfies 

(7.15) 

Since S in (7.5) is block-diagonal, :Ef3 is also block-diagonal according to (3.46). 

From (7.14) we can infer that the operator r(t) is a multivariate (quantum) stationary 

process with respect to the model thermal state since the latter is a Gaussian state. The 

explicit expression of the correlation m~trix Cf3(tb t 2 ) is. 

(7.16) 

hence we can merely study 

(7.17) 

where Sf3(t) = R(t):Ef3. Note that Cf3(t) =I Cf3( -t). 

Among all the elements in Cf3(t), those four in ~Cf3(t)~ are those corresponding to 

the Brownian particle: 

~Cf3(t)~ = ~Sf3(t~~ + ~ ~R(t)~j 

= ( (q(t)q(0)){3 (q(t)p(0)){3) . 

(P(t)q(O) )f3 (P( t)p(O) ){3 

(7.18) 

Comparing C(3(t) with C(3( -t), we find that the two diagonal elements in ~Sf3(t)~ are the 

symmetrized auto-correlation functions for the position and momentum of the Brownian 
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particle: 

~S,B(t)~ 11 = t( q(t)q(O) + q(O)q(t)) f3, (7.19) 

(7.20) 

which are both even functions of t. 

Using the Heisenberg picture, it is easy to derive the following relations: 

(7.21) 

and 

(7.22) 

where 

(7.23) 

and 

. (7.24) 

have been used in deriving (7.2i). 

Applying (7.21) and (7.22) to (7.18), we get similar relations among the elements in 

. ~S13(t)~: 

Hence ~S,B(t)~ can be expressed as 

( 

v(t; (3) 

~Sf3(t)~ = 
mv(t; (3) 

(7.25) 

(7.26) 

-mv(t; (3)) 

-m2 v(t; (3) ' · 

(7.27) 

where v(t; (3) = (q(t)q(O)),B is the counterpart of the fundamental solution u(t) for study­

ing quantum harmonic Brownian motion. The explicit expressions of the elements in 

~S,B(t)~ will be calculated in the next section. 
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7.4 Fluctuation-Dissipation Theorem 

In this section, we shall derive the fluctuation-dissipation theorem (or fluctuation­

dissipation relation) [14, 56, 57, 59, 91] for our model, and then apply this theorem 

to obtain the correlation functions of the Brownian· particle with respect to the model 

thermal state [51, 76]. The advantage of using this theorem is that, instead of diago­

nalizing the Hamiltonian explicitly, we can use the ·fundamental solution u(t) to obtain 

these correlation functions. This is one of many examples of using the analogy between 

the canonical density operator and the time-evolution operator in connecting quantum 

statistical mechanics with quantum dynamics. 

Firstly, we shall apply the results from Chap. 6 to prove the fluctuation-dissipation 

theorem for our model. Using U(t) in (7.7), the time evolution of q(t) in the Heisenberg 

picture can be expressed as 

q(t) = ut(t)q(O)U(t) 

= U( -t)q(O)U(t). (7.28) 

Since up to a proportionality constant, the canonical density operator can be taken 

as the time-evolution operator with imaginary time, i.e., 

U( -if3) 
§{3 = --.'---'--'---;-

Tr [uc -if3)] ' 
(7.29) 

we have 

<
A 

0 
At) = Tr[u(-if3)q(O)q(t)] 

q( )q( ) (3 Tr [uc -if3)] 

= 
Tr [uc -if3)<J(t- if3)<J(o)] 

Tr [uc -if3)] 

= < q(t- i(3)q(O) )(3 

= exp{ -if38t}(<1(t)q(o))(3. (7.30) 

On the other hand, from the canonical commutation relations (1.1) and the time 

evolution of q(t) in (6.38), it is easy to get the following operator identity: 

[q(t), q(O)] = -iu(t)i, t ~ 0. (7.31) 
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.. 

Accordingly, fortE R: · 

[q( t), q(O)] · = -iw( t)i. (7.32) 

Taking the expectation value of (7.32) with respect to the model thermal state and 

using (7.30), we get 

(7.33) 

The :fl.uctuation~dissipation theorem can be easily obtained from (6.54) and (7.33): 

. v(t; (3) = t( q(t)q(O) + q(O)q(t) )(3 

= t [ 1 + exp{ -if38t} ]( q(t)q(O) )(3 

+oo 

= _!_ [1 + exp{ -~f3Bt}] j dw exp( -iwt)a"(w) 
21r 1- exp{ -tf38t} 

-oo 

+oo 

= _!_ j dw (-. t) "( ) [1 + exp( -f3w)] 
2 exp twaw 1 ((3) 

1r - exp- w 
-oo 

+oo . 

= 2~· j dw exp( -iwt)a"(w) coth(f3w/2) 
-oo 

1 +/.00 
= 

2
7r dw cos(wt)a"(w) coth(f3w/2). 

-oo 

(7.34) 

Note that the integrand of the above integration is finite at w = 0 according to (6.48) 

and 

(7.35) 

·It is worthwhile to mention that in the proof of the :fl.uctl.!ation-dissipation theorem 

for a general system [56, 57, 59), the generalized susceptibility a(w), hence a"(w), has 

to be defined from. the retarded Green's function with respect to a perturbing force 

which corresponds to fx(t) in (6.6). However, since our model is linear hence exactly 

solvable, a"(w) can be defined directly froni the fundamental solution u(t), and we do not 

even have to introduce the perturbing force fx (t) in stating the fluctuation-dissipation 

theorem for our model [91). (Although u(t) is indeed the retarded Green's function 
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with respect to fx(t), and we can still interpret our a"(w) in the traditional way. But 

note that fx(t) does not have to be a small perturbation in this case.) Therefore the 

:fluctuation-dissipation theorem is exact for our model, and it can be proved that the 

above argument is valid for any quantum linear system. 

and 

Substituting (7.34) into (7.25) and (7.26), we get 

+= 
~S13(t)~12 = -~S13(t)~21 =;;; j dwsin(wt)wa"(w)coth(,Bw/2), 

-oo 

m2 +/oo 
~S13(t)~22 = - dw exp( -iwt)w2 a11(w) coth(f3w/2) 

211' 
-00 

+oo 
m2 j 1 1 

= 
2
1r dw cos(wt)w2 a"(w) coth(f3w/2). 

-oo 

(7.36) 

(7.37) 

Similar to (7.34), the integrands of the above two integrations are also finite at w=O. 

Substituting (7.34), (7.36), and (7.37) into (7.18), we then get the explicit expressions 

for· the fou:r correlation functions of the Brownian particle. As a comparison, we list two 

anti-symmetrized auto-correlation functions as follows: · 

~ ( q(t)q(O)- q(O)q(t) )
13 

= -fw(t), (7.38) 

(7.39) 

which are both temperature-independent. 

·7.5 Thermal Equilibrium State of the Brownian Particle 

If the total system described by (6.1) is isolated and is in the mo.del thermal state, 

then the Brownian particle is in thermal equilibrium with the remainder of the system, 

i.e., the heat-bath oscillators. Therefore, it is legitimate to define the thermal equilibrium 

state of the Brownian particle in our model as the state corresponding to the 0-th mode 

reduced density operator of the canonical density operator. In the following, we shall 

derive the explicit form of this thermal equilibrium state of the Brownian particle. 
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Since the Hamiltonian (6.1) is homogeneously quadratic, the model thermal state is a 
Gaussian state with zero mean vector, thus it is completely determined by the covariance 

matrix :E,e according to the discussion in Sec. 3.4. The characteristic function of the 

model thermal state takes the form 

(7.40) 

From the reduction theory studied in Chap. 5, the reduced state out of the model 

thermal state that corresponds to the Brownian particle is characterized by the reduced· 

covariance matrix ~ :E ,e ~ , which is also a .Gaussian state vii th zero mean vector. This 

reduced state is then defined as the thermal equilibrium state of the Brownian particle 

immersed in a quantum dissipative heat bath modeled by the independent-oscillator 
I 

model. The corresponding one-mode characteristic function is 

(7.41) 

Since :E,e is block-diagonal, ·~:E,e~ is diagonal. Hence we can define 
' 

~:E,e~ = (O'qq[B] 0 ') ' 
0 O'pp[B] 

(7.42) 

where [,B] indicates that these two variances are with respect to the thermal equilibrium 

state with the temperature ,a-t, and O'qq[B] and O'pp[B] can be taken as the the initial 

values of (7.34) and (7.37), respectively, as follows: 

+= 
O"qq[B] = v(O; ,B) = 2~ j di..Ja/'(w) coth(,Bw /2), (7.43) 

-oo 

+oo . 

O'pp[B] = -m2v(O; ,B) =f ;:; j di..Jw2 a"(w) coth(,Bw/2). (7.44) 
-oo 

Both (7.43) and (7.44) can be transformed into series expansions by using the 

Parseval-Plancherel theorem in Fourier analysis: 

+oo . l +oo J dT j(T)g*(T) = 
2

11" J di..JF(w)G*(w), (7.45) 
-oo -oo 

where (f(t)', F(w)) and (g(t), G(w)) are two Fourier transform pairs according to the 

definitions in Sec. 1.1. 
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In order to apply the Parseval-Plancherel theorem to (7.43) and (7.44), first we have 

to replace coth(,6wl2) by its principal value Prcoth(,6wl2) in (7.43) and (7.44) since the 

former has no Fourier transform but the latter does. This replacement will not change 

the results of the integrations since, as we just mentioned, the integrands of (7.43) and 

(7.44) are both finite at w=O. 

Since the Fourier transform of Prcoth(,6wl2) is [-iPrcoth(7rtl,6)l,6] and that of 

a"(w) is given by (6.54), according to the Parseval-Plancherel theorem we can transform 

(7.43) into 

+oo 

= 2~ j-drw( r) coth( 1l"T I ,6) 
-oo 

= ~ fo00

dru( r) coth( 1l"T I ,6) 

= ~ 100 

dru( r) [1 + 2 f: exp( -2J.L1l"T I ,6)] 
p 0 ~=1 

(7.46) 

where ..C8 {u(t)} = z-1 (s) = z- 1
( -s) has been used. Note that Pr disappears from the 

integration of (7 .46) since the integrand is finite at r = 0. 

Similarly, from (7.44) we have 

, cTpp[/3] = m2 j00

dr [ -~Y)J [ ~i ~coth(7rrl,6)r 
-oo 

-m2 roo 
= (3 lo dru(r)coth(7rrl,6) 

= m f [Z(s)-ms
2

] 

,6 ~-oo Z(s) s=2J.L1l"l,6 
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= m ~ z-1 (2J.l:rr) { 2 (2J.l:rr) _ [2J.l:rr]} 
(3 p.=~oo (3 mw0 + (3 17 (3 , (7.47) 

where we have used 

s2 ms2
- Z(s) 

.Cs{ii(t)} = Z(s) - it(O) = mZ(s) (7.48) 

It is interesting to note that 2J.1:rr I (3 in the above two series is the Matsubara frequency 

of the temperature Green's function [67], and z-1 (2j1,7r I (3) follows as the Matsubara sus­

ceptibility analogous to the susceptibility a(w)"[62]. Eqs. (7.46) and (7.47) are convenient 

for practical calculation of O"qq[,6] and Crpp[,6] • 
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Chapter·s 

Quantum Langevin Equation 

In this chapter, we shall begin t<J take the thermodynamic limit and derive the 

quantum Langevin equation for the position operator of the Brownian particle from the 

independent-oscillator model. The purposes of studying the quantum Langevin equation 

are: (1) Among all equivalent formalisms, the quantum Langevin equation is the most 

suitable one for constructing the dissipative heat.bath. (2) The quantum Langevin equa­

tion is the simplest approach for some special problems of quantum harmonic Brownian 

motion. (~) The independent-oscillator model is a well-defined quantum system which 

can Qe studied by first principles of quantum mechanics. But before we can make any 

prediction from it, we have first to verify the validity of this model. This verification 

can be done via the construction of the quantum Langevin equation, and we will show 

that in the classiccillimit this quantum-mechanical model gives results compatible with 

the classical phenomenological theories discussed in Chap. 2. 

8.1 Spectral Density 

In this section, we shall define the spectral density for the heat-bath oscillators of the 

independent-oscillator model. As we discussed in Sec. 6.4, the manifestation of resonant 

behavior is the mechanism for the heat-bath oscillators being able to model a dissipative 

heat bath. Therefore. in order to define the spectral density, we should first examine in 

more detail the behavior of Z(s) near the imaginary axis. 
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Using (6.51), we can express Tj[e- iw] in (6.24) as 

-r . 1 1 ~ 2 [ 1 1 ] TJ e - zw = 2 L...J mewe . . + . . . 
-'lW - 'lWf. + € -'lW + 'lWf. + € 

f. 

(8.1) 

=·-iPrl:mew1 ( 2 ~ 2
)r+, rr

2 
l:mew1[8(w+we)+8(w-we)]. 

e we w t . 

Note that the real part of Tj[e- iW] is an even function, while the imaginary part is an 

odd function of w. 

The spectral density p(w) is then defined as the real part of Tj[e- iw]: 

p(w) = ReTj(e- iw] = ; 2: mew1 [8(w +we)+ 8(w- we)], 
. f. . 

(8.2) 

which is a non-negative even function of w. Using this p(w ), we have the following general 

relation: 

+oo 

2: mew1G(we) = : j dwp(w)G(w), 
e -oo 

(8.3) 

for any even function G(w). Accordingly, Tj[e- iw] can be transformed into 

Tj[e-iw] = -iPr(w)+p(w), (8.4) 

where 

+oo 

Pr(w) = ~Prjdvp(v) ( 
2 

w 
2
). 

7r v -1.1..( 
(8~5) 

-oo 

Substituting (8.4) into (6.23), we get 

Z(e- iw) = -m(w2
- w~)- wPr(w)- iwp(w). (8.6) 

Note that 

Z(e-iw):f;O, 'VwER, (8.7) 

since all zeroes of Z(s) lie on the imaginary axis of the complex s-plane. Using (8.6), 

a(w) in (6.45) becomes 

(8.8) 
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hence 

a"(w) = la(w)l2 wp(w). (8.9) 

In terms of p(w) we can also transform TJ(t) in (6.16), as an even function of tER, 

into the integral form: 

+oo 

TJ(t) = ~ j dwp(w) cos(wt). 
-oo 

+oo 
= _!_ j dw exp( -iwt)[2p( w )], 

27r 
-00 

i.e., TJ(t) is the Fourier transform of 2p(w). 

(8.10) 

Since both a(w) and TJ(t) are completely determined by p(w), it is convenient to 

work on this spectral density. In Sec. 8.3, we will show that p(w) also determines the 

correlation function of quantum noise. 

8.2 Quantum Dissipative Heat Bath 

If a quantum harmonic oscillator is isolated, the time evolution of this oscillator will 

be periodic since the system is free of dissipation. On the other hand, if we inten4 to make 

a dissipative heat bath model out of our model Hamiltonian, then the corresponding 

fundamental solution u(t) in (6.44) or (6.53) must decay with the increasing t. 

From the lliemann-Lebesgue Lemma in real analysis [98], the fundamental solution 

u(t) in (6.53) approaches zero as t--+oo if a"(w) is a measurable function of w, which 

is impossible when n is finite. This can be understood from R(t) in (7.9), in which 

every element is a linear combination of periodic functions oft with frequencies nj 's, the 

normal mode frequencies ofthe total system, when n is finite. This means that a"(w) 

in (6.53) is a linear combination of delta functiorls 8(w ± nj), and each delta function 

corresponds to a simple pole on the imaginary axis of the complex s-plane. 

Therefore, in order to make a"(w) measurable, there must be a cut instead of a 

collection of finitely many simple poles on the imaginary axis of the complex s-plane. In 

other words, to construct a dissipative heat bath model we must take the thermodynamic 

limit n--+oo, such that the accumulation of those infinitely many simple poles produces 
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an effective cut. From the relative positions among the wf.'s and !1j's described in (6.28), 

we know that this can be achieved by a (uniform) distribution of infinitely many wf.'s. 

In addition, we have to demand that the spectral density p(w) be a measurable function 

since a"(w) is a function of p(w) according to (8.6) and (8.9). It is interesting to note that 

this thermodynamic limit is equivalent to a field description of the heat bath [23, 30, 96]. 

From now on, we shall assume that the thermodynamic limit n_,.oo is taken and 

p(w) is a legitimate spectral density. Accordingly, u(t), v(t; /3), and TJ(t) all approach 

zero when t_,.oo, and we have the well-defined Fourier transform pairs: (w(t), 2ia"(w)), 

(v(t;f3),aif(w)coth(f3w/2)), and (TJ(t),2p(w)) according to (6.54), (7.34), and (8.10). 

Thus we are allowed to drop E in all related formulas henceforward. 

Conventionally, the heat bath models are classified in terms of the spectral density 

I(w) instead of p(w). I(w) is defined as 

I(w)= ~ L:mtwzc(w-wg), 
£ 

(8.11) 

which corresponds to the positive frequency part of p(w) since I(w<O)=O. I(w) can be· 

expressed in terms of p( w) as 

I(w) = wp(w)O(w), (8.12) 

where O(w) is the Heaviside unit step function. Conversely, we have 

wp(w) = I(w)- I( -w). (8.13) 

Hence these two spectral densities p(w) and I(w) are mathematically equivalent. 

In contrast to an ideal (quantum) heat bath which has only one parameter, the 

temperature j3- 1 , to characterize a quantum dissipative heat bath we have to specify 

both the temperature and the spectral density I(w) or p(w). We usually let the spectral 

density I(w) take the form 

I(w) = m1waR(w;A)O(w), (8.14) 

where 1 is a constant, and R(w; A) is the cutoff function with A as the high-frequency 

cutoff. The heat bath is called ohmic for a= 1, sub-ohmic for 0 <a< 1, and supra­

ohmic for a> 1. Note that in defining the spectral function (8.14), we have implicitly 
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assumed that each coupling constant mewl_ is infinitesimal, since otherwise I(w) will be 

divergent. However, this is not the weak-coupling limit [7] because the coupling between 

the Brownian particle and the heat bath is described by I(w) which is finite in general. 

In the literature, the cutoff function R(w; A) usually takes the following forms: 

(i) Abrupt cutoff (Debye-Zwanzig model) [10, 108]: 

R(w;A) = O(A- w); (8.15) 

(ii) Lorentzian cutoff (Drude model) [38, .44, 45, 76; 95): 

A2 
R(w;A) oc A

2 2 ; +w 
(8.16) 

(iii) Exponential cutoff [17, 48, 61, 73): 

b = 1 or 2. (8.17) 

It is obvious that J(w), hence p(w), is a measurable function of w for the above three 

cutoff functions. 

According to (8.11), by suitably choosing the distributions for me and W£ of the heat­

bath o~cillators, we can construct any given physical spectral density I(w) in the limit 

n~oo. Therefore we have verified that the independent-oscillator model is a legitimate 

model for a general environment [30]. 

8.3 Quantum Noise 

Consider a Brownian particle immersed in a quantum dissipative heat bath modeled 

by the Hamiltonian (6.1). We assume that initially the Brownian particle and the heat­

bath oscillators are independent of each other, i.e., the initial state of the total system is 

a product of the state of the Brownian particle. and that of the heat-bath oscillators, the 

so-called factorizable initial state. If we want to model a quantum dissipative heat bath 

of temperature {3-1
, the natural choice of the initial state for those independent heat­

bath oscillators is the thermal state with the same temperature. According to (3.48), 

the characteristic function of the thermal state of the heat-bath oscillators is 
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= exp{- ~ ltcoth(J3we/2)(xt,kt)ge(:;)}. (8.18) 

Using ( )bath to denote the expectation value with respect to the initial state of the 

heat-bath oscillators, we have 

(8.19) 

(8.20) 

<f>d>t') = 
6

££' mtW£ coth(J3we/2), 
bath 2 

(8.21) 

(8.22) 

In the following, we shall argue that under the above assumptions, the force term 

}(t) on the right hand side of (6.18) serves as the quantum noise (or quantu~ random 

force) [31], which is the quantum analogue ofthe colored noise discussed in Sec. 2.5. 

(I) Since }(t) is a linear combination of <Zt(O) and f>t(O), and the thermal state of the 

heat-bath oscillators is Gaussian, we conclude that }(t) is a quantum Gaussian process 

with re~pect to ( ')bath· 

(II) (}(t))bath =0 according to (8.19). 

(III) The symmetrized correlation function of }(t) is defined as 

(8.23) 

From (8.20)-(8.22), we have 

<}(ti)}(t2)) = t 2: mtw~ coth(j3w£/2) cos(wt(tl- t2)) 
bath . · l 

- ~ Emtw~sin(wt(tl- t2)), (8.24) 
- l 

hence the explicit expression of the correlation function K(tb t2; j3) in (8.23) is 

K(tb t2; j3) = ·~ '2: mtw~ coth(j3w£/2) cos(wt(tl - t2)) 
l 

+oo 

= _!_ j dwp(w)wcoth(J)w/2) cos(w(t1 - t2)) . 
2rr 

-oo 

+oo r 

= 
2
1
7r j dwp(w)wcoth(J3w/2)exp(±iw(t1 ~ t2)). (8.25) 

-oo 

79 



Since wcoth(,Bw /2) is an even function of w for finite ,8, it is suitable to use (8.3) to 

convert the sum into an integration. 

Because K(tb t2 ; ,B) =K(ti- t2 , 0; ,B) according to (8.25), ](t) is a stationary process 

with respect to ( )bath· Hence we can merely study 

+= 
K(t,O;,B) = K(t;,B) = 2~ j dwexp(-iwt)wp(w)coth(,Bw/2), t E R, (8.26) 

-oo 

and accordingly wp(w)coth(,Bw/2) can be interpreted as the power spectrum of Jet), the 

quantum analogue of /p(w) in (2.29). K(t;,B) is usually called the noise kernel in the 

path-integral approach. 

In order to discuss the classical limit of K(t; ,B), let us first approximate K(t; ,B) in 

(8.26) by 

1i 1A · K(t;,B) ~ 
2

11" -A dwexp(-iwt)wp(w)coth(,Bliw/2), (8.27) 

where A is the cutoff frequency. Note that we have let 1i appear explicitly in the above 

equation. If we impose the classical limit ,B1iA ~ 1, which corresponds to the high 

temperature limit and/or the limit n-+0, then it follows that 

K(t;,B) ~ :,8 j_: dwexp(-iwt)p(w) ~ Tl~), (8.28) 

which is analogous to the correlation function of the classical colored noise given by 

(2.28). 

· From (I)-(III), we conclude that ](t) serves as a quantum analogue of the classical 

colored noise. As a comparison, we also calculate the commutator of ](t1) and ](tl) as 

follows: 

[J(h), ](t2)] = -i L mtwi sin(we(tl - t2))i 
£ 

+oo . 

= ~i j dwp(w)wsin(w(t1 - t2))i 
-oo 

(8.29) 

which is an odd function of (t 1-t2 ) and is t~mperature-independent just like (7.38) and 

(7.39). 
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8.4 Quantum Langevin Equation 

From the above discussions, we find that if(i) n--+oo and the spectral density of the 

heat-bath oscillators is defined according to (8.14), and (ii) the initial state of the total 

system is factorizable with the heat-bath oscillators being in a thermal state, then it is 

legitimate to call (6.18) the quantum (generalized) Langevin equation for the position 

operator q. Note that ry(t)/m and ](t) in (6.18) are, individually, the quantum analogues 

of the memory kernel and colored noise in the classical generalized Langevin equation 

(2.26). The solution of (6.18) is given by (6.38). 

Comparing the quantum Langevin equation (6.18) with fx(t) = 0 with the classical 

generalized Langevin equation (2.26), we find that: (1) There is no classical correspon­

dent to the term -q(O)ry(t) in (6.18), which is an intrinsic defect of the linear-coupling 

and independent-oscillator models. (2) The lower limit of the integral term in (6.18) is 

t = 0, in contrast to that in (2.26) ~hich is taken to be -oo. This is because in Chap. 6, 

we took t = 0 as the initial moment when we solved the equations ofmotion. Therefore 

the stationary solution of (6.18), which corresponds to the thermal equilibrium state of 

the Brownian parj_icle, ollly exists when t--+oo in general . On the other hand, for the 

classical generalized Langevin state (2.26), the stationary solution exists for any fill.ite t. 

For the thermal equilibrium state of the 'Brownian particle, since a"(w)coth(,Bw/2) 

and v(t;,B) form a Fourier transform pair, we can interpret a"(w)coth(,Bw/2) as the 

power spectrum of the stationary quantum process q(t). Compared with (8.9), we get 

a"(w) coth(,Bw/2) = la(w)l2 [wp(w) coth(,Bw/2) ]. (8.30) 

According to the discussion in Sec. 8.3, wp(w)coth(,Bw/2) is interpreted as the power 

spectrum of the quantum noise ](t), hence for the stationary solution of the quantum 

Langevin equation (6.18), Eq. (8.30) is the quantum analogue of (2.31). Through the 

successful derivation of the quantum Langevin equation from the independent-oscillator 

model, the validity of this model is herewith verified. 

The advantage of the quantum Langevin equation (6.18) are: (1) Its solution (6.38) 

is state-independent, :P.ence we can take the expectation value with respect to aily given 

initial state (not necessarily factorizable) to calculate the time evolution of the mean vec­

tor of the Brownian particle. (2) Using the solution of the quantum Langevin equation, 
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we can derive the time evolution of the covariance matrix of the Brownian particle with 

respect to an arbitrary factorizable initial state, which will be discussed in Sec. 10.3. 

The limitations of the quantum Langevin. equation are: (1) It is derived under the 

assumption that the initial state is factorizable, hence it cannot be applied to the general 

problems with non-factorizable initial states. (2) With respect to the factorizable initial 

states, it is inconvenient (although not impossible in principle) to study the relaxation 

of the non-Gaussian initial states of the Brownian,particle using the quantum Langevin 

equation, because these kind of states cannot be completely determined by the first two 

moments. 

8.5 Ohmic Dissipation 

In this section we shall study the simplest example of quantum harmonic Brownian 

motion, i.e., the case corresponding to ohmic dissipation with infinite cutoff. In this case 

I(w)=mrwB(w), and p(w) =mr becomes the friction constant. From (8.10), 

+oo 

ry(t) = :' j dJ..J exp( -iwt) = 2m18(t), · (8.31) 
-oo 

and accordingly the quantum Langevin equ?-tion (6.18) with fx(t) =0 reduces to 

(8.32) 

or equivalently, 

(8.33) 

where ( 1.11) has been used. 

The corresponding generalized susceptibility a( w) takes the form 

1 
a(w) = ( ) , m -w2 - ifw + w~ . 

(8.34) 

hence 

(8.35) 
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The fundamental solution u(t) for (8.32) is easy to solve using (6.44). Let us consider 

the underdamped case as an example. In this case the two zeroes for the denominator 

in (8.34) can be expressed as 

.~ 
lin = y w5 - 4 E R. (8.36) 

Using a contour integral on the complex tv-plane, we get from (6.44): 

sin(vnt) ( ) u(t) = exp -1-lt . 
mv0 

(8.37) 

Note that the corresponding ii(t) has a jump at t=O. 

ill contrast to the classical Langevin equation, where ohmic dissipation is associated 

with white noise, the power spectrum of the ohmic quantum noise is m1wcoth(f3wj2), 

which is obviously colored. This difference can be traced to the failure of the classical 

equipartition law in quantum statistical mechanics. In the classical limit discussed in 

Sec. 8.3, we have 

K(t; /3) ~ 2; 1 8(t), (8.38) 

which corresponds to classical white noise discussed in Sec. 2.4. Hence we find that, using 
. . 

ohmic dissipation accompanied by the classical limit, the quantum Langevin equation 

(8.32) becomes the analogue of the classical Langevin equation (2.21) with an extra 

8(t)-term, which can be interpreted as a frequency shift according to (8.33). 

Before closing this section, let us discuss two more interesting questions. The first 

one is the weak-coupling limit of the ohmic quantum dissipative heat bath [7], which 

corresponds to the case !-+0. From (8.35), we have under this limit: 

"( ) sign(w) [ € ] 
a w = m (w2- w5)2 + €2 

= ~sign(w)8(w2 - w~) 
m 

._1r_ [8(w- w0 )- 8(w + Wo)]. 
2mw0 

(8.39) 

Hence the heat bath model reduces to .an ideal heat bath free of dissipation. According 

to (7.43) and (7.44), in this limit the thermal equilibrium state of the Brownian partide 

is consistent with the thermal state of a harmonic oscillator.· It is obvious that this 

conclusion is also true with respect to a finite cutoff. 
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The second interesting question is the long time behavior at low temperature. Let 

us use v(t; /3) with large t > 0 as an example to compute the so-called long-time tail 

[38, 44, 45, 51, 76]. The formulation we shall use is a generalization' of that discussed in 

Sec. 7.5. 

Applying the Parseval-Plancherel theorem (7.45) to (7.34), in analogue to (7.46) we 

have for any t > 0: 

+= 
v(t; /3) = 

2
1
7r j dw [a"(w)][exp(iwt) coth(,Bw/2)]* 

-= 

+= 
= j dr [w~;)] [ ~i Prcoth(1r(r- t)/!3)]* 

-= 
1 r>O . 

= 
2

,8 lo dru(r)[coth(1r(r + t)/,8) + Prcoth(1r(r- t)/,8)]. (8.40) 

This formula is especially useful for low temperature expansions. For the special case 

that the temperature approaches absolute zero and t is large, we get the asymptotic 

value of v( t; ,8) as 

v(t; ,8) ~ ..!_ Pr roo dru(r) [ T ] 
1r lo r 2 - t2 

-11= ~ -·- dru(r)r 
7rt2 0 

= -1 [c -i) 8a(w)] 
7rt2 8w w=O· 

(8.41) 

where (6.46) has been used, and we have taken advantage of u(t) being very small for 

large t. 
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Part III 

The Dynamics 
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, Chapter 9 

General Formulations 

9.1 Time Evolution of the Brownian Particle 

From the discussion in Sec. 5.4, we know that once we have the explicit form of 

the initial characteristic function, we can immediately write down the time evolution of 

the reduced characteristic function in terms of the phase flow. For quantum harmonic 

Brownian motion, the subsystem A is the Brownian particle and B is collection of 

the heat-bath oscillators according to the notations in Chap.· 5. With respect to the 

Hamiltonian (6.1), if the characteristic function of the initial state of the total system 

is <Pini(z), according to (5.11) the time evolution of the reduced characteristic function 

. <P0 (x, k; t), which corresponds to the reduced density operator for the Brownian particle 

at t, is given by 

(9.1) 

where (x, 0, k, 0) is a vector in the 2N-dimensional phase space with only two non-zero 

components, and z(t) is a 2N-dimensional vector defined as 

z(t) = (x,O,k,.o)R-T(t) = (x,O,k,o)FR(t)J, (9.2) 

which is a function of x, k, and t. Note that xe and ke are not involved in the definition 

of z(t)! Comparing (9.2) with (6.32) and (6.35), we can decompose 

(9.3) 
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into the following expressions: .. 

where 

r0 (t) = 
( 

mu(t) 

and 

with the initial values 

-m2 u(t) 

( 

mite(t) 

re(t) = 

-mmeiie(t) 

-ue(t)) 

meite(t) ' 

r0 (0)= (~ ~), and re(O)=O. 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

The quantum dynamics of the Brownian particle is then completely determined by 

the matrices rj(t), whose elements are the elements of the 0-th and N-th rows in R(t). 

Hence our claim in Part II that only these two rows in R(t) are needed for studying the 

dynamics of the B;rownian particle has been confirmed. 

Eq. (9.1) is the main result .of this paper. We shall show in the following two chapters 

that it can be applied to quantum harmonic Brownian motion with great efficiency. If 

the model Hamiltonian is (6.6) instead of (6.1), according to (5.11) there will be an extra 

factorexp{i(x,O,k,O)JaT(t)} in (9.1), which corresponds to a shift in the mean vector 

of the Brownian particle and is easier to deal with using the quantum Langevin equation 
' 

discussed in Chap. 8. 

9.2 Two General Relations 

Since there is no coupling term involving the momentum operators in the model 

Hamiltonians, there exist two general relations which are useful in simplifying the calcu­

lations·. With respect to the model Hamiltonian (6.1) or (6.6), the Heisenberg equation 

of motion for q of the Brownian particle takes the form 

(9.8) 
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which is the quantum correspondent of (6.8). Taking the expectation value of the above 

equation with respect to a given physical state, we have 

(9.9) 

Accordingly, the time derivative of a99 (t) is related to a9p(t) by 

; !a99(t) = ; ! [(q(t?)- (q(t)J] 

= ~ (q(t)p(t) + p(t)q(t))- (q(t))(fi(t)) 

= O"qp(t). (9.10) 

Since (9.9) and (9.10) are valid for any given state, we can 'always calculate (p(t)) 

and ·aqp(t) from the time derivatives of (q(t)) and a 99 (t), respectively. Therefore we 

shall henceforward omit the explicit expression for a9p(t). Note that due to the coupling 

terms in the model Hamiltonians, there is no simple relation between a 99 (t) and app(t) 

nor between a9p(t) and app(t). 
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Chapter 10 

Factorizable Initial States 

In this chapter we shall consider the time evolution of a Brownian particle whose 

initial state is independent of that of the heat-bath oscillators, which is a thermal state. 

Iri other words, the initial state of the total system is the factorizable state that we 

assumed in deriving the quantum Langevin equation. As we mentioned in Chap. 8, the 

quantum Langevin equation is only convenient for obtaining the time evolution of the· 

mean vector. For general problems, we shall use the reduced characteristic function to 

study the time evolution of the Brownian particle. 

Throughout this chapter, the density operator of the total system corresponding to 

the factorizable initial state is assumed to be 

(10.1) 

where the density operator §A corresponds to an arbitrary physical state of the Brownian 

particle, and §8 to the thermal state of the heat-bath oscillators at temperature {3-1 as 

discussed in Sec. 8.3. 

10.1 Time Evolution: General Formulation 

We define the characteristic function corresponding to the density operator (10.1) of 

the factorizable initial state as 

(10.2) 
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where the characteristic function ~A(x, k) corresponds to §A, and cl>s(xe, ke), which is 

the same as cl>bath(xe, ke) in (8.18), corresponds to §s. Note that both cl>A(x, k) and 

cl>s(xe, ke) are individually normalized. 

According to the formulations in Sec. 9.1, the time evolution of the reduced charac­

teristic function for the Brownian particle with respect to the factorizable initial state . 

(10.2) is 

(10.3) 

Substituting (9.4) into ~B ( xe(t), ke(t)) and comparing with (8.18), we get the following 

exact expression: 

~s(xe(t),ke(t)) = exp {- ~ ltcoth(,Bw£/2)(x,k)r£(t)gere(t)(:)} 

= exp {- ~ ( x, k )e(t; ;3) (:)}, (10.4) 

which is the analogue of the influence functional in the path-integral approach. The 2x2 

matrix E> ( t; ,8) is defined as 

E>(t; ,8) = ~ 2::: coth(,Bw£/2)r£(t)gere(t) 
l 

'"" me = L.J 2w coth(,Bw£/2) 
l 'f. 

-mue(t)[ue(t) + wpue(t)] 

(10.5) 

-mue(t)[ue(t) + wpue(t)] 

At t=O, 0(0;,8)=0 according to the initial values ofre(t) in (9.7), hence we have 

(10.6) 

according to the normalization condition of cl>s(xe, ke). It follows that 

(10.7) . 

which means that there is no initial influence from the heat bath on the Brownian 

particle, consistent with the assumption that the initial state is factorizable. 
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The explicit expressions for the elements in E>(t; /3) can be calculated by using (6.33), 

(6.34), and (6.36), with the aid of (8.25) and (8.26) as follows: 

E>n(t;/3) = m2 1t1tdr1drzit(r1)it(rz)K(r1- Tz;/3) 

· 2 +oo t . 2 

= ;11" j dJ.,;wp(w) coth(f3w/2)11 dr exp(iwr)~(r)l, 
-00 

E>zz(t;/3) = 1t1tdr1drzu(r1)u(rz)K(r1- Tz;/3) 

1+oo . It 2 

= 
2

11" j dJ.,;wp(w) coth(f3w/2) 1 dr exp(iwr)u(r)l ~ 
-oo 

E>12(t; !3) = E>z1(t; /3) 

== -m 1t1tdr1drzit(r1)u(rz)K(r1- Tz;/3) 

m· 
= -2E>zz(t; /3), 

where K(t; /3) is the correlation function ofth~ quantum noise defined in (8.26). 

(10.8) 

(10.9) 

(10.10) 

Summarizing the above results, we get the time evolution of the reduced· characteristic 

function for the Brownian particle as 

(10.11) 

which is completely determined by the initial state of the Brownian particle, the fun­

damental solution u(t), and the spectral density as well as the temperature of the heat 

bath; Note that the elements of the matrix E>(t; /3) depend explicitly on the spect_ral 

density p(w), which means that (10.11) depends on the cutoff frequency A in (8.14). 

10.2 Approach to Equilibrium 

In this section we shall prove that for an arbitrary factoriz?-ble initial state; as time 

t~oo the Brownian particle always approaches the thermal equilibrium state defined in 

Chap. 7 .. 

As discussed in Sec. 8.2, if we take the thermodynamic limit n~oo and use the 

·measurable spectral density p(w), then the fundamental solution u(t) approaches zero as 
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. ' . 

t-too according to the Riemann-Lebesgue lemma. Similarly, it(t) and il(t) also approach 

zero in this limit according to (6.53). Hence we have 

lim r0(t) = 0, 
t-+oo 

(10.12) 

and 

lim <PA(x(t),k(t)) = <PA{O,O) = 1 
t-+00 

(10.13) 

according to the normalization condition on <PA(x,k). Thus we find that the final state 

of the Brownian particle is independent of its initial state. As t-too, the reduced char­

acteristic function for the Brownian particle takes the form 

(10.14) 

The explicit .expressions for the elements in E>( oo, {3) can be obtained by applying ( 6.46) 

and (8.9) to (10.8)-(10.10): 

+oo 
E>n(oo;{3) = ;:; I dwwp(w)coth(f3w/2)11oo drexp(iwr)it(r)l

2 

-oo 

2 +oo 
= ;:. J dww3 p.(w) coth(f3w/2)la(w)l2 

-oo 

2 +oo 
= ;:. I dw w2 a" ( w) coth(f3w /2) , 

-oo 

+oo . 2 

E>22(oo; {3) = 2~ I dwwp(w) coth(f3w/2)11oo drexp(iwr)u(r)l 
-oo 

. 1 +oo . 
= - I dwwp(w) coth(f3w/2)la(w)l2 

27r 

+oo 
= - dwa."(w)coth(f3w/2), 1 I . 

27r . 
-oo 
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'•. 

and 

m· 
E>12( oo; /3) = --E>22( oo; /3) = 0. 

2 
(10.17) 

Note that we have omitted i€ from the kernel exp(iwr) in (10.15) and (10.16). This is 

because, after taking the thermodynamic limit, both Fourier-Laplace transforms of u(t) 

and u(t) converge. 

Comparing the four elements of E>( oo; /3) with (7.43) and (7.44), we find that the 

final characteristic function of t~e Brownian particle is 

,~ ~o(x,k; t); exp {- ~ (x,k) ( ":~ u,:LBJ (:)}, (10.18) 

which is exactly the characteristic.function (7.41) for the Brownian particle in thermal 

equilibrium with the heat-bath oscillators. Therefore we have proved that, with re­

spect to an arbitrary factorizable initial state, the Brownian particle always approaches 
( 

thermal equilibrium when t~oo. 

10.3 Time Evolution of the Gaussian States and the 

Covariance Matrices of Arbitrary Initial States 

To illustrate the application of the resUlts derived in the last two sections, let us 

consider a simple example where the initial state of the Brownian particle is the Gaussian 

state defined in Sec. 3.4. The characteristic function of this initial state is the one-mode 

version of (3.31): 

(10.19) 

where ( Xc, kc) is the mean vector and 'Eo is the 2 X 2 covariance matrix of this one-mode 

Gaussian state. 

Substituting (10.19) into (10.11) and using (9.5), we get the time evolution of the 

reduced characteristic function of the Brownian particle as 

~0 (x, k; t) (10.20) 

= exp{- ~ (x,k)[jT~R(t)~'Eo~R(t)~Tj+E>(t;/3)](:) +i(x,k)j~R(t)~(::) }· 
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From this characteristic function, we find that the mean vector follows the restricted 

phase flow with (xc, kc) as the initial value, and the covariance matrix evolves according 

to 

(10.21) 

Therefore the state is always Gaussian in the course of time evolution, and it approaches. 
' 

the thermal equilibrium state as t-+oo. 

Using the formulas in Sec. 4.2, we can generalize the above results to that of the 

time evolution of arbitrary factorizable initial states. Suppose that a given initial state 

of the Brownian particle has the initial mean vector ( Xc, kc) and the initial covariance 

matrix :E0 . It is easy to prove that (i) the time evolution of the mean vector follows the 

restricted phase flow with (xc, kc) as the initial value, and (ii) the time evolution of the 

covariance matrix obeys (10.21). Nevertheless, (i) and (ii) cannot completely determine 

. the time evolution of the Brownian particle for a non-Gaussian initial state. 

The above results (i) and (ii) can also be obtained from the solution of the quantum 

Langevin equation. This can be easily done if we put (6.37) and (6.39) into the following 

form: 

( ~(t)) = ~R(t)~ (~(O)) +.1tdT ( U~T)) [i(t-r)+fx(t-r)], 
p(t) p(O) · o mu(r) 

then set fx(t- r) =0. 

10.4 Environment-Induced Damping of Quantum 

Interference 

(10.22) 

In this section we discuss an interesting problem where the initial state of the Brow­

nian particle is a superposition of two coherent states [12, 48, 73, 107]. We shall show 

how to use the characteristic function to calculate the damping of quantum interference 

due to influence of the environment in the course of time evolution. 

In order to simplify the formulation, we introduce a new notation z = (x, k) for the 

vector on the Brownian phase plane. Accordingly, D( -z) represents the corresponding 

one-mode Weyl operator. Note that this notation will be employed only in this section. 

94 



We then assume that the initial state of the Brownian particle is a superposition of 

· the following two one-mode coherent states: 

(10.23) 

where Za = (xa, ka) and Zb = (xb, kb) are two non-:-identical constant vectors on the Brow­

nian phase plane. The mean and difference of Za and Zb are defined as · 

(10.24) 

The density operator corresponding to the initial state (10.23) is 
• 

(10.25) 

where 

(10.26) 

is the normalization constant, with 

(10.27) 

according to ( 1.48). 

Using (3.12) and formulas in Sec. 1.3.1, the characteristic function of §A can be 

obtained as 

(10.28) 

where 

(10.29) 

and 

(10.30) 

are analogies of (3.13), and 

{ 1 ( ) ( )T · · T i · T} = eXp -4 Z + ZA go Z + ZA + 2ZJZm + zZaJZb 

(10.31) 
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and 

= e}q){-! (z- z~)go(z- z~)T + izjz~- ~ Zajz"b} 

= (zblza) exp{ -{-zgozT + izj(z~ +-} jgoz~)} 

correspond to the interference terms. 

. (10.32) 

Once we get the explicit expression for <l>A(z), the characteristic function for the 

initial state of the Brownian particle, we are ready· to derive the time evolution of the 

reduced characteristic function <l>0 (z; t) for the Brownian particle. Using the notation 

(10.33) 

Eq. (10.11) becomes 

(i0.34) 

Substituting (10.28) into (10.34) gives the explicit expression of <l>0 (z; t). In order to 

keep track of the interference terms, we express <l>0 (z; t) in (10.34) as 

(10.35) 

with 

<Pa(z; t) = exp{ -{-z [r6 (t)gor0 (t) + 28(t; {3) JzT + izjz~(t)}, (10.36) 

(10.37) 

(10.38) 

(10.39) 
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.• 

where 

z!(t) = ~R(t)~z!, zJ;(t) = ~R(t)~zJ;, (10.40) 

and 

z~(t) = ~R(t)~z~, (10.41) 

i.e., za(t), zb(t), and Zm(t) all follow the restricted phase flow on the Brownian phase 

plane, with Za, Zb, and Zm as their initial values, respectively. 

Since among those four terms in (10.35), <Pa(z; t) and ~b(z; t). correspond to the time 

evolution of the coherent state lza) and lzb), individually. It follows that [ <Pab(z; t) + 
<Pba(z; t)] corresponds to the interference. Because the characteristic functions have no 

direct physical meaning, in order to make a quantitative study of this interference we 

have to transform the characteristic function (10.35) into the Wigner function: 

(10.42) 

with Wa(z; t) being the Wigner function corresponding to the characteristic function 

<Pa(z; t) in (10.35), etc. 

Since <Pa(z; t) in (10.36) is Gaussian in z, we can use the formulas in Sec. 3.4 to get 
• 

the corresponding Wigner function: 

(10.43) . 

where 

(10.44) 

and 

Jdet(IT(t; (3)) 
C1(t; (3) = . 

7r 
(10.45) ' 

Similarly, we have . 

(10.46) 
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and analogously, 

Wab(z; t) = Wb'a(z; t) (10.47) 

Hence we get the explicit form of the Wigner function C?rresponding to the interference: 

) 

Wint(z; t) = Wab(z; t) + Wba(z; t) = 2Re [wab(z; t) J 

= 2C1(t; .B)I(zalzb) I exp{ -:l-z~goro(t)jTII(t; .B)j r~ (t)goz:} 

exp{ ~[z- zm(t)]II(t; .B)[z- zm(t)r} 

cos{~ zajzr + z~g0 r0(t)jii(t; .B)[z- zm(t)r}. . (10.48) 

In order to quantitatively analyze the influence of the environment on the interfer­

ence, we have to define a function which meastires the relative strength of the interference 

term Wint(z; t) compared with the direct terms Wa(z; t) and Wb(z; t). Consider the nor­

malized ratio 

x(t) = l(zalzb)l exp{ -:l-z~go ro(t)jTII(t; ,B)j r~ (t)goz~} 

= exp{ ~! z~[go- gor0 (t)jTII(t; ,B)jr~(t)goJz:}, 

which is one half the ratio of the upper limit of Wint(z; t), 

(10.49) 

(10.50) 

to the maximum value of Wa(z; t) or Wa(z; t), which is equal to C1(t; ,B). Eq. (10.50) 

is only the upper limit instead of the maximum value of Wint(z; t) in general because 

of the cosine term in (i0.48). From the quasi-probability interpretation of the Wigner 

function, we know that this x(t) meets the requirement as an indicator of the relative 

strength of the interference. Note that x(t) depends on z~ explicitly, and x(O) = L 

In general x( t) is a monotonically decreasing function oft, which indicates the damp­

ing of the interference induced by the environment. When t-HX>, we have 

(10.51) 
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As a comparison, let us consider the same problem for an isolated harmonic oscillator. 

The corresponding x( t) can be obtained by setting e ( t; ,6) = 0 and 

( 

cos(wot) 

r0 (t) = 

mw0 sin( Wot) 

- sin(w0t)/(mw0 )) 

cos(w0 t) 

(10.52) 

in all r~lated formulas. Hence we get II(t; ,6) =go, and x(t) = 1 for all t in this special 

case, which means that the interference does not decay if there.is no environment coupled 

to the Brownian particle. 

10.5 Quantum Fokker-Planck Equations 

In this section we shall derive the equation of motion for the reduced characteristic 

function <I>o(x, k; t), and from it obtain the equation of motion for the corresponding 

reduced Wigner function W0 (x, k; t). Both equations are usually called the quantum 

Fokker-Planck equations and are equivalent to the master equation for the reduced 

density operator of the Brownian particle [10, 44, 45, 48, 79, 96r 

It is necessary to emphasize that, the purpose of constructing these quantum Fokker­

Planck equations is not to determine the time evolution of the Brownian particle. We 

have already obtained the time evolution of the reduced characteristic function <I>0 ( x, k; t) 

in (10.11). The main motivation of this construction is to derive the quantum analogues 

of the classical Fokker-Planck equations discussed in Sec. 2.6, and from them to deter­

mine the quantum version of the diffusion coefficients. 

The Fokker-Planck equation (2.43) for the classical characteristic function is a first­

order linear partial differential equation. Since all formulas for quantum Brownian mo­

tion have classical analogues, we start the derivation of the quantum Fokker~Planck 

equations by considering the following linear combination of first-order partial deriva­

tives of the reduced characteristic function <I>o(x, k; t): 

L( k
. ) = &<I>o(x, k; t) C &i!?o(x, k; t) C &<I>o(x, k; t) 

x, , t - &t + x &x + k &k · (10.53) 

Using (10.11), we have the explicit expression of the time derivative of <I>0 (x, k; t): 

&<I>0 (x k;t) (- - ) & { 1 ( ) (x)} &t' = <I>A x(t),k(t) &t exp -2 x,k e(t;,6) k · . (10.54) 
. I 
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8~A(x(t),k(t)) {· 1 ( ) . (x)} + at e:>.:p -2 x, k e(t, {3) k 

8~A(x(t),k(t))) .£. (x(t)) . {-_!_( ) _ . (x)} _ 
8 

_ exp x,k 8(t,{3) 
8k(t) t k(t) 2 k 

= ~o(x,k;t) [- ~ (x,k)e(t;f3)(:)] 

( 
8~A(x(t),k(t)) 8~A(x(t),k(t))). (x) { 1 ( ) . (x)} + 8-( ) ' - ro(t) exp --2 x, k e(t, {3) . 

X t ok(t) k k 

Similarly, we have 

lii!>o~/;t) = il>o(x,k;t) [-(x,k)e(t;/l)G)] (10.55) 

( 
{)~A (X ( t), k( t)) 8~ A (X ( t), k( t)) ) ( ~ ) { _!_ ( ) • . (X ) } 

+ 8-() ' - ro(t) exp -2 x,k 8(t,{3) ' 
X t 8k(t) 0 k 

and 

8~0(x, k; t) · [ ( ) (0)] 8k = ~o(x, k; t) - x, k e(t; {3) 1 (10.56) 

( 
8~A(x(t),k(t)) 8~A(x(t),k(t))) . (o) { _!_( ) _ . (x)} 

+ . 8-() ' - ro(t) exp -2 x,k 8(t,{3) ' 
X t · 8k(t) 1 k 

with r0 (t) defined by (9.5). Note that the above three expressions are expressed in terms 

of matrix multiplications. Substituting (10.54)-(10.56) into (10.53), we get 

L(x,k;t)= -~0(x,k;t) [~ (x,k)e(t;{3)(:) + (x,k)e(t;f3)(~:)] 

( 
a~A(x(t),k(t)) a~A(x(t),k(t))) [· (x) (ex)] + 8-( ) ' - ro(t) + ro(t) 

. x t 8k(t) k ck 

x exp {- ~ ( x, k)e(t; {3) (:)}. . (10.57) 

Noticing that on the right hand side of the above equation, there are two terms 

8~A( x(t), k(t)) 

8x(t) 

8~A ( x(t), k(t)) 
and -

8k(t) 

100 . 

(10.58). 



which are not functionals of q,0 (x, k; t). Since q,A(x, k) is an arbitrary function, we 

cannot make any further simplification or transformation on the above two derivatives. · 

Therefore in order to construct a linear partial differential equation for c]}0 (x, k; t) from 

(10.57), we must demand that 

r0 (t) (:) + r0 (t) (~:) = 0, (10.59) 

such that both terms in (10.58) disappear from (10.57). The coefficients Cx and Ck are 

then determined as 

where A(t) is a 2x2 matrix with the elements: 

An(t) = itii- u u 
uii- i£2 ' 

1 
A12(t) =-, 

m 

• ( ··2 •... ) u- uu 
A21(t) = m .. . , 

uu- u 2 

Substituting (10.60) into (10.57), we have 

L(x, k; t) = _q,o(x,k; t) (x, k) [ B(~ ,8) + E>(t; ,B)A(t)] (:) . 

Rearranging (10.65) and using (10.62) and (10.64), Eq. (10.65) becomes 

(10.60) 

(10.61) 

(10.62) 

(10.63) 

(10.64) 

(10.65) 

[ :t + (! + An(t)x) :x + A21(t)x :k + Dkk(t; ,8)x2 + Dxk(t; ,B)xk] c]?o(x, k; t) = 0, 

(10.66) 

where 

Bn(t; ,8) · 
Dkk(t; ,8) :: 

2 
+ An(t)E>n(t; ,8) + A21(t)E>t2(t; ,B), (10.67) 
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and 

Dxk(t; /3) = E>12(t; f3) + E>u(t; /3) + An(t)E>t2(t; /3) + A21 (t)E>22(t; /3). (10.68) 
m 

Eq. (10.66) is the quantum Fokker-Planck equation for the reduced characteristic func­

tion corresponding to the Brownian particle [96], which can be taken as the c-number 

representation for the master equation of the reduced density operator. Note that in 

(10.66) the coefficient of the term k2 <P0 (x, k; t) vanishes because of the relation (10.10). 

From the expressions (10.8)-(10.10), we see that in general the elements in E>(t; {3), 

hence Dkk(t; {3) and Dxk(t; {3), depend on the history of the Brownian particle. Thus in 

general the solution of the quantum Fokker-Planck equation (10.66) corresponds to a 

non-Markovian process.· 

Eq. (10.66) can be easily transformed into the quantum Fokker-Planck equation for 

the reduced Wigner function W0 (x, k; t). As discussed in Chap. 3, the Wigner function 

and characteristic function are symplectic Fourier transforms to each other, hence we 

have the following correspondence: 

. 
( 8 k 8 8 2 k2 ) ( k ") -<==> x 8k, 8x, x 8x, x , , xk <P x, ; t . (10.69) 

The corresponding equation. of motion for the coordinate representation e( x, y; t) of 

the reduced density operator [48] can also be obtained from (10.66)by a similar method. 

Both (10.66) and (10. 70) are mathematically equivalent to the quantum Langevin equa­

tion discussed in Chap. 8. 

In the following, we shall calculate the explicit expression of (10.70) for ohmic dissipa­

tion with infinite cutoff frequency. From (8.33), we see that in this case the fundamental 

solution u(t) satisfies the following second-order differential equation: 

u(t) + 1u(t) + w~(t)u(t) = 0, (10.71) 
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where 

w~(t) = w~ + 216(t). (10.72) 

The matrix A(t) follows as 

A(t) = 
( 

I 

-mwMt) 
(10.73) 

Substituting (10.73) into (10.70), we get the quantum Fokker-Planck equation for 

the Wigner function of a harmonically bound Brownian particle coupled to ohmic heat 

bath with infinite cutoff frequency: 

[
a k a a a2 a2

] 
at+--;;:; ax - ak ( mw~(t)x + 1k)- Dkk(t; {3) ak2 + Dxk(t; {3) axak Wo(x, k; t) = 0. 

(10.74) 

To calculate the coefficients Dkk(t; {3) and Dxk(t; {3), we first need to use integration 

by parts to express 8 11 ( t; {3) and S 12( t; {3) as follows: 
\ 

S 11(t; {3) (10.75) 

= 2m2 1tdru(r)u(t)K(t- r;{3) 

r r rt · 
= 2m2 Jo Jo dr1dr2ii(r1)u(r2)K(r1- r2; {3) +2m ladru( r)K(r; {3), 

' 0 0 0 

812(t; {3) (10.76) 

= -m1tdru(r)u(t)K(t- r;f3)- mltdru(r)u(t)K(t- r;f3) 
0 • 0 

= -m 1t 1t drldT2 [u(rl)u(r2) + u(rl)it(r2)] K(rl- T2i {3)- 1t dru( r)K( Tj {3). 

Substituting (10.8)-(10.10), (10.73), (10.75), and (10.76) into (10.67) and (10.68), 

and using (10.71), we get 

(10.77) 

and 

Dxk(t;{3) = -1tdru(r)K(r;f3). (10.78) 
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In the classical limit with K(t;/3) given by (8.38), we have from the initial conditions 

(6.31): 

(10.79) 

Dxk(t; /3) = 0, (10.80) 

and (10.74) becomes [10] 

[
a k a . a ( _· ) a2

) 
at+--:;;;: ax - ak mw;(t)x + 1k - Dk ak2 W0 (x, k; t) = 0, (10.81) 

which is the quantum analogue of the classical Fokker-Planck equation (2.41). Obviously, 

the solutions of (10.81) correspond to Markovian processes. 

104 



..... 

Chapter 11 

Non-factorizable Initial ·states 

In the previous chapter we have discussed in detail the time evolution of a Brownian 

particle with respect to the factorizable initial states, which is based on the assumption 

that there is no initial correlation between the Brownian particle and the heat bath, 
l 

and the interaction between them is switched on only after t > 0. The simplicity of 

these kind of initial states allows us to derive many expliCit results. Unfortunately, such 

naive and simplifie<i initial states are not realized in most applications. Initial states of 

a Brownian particle which can be prepared in the laboratory are those non-factorizable 

states called perturbed thermal states. These non-factorizable initial states have been 

discussed by several authors in the literature [16, 40, 80, 85). In this chapter we shall 

use the characteristic function to calculate the time evolution of the Brownian particle 

with respect to these non-factorizable initial states. 

11.1 Perturbed Thermal State: General Formulation 
' ' 
The perturbed thermal state of the total system described by the Hamiltonian (6.1) 

is defined as 

(11.1) 

where g13 is the canonical density operator of the model thermal state defined in Chap. 7, 

O.=a(q,p) and b=b(q,p) are two operators which only act on the Brownian particle, and 
. . 

Cf3 = 
1 

(11.2) 
ab- Tr( O.g

13
b) 
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is the normalization constant. The operators a and b must satisfy certain· conditions 

in order to guarantee that the perturbed thermal state (11.1) is a legitimate density 

operator. In this section, we shall derive the general formulation for the time evolution 

of a Brownian particle with respect to the initial state (11.1). 

According to Chap. 9, we have first to obtain the explicit form of the initial charac­

teristic function corresponding to (11.1). Using (3.12), we have 

<Pini(z) = Tr[e:i)(-z)] 

= c~bTr [ae11bD( -z)]. (11.3) 

In order to get an explicit expression for <Pini(z), we need to resort to the character­

istic symbols defined in Sec. 4.2. According to ( 4.9) and ( 4.12), the operators a, b, and . . 

g11 can be expressed as 

+oo 

a= j <f?Nza(z)D(z), (11.4) 
-oo 

+oo 

b = j <f?Nzb(z)D(z), (11.5) 
-00 

and 

+oo 

g11 = (21r)-N j <f?Nz<i>13(z)D(z), (11.6) 
-oo 

where a( z) and b( z) are the characteristic symbols of the operators a and b, respectively, 

and <P13(z) is the characteristicfunction corresponding to g11 which is defined by (7.40). 

Substituting the above three representations. into (11.3), it follows that 

+oo 

<J?ini(z) = (27r tN C~b J <f?N Za<f?N Zb<f?N Zpa(za)b(zb)<J?f3(Zp) 
-oo 

(11.7) 

Note that the trace in (11.3) has been replaced by the equivalent pseudo-trace in (11.7) 

since the product of the Weyl operators is not in the trace class. Using the formulas in 
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Sees. 1.3.1 and 1.3.3, the pseudo-trace in the above integrand can be evaluated as 

(11.8) 

hence (11.7) reduces to 

+oo 

cpin:(z) = C~b J cfNzacfNzba(za)b(zb)cpf3(Z- .Za- Zb) 
-oo 

(11.9) 

Substituting (11.9) into (9.1) and using (7.40), we get the time evolution of the 

reduced characteristic function for the Brownian particle: 

+oo 

= C~b J cfN ZacfN Zba(za)b(zb)cp/3( z(t)- Za ~ Zb) 
-oo 

exp { fz(t)J(za- Zb)T + fzaJz6} 

= exp { -t(x, o, k, O)JT:E/3J(x, 0, k, o?} 
+oo 

(11.10) 

c:b J cfNzacfNzba(za)b(zb)exp{fzaJzb- t(za + Zb)JT:Ef3J(za + Zb)T} 
-oo 

where z(t) is defined as in (9.2), and we have !!Sed (7.15) and S/3(t) = R(t):E/3 in simpli­

fying (11.10). 

Since both a and b are one-mode operators which only act on the Brownian particle, 

according to the discussion in Sec. 4.2 the characteristic symbols a( z) and b( z) can be 

specified as 

) 

a(z) = ao(x, k) IT 8(xt)8(kt), 
t 

b(z) = bo(x,k)Ilo(xt)8(kt)· 
t 
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Therefore we can further simplify <I>0 (x, k; t) into 

(11.13) 

- += 
c:b J dxadkadXbdkb 'lf!b(Xa, Xb, ka, kb) 

-= 

where 

(11.14) 

{ 
i ( ) . ( Xb) 1 ( ) ·T . (X a .+ Xb) } exp 2 X_a,ka J -2 Xa+Xb,ka+kb J ~:E,a~J _, 

~ . ~+~ 

and ~R(t)~, ~S,a(t)~, and ~:E,a~ are defined by (7.12), (7.27), and (7.42), respectively. 

Note that the first line of (11.13) is the characteristic function of the thermal equilibrium 

state for the Brownian particle given by (7.41). 

Finally, the easiest way to determine the normalization constant c:b is to impose the 

normalization condition on (11.13): 

+=· 
<l>o(O, 0; t) = c:b J dxadXbdkadkb 'lf!b(xa, Xb, ka, kb) = 1. (11.15) 

-= 

In summary, Eq. (11.13), together with (11.14) and (11.15), describe the time evolu­

tion of a Brownian particle with the perturbed thermal state (11.1) as the initial state. 

Note that in (11.13), unlike in (10.11), the spectral densityp(w) of the heat bath does 

not appear explicitly, which means that all the results derived from (11.13) are indepen­

dent of the cutoff frequency. The time evolution of the mean vector and the covariance 

matrix corresponding to (11.13) can be calculated via ( 4.19)-( 4.23). 

When t-HX), according to the Riemann-Lebesgue Lemma: 

lim ~R(t)~ = 0, and lim ~S,a(t)~ = 0. 
t-+oo . t-+oo 

(11.16) 

Applying the above results to (11.13) and using (11.15), we find that 

(11.17) 
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which means that with an arbitrary perturbed thermal state as the initial state, the state 

of the Brownian particle always approaches the thermal equilibrium state corresponding 

to (7.41) as t--+-oo. 

The above formulation can be trivially generalized to the the most general perturbed 

thermal state, ~hich is a linear combination of several e:b's defined in (11.1) with the 

same §p but different a's and b's [40]. 

11.2 Localized Thermal State 

, In this section we shall consider a practical example of the perturbed thermal state 
-' 

called the localized thermal state. It is prepared by filtering the ensemble of the Brow-

nian particle, which is originally in thermal equilibrium with the heat bath, through a 

Gaussian slit represented by the operator [40, 85] 

= (-1-)1/4 exp {-_!_(q- Xc)2}' 
21rO"o 40"o · 

(11.18) 

where x and q correspond to the position of the Brownian particle, Xc is the center and 

0"0 is the variance of the filter. ·Note that 0"0 cannot be arbitrarily, small due to the 

uncertainty principle. According to the definition in the last section, this initial state is 

the perturbed thermal,state (11.1) with 

(11.19) 

From the Weyl correspondence rule discussed in Sec. 4.1, we know that the Weyl 

symbol of the operator P(xc; <70 ) is 

(
1)1/4 { 1. } -- exp --(x- Xc)

2 
• 

21rO"o 40"o 
(11.20) 

It follows that the characteristic symbols a0 (x,'k) in (11.11) and b0 (x, k) in (11.12) take 

the form 

(11.21) 
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where 

(11.22) 

Substituting the above results into (11.13) gives 

il>o(x, k; t) (11.23) 

= exp{- ~ (x,k)jT~E~~j (:)} 

+oo 

c;c:b J dkadkb exp { -O"o(k~ + k~)- ixc(ka + kb)- ~ O"qqf,B](ka + kb)2
} 

-oo 

exp { [-mv(t; .B)x + v(t; .B)k](ka + kb) + t[mu(t)x- u(t)k](ka- kb)} 

= exp {- ~ (x,'k )jT~E~~j (:)} 

cgc:, Tak.dk, exp {-! (k.,k,H::) + (k., kb) [B(t) (:) + d]}, 
-oo . . 

where 

(11.24) 

B(t) = -mv(t;.B) (
1 0

) + v(t;.B) (
0 1

) + 2i mu(t) ( 
1 

.
0

) + i..u(t) (
0 

-
1

1
), 

. 1 0 0 1 . -1 0 2 0 

(11.25) 

and 

(11.26) 

After performing the double Gaussian integrals in (11.23), we get 

i!>0 (x,.k; t) = exp {- ~ (x, k) [jT ~E~~j- BT(t)A-1 B(t)] (:) + ( x, k) BT (t)A-1d}, 

(11.27) 

where 

A-1= ( 1 )[(2o-o+o-qqf,BJ)(1 o1)-o-qqf,B](o1 o1)],. (11.28) 
4o-o O"o + O"qqf,B] 0 
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., 

hence 

/ 

and 

1 ( m2u(t)2 

40"o 

-mu(t)u(t) 

-mv(t; f3)v(t; f3)) 

v(t; /3)2 

-mu(t)u(t)) ' 

u(t)2 

BT(t)A-ld = 'tXc ' • · ( mv(t· f3)) 
O"o + O"qq[.B] -v( t; f3) 

From (11.27), we find that the time evolution of the mean vector is 

(
x(t)) x ( v(t; /3) ) 
k(t) = O"o + ;qq[.B] mv(t; !3) ' 

with the initial value 

( 
x(O)) O"qq[.B]Xc ( 1) 
k(O) - O"o + O"qq[.B] 0 ' 

and the time evolution of the variances are 

, v( t; /3)2 u( t)2 

O"qq(t) = O"qq[.B]- . + [.B] + -4-' O"o O"qq O"o 

and 

(11.29) 

(11.30) 

(11.31) 

(11.32) 

(11.33) 

(11.34) 

Note that v(O;f3)=o-qq[.B]. It is interesting to notice that at t=O, the filtering operation 

changes the original variances O"qq[.B] and O'pp[.B] into 

(0) 
- O'oO'qq[.B] 

O'qq - ' O'o + O'qq[.B] 
(11.35) 

which is the har:monic mean of 0'0 and O'qq[/3], and 

(11.36) 

When t-roo, it is obvious that this state approaches the thermal equilibrium state, 

as discussed in the last section. 
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11.3 Thermal Squeezed Coherent State 

As another example of the non-factorizable initial state, we consider the thermal 

squeezed coherent state of the Brownian par~icle [40, 80]. Although it is a special case 

of the perturbed thermal state (11.1), because of the symplectic symmetry it is easier 

to first derive the time evolution of the total system, then perform the reduction to get 

the time evolution of the Brownian particle. 

Let us first briefly discuss the general multimode thermal squeezed coherent state 

constructed from the thermal state of the total system, which is defined as a quantum 

state corresponding to the density operator 

(11.37) 

where 

(11.38) 

is the same operator for constructing the ordinary squeezed coherent state (1.37), with 

Q := g-~ exp(mp)g~ E Sp(2N,R). (11.39) 

. In order to construct the thermal squeezed coherent state for the Brownian particle, 

we define the one-mode analogue of Q in (11.39) as 

~(a e) 1 (a b) 
Qo = g; 2 

e d · gl = c d ' (11.40) 

where 

(11.41) 

is a positive definite and symmetric symplectic matrix, hence the elements in Q0 satisfies 

ad - be = 1, and a, d > 0. (11.42) 

The inverse of Q0 follows as 

(11.43) 
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The thermal squeezed coherent state for the Brownian particle can be defined as a 

special case of the general (11.37) with Uvs only acting on the Brownian particle, i.e., 

with the Uvs in (11.38) specified by 

(11.44) 

and 

(11.45) 

where 12 and 12 N are the 2x2 and 2Nx2N unit matrices, respectively. We make a special 

arrangement of the elements in Q such that 

(11.46) 

hence 

~A~=(":l d:J (11.47) 

We then define the matrix E via 

(11.48) 

where 

(
d -1 

~E~ = . 
-c 

-b) 
a-1 

(11.49) 

After these preparations, we can begin to study the time evolution of the Brownian 

particle with respect to the thermal squeezed coherent state. Firstly, we use (3.12) to 

calculate the characteristic function of the multimode thermal squeezed coherent state 

(11.37) as follows: 

<)ini(z) = Tr[Uvs§pUhsD(-z)] 

= Tr[§pUhsD(-z)Uvs] 

= Tr[e;D(-zQT)] exp{izJz~}· (11.50) 

Comparing with (3.31), we find that this <)ini(z) has the initial mean vector Zc and the 

initial covariance matrix 

(11.51} 
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Substituting (11.48) into (11.51), the latter becomes 

(11.52) 

According to (4.37), the time evolution of the above covariance matrix is 

(11.53) 

Now we can perform the reduction by extracting out of (11.53) the elements corre-
c 

sponding to the Brownian particle: 

~E;q(t)~ 

= ~:E.e~ +tS.e(t)PRT(t)~ + ~R(t)ES~(t)~ + ~R(t)E:E.eETRT(t)~ 

= ~:E.e~ + ~S.e(t)~ ~E~T ~R(t)~T + ~R(tn ~E~ ~S.e(t)~T 

+ ~R(t)~~E~~:E.e~~E~T~R(tnT, (11.54) 

where we have used the property that the only four non-zero elements in E are those in 

~E~. The explicit forms of O'qq(t) and app(t) for the Brownian particle follow as 

and 

uqq(t) = -2cu(t)v(t; ,8) + 2(d- 1)mu(t)v(t; ,8) 

- 2(a-1)mu(t)v(t;,B) + 2bm2 u(t)v(t;,B) 

+ O'qq[i'J{ 1 + [Cd -1)mu(t)- cu(t)r} 

+ app[i'J[-bmit(t) + (a-1)u(t)r, 

aw(t) = -2cm2 u(t)v(t; ,8) + 2( d- 1)m3 u(t)v(t; ,B) 

- 2( a- 1 )m3u(t)ii(t; ,8) + 2bm4 u(t)ii(t; ,B) 

+ O'qq[i'][(d- 1)m2u(t)- cmit(t)r 

+ app[i'] { 1 + [-bm2 u(t) +(a- 1)mit(t)r}. 
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,, 

To obtain the time evolution of the mean vector for the Brownian particle, we first 

substitute (11.44) into (4.36) and get the time evolution of the mean vector of the total 

system as 

(11.57) 
I. 

hence the time evolution of the mean vector for the Brownian particle is 

( x(t)). = ~R(t)~ (Xc)' 
. k(t) . kc 

(11.58) 

i.e., the mean vector follows the restricted phase flow. 

When t--+oo, it is easy to see that this state approaches the thermal equilibrium 

state. 

11.4 Displaced Thermal State 

Our last example of a non-factorizable initial state is the displaced thermal state 

[40, 45], which corresponds to the thermal state of the total system with the Brownian 

particle displaced from the original balanced position by an external constant force. 

The Hamiltonian which describes this initial state can be taken as a special case of the 

Hamiltonian in (6.6) of the form 

if'(t) =if,- iifxB(-t), (11.59) 

where if is the model Hamiltonian defined in (6.1), fx >0 is a constant force, and B( -t) 

is the Heaviside unit step function. The physical picture for the system described by 

(11.59) is that the Brownian particle is displaced by ~an external constant force when 

t ::; 0, and accordingly each heat-bath oscillator is also displaced to a new balanced 

position. The external force is then switched off at the moment t = o+, so that the total 

, system, which corresponds to the Hamiltonian (6.1), begins to evolve in time. 

hi the following we shall study the time evolution of the Brownian particle with 

respect to this initial state. From Sees. 1.2.2. and 3.5, we know that this initial state is 

a special case of (11.37) with Uvs = D(zc), hence it is also a perturbed thermal state. 

However, an easier way to solve this particular problem is as follows: 
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Firstly, we need to calculate the characteristic function of this initial state, which 

is the thermal state with respect to the Hamiltonian H 1(t) in (11.59) fort~ 0. From 

Sec. 3.5, we know that the covariance matrix of this initial state is the same as the model 

thermal state defined in Chap. 7, hence the only quantity we have to calculate is the 

new balanced position for the Hamiltonian (11.59) at t ~ 0, which corresponds to z 1 in 

(3.35). This new balanced position is easy to determine by completing the square ofthe 

Hamiltonian (11.59) fort~ 0: 

HA I r · 1 2 (A 1 x ) 
2 

"" [ ~ + 1 2 c A A)2] 1; =-+ -mw q- -- + L..J -- -m.ewt. qt.- q - 2mw2. 
2m 2 ° mwg f. 2mt. 2 0 

(11.60) 

Hence we see that the new balanced position, which minimizes (11.60), is (:vb 0) with. 

:v1 being an N -dimensional vector and each of its component being equal to f x / ( mw~). 

The physical meaning of this result is that the whole system is uniformly shifted by 

fx/(mw~) in configuration space, which is a trivial consequence for the independent­

oscillator model since all heat-bath oscillators are attached (and only attached) to the 

Brownian particle. 

Substituting z 1 = (:v1 , 0) into (3.47), we get the characteristic function of the initial 

state as 

(11.61) 

Since this displaced thermal state differs from the model thermal state (7.40) only by 

a mean vector, from (7.15) we know that the total covariance matrix is steady, hence 

the reduced 2x2 covariance niatrix for the Brownian particle is still ~:E.Bl Therefore to 

determine the dynamics of the Brownian particle with respect to this initial state, we 

o.nlY have to calculate the time evolution of the mean vector. Fort> 0, with the new 

balanced position (XI, 0) as the initial value, the expectation value ofthe position of the 

Brownian particle evolves according to (6.41): 

(q(t)) = mu(t) ( fx 2) + L mt.Ut.(t) ( fx 2). 
mw0 f. mw0 

(11.62) 

Instead of calculating the explicit form of the above expression, let us consider an aux­

iliary system described by the Hamiltonian_ 

A I A A 
Ha'UZ = H- qfx, (11.63) 
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which differs from (11.59) only by the external force fx being constant for all t. Therefore 

the position of the Brownian particle is stationary for this auxiliary system, i.e., .. 

(q(t > O)}aux=· (q(O))aux = n:u(t) ( fx 
2

) + L ffl£Ut(t) ( fx 
2

) + fx 1t dru( r) 
. mw0 l mw0 0 . 

(11.64) 

according to (6.41). Since (q(O))=(q(O))aux' comparison of (11.62) and (11.64) gives 

(q(t)) = (q(O))- fx1tdru(r) 

'(11.65) 

It then follows that 

(p(t)} = -mfxu(t). (11.66) 

As t-+oo, according to (6.45) and (6.46): 

1
00 1 1 

o dru(r) = Z(O) = mwg. (11.67) 

Substituting (11.67) into (11.65), we find that (q(t)} approaches zero when t-+oo. Since 

u(t) decays to zero for t-+oo, so does (fi(t)}. Thus we conclude that when t-+oo, the 

mean vector of the Brownian particle vanishes, hence the state of the Brownian particle 

approaches the thermal equilibrium state. 
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Conclusion and Outlook 

The aim of this dissertation is not to propose a new theory for quantum harmonic 

Brownian motion, but rather to develop an innovative methodology with the most ap­

propriate mathematical methods. I began this study by noting that almost all existent 

approaches involve complicated calculations due to the inevitable reduction operation, 

which is commonly performed by integrating over all heat-bath degrees of freedom. I 

then noticed that the reduction operation can be much simplified by using the char­

acteristic function as the representative of the density operator. Accordingly, the time 

evolution of the Brownian particle is also much easier to calculate via the reduced char­

acteristic function, and the modified phase-space approach is the most efficient approach 

for studying quantum harmonic Brownian motion. 

Of course, the characteristic-function is not a new idea. I am neither the first one'who 

noticed the simplicity of using the characteristic function for reduction [33, 43], nor the 

first who applied it to quantum harmonic Brownian motion [96]. However, I believe that 

the systematic study of quantum harmonic Brownian motion in a general environment 

via the characteristic function is original, and no one .has previously claimed that (at 

least for this problem) the path-integral approach can be completely replaced by a more 

efficient phase-space approach. 

In my opinion, solving a problem involving reduction is an art of doing the mini­

mum calculations. In. this modified phase-space approach, the reduction operation is 

performed by a projection in the phase space, which guides us to calculate only those 

quantities necessary for describing the reduced system. The only inconvenience of this 

approach is that the characteristic function has no direct physical meaning. But we can 

easily transform it to the Wigner function whose physical meaning is obvious and clear. 
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In summary, the success of this modified phase-space approach to quantum harmonic 

Brownian motion relies upon the following three fact~: 

(i) The model Hamiltonian is (inhomogeneously) quadratic hence the system is linear, 

therefore it is suitable for the phase-space approach. Moreover, this kind of Hamiltonian 

allows an exact and explicit derivation of the fluctuation-dissipation theorem. 

(ii) The character~stic function is the most efficient representative of the density 

operator for performing the reduction operation. 

(iii) The analogy between the time-evolution operator and the canonical density op­

erator allows the application of results from dynamical problems to the study of the 

· thermal equilibrium state of the Brownian particle. 

Generally speaking, all problems of quantum harmonic Brownian motion can be 

solved with more efficiency using this modified phase-space approach .. The following are · 

some examples that I have not been able to cover in this dissertation: 

(I) External classical force f K ( t) linearly coupled to the momentum of the Brownian 

particle: This corresponds to adding a term 

to ~he model Hamiltonian (6.6). Doing this puts the position and momentum operators 

on the same footing in the model Hamiltonian. 

(II) Time evolution of the Wigner function and the coordinate representation of 

the Brownian particle: This can be obtained from the time evolution of the reduced· 

characteristic function via the transformation formulas listed in Sec. 3.2. In particular, 

for factorizable initial states the exact propagators [10, 73] can be derived from (10.11). 

(III) Damping of quantum interlerence with the initial state being a superposition of 

two non-identical squeezed coh:erent states: This is a trivial generalization of the problem 

discussed in Sec. 10.4. 

(IV) System with a few coupled Brownian particles [16]: This corresponds to a 

reduced system with more than one degree of freedom. According to the formulations 

in Chap. 5, the modified phase-space.approach can be straightforwardly generalized to 

deal with this kind of problem. 
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(V) Free Brownian Motion [39, 40, 46]: This corresponds to the limit w0 -+0 in quan­

tum harmonic Brownian motion. Since the model H~ltonian becomes non-negative 

definite in this limit, the corresponding v(t; {3) diverges in general. Therefore it is nec­

essary to replace v( t; {3) by 

( v(t; {3) -. v(O; {3)) + v(O; {3) = ( v(t; {3)- O"qq[/3]) + O"qq[/3] 

before taking the limit w0 -+0. It can be shown that only ( v(t; {3)-uqq[/3]),· which is always 

finite, survives after the limit has been taken. To compare with the classical theories dis­

cussed in Chap. 2, the quasi-probability distribution functions over configuration space 

and momentum space can be obtained, respectively, via 

+oo 

P(x;t) = j dkWo(x,k;t), 
-oo 

and 

+oo . 

P(k;t) = j dxW0 (x,k;t), 
.. -oo 

where W0 (x, k; t) is the reduced Wigner function of the Brownian particle. 

Although I have only discussed quantum harmonic Brownian motion in this disser­

tation, the technique introduced here can be generalized to many other linear quantum 

open systems. In particular, the characteristic function is useful for any problems in­

volving the reduction operation. In the following, I list four possible non-trivial gener­

alizations of this modified phase-space approach: 

(I) Time-dependent quadratic potentials, where the characteristic frequency of the 

Brownian particle becomes time-dependent, and w~(t) is allowed to be zero or negative 

for certain time intervals (e.g., a particle periodically kicked by a Hooke force [17], a 
' 

charged particle in the Paul trap [35, 72]): The calculations are similar to those in this 

dissertation, but the corresponding fundamental solution u(t) cannot be expressed in a 

closed form in general. It is believed that some approximations are necessary for this 

kind of problem. 

(II) Anharmonic potentials: The phase-space approaches· rely on the model Hamil­

tonian being (inhomogeneously) quadratic. If the Hamiltonian contains higher degree 
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terms [11, 13, 16], e.g., those in quantum tunneling or quantum coherence problems, then 

the time evolution of the Wigner funCtion and the characteristic function cannot be ex­

actly determined by the phase flow. As inthe path-integral approach, a perturbation 

scheme is necessary for dealing with these kind of quantum systems. 

(III) Finite-state systems:. In contrast to the quantum harmonic oscillator which has 

infinite energy eigenstates, many quantum open systems can be approximated by finite­

state systems; e.g., the simplest two-st~te system [61]. Since these.so-called spin-boson 

. Hamiltonianshave no classical analogues, there is no corresponding classical phase space. 

Nevertheless, the technique of performing reduction via the characteristic function is still 

valid for these systems [43]. 

(IV) Fermionic heat baths [15]: The model discussed in this dissertation is, of course, 

a bosonic heat bath. It has been noticed recently that an infinite set of fermionic parti-
/ 

cles can also serve as a heat bath model. It is thus an interesting problem to generalize 

this modified phase-space approach to include the fermionic degrees of freedom. A pos­

sible way is to start with the supersymmetric Wigner function [1]. 

~ 

APOLOGY: Since Brownian motion, both classical and quantum-mechanical, has 

a long history and has been studied by innumerable authors, it is almost impossible 
' ' . 

to exhaust the literature on this subject. To conclude this discussion, I would like to 

make an apology to those authors whose works I have not been able to quote in this 

·dissertation. 
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