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Abst.ract

After _éxtensive investigations over three decades, the linear-coupling model and its

equivalents have become the standard microscopic models for quantum harmonic Brow-

nian motion, in which a harmonically bound Brownian particle is coupled to a quantum
dissipativg heat bath of general type modeled by infinitely many harmonic oscillators.
The dyhamics of these models have been studied by many authors using the quantum
Langevin equation, the path-integral approach, quasi‘-prol')a.bility distribution functions -
(e.g., the Wigner function), etc. However, the quantum Langevin equation is only appli-
cable to some special problems, while other approaches all involve complicated calcula- .
tions due to the inei/itablé reduction (i.e., .conti'action) operation for ignoring/ elimina,tixig
the degrees of freedom of the heat bath. '

' In this dissertation, I propose an impri;ved methodology via a modified phase-space

approach which employs the characteristic function (thé symplectic Fourier transform of

~ the Wigner function) as the representative of the density operator. This i‘epresentative is

claimed to be the most natural one for performing the reduétion, not only because of its
simplicity but also because of its manifestation of gebmetric meaning. Accordingly, it is
particularly convenient for studying the time evolution of the Brownian particle with an
arbitrary initial state. The power of this characteristic function is illuminated through
a detailed study of several physiéa,lly interesting problems, including the environment-

induced damping of quantum interference, the exact quantum Fokker—Planck equations,

~ and the relaxation of non-factorizable initial states. All derivations and calculations are

shown to be much simplified in comparison with other approaches.

In addition to dynamical problems, a novel derivation of the'ﬁuctuatibn—di§sipation
theorem which is valid for all quantum linear systems is presentéd. ‘With the help of
this theorem, the mechanism of this model is examined and the correspondénce with

classical phenomenological theories is discussed.
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4

Introducti'on

In the past ten years, there has been a great deal of renewed interest in the dissipative
| niechanjsm of quantum open systems. This resurgence is motivated by the possible obser-
vations of macroscopic quantum phenomena in ciuantum optics (coherent and squeezed
states) [34, 106], quantum non-equilibrium statistical mechanics (low-temperature and
stroné—damping anomalies) [44, 45)], quantum measurement (quantum tunneiing and
Schrodinger’s cat in SQUID) [11, 13], and quantum gravity as well as quantum cosmol-
ogy (quantum-to-classical transition) [54, 107], etc. Among the problems of quantum
open systems, quantum Brownian motion is a paradigm since the corresponding classical
phenomenological theories are well established. The original B;ownian motion refers to
a-heavy “Brownian particle” moving in a viscous fluid; today this term indicates the .
- time evolution of any macroscopic degree of freedom under the influence of a dissipative.
heat bath (or “environment” for short). | '

For a closed (i.e., isolated) quantum system with a given Hamiltonian or Lagrangian, |
the time evolution of physical states can be studied from first principles of quantum
mecha.nics, e.g.; the Schrédinger equation. However, until now there has not been a
fundamental theory for quantum open systems. Existing theories fall into the following
three categories:

(I) New quantum theories with non-standard qua;ltization rules, e.g., stochastic
quantization, complex canonical variables, and several kinds of non-linear Schrédinger
equations [20]. .

(I1) (Semi-) phenomenological theories, which start with a model Ha.miltbnia.n and
employ the Markovian approximation to derive a quantum master equation as the equa-
tion of motion for the density operator of the opén system. The quantum Fokker—Planck

equation usually serves as a c-number representation of the master equation. The quan-
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tum Langevin equation (in the Heisenberg picture) is also defiva.ble from the model
Hamiltonian hence is equivalent to the quantum master equation and the qﬁantum
Fokker-Planck equation [4, 19, 65]. _ ' o

(IIT) Microscopic-model appfoacﬁ, which deals with an explicitly defined model

Hamiltonian for the “total system” (the open system and the environment as well as

their interactions). A necessary condition for the model Hamiltonian is that, with certain
conditions iniposed, the appropriate classical limits of the open system may be recov-
ered. This approach has become more and more popular recently since it allows us to
study quantum dynamics at arbitia.rily low temperature and/or with strong damping,
and the model environment can be of general diésipative character (ohmic, sub-ohmic,
or supra-ohmic). Because the model Hamiltonian contains the degrees of freedom of
both the open systém and the environment, and only the open system is of interest, a
* reduction (i.e., c9ntraction) operation is necessary in order to ignore or eliminate the
details, and only keep the influence of the environment. Coarse graining, one of the fun-
damental principles in statistical mechanics, is manifested by this reduction operation

in the microscopic-model approach.

In the following, we shall discuss in detail the micfoscopic—modéi approach to quan-
tum harmonic Brownian motion, where the open system is a harmonically bound Brow-

nian particle. Just as the quantum Brownian particle is the paradigm of quantum

open systems, quantum harmonic Brownian motion is a paradigm among all quantum

Brownian motions. For quantum harmonic Brownian fnotion, the simplest and most
successful microscopic model is the linear-coupling model [10, 16, 22, 25, 40, 44, 45,
48, 73, 76, 85, 95, in which the envirbnment is modeled by an infinite set of harmonic

oscillators linearly coupled to the Brownian particle. In the literature, there are several

equivalent formalisms for studying microscopic models, the most oft-used ones are the

quantum Langevin equation, the (orthodox) phase-space approach, and the path-integral
approach, among them the first is in the Heisenberg picture and the other two are in
the Schrédinger picture. |

(i) Quantum Langevin equatidn: This is similar to the phenomenological ciua.ntum

Langevin equation, but all parameters and coefficients of this equation'are explicitly and
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exactly defined [8, 22, 28, 30, 63]. As we will discuss in Chap. 8, the applicability of this
quantum Langevin equation is limited to some special problems.

(ii) Phase-space approach: This approach employs the quasi-probability (quantum)
phase-space distribution functions as the representatives of the density opéra.tors of the
total system as well as the Brownian particle. In the classical regime these distribu-
tion functions behave like classical distribution functions over the phase space, among
them the Wigner function {47, 101] is the most studied. As long as the Hamiltonian is
(inhomogeneously) quadratic, i.e., the quantum system is linear, the time evolution of

these distribution functions is completely determined by the classical phase flow. Hence

in this approach the classical-quantum correspondence is most clear. The phase-space -

approach to quantum harmonic Brownian motion has a long history [95], but has mainly

been applied to ohmic dissipation.

(ii) Pafh-integral a.pprqach: The path-integral (or functional-integral) description of
quantum open systems Wa$ pioneered by R. Feynman and F. Vernon in the early 1960’s
[25, 26], and was modified by A. Caldeira and A Leggett twenty years later [10]. The
applicability of this approach was first limited due to the factorization assumption for the
initiél'condition introduced by Feynman and Vernon, where the initial quantum states
of the Brownian particle and the environment are independent of each other. Since this
factorizatiqn is not practical from the experimental point of view, it is more reasonablé
to consider non-factorizable initial states. Generalization of the path-integral approach
to include non-factorizable initial states has been successfully accomplished during the
past few years [40, 85].

In the literature, in addition to the.above three formalisms, there have been other
equivalent formalisms for quantum (harmonic) Brownian motion. They employ the pro-
jection operator [37, 69], the continued-fraction expression [89], the closed-time-path

integral (closed-time Green’s function) [16, 83, 87], etc.

In the path-integral approach, the so-called influence functional, which can be cal-
culated systematically for a given model Hamiltonian, carries information about the
environmental influence on the Brownian particle after reduction. Due to its systematic

calculational nature, the path-integral approach soon became the standard microscopic-



“model approac_h to quantum Brownian motion. Many physically intereéting problems
have been studied using this appfoach, and several generalizations have been proposed
[16, 17, 40, 49, 85]. It is widely believed nowadays that this approach is the best, if
not the only one for dealing with quantum (harmonic) Brownian motion in a general
environment. In contrast, the phase-space approach seems obsolete in the 199’0’5.'

The aim of this dissefté,tion is to introduce a modified phase-space approach to

* quantum harmonic Browniap motion, which is claimed to 1i)e more efficient than both

the orthodox phase-space appfoach'and the path-integral approach. Before introducing

this novel approach, let us first take a closer look at the limitations and difficulties 6f
those conventional approaches. |

.For the microscopic-model approaches to quantum Brownian motion, the reduction
usually involves complicated calculations, especially with respect to the non-factorizable
initial states, since the total number of the environmental degrees of freedom is éssentially
infinite. The only exception is in the quantum Langevin equation approach, where the
reduction is done by elixﬁinating the degrees of freedom of the heat-bath oscillators from
the Heisenberg equation of motions [22, 28, 30]. But the price paid is the limitation of
its applicability. | |

Since the complexity of microscopic-model approaches is mainly due to the reduction

- operation, the calculations promise to be simplified if we can find an appropriate repre-

‘sentative. In the literature, a few authors have noticed that the characteristic function,
which is the symplectic (or double) Fourier transform of the Wigner function, is the most
suitable representative for the reduction operation [33, 43, 96]. (Since the Wigner func-
tion is a quantum analogue of the pfobabilﬁty density function, its symplectic FOur.ier

 transform is called the characteristic function by analogy to probability theory.) The
characteristic function is not a quasi-probability distribution function and hence has no
direct physical meaning even in the classical limits. However, as we will show in Chap. 5,

it gives an illuminating gebmefric meaning to the reduction operation in phase space.
' In the modified phase-space approach, the characteristic function takes the place of

‘the traditional Wigner function as the representative of the denéity operator. In fhe
following, it will be shown through many practical examples that quantum harmonic

Brownian motion in a general environment can be studied with great efficiency in this

xi



modified phase-space approach.

This dissertation consists of three main parts: Part I (Chap. 1-5) contains a review
of all related general theories, Part II (Chap. 6-8) discusses the mechanism and validity
of the model, and Part III (Chap. 9-11) formulates the dynamics of quantum harmonic

Brownian motion via the modified phase-space approach. The organization is as follows:

Chap. 1 formulates all .necessa,ry mathematics. Chap. 2 gives a review of classical

theories of Brownian motion. Chap. 3 studies three different representatives of the den-

sity operator: the coordinate representation, the Wigner function, and the characteristic

function. The first two are the conventional representatives for quantum Brownian mo-

tion, and the third one is the representative to be used in our modified phase—spa.cev

approach. Chap. 4 reviews the phase-space approach to quantum mechanics, i.e., the
Weyl-Wigner—Moyal formalism. Aspects of similarity and the contrast between the

Wigner function and the characteristic function are discussed. Chap. 5 investigates

the general theory of reduction. The advantage of using the characteristic function in

performing reduction is shown through explicit formulas.

In Chap. 6, we derive and solve the classical as well as quantum equations of motion
for the position of the Brownian narticle. All results. in this chapter are useful for the
subsequent discussion, among which the fundamental solution (the Green’s function) and

generalized susceptibility are of special importance. In Chap. 7, we study the thermal

(equilibrium) state of the model system. A novel derivation of the fluctuation-dissipation

theorem for this model,l which is valid for all quantum linear systems, is proposed;
Using the fluctuation-dissipation theorem, without diagonalizing the model Hamiltonian,
we are able to calculate the correlation functions of the Brownian particle from the
results of dynamical problems in the previous chapter. The explicit form of the thermal
equilibrium state of the Brownian particle, which is defined as a reduced state of the

thermal state of the total system, is consequently obtained. In Chap. 8, we begin to

take the thermodynamic limit and construct the quantum dissipative heat bath model

by specifying the spectral density. The.quantum Langevin equation for the position
operator of the Brownian particle is oonstructed_explicitly, and from it the validity of

the model is verified.

I



M

In Chap. 9, general formulations of the time evolution of the Brdwnia,n pérticle from
an arbitrary initial state in- termsl of the characteristic function are summarized. The-
results afe then applied to the foHowiﬁg two chapters: Chap. 10 stﬁdies the dynamics
of the Brownian particle with factbrizable initial states, Whicl; covers many importé,nt
results previously obtained via‘'the path-integral approach in the literature_; Chap. 11.
analyzes the time evolution of non-factorizable initial states, with three explicitly solved
examples fbllowing the general formulation. |
L Finéll'y, several possible generalizations of thjs modified phase-space approach are

discussed in the Conclusion and Outlook.
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Part I

General Theories



Chapter _1'
Mathematical Preliminaries

11 Notations and Conventions

Thi'oughout this paper the Boltzmann constant kp is set equal to unity and 8-
denotes the temperature, with =1 unless otherwise specified. The symbol * denotes
vcomplex conjugate, { denotes Hermitian conjugate, T denotes transpose of a matrix, and
—T denotes inverse of the transpose of a matrix. Wherever ¢ appears, it is understood
that the limit e—0+ has been taken.

The physical system under consideration is an N-mode system, which contains ex-
actly N={(n+1) coupled harmonic oscillators, among which the 0-th mode corresponds
to the one-dimensional Brownian particle and the other n modes to the heat bath. The
indices or subscripts 7 and 5 always run from 0 to n, whiie ¢ runs from 1 to n. The
subscript for the 0-th mode, i.e., the Brownian particle, will be dropped if theré is no
ambiguity. | |

We use €= (z,z,,5,*+,2,) and k= (k, k,, ks, - -, k) to denote the N-dimensional
canonical coordinate and momentum, respectively, and § and p for the N-dimensional
position and momentum operators corresponding to = and k. The canonical commuta-

tion relations are

where 1 is the identity operator. The Hilbert space upon which these operators act is

the tensor product of the Hilbert space corresponding to each of the quantum harmonic

M



oscillators of the system. Note that we shall never employ creation or annihilation
operators in this paper.

We theI; use z = (x, k) to denote a row vector in the 2N-dimensional phase spacé,
and use r= kc}, P) for the operator-valued vector corresponding to z. Following this con-
vention, we sHall always use the lower ca;se, bold-faced letters to denote the row vectors
unless ofherwise specified. Thése row vectors work as the row matrices in matrix multi-
plications. The two-dimensional phase space spahned by (z, k), the canonical coordinate
and momehtum of the Brownian particle, will be ca.lle‘d the Brownian phase plane.

To each harmonic oscillator of the system we assign a characteristic mass m; and
a characteristic frequency w; >0, so that it acquires a characteristic length (mjw;)~3.

The 2N x 2N scale matrix g is defined accordingly as

. 11 1 -
€= dlag{mowo, st Mmoo T } (1.2)

This g is a symplectic matrix since it satisfies

gllg=J, and det(g) =1, B (1.3)

'

where

' 0 |y ,
= | (Iy = N x N unit matrix) (1.4)
—ly. 0 |

is the 2N x 2N metric matrix in a 2N-dimensional symplectic vector space with the

following properties:

=0T = , (1.5)

The 2X 2 matrix g; is a submatrix of the scale matrix g defined as-
miw;j . 0 > :
g = , 1.6)
’ ( 0 (mjw;)™* : (

and the 22 analogue of the metric matrix J is denoted by

H— 0 1 | 17
J—<—1-0)° | o 8D

The elements of every 2N X2N matrix are Jabeled by the indices 0,1, ...... , (2N-1),
e.g., the upper-left element is (0,0) and the lower-right element is (2N —1,2N—1). For

3



a given 2N X 2N matrix M, the matrix [[M]] is a 2x 2 submatrix of M deﬁned as .
MOO MON : ‘
w0 %)
Myo Myw

hence

| [IM]) = jIMT}, etc. | (1.9)

The Heaviside unit step function 6(w) is defined as
(1, w>0; - '
O(w) = (1.10)
0, w<O. ‘

The Dirac delta function of X is denoted by §(X), where X can be either a scé.lar ora

vector variable. Since §(t) is symmetric with respect to t=0 for a scalar ¢, we have

/()Adt5(§)x(t) = 2x(0), | B 4 (1.11)

where A >0, and x(t) is an arbitrary function of .

For dynamical problems, the initial conditions are always chosen with réspect to
time ¢t = 0. The symbol X denotes the time derivative 6f X, etc. The (asymmetric)
Fourier transform of f(t) in the time domain to F(w) in the frequency domain is defined

according to the convention in linear response theory:

+o0 _ '
Fw)= [ dtexplit)f(), (1.12)

hence the inverse transform is
17
&)= 5 / dw exp(—iwt)F(w), (1.13)

and we say that f(t) and F(w) form a Fourier transform pair.

The Laplace transform of f(t) is defined as

Ls{f®} = Fls) = [ dtexp(-st)f®), (114)

where s is a complex variable with Re(s) bounded from below. The Fourier-Laplace
transform of f(t) is defined as the Laplace transform of f(t) with s=—iw.
" In contrast to using O for an operator, the notation W will be used for a random

variable. Therefore (W) denotes the expectation value of the random variable W with

4
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respect to a probability density, whi;h is a.na.log'ou's.to (O) for the expectation value of
the operator O with respect to a quantum state. If it is necessa.rjf, a subscript will follow
the bfacket ( ) to specify the probability density or t‘he quantum state.

All integral formulas used in this paper can be found in {41]. For improper integrals,
the symbol Pr indicates the Cauchy principal value.

1.2 Symplectic Algebra and Group

1.2.1 Inhomogeneous Symplectic Group

We adopt the definition of canonical transférmationé as transformations which pre-

~ serve the Poisson i)fackété' [5, 36] of the canonical variable z defined in Sec. 1.1. Ac-

cording to this definition, the linear ca.nonicél transformation contains the following two
transformations as special cases: '

(1) Translation in phase space:
zvo oz oz, : : (1.15)

where z. is a constant vector in the 2N-dimensional phase space. The group corre-
sponding to this transformation is the translation group T(2N). It isa 2N -dim'enéional
Abelian Lie group.

(2) Symplectic transformation:

2" —s MZT, : _ (1.16)
where M is a 2N x 2N real symplectic matrix that satisfies MTJM =J. The group which
corresponds to this tré.nsfdrmation is the symplectic group and is denbted by, Sp(2N,R)
[32]. It is an N(2N+1)-dimensional Lie group. ‘

It is obvious that the combination of the above two transformations gives the_most
general linear canonical transformations in the 2V-dimensional phase space, and the cor-
responding group isv the semi-direct product of T(2N ) and Sp(2N, R), which is usually
denoted by T(2N)Q®,Sp(2N,R). We will call thj_s‘ groupA the inhomogeneous symplectic
group and denote it by ISp(2N, R). The action of ISp(2N,R) on z is the general linear

canonical transformation defined according to
2T — M(z—-z)". o (1.17)

5



If we take the scale of each mode into account, it is convenient to decompose M into
M =g 35g3. (1.18)

Since g is a symplectic matrix, so are g%, g~%, and hence S.

1.2.2 Weyl-metaplectic Group

According to the cé.nonica.l commutation relations (1.1), the vector space spanned
by {i, Gi, Pj» GGy DiDj, GiP; +P;jG:} is a Lie algebra. It will be shown below that the
group of unitary operators corresponding to fhis Lie algebra is the quantum analogue of
ISp(2N, R). |

First, we shall study the quantum analogue of T(2N ). Itisa (2N+ 1)-djmensional
Lie group of unitary operators with its algebra spanned by {i, i, P;}, i.e., the Weyl
(or Weyl-Heisenberg) algebra. We will call this groﬁp the Weyl group and denote it by
W(2N). Tt is a central extension of thé Abelian group T(2N) [88].

The elements of W(2N) are the unitary operators with the form

T(8, z.) = exp {291 + i'i'JzZ} , (1.19)

where 6 is a real number and z. is the same constant vector as in (1.15). The action of

T8, z.) on 7 is defined according to
T8, z.) #T7(6, z.) = # — 2. (1.20)

This operation is formally isomorphic to (1.15), the translation in phase space made by

the grbup T(2N). Therefore we obtain the following group isomorphism:
W(2N)/{exp(i61)} = W(2N)/U(1) = T(2N). (1.21)

- Next, we study the quantum analogue of Sp(2N, R). It is an N(2N+1)-dimensional
Lie grouﬁ of unitary operators with its algebra spanned by {§§;, Pip;, &:P; + P;Gi}-
We shall show that this Lie algebra is isomorphic to sp(2N, R)—the Lie algebra of
- Sp(2N,R), and thus the group acquires the name metaplectic group Mp(2N, R) [27,
64, 92]. The elements of the Lie algebra of Mp(2N, R) are the anti-Hermitian operators
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= i7lg 77, (1.22)

where a and b are NV X N symmetric real matrices, and

. m =.<—CT _b> € sp(2N,R) ] (1.23)

~

is a 2N x 2N real matrix [32]. Introducing the scale matrix g is necessary since we have

to distingunish squeezed states from coherent states in the following discussion. Note that

g-tm g%_ € sp(2N,R).

From the canonical commutation relations, we have
_ [\i'(m),'i'T] = —g“%mg%f'T, . | (1.24) -

and _ | | |
&mmﬁmﬂ=@@@mm, - (1.25)

thus the Lie algebra of Mp(2N, R) is isomorphic to sp(2N,R).
The action of exp{¥(m)} € Mp(2N yR) on # can be defined and calculated from
(1.24) as

exp {li'(m)} 77 exp {—\i’(m)} = g% exp(—m)gZ#7, (1.26)

where exp(—m) € Sp(2N, R), hence g~3 exp(—.m)g% € Sp(2N, R) Therefore this action
induces an element in Sp(2N, R). | |

Let us next generalize (1.26) by replacing g% exp(—-m) g7 in (1.26) by a general
element M in Sp(2N,R) which is defined as in (1.18), we then try to find a unitary
operator $(M) in .Mp(2N ,R) such that

S(M)#TSH(M) = M#™ = g=35g377. L aon

From linear algebia,‘a,nd group theory, we know that there is a unique polar decompo-

sition S = RP for any element S of Sp(2N,R), where R is orthogonal, P is symmetric

7



and positive definite, and both R and P are in Sp(2NV, R). Therefore we can always put
S =exp(mg) exp(mp), where R=exp(mg) and P = exp(mp), and both mg and mp are
elements of sp(2N,R) (mp is symmetric and unique, while rﬁR is ailti-symmetric and
~ not unique) {64]. The element 5(M) in Mp(2N, R) which is unitary and satisfies (1.27)

can be constructed as
S(M) = exp {\il(—mp)}exp {\i;(‘-mR)}. (1.28)

However, among all elements of Mp(2N, R), there are exactly two which give the
same matrix M in (1.27), i.e., £8(M). The reason that —§(M) also belongs to Mp(2N, R)

© is because of the following identity:
exp {in(c@ +c7'p})} = -1 € Mp(2N, R), ‘ (1.29)

- where ¢ is any non-zero real number. Hence we see that Mp(2N,R) is a doubly covering

group of Sp(2N,R):
Mp(2N, R)/{£1} = Sp(2N,R).. C (1.30)

Now we are ready to define the group which corresponds to ISp(2/N,R). It is the
semi-direct product of W(2N ) and Mp(2N,R), i.e., .W(2N )®sMp(2N, R) We will
denote this group by WMPp(2N, R) and define its element as the unitary operator
T(8, 2.)S(M). The transformation of # under WMp(?N ,R) is defined as |

[0, z) SW]#7 [P0, z)8M)]' = MG — =z, (1.31)
which is formally isomorphic to (1.17).

1.2.3 Diagonalization by Symplectic Congruence Transformations

Theorem [93, 102]: If M is a symmetric and positive definite 2N X2V real matrix, then
there exist two matrices S;,S; € Sp(2N, R), such that

M- ST(Q 0)5 s*(m 0)5 (1.32)
"\ /7' %\o 1,/ Y e

‘where 2 = diag{Q0, 01,02, -+, 0n} with 2;>0.



Remarks:
(1) S € Sp(2N,R) if and only if STIS=J by definition.
(2) Qj’s are not eigenvalues of M in general. We will call them thé “symplectic
eigenvalues” of the matrix M. o |
(3) ’i‘he eigenvalues of JM are +iQ2;’s, hence we can calculate the symﬁlectic-eigen-
values );’s from JM as an ordinary eigenvalue problem.

(4) If the matrix C; corresponds to a two-dimensional rotation on the (z;, k;) phase

CTQO_CCT'CQO Q o .
“\o /7 77\o o/ \o ) (1.53)

Therefore Sy in (1.32) can be replaced by C;S; and is not unique.

plane, then

(5) Sz can be constructed from S; as

s Q3% o o |
= S1, 1.34)

hence S, is not unique either.

1.3 The Weyl Operator and the Wigner Operator

1.3.1 Squeezed Coherent States and the Weyl Operator

Let |0) denote the direct product of the ground states of N independent harmonic
oscillators with masses m; and frequencies w; defined in Sec. 1.1. In the coordinate
representation this ground state takes the form A

_<a:|o>=H[(m;“”')l'/4exp{——;-mjwjx?}], S aw

J

where z is a vector in the N -dimensional configuration space. '
According to the theory of generalized coherent states [74, 106], we define the N-
mode squeezed coherent state as the generalized coherent state corresponding to the
group WMp(2N, R) with |0) as the fiducial state:
T(6, z.)S(M)|0), - (1.36)

where T(O, 2:)5(M) is an element of WMp(2N ,R) as defined in Sec. 1.2.2. Since the

- fiducial state |0) is invariant under the action of some elements of WMp(2N ,R), the

J
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squeeied coherent state deﬁned above is equivalent to [66, 104]
Do) exp{E(-mp)}0) = D(zo)S (e exp(mp) o), (1.37)
where D(z.) is called the Weyl operator (or the phase-space displacement operator):
D(ze) = exp{itdzl} = exp{iCke -4~} o (139

which is an element of W(2N) with §=0, and exp(mp) is a positive definite symmetric
2N xX2N. symplectlc matrix. .

As a special case of the N-mode squeezed coherent state defined above, the N-mode .

coherent state is defined as [34, 55, 81]:
|ze) = D(2.)]0). o (1.39)

Because z. is a vector in the 2N-dimensional phase space, there is a one-to-one corre-
spondence between |z.) in (1.39) and the phase space made of z..
The set of coherent states {|z)| z€ R?" } forms an overcomplete basis of the Hilbert

space for the total system because of the following resolution of the identity:

+co .
/ V2| 2) (2] = (2m)"1. (1.40)
The following formulas are useful for later discussion:
Dl(z) = D(2) = D(-2), (1.41)
D(2)#D(-z) =% -z, :  (1.42)
D(zvl)f?(zz) = D(z; + z2) exp {—%‘zllJz}'} , - (1.43)

D(21)D(22)D(23) = D(21 + 22 + 23) exp { ~ 4 (21)2] + z1J2T + z2020) ), (1.49)

- D(21)D(22)D(2z1) = D(221 + z3), . _ (1.45)
D(21)D(z2) D(—21) _ D(zs) exp{~izJ23}, (1.46)
(0|D(2)|0) = exp{-%2g2"} €R, ' (1.47)

(1) = (ko) = {-d (a1 - 2)g(e = 2+ mdaT). (149)
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1.3.2 The Parity Operator and the Wigner Operator

We define the parity operator II as a unitary operator which generates the following

" transformation on # [42]:
Oaft=—# - _ : (1.49)
By theum'queness theorem of von Neumann, 1I is determined up to a phase. If we also
demand that - | |

=1, and Mj0)=10), ~(1.50)

then the paﬁty operator 11 is uniquely determined as a special element of WMp(2N, R)
[78]: |

+00 : ‘
fi = (4m) / P2D(z) = exp { £ (PgiT-ND)}, (1.51)

where L (7gP"—N 1) is usually called the number operator for the total system.

The Wigner operator Aw(z) is defined as the symplectic Fourier transform of the
Weyl operator b(—z):
. . +00
Bu(z)= @0 [ E¢exp {~ig)z"} D(=), (1)
ie., A.W(z) and ﬁ(—z) form a symplectic Fourier transform pair. The inverse ofv the

above relation is
D(=2) = / PN¢ exp {—iCIz"} Aw(C). (1.53)

-w B -
- Using (146) and (1.51), the explicit form of the Wigner operator can be obtained as
[9, 68 '

Aw(z) = w'Nb(2z)ﬁ = W'Nﬁﬁ(—éz), ‘ | (1.54)

hence Aw(z) is an element of WMp(2N,R): It is easy to prove that Aw(z) is a

Hermitian operator, and

| - |
[ Aw(=)]” = / PVzAw(z) = 1. (155)

11



'The transformation of the Wigner operator under WMp(2N, R) is defined as
. n ta . N '
[7(6, 2)8(M)]' Aw (2)[T(6, 2.) (M)

= S1(M)DY(z)Aw(2)D(zc) S(M)

Aw((z = z)MT), | (1.56)

hence this transformation induces a linear canonical transformation on the argument of

the Wigner operator, which is isomorphic to the linear canonical transformation (1.17).

1.3.3 Trace and Pseudo-trace of Operators

The pseudo-trace of an operator f(#) is defined in terms of the coherent state basis

as follows:
L |
ir(F(#) = (@m)™ / Pz ). (1.57)

Using (1.40), we can prove that if f(#) is in the trace class [75], i.e., the ordinary trace

Tr( f (#)) is a finite complex number and is independent of the choice of the basis, then
Tr(f(#)) = tr(f@#). . (1.58)

Thefefore the pseudo-trace of a trace-class operator is identical to the ordinary trace of
this operator. _

Although the parity operator, Weyl operator, and Wigner operator are not in the
~ trace class, we still have well-defined pseudo-traces of these operators. The following

formulas will be useful in later discussion:

tr(fl) =277, | | | (1.59)
tr(D(2)) = (27)V48(2), ~(160)
tr(Aw(z)) =(27r)-N, | (1.61)

tr(D(21)D(22)) = (2r)"8(z1+ 22), _ | | (1.62)

12



tr(Aw(zl)Aw(zq)) =(2r)"V6(z1 - z2). . - (1.63)
In the following context, we will also need to use the general result that if f(#)§(#)
' is in the trace class, then |

Tr(f(i-)g(f'))=Tr(g(i')f(i~)). - - (1.64)

1.4 Stochastic Processes

In this sectibn we shall review the theory of stochastic processes with a continuous
~ parameter and a continuous state space. The continuous parameter will be denoted by
t>0 and interpreted as time. For the stochastic process formulations, we shall always
use m,n € N for the subscripts, and 0 < t; < t3 < tz------ for the time moments

throughout this paper.

1.4.1 Definitions and Theorems

A (stochastic) process f(t) can be naively defined as a time depeﬁdent random
varia,ble' which is described by a set of probabihty densifies Pp(y1;t1, 423 t2, -+, y,,; tn),
among which Pj(y;;t1) = P(11;t1) is the probability density that #(t) has the value y;
at time t; (which is usually called the distribution function by physicists), and in general
Pn(y13t1, Y25 t2, -+, yn; tn) is the joint probability density that §(z) has the value yl at
time t,, y2 at time ¢, - - -, and yp at time tn. These (joint) probability densities satisfy

‘the following consistency conditions [53]:

Pa(yi;t1, Y252, <, Yns tn) 2 0, (1.65)
+co . ’
/dymPn(yl;tlayz;.tz,'",yn;tn)
o , ,

= Po-1(%15th, - Y¥m—1; tm—1, YUm4+1; tm+1, -+ > Ynitn), 1<m<nm,  (1.66)
oo

/dylP(yl;t1)= 1, (1.67)

-0
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and Pp(y1;t1,Y2;t2, - -, Yn; tn) is symmetric with respect to the exchange of any two
pairs (y,;t.) and (yb; tb),’ where 1 <a,b<n. A stochastic process §(t) is called a multi-
variate process if §(t) is a random-variable-valued vector with more than one component,
otherwise it is called a one-variable (or one-dimensional) process. In the following, we
shall deal with one-variable real-valued stochastic processes unless otherwise mentioned.

The mean of a process §(t) is defined as
+0o0 ) '
<ﬁ(t)> = / dyP(y;t)y. | (1.68)
The m-th moment of §(¢) is defined as |

(§(t)ita) -+ §(tm))
+o0 ,

= / dyidys - - - dym Pm(v1it1, Y25 t2, -+, Ym; tm) Y1¥2  * * Um (1.69)

-0
if the integral converges, otherwise we say that there is no m-th moment for this process.
A process with an m-th moment is called an m-th order process. The (auto)-correlation

function of a second-order process (t) is defined as
{ut)i)) = (ta)i0)) |
= ( [#e0) - )] foea) - wea)])
= <37(t1)?§(t2v)> = (ii(t) ){i(t2)) - - (1.70)
 ‘The conditional probability densities of a process are defined as

Prjn(¥15t1, %25 t2 + + - Ym; tml|Ym+1; tm1, - -+, Ym+n3 tm+n)

_ Pmyn(y15t1,92;t2 -+, Ym+n; tm+n) : (1.71)
Pm(v1;t1,- -, Ymi tm) ’
among which
- Po(yy;ty, yost
Pya(y1; talyz;i t2) = P(yss talyes t2) = 2(?(3/11- ty12) : (1.72)

is usually called the transition probability density because of the following identity:

“+oo
. Py t2) = fdylP(yl;t1|y2;t2)P(y1;t1)- - (1.73)
-0
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It then follows that P(y;;tlye;t)=56(y; — yg), which is independent of t.
A stochastic process §(t) is called stationary if for all n:

(¥ + at)i(t2 + 82) - y(tn+At)> <y(t1)y(t2) P)),  (L79)

or eqmvalently,
Po(y1;t1 + At y25t2 + At, -+, yn; tn + 8t) = Pp(415t1, ¥5t2, -+, Unstn).  (1.75)

For a stationary process, P(y1;t1) = P(y1) is time-independent, and Po(y1;t1;¥2;t2) =
P2(y1; 0, yo; t2—11). In other words, the mean of a stationary process is time-independent,

and the correlation function

- (uene) = (i - ) = (e -wie) @

is an even function of (t1 — t2)

A stochastlc process (1) is called Gaussian if the (Jomt) probablhty density Pn(y1;t1,
Y2582, -+, Yn; tn) of this process isan n—d1m<_ans;on,al Gaussian distribution in (y1,***,Yn)
- for every n. A Gaussian process is completely determined by its mean and correlation’
function.

A stochastic process §(t) is called Markovian if
Projn (913581, ¥2i 2, + -+, Yms tmlym+1i tm41) = P(Yms tml¥m+15 tm+1) (1.77)

for every m, hence it is fully determined by P(y1;t1) and P(y1;t1|y2; t2). For a Markovian
process, the tran31t1on probablhty density P(y1;t1lye;t2) must satlsfy the (Bacheher—

Smoluchowskl—) Chapman-Kolmogorov equatlon,

, - o
Py ta|yzsta) = fdyP(?h;tlly; t) P(y; tlyz; t2), (1.78)

where t; <t <t

| A stationary Gaussian process §(t) is Markovian if :and or.ily‘if |
<<ﬂ(t):i](0)>> =‘ <<§(0)37(0)>> exp (—7|t|), ¥ > 0. | (1.79)

This is usually called Doob’s theorem [97].

- 15



The power spectrum (or the spectral density) of a stationary process ¥(t) is defined

as the Fourier transform of its correlation function {¥(2)¥(0)):

400 ‘
Lw) = [ drexplit){u(1)i(0))

+o0 ) . .
/ dt cos(wt){¥(2)(0) - (1.80)

The power spectrum Ié(w) is an even function of w because the correlation function is
an even function of . Note that there is an equivalent deﬁrﬁtion for the power spectrum
in terms of the Fourier transform or Fourier series of §(t). If we use this alternative
definition, then (1.80) follows as the famous Wiener—Khinchin theorem. |

For a given stochastic process §(t), if we have an explicit expression #(t) =Y (&;1),
where & is a A-dimensional mﬁltivariate random variable (A € N), and the probability
density P(c) for & is given. Then the ﬁrobability density for the process () can be

obtained as
. +o0 . .
P(y;t) = / PaP(e)s(y—Y(en) = ((y-Y(&1)), (1.81)
and in general, for those joint probability densities:

Pll(yl; t17 Y23 t2’ M '_7 ?/n;tn)

+oo : '
/d*a’P(a)&(m -Y(e; tl))5(y2 -Y(e tz)) e 6(yn - Y{(e; tn))

= (8(sn ~ Y(&t1))8(v2 - Y (& t2))-+-8(yn — Y(&tn)) ) (1.82)
Hence we have
B {(3t)) = Td*ap(amd;t) —y(@ye),  (18)
and -
(0)(t2) - 5(ta)) = +/°°d*é7>(a)Y<d; t)Y (o tzi o Y(eitn),  (184)

which are analogous to the quantum-mechanical formulations in the Heisenberg picture.
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1.4.2 Stochastic Differential Equations

Roughly speaking, a stochastic differential equation is a differential equation which
connects two or more stochastic processes. For example, the following is a second-order

stochastic differential equation:
() + edi(t) + eoi(t) = W (2), . (1.85)

where W (t) is a given process and §(t) is the unknown one, and ¢, and ¢; € R. If the
given W(t) is stationary, although the stationary soiution always exisfs, in general there
are many other non-stationary solutions for (1.85). For the stationary solution of (1.85),
its power ép_ectrum can bevdetermined by Fourier analysis as follows [103]: -

Iw(w)
|~w? —icw+ el

I(w)= (1.86)

- . , -
Hence the correlation function of the stationary solution is determined according to the
above algebraic relation. _

As a generalization of the stochastic differential equation (1.85), let us consider the -

'folloviving stochastic integro-differential equation for §(t):
o rt e o
5+ [ drbe = m)i(r) + i) = W), (1.87)

- where W(t) is a given process and b(t) is the memory kernel. It is obvious that (1.87)
contains (1.85) as a special case. We can also Fourier analyze (1.87) and get the power
© spectrum for the stationary solution as

Iy (w)

\ -, 1.88)
w2 — i)+ eo| . (1:8)

I(w) = I

* where b[—iw] is the Fourier-Laplace transform of b(t). Hence the correlation function of

the stationary solution for (1.87) is determined by the above relation.
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‘Chapter 2

Classical Theories of B}rownian
Motion

\

2.1 Historical Remarks

Brownian motion [71] was first discovered by the English botanist R. Brown in 1827
from the observations of tiny pollén grains immersed in a liquid. The cause of this kind
of motion was in debate for decades until A. Einstein proposed a sound kinetic theory
in 1905 [24]. Einstein considered Brownian motion of many identical free particles as a
diffusion process, and derived the diffusion equation as the equation of motion for the
number density of fhe Brownian particles under certain approximations. At the same
time, and at first ihdependently, the Polish physicist M. Smoluchowski used the same
approach but a different mathefna.tical formulation to study this problem. In a paper -
published in 1906, Smoluchowski generalized Einstein’s theory of Brownian motion to a
particle in an external force field. | |

In 1908, P. Langevin derived the first ‘phenomenologica,l dynamical equation for Brow-
nian motion, in which the force from the environment acting upoﬁ a Brownian particle
is separated into two terms—the friction and the random force [60]. On the other hand,
in the 1910’s A. Fokker, and later M. Planck, derived the equation of motion for the
distribution function of the Brownian particle, which is now called the Fokker-Planck
eqﬁation and is mathematically equivalent to the Langevin equation. The generalization

of the Fokker-Planck equation was made by H. Kramers, and later by J. Moyal, in the

18
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1940’s [53, 77).
In 1923, N. Wiener studied the mathematical model for Brownian motion and gave
a concise and rigorous definition of the stochastic process corresponding to the dis- -

placement of a Brownian particle, known as the Wiener process [100]. Later, other

mathematicians including A. Kolmogorov, W. Feller, P. Lévy, and J. Doob also made -

important contributions to the mathematical theory of Brownian motion.

In 1930, L. Ornstein and G. Uhlenbeck modified the Langevin equation.by giving

an explicit definition of the random force [94]. Their theory then became the most

well-known classical theory of Brownian motion. In the 1960’s, H. Mori, and later
R. Kubo, made a further modification to the Langevin—Ornstein—Uhlenbeck theory by
generalizing the Lahgevin equation to an integro-differential equation, which is now
calléd the generalized Langevin equation [56, 69];

In the 'following we shall give a short review of these classical '1':heories. This review
does not exactly follow the Historic_al development; and the discussions will be restricted

to one-dimensional Brownian motion.

2.2 Einstein—Smoluchowski Theory

In the Einstein-Smoluchowski theory, Brownia.n motion is treated as a diffusion
process of many identical Brownian particles, with the assumption that the cause of this
diffusion is the random bombardment from the environmental molecules due to thermal
motion. The mathematical model they considered is essentially .the one-dimensional
continuous-time random walk. | _

In Einstein’s original theory [24], he considered the Brownian particles as an ensemble
of many initially identical free particles in thermal equilibrium with the environment..
The distribufion of these Brownian particles is descﬁbed by the number density n(z;t),
where z is the coordinate in configuration space and ¢ is the time elapsed. Einstein

then showed that the equation of motion for the number density n(z;t) is the diffusion

equation

[% - Dz—a%;-] n(z;t) = 0; v , (2.1) |

Using theories in thermodynamics and hydrodynamics, Einstein was able to give an
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explicit expression for D, the configuration-space diffusion coefficient, as

Dy = % | (2.2)
where u is the mobility of a Brownian particle and 5! is the temperature of the envi-
ronment. Eq. (2.2) is known as the Einstein relation.

For the initial condition that all Brownian particles are at the origin when =0, i.e.,

n(z,0) =Né(z) with AV being the total number of the Brownian particles, the solution
of the diffusion equation (2.1) is

n(:c;. )= (2.3)

mree (-5
AnD,t T\ 4Dgt )
It then follows that the mean displacement of a Brownian particle is zero, while the

root-mean-square displacement is

Jz(®)?) = V2Dt (2.4)

which is the main result in Einstein’s theory.

In Smoluchowski’s paper, instead of using the number density, hé discussed the tran-
sition probability density P(zo;0|z;t) for.the probability density that a Brownian particle
makes a transition from z, at =0 to = at t. The Smoiuchowski_equatio_n for P(z,; 0|z;t)

takes the form [52]

[.{% 9 V’(:c) D, aa ]P(:co,OI:c t)=0, (2.5)
where |
V@)= _?_‘%ﬂ’_) (2.6)

is the external force acting upon the Brownian particle, a,nd p and D, are the same
as those in Einstein’s theory. The initial condition of the Smoluchowski'equation is
obviously P(z;0|z; 0)r= 8(z — z,). If the external force is set equal to zero, then (2.5)

reduces to

0 0? ’
[—8—2 - Dz%] P(IEO, OI:L‘, t) = 0, (27)

which can be interpreted as the equation for the Green’s function of the diffusion equation

(2.1) in Einstein’s theory since

“+o0 ' .
n(z;t) = f dzo P(2o; 0|23 £)n(20; 0) | (2.8)

20



for an arbitrary initial number density n(zo;0). _
From the general theory of random walks, we know that the displacement of a Brow-
nian particle in the Einstein-Smoluchowski theory is a Markovian p'rocess.‘ However, the

momentum of a 'Brownia.n_particle is not well-defined in this theory.

2.3 Wiener Process and White Noise

The Wiener (or Wiener—Lévy) process W(t) [63, 100, 103] is a stochastic process'
which models the displacement of a free Brownian particle in the Einstein-Smoluchowski
theory. It is defined by the following conditions:

(i) W (t) is almost everywhere continuous;

(i) W(0)=0; | |
(iii) [W (t2) - W(tl)] has a Gaussian distribution with mean 0 and variance 2D (t2 —1);
~ (iv) W(t) has independent increments, i.e., W(ts) — W(th)], [W(t;;) - W(t)], - . ,
[W (tn) — W (tp-1)] are mutually independent. v

It can be proved that the proba.bilify density for the Wiener process defined above -
‘takes the form |

P(W;t) = (2.9)

w2 ,
JI‘E_ =P { 4Dyt }
The Wiener Iprocess W (t) is both Gaussian and Markovian, buf it is not a stationary
process. Although the original Wieﬁer prdcess is designed for describing the displacement
of a free Brownian particle, wherein Dy, = D, for this interpretation, the time derivative
of the Wiener process serves as the mathematical model of the idealized random force, the
so-called white noise. Rigorously speaking, white noise thus defined is not an ordinary
stochastic process, but it can be understood as a generalized stochastic process just as

.the delta function-may be regarded as a generalized function.

2.4 Langévin—Ornstein—Uhlenbeck Theory

Langevin’s approach to Brownian motion is a phenomenological dynamical theory
[60] For a single Brownian particle in thermal equilibrium with the environment, the

time-dependent force that the environment acts upon the Brownian particle is due to the
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incessant impacts from the environmental molecﬁles. Langevin’s idea was to separate
this time-dependent force into two parts: (i) a time-average-out part, which represents
the time-igdependeht friction experienced by the Brownian particle, and (ii) a rapidly
fluctuating pa.rt, usually called the random force, which is time—dependént with zero time
average. The most general Langevin ‘equation for one-dimensional Brownian motion

takes the form
mi(t) + my2(t) + V'(2(1) = f(2), o (2.10)

where m and z are the mass and position of the Brownian particle, respectively, f(t)
is the random force, v (z) represents the external force due to a given potential as
defined in (2.6), and —mvyz corrésponds to the friction which is proportional to the
velocity z accordi'ng to Stoke’s law in hydrodynamics (my > 0 is usually called the

friction constant). If the external force is zero, then (2.10) can be simplified into
k(t) + vk (1) = f(1), (2.11)

_ where k=mi is the momentum of the Brownian particle. 4

Using (2.11), with the assumption that the Brownian particle is in thermal equilib-
rium with the environment, Langevin was able to rederive the Einstein relation with
D, = (myB)™. |

In the Ornstein—Uhlenbeck theory [94, 97], the Langevin equation is implicitly re-
interpreted as a stochastic differential equation with a well-defined random force. In our

notation, the Langevin equation (2.10) in the Ornstein—Uhlenbeck theory becomes
m(t) + myE(t) + V/(£(2)) = f(2), (2.12)

with the ra.ridom force f (t) defined explicitly as a generalized stochastic process which
is characterized by [53, 56, (57, 77

(1) {(f(¢))=0 from Langevin’s original assumption. _

D) {F(1) f(t2)) = (F(t1)f(t2)) = 2Dy 6(t1 — t2) with Dy, > 0, which means that there
is no correlation between the randorﬂ forces at different times, i.e., the random force
is purely random hence stationary. The power spectrum of this random force is 2Dy,
which is frequency-independent. Therefore this random force a.cquiréd the name white

noise.
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(L) f(¢t) is a Gaussian process aécording to the central limit theorem. Since it is
assumed that Brownian motion is the result of a great number of successive impacts due
to thermal motion of the environmental molecules.

The white noise defined above is exactly the fime derivative of the Wiener process dis-
cussed in- Sec. 2.3 with Dy, = Dy. It will be shéwn later that Dk is the momenfum-space
diffusion coefficient. In the following, we shall discuss two examples of the Langevin—
* Ornstein-Uhlenbeck equation [97): ’ -

(I) Brownian motion of a free particle:
k(t) + vk(t) = f(2), | (2.13)

which is an anz;iogue of (2.11). According to the discussion in Sec. 1.4.2, we have for the

" stationary solution:

2D, :
L(w) = , 2.14
k(c«f) " ( .)
and the correlation function follows as
YNy D E .
(ko)) = ~rew (= 1tl).- (2.15)

Because the white noise f(t) is a Gaussian process, so is this stafionary momentum
process k(t). Hence we see that this k@) is a Ma.fkoviax_i process according to Doob’s
theorem. On the other hand, it follows that the corresponding position #(f) of the
Brownian particle is non;Markoviaﬁ. This stationary momentﬁm process l::(t), or the
corresponding velocity process; is usually called the Ornstein—Uhlenbeck process.

Taking the mean of (2.13), we get the differential equation for (k(t)) as |
Loy +aEen=0.  @w

From the solution to the above equation, |
(kD)) = (R(0)) exp(—11), e

it is obvious that (k(t)) =0 for the stationary solution of (2.13), which corresponds to
(i) (k(0))=0, or (ii) t—oo. Hence we find that for the stationary solution:. '

h (E<t)l”%(0)>=<(i?(t)i§(0)>>=%exp(—vltl).- | | (2.18)
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Setting =0 in (2.18), we get the momentum variance of the Brownian particle:

(k(0) = (kry) = 2£. - (2.19)

Comparing with the equipartition law in classical statistical mechanics, we can determine

the explicit form of Dy as
D=2, O (2:20)

(II) Brownian motion of a harmonic oscillator: .

(%3

s . Y t ‘ ‘

£(0) 4 75(0) + w2 = L2, (2.21)
where # is measured from its balanced position with respeét to the Hooke force, and wc;
is the characteristic frequency of the Brownian particle as a harmonic oscillator. For the
stationary solution: | ‘

2Dy /m?

SRR R e

(2.22)

hence

. 2D w?
@ =iy + (o

Ii(w) = (2.23)

From the above two power spectra for :‘z’:(t) and k(t), we find that neither 3(t) nor k()
is Markovian. However, it will be shown in Sec. 2.6 that (#(t), k(t)) is a multivariate

Markovian process with respect to this harmonic Brownian motion.

2.5 Generalized Langevin Equation

The limitation of the Langevin—Ornstein—Uhlenbeck equation can be easily seen from
the correlation function (2.15). As an even function of ¢, it is not differentiable at t=0

since there is a cap at that point. It then follows that the correlation function

((E(b)/%(o»}:((%(r)é(r))} | - (2.24)

is not well-defined. This defect is due to the idealized assumption that the random force
is a white noise. For small t, Eq. (2.15) represents the correlation between two momenta

separated by a very short time interval. But from physical considerations, the Brownian
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particle suffers only a few or even no impacts during a very short time, and the white
noise. assurhp'_cion is obvious invalid for this situatidn (56, 59]..

In order to take into account the phenomena involving small time intervals, wherein
the tiﬁe scale of thermal motion of the environmentalvmolecules is not very much shorter
than that of the Brownia.n'pa.rticle, the éssumption that the random force is purely ran- '
dom, i.e., delta-correlated, has to be abandoned. Accordingly, we also have to abandon
the assumption that the friction is determined by the instantaneous velocity of the Brow-
nian pai*ticle; ‘the so-called ohmic dissipation, and replace it by a reta.rded friction which
corresponds to non-ohm1c dissipation [57]. _ | |

The generahzed Langevm equation, proposed by Mori and Kubo [56, 57, 69], is a
natural generallzatlon of the Langevin equation which comprises the above more delicate
considerations. The generalized Langevin equation corresponding to (2.13) takes the

| form
. t S y ' ' .
M0+L &rT(e- k() = 1), (2.25)
and that ;orresponding to (2.21) is | |
E(t) + /_t drT(t — T)3(r) + w28 #(t) = ( )  22%)

where F(t) is the couﬁterpart of the white noise f(t), and F(t) is the memory kernel
which- satisfies [30] '

Jlim T(t) = 0. : (227)

Conventionally, I‘(t) is defined as an even function of t. This does not violate the
causality principle since the upper.limits‘ 6f the integral terms in these two generalized
La.ngevin eduations are t instead of +oco. v
| Eqs (2.25) and (2 26) reduce to (2. 13) and (2.21), respectlvely, when F(t) f(t) and
T'(t) =27v5(t) according to (1 11).
For the random force F'(t) in the generahzed Langevin equation (2. 25) and (2.26), it
is still reasonable to assume that F(t) is Gaussian, stationary, and zero centered, hence
it can also be characterized by its .correlation function. In order to ensure that the

system achieves an equilibrium state, whose characterization is independent of E’(t), it
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is hecessa.ry to assume that the memory kernel I'(t) and the correlation function of F'(t)

are related by the following relation [18, 57):

((F’(t)F(O)) = ﬂﬁ@ | (2.28)

The Fourier transform of the above relation gives the power spectrum of F(t):

400

Ir(w) = [ dt expliwt)rer) = 2—;n-Ref‘[—-iw], (2.29)
. =

where T'[-iw] is the Fourier-Laplace transform of I'(t). Since Ip(w) is frequency-

dependent, the ra.ndo'm force F(t) is usﬁa.lly called colored noise in contrast to the

white noise defined in Sec. 2.4. Therefore we conclude that in general the white noise is.

associated with ohmic dissilpation, while the colored noise is associated with non-ohmic

~ dissipation. ‘ |

From the results in Sec. 1.4.2, we have for the stationary solution of (2.25):

Ir(w)

I(w) =
He) |—iw+f‘[—iw]|

which corresponds to a correlation function which is smooth at t =0 in general [103].
Similarly, for the stationary solution of (2.26), we have

Ip(w)/m?

l—w2 - icuf‘[;iw] + w2

L(w) = . . (2.31)

2.6 Fokker—Planck Equation

Conventionally, the terms Fokker—Planck equation, Kramers—Moyal expansion, and
master equation are usually defined only for Markovian processes, but the non-Markovian
generalizations of these equations have also been discussed in the literature, e.g., the
non-Markovian Fokker-Planck equation [2] corresponding to‘the generalized Langevin
equation (2.26). In this paper, we shall use these terms in the general sense, and take
the Markovian versions Vof these equations as special cases.

For a stochastic process §(t), the Fokker-Planck equation and its generalization

the Kramers—Moyal expansion of this process are partial differential equations for the

“probability density P(y;t) or the transition probability demsity P(yo;0ly;t). In the
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following, we shall first derive the Kraﬁers—Moyd expansion from (1.73), and then take
the Fokker—Planck equation as its aﬁproxima,tion From now on we shall always use the
term distribution functzon instead of probabzlzty denszty for P(y, t).

Rewriting (1. 73)

3

- .
P(y;t + at) = / dZ P(Z'; tly; t + at)P(2'; 1), ' (2.32)

it is then easy to obtain the time derivative of P(y;t) as [77]

[ i (—/;,—g—au(y, t)} P(y;t) = , (2:33)

where

au(y;t) = lim — /dzP(y,t]z t+ at)(z— y)*

= lim [_1_ <(g(t+ at) — g(t))“>] | : (2.34)

- B0 (5t =v

is called the p‘th order jump moment of the process §(t). Eq. (2 33) is the so-called

(forward) Kramers—Moyal expansion.

If we assume that among all the jump moments only a;(y;t) and az(y;t) are finite,
which corresponds to (t) always changing by small' amounts in a short time interval,
then the Kramers—Moyal expansion (2.33) reduces to the Fokker—-Planck equation for

the dxstnbutlon functlon P(y;t) over y-space :

In stochastic process theory, Eq. (2.35) is called the forward Kolmogorov equation.

In general, if the process (t) is non-Markovian, then a,(y;t) depends on (¥(7)) for
7 <t. On the contrary, for a Markovian process a,(y;t) only depend‘s'on’the instanta-
neous expectation value (§(t)). This difference serves as a criterion for determining the
Markovianness of a process defined by a given Fokker—Planck equation.

. The Kramers—Moyal expansnon, hence the Fokker—Planck equatlon, can also be de-
rived through the master equatlon,

OP(y;t) _

ot / dz| W(z’ ¥ )P(z51) - Wy, ) P(yit)], ©(2:36)
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which is essentially the differential version of (1.73). W(z, y; t) and W(y, z;t) in (2.36) are
defined according to the expansion of the transition probability density P(y;t|2;t + at):

P(y; tlzst+at)=6(z—y) + [W(y, z;t)—6(z—y) / dZW(y, t)] at+ O((At)g) .

7

(2.37)

W(y, z; 1) is called the transition rate for the state jumping from y to z during the time
interval (t, at + t), it is independent of the previous history of the process if and only if
the process is Markovian. Using the transition rate, the jump moment a,(y;t) in (2.34)

can be expressed as
auwit)= [ dzW(g,z1)(z- )" - (239)

Since the transition probability density P(yo; 0|y;t) can be interpreted as the Green’s
function for P(y;t) according to (1.73), the Fokker-Planck equation for P(yo; 0ly;t) is
of the same form as that for P(y;):

(5 + syt - Fppmuo)| Pasolm =0. (239

In the Einstein—Smoluchowski theory of Brownian motion, the diffusion equation .

(2.1) and the Smoluchowski equation (2.5) are both special cases of the Fokker—Planck
equation, where the distribution functions are over the configuration space.

In the Langevin—Ornst;in-Uhlenbeck theory, it can be proved that the Fokker—Pla.nck'
equation is exact instead of an approximation to the Kramers—Moyal expansion [57, 77,
97). The Fokker—Planck equation for free Brownian motion corresponding to (2.13) takes

-

the form

o @ o
[Bt To5F~ Do

]P(k =0, (240

where P(k;t) is the distribution function over momentum space. Hence we see that Dy
is the momentum-space diffusion coefficient.
As for the harmonic Brownian motion described by (2.21) in the Langevin—Ornstein—

Uhlenbeck theory, the corresponding Fokker—Planck equation is

[6 kK 0

0 0? '
En + 5 Ok (mwox + 7k) Dk ]P(m k;t) = 0 : (2.41)

28



where P(z;k;t) is the distribution function over phase space; From (2.41), it is obvious
that (%(t), k(t)) is a multivariate Markovian process. _ _

- To solve the Fokker—Pl_a,nck equation (2.41), it is easier to employ the symplectic
Fourier transform of the distribution function P(z, k;%) [97]: |

(o o] .
C(z, k;t) = / dz'dk’ exp[—i(z'k — K'z)|P(2', K'; t), _ (2.42)

OO

which is the (classmal) characteristic function corresponding to P(z,k;t). The corre-
sponding equation for C(z, k;t) takes the form

o .,k o
[5;+(—Tn—+7x)%—m% 6k+Dk:c]C(x ki) = 0. (2.43)

In contrast to (2.41), which is a second-order partial differential equation, Eq. (2.43) is

of first order. Thus it can be solved exactly by using the method of characteristics.
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Chapter 3

Representatives of Density

Operators

In quantum mechanics the states of a system, either pure or mixed, can always be
described by the Hermitian non-negative density operator (or density matrix) g. The

density oﬁerator g is in the trace class g.nd'is always normalized, i.e.,
Tr(g)=1. (3.1)
From this normalization condition, it follows that
0<Tr(#) <1, (32

where the equal sign holds if and only if ¢ corresponds to a pure state.

Once the density operator of a qlia.ntu_m system is determined, all physical observables

of the system can be obtained via this density operator. For example, with respect to

the state represented by g, the expectation value of a physical observable O is
(0) = Tr(80). (3.3)

Since § is an abstract operator, most of the time we need to use a representative

(or representation) to perform practical calculations. In the literature there are many

equivalent representafives [31], e.g., the coordinate representation, momentum represen-
tation, Pérepresentation, Q-representation, R-representation, Fock-space representation,

Wigner function, and characteristic function. The representative that has been used
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most for the quantum Brownian motion is the coordinate representation which is most

.suitable for the path-integral approach. The orthodox phase-space approach employs the

Wigner function as the representativevs'ince it serves as a quasi-probability distribution
over phase space. Howéver, as we will show below, the best representative for problems
involving reduction is the’ characteristic function, which is the symplectic Fourier trans-
form of the Wigner function. In the following, we shall study in detail the aforementioned

three representatives of the density operator.

3.1 Definitions of the Representatives

3.1.1 Coordinate Representation

In the coordinate representation, an N-mode density operator g is represented by the

kernel function p(x,y) which is written symbolically as

o@y) = (zlly), (39

where = and y afe two vectors in the N-dimensional configuration épace. ‘We shall -
call o(z,y) the coordinate representation of g for shoft. The normal_ization condition
correspbhding to (3.1) i | |
1 - +o0
Tr(g)= /dfvzg(:c,:t:) =1 ‘ - (3.5)

: —o0

3.1.2 Wigner Function

The Wigner function [6, 47, 70, 86, 90, 101] W(z) =W (z, k) of an N-mod_é density

operator g is defined via p(x, y) of the same density operator:

Wz, k)=~ [ d"yexp {2ik-y} ol - v, @ + ). (36)
-0
The normalization condition of the Wigner function corresponding to (3.1) is

+oo
/ W (2) = 1. R 3.7)
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The Wigner function defined above can be expréssed in the following representation-

independent form [9, 68, 78]:

W(z) = Tr[odw(z)], - | (3.8)

where Ay (2) is the Wigner operator defined in Sec. 1.3.2. Since Aw(z). is a Hermitian
operator, the Wigner function is red-@ued. However, it is not always positive definite
and is thus called the (quantum) quasi-probability distribution function over the “phase
space” z=(z, k). v

For the coherent state (1.39) with the density operator § = |z.)(z.|, the Wigner

function can be calculated using (3.8) as
W(z)=n"" exp{—(z —z.)g(z— zc)T}. ‘ | - (3.9)

3.1.8 Characteristic Function
. ‘ /

The characteristic function [3, 9, 33, 43, 47, 65, 68, 70, 96] ®¥(z) = ®(x, k) of an
- N-mode density operator § is defined as the symplectic Fourier transform of the Wigner
function W (z) of the same density operator:

+oo o .
8(z) = / B¢ exp {—iCIZT Y W(C). (3.10)

—c0
The normalization condition of the characteristic function corresponding to (3.1) can be

easily derived from (3.7) as
®(0) = 1. (3.11)

Corresponding to (3.8), the characteristic function of a density operator § can also

| be expressed in the following representation-independent form:
®(z) = Tr[aD(-2)], » (3.12)

which is a direct consequence of (1.53). Since D(—z) is a unitary operator, &(z) is
complex in general. From (3.10), it is obvious that &*(z)=®(—z2).
Corresponding to (3.9), the characteristic function of the coherent state (1.39) is

®(z) = exp {—%zng + zszI} (3.13)

32



3.2 Transformations among the Representatives

Let us first list all of the transformations among o(z, y), W(z), and ®(z) as follows:

o(z,y) = Td’vk exp {ik- (z —y)} W (w—;—y , k)

oo |
= (21) / @k exp (k- (@+ v}o(z-uk),  (3.14)

+oo - :
W(z, k) = =~ / d"yexp {2ik-y}o(z -y, z +y)
' ,+°° ) ) .
= W(z) = @) [ #Cexp {=ic1zT}3(0), (3.15)

+oo . i
S(@k) = [dyexp{~iy-k}e(+2/2,y-2/2)

=0(x) = / PV exp {—iCIZTyW(C). | (3.16)

. In order to discuss the physical ihterpretation of the relations among these three

representatives, we first make a change of variables in o(z, y):

9(3’ y) - Q(Qa 5) ’ ' (317)
with
a=m;—y’ §=z—vy. ) o ' (3.18)

We can then express both the Wigner function and the characteristic function as the

(ordinary) Fourier transforms of p(&, 6) in the following way: .
W k)« Fs_g{e(c,8)},  8(6,k) x Fo_p{o(c )}  (3.19)

where F, ;. and Fg_j denote the Fourier transforms on the variables o and 6,
respectively, to a new space corresponding.to k. Hence we see that W(z) and ®(z) form

a symplectic Fourier transform pair via the following correspondence:
(o, k) € W(a, k) <= (k,6) € ®(6, k). _ (3.20)
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Since the Wigner function W{e, k) behaves as a quasi-probability distribution over the
“phase space” (a, k), we find that a corresponds to the classical coordinate, and k,
which is from the Fourier transform of 6, corresponds to the classical momentum. By

contrast, neither of the two arguments in @(5, k) has a classical correspondent.

3.3 Mean Vectors and Covariance Matricés

For an N-mode (pure or mixed) state with the density operator g, the mean vector

in the 2N-dimensional phase space is defined as
(7) = Tr(p7), | (3.21)
and the covariance matrix is deﬁﬁed as a 2N X 2N symmetric matrix:
2 = ((# =) (* - #)) - 4
= FR - (TR -
= LR + G~ (R)
(o0 o). - oz

T
aqp Cpp

with _
o = (&~ (@) (& - @))) = @a) - @@), (3.23)
oopii = { (Bi — (3)) (B — 8))) ) = Bidi) — B)Bs), .~ (3.24)

oanii = £ (& - (@) (6 — ) + (85 — &) (& - (@)))

= (SRR aye). . (3.2)

There is no constraint on the mean vector (3.21), while the éova.riance matrix (3.22)
must satisfy the “genéralized uncertainty relations,” i.e., all of the symplectic eigenvalues
(as defined in Sec. 1.2.3) of ¥ must be greater than -or equal to % [21, 84]. |

VFor the elements in the 2x2 covariance matrix ||X] which correspond to the 0-th
mode, i.e., the Brownian particle, we shall use the following notations:

I=7 = (a‘”'” a‘"”°°> = (a"" a‘”’) . (3.26)

Ogpoc T pp,00 Ggp Opp

N
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3.4 Gaussian States

The Gaussian state is defined as a quantum state whose Wigner function is a Gaussian

" distribution in z:
W(z) = Cvep{~(z - zM(z -2z}, (3.27)

where C’N = 7~V /det(M) is the normaliza,tion constant, z. is a constant vector in the |
2N-dimensional phase space, and M is a symmetric and positive definite matrix. The

mean vector of (3.27) is 2z, and the covariance matrix is’
T=1M | (3.28)

According to the generalized uncertainty relations discussed in Sec. 3.3, each sym-
plectic eigenvé.lue of M must be smaller than or equal to 1, otherwise (3.27) will not

" correspond to a physical state [84]. Hence we have

0<det(M)<1, o (3.29)
. : ( ,
where the equal sign holds if and only if (3.27) corresponds to a pure state, which is in

general a squeezed coherent state as defined in (1.37). As a special case, the Gaussian
Wigner function (3.27) becqﬁes (3.9)., the Wigner function for coherent states, when
M= o | | . ‘

. Since a Gaussian distribution is completely determined by its ﬁrst and second mo-
ments, the Gaussian state (3.27) can be determined solely by z, and 3. Therefore,
instead of using the density operator or its repreéenté,tives, we can simply use the |
representatidn—independent z. and X to represent a Gaussian state.

" The Wigner ellipsoid corresponding to (3.27) is defined as .
(z—2z)M(z—z.)" =1, (3.30)

which is an ellipsoid in the 2N-dimensional phase space with its center at z. and its
shape determined by M. Eqgs. (3.27) and (3.30) are mathematically equivalent since, as
just fnentioned, a Gaussian distribution is completely.f determined by its first an-d sécond
‘moments. Therefore we can use the Wigner ellipsbid as a geometric represehtation of

the Gaussian Wigner function, hence the Gaussian state, in phase space [64].
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The characteristic function corresponding to the Gaussian Wigner function (3.27) is

a complex Gaussian function of z:
®(z) = exp {——;—zJTEJzT + inzI} . (3.31)

By analogy to the Wigner ellipsoid, the characteristic ellipsoid for a Gaussian charac-

teristic function is defined as
(z2=2)S(z—2z) = 1. ‘ (3.32)

The center of the characteristic ellipsoid is the same as that of the Wigner ellipsoid,
while the shape is determined by the covariance matrix 3. This characteristic ellipsoid

can also serve as a geometric representation of the Gaussian state in phase space [105].

3.5 Thermal States

We define the thermal state of a time-independent quantum system immersed in an
ideal (non-dissipative) heat bath of temperature 3~! as the canonical ensemble with the
candnica.l density operator ‘

. _ _exp{-BH}

= e lort-pi]] (3.33)

~ where H=H(#) is the Hamiltonian of the system.

Consider an N-mode system with the inhomogeneously quadratic Hamiltonian
H(F) = LiMpT + nd™, - (3.34)

where M is a symmefric and positive deﬁnite matrix as defined in Theorem 1.2.3, and n
is an arbitrary 2/N-dimensional row vector. The Wigner functlon and the characteristic
functlon of the thermal state of this system can be calculated usmg the results in Secs 1.2
and 1.3 as follows [104]: 4

Firstly, let us transform the Hamiltonian H(#) in (3.34) into the following form:

H#E) = LG - z)MGE - z1)" - -%—zthzI

= D(z1)S‘(sl)ﬁN(f-)g'r(sl)bT('zl) - %;le{, (3.35)
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where

z1= -nM™ . (3.36)
and
B 1, /S 0 _ :
N(r):;r o o 7, . (3.37)

with S; and € defined as in Theorem 1.2.3.
Secondly, substitute (3.35) into (3.33), then the latter becomes
D(21)5(S) exp{—BHN}SH(S1) Dt (z1)
Tr|exp{—BHx}]

= D(21)5(51)85.x51(S1)D¥(z1), (3.38)
.. where
oy = RPN} (3.39)

" Trlexp{-BHx}]
Thirdly, according to (3.8) the Wigner function of the density operator b5 is
Wa(z) = Tr [D(21)8(51)85x8"($1) D} (21)Aw (2)]

= Tr [0x$1(S1)D"(21)Aw(2) D(=1)5(51)]

= Tr [8snAw ((z - 21)57) ] o (340)

where (1.56) has been used.

.

Finally, recall that for a one-dimensional harmonic oscillator with the Hamiltonian

A_ﬁz 1 .
H=qot+5msd

' 1 1 /W 0 1 d
= —(4,9)e5 | - g ( ) ’ ‘ (3'41
, 2 (7) ( 0 w> P :
the Wigner function of the thermal state is [47] |

Wga(z, k) = t_a,_nh;(;,?ﬂ exp {— tanh(Bw/2) (mw:c2 + -nli—l)} - (3.42)

_tah(Buy2) [ oy g (tanb(Be/D) 0 ) (m>}
- T p{ (’k)go( 0  tanh(Bw/2) g°. \k/)
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It follows that the explicit expression of (3.40) is

tanh (82/2) . O
WQ(Z) = CN(ﬂ) exp {—(Z - Zl)SI ( ( / ) . ) SI(Z - Zl)T}

0 tanh (6£2/2)
= Cw(B)estp{—(z ~ z1)J7 tan(BIM/2)(z - :)"}, (3.43)
where |
‘tanh (m/z) = diag {tanh(802/2), tanh(80; /2),+, tanb(B%, /2)}, (3.44)
and |
Cu(B) = 77" det(tanh (2/2)). - S @)

Therefore we find that the thermal state is a Gaussian state if H is (inhomogeneously)

quadratic. The covariance matrix corresponding to (3.43) is

coth (82/2) 0 )

s = 4 cot(BIM/2)) = %51_1 ( o coth (3€2/2)

ST (3.46) -

According to (3.31), the characteristic function corresponding to (3.43) takes the

form ; . ‘ -

$p(z) = exp {—%ZJTEﬁJZT + z'sz'{}

exp{——l-zST (coth (B22/2) o
4770\ o coth (8€2/2)

) S1z" + z'szI} .- (3.47)
Theqone-mode characteristic function corresponding to (3.42) is a special case of (3.47):

Op(z, k) = exp {——}1— coth(Buw/2) (mwz? + n’z_:)}

= exp {—% coth(Bw/2) (:l:, k)&(:) } s (3.48)

which will be useful for later discussion.
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Chapter 4

Phase-Space.,AppfqaCh to

Quantum Mechanics

- It is well known that the uncertainty principle makes the concept of pha.ée space
improper in quantum mechanics, since we cannot ha\'/e‘ a well-defined point in the phase
space which conesponds to precise and simultaneous measurements of both the position
and momentum of a particle, Therefore a genuine prbbability distribution function over
phase space does not exist in‘qua,ntum mechanics. Nevertheless, the Wigner function
defined in Chap. 3, which serves as a quasi-probability distribution fuﬁction over the
“phase space” made of its arguments z = (x, k), has proved to be very useful in many
branches of quaﬁtpm meché,nics, especially in fhose problems involving classical-quantum
correspondence.

The phase-space approach (6r picture) to.quantum mechanics, also known as the
Weyl—Wigner—Moyal formalism {3, 70, 86, 90, 99, 101], serves as an.alternative formal-
- ism of quantum méchanics that incorporates the Weyl éorrespondence rule with the
Wigner function. In this approach vthe-Wigner function plays the central role, as the
wave function or the density operator does in other approaches to. quantum mechanics
- "(Schrédinger, Heisenberg, density-operator or path-integral). In contrast to other ap-
proaches, there is no operator in the phase-space approach. In other words, the phase-
space approach resgmbles classical statistical mechanics; all operators are replaced by
the"co'rresppnding ¢-number variables, known as the Weyl symbols, a.ﬁd the expecta-

tion value of an operator becomes the average of the corresponding symbol over phase
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space with respect to the Wigner function. This apprdach is pa,rticular-useful when the
Hamiltonian is (inhomogeneously) quadratic, i.e., when the system is linear, wherein
all formulas are formally i_soinorphic to those in vclassical,mechanics, and the solutions
of the corresponding classical equations of motion completely determine the quantum

dynamics.

v

4.1 Weyl Symbols and the Weyl-Wigner Correspondence

As we discussed above, all operators have to be transformed into the equivalent Weyl
symbols in the phase-space approach. There are many equivalent definitions of the Weyl
symbol; in this paper we define the Weyl symbol fy(2) corresponding to an N-mode

operator f(#) via the following relation:
+o0 ' '
i#) = [ efu@hu), (41)
-0

where Aw(z) is the Wigner operator defined in Sec. 1.3.2. The Weyl symbol is mathe- -
matically equivalent to the original operator since (4.1) is invertible:
fw(z) = @)t (f(#)Aw(2)), " | (4.2)

where (1.63) has been used.
Comparing (4.2) with (3.8), we see that the Weyl symbol of a density operator §
is proportiohal to the Wigner function of the same density operator (the Weyl-Wigner

correspondence):
W(z) = (2r)™" (Weyl symbol of @). (4.3)

From the formulas in Sec. 1.3.3, we have the following two useful relations:

. +c0 .
r(f@) = emy™ [&tuz, (4.4)
<400 ' . .
wr(7®#) = tr(9)F@) = Cr) ™ [ Pefu(@gn(z). @3
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.Eq. (4.5) contains the following two formulas as special cases:

+oo : ' ‘ o
Tr(¢) = (2m)" / &= [w(z)|, (4.6)

S

. - . N + . a
(f@) =Tr(ef®) = [ @=2W()fw(2). 4.7)

Using (4.7), we are able to calculate the eXpecta‘tidn value of an operator as the average
of its Weyl symbol over phase space with respect to the Wigner function.

From (1.53), we see that the Weyl symbol of the Weyl operator f)(zc) is exp {izJz]},
which is formally isomorphic to D(z.). As a special case, thé Weyl symbol of thé identity
opera.tor’i is 1. | '

The Weyl symbol fw(z) of the operator f (#) is also known as the Weyl correspon-
dent of f(#) by the Weyl correspondence rule (the symmetrization rule) [99]. This
correspondence can be obtained via the isomorphism between D(z.) and exp {izJz]}

by comparing their series expansions in z.. The following Weyl correspondence will be

n -
z? |. - (4.8)
k2

5/ \ 2ck /

4.2 CharaCteristic Symbols

useful in later discussion:

x
"Qﬁ o < PO
-

=

A

-+

g

| ‘The characteristic symbol fp(2z) of an N-mode operator f (7) is defined analogously

to the Weyl symbol via the relation
+co
F#) = f Pz fo(2)D(2). (4.9)
oo _
From (1.62), the inverse of the above relation is

s

fo(2) = @r)er( F#)D(-2)),  (410)
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hence the characteristic symbol is also mathematically equivalent to the original opera-

tor. Moreover, the characteristic symbol and the Weyl symbol for a given operator form

a symplectic Fourier transform pair:

+oo

 fw@ = [ ECexp {-ig)z"} fa(Q)

-0

according to (1.52).

(4.11)

From (4.9), it is obvious that the characteristic symbol of the Weyl opefator D(z.)

is 6(z—z¢). As a special case, the characteristic symbol of the identity operator 1 is

8(2). The following six formulas are the analogues of (4.3)-(4.8):

<I>(z)v = (2m)" (cha.racteristic symbol of @), 'v
tr (f(i')) = (2r)" f5(0),
tr(F#)3) = 1r (9 F3)

+c0 : +6°
= (n)” / 72 fo(2)g0(~2) = (2m)" / PV fo(—2)gs(2),
. |
Tr(¢) = o)™ [ @zie()P,

+o0 '
(@) =1r(ef®) = [ P20 fe(-2),

( ié(z),k \

7
P —16(2) ¢
¢ = —6(2),kk ,
7 ~6(2),2x
\ap+5a)  \ 2=
where
62k = 20 ()= Z0E) et
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(4.13)

(4.14)
(4.15)

(4.16)

(4.17)

(4.18)



From (4.16) and (4.17), it follows that

0= - {251,
=1r(e8) =[] . »‘ (4.20)
(cf) = Tr(6¢) = - f’;i‘:‘): ;_= . | o 42
G-, aw
(B1) o (222) - 28]

LY

4.3 Time Evolution of the Wigner and Characteristic

Functions

For a general quantum system with the Hamiltonian B=A7 (7;t), the quantum
dynamics of this system can be completely determined‘by the von Neumann-Landau
equation (also known as the quantum L10uv111e equatlon), which is the equation of motion

of the density operator § [86]:

do 06 | .o a1 .
=S +illl,8]=0. | (424)

- This equation can be taken as the fundamental equation of quantum mechanics since
it is equivalent to the Schrodinger equation and the Heisenberg equation. The formal

solution of (4.24) is
6(t) = ADHOYU (), - (4.25)

where U (t) is the unitary time-evolution operator which satisfies the Schrédinger equa-

tion

'i%z}/(t) = HU(t), | L?(Q) =1. (4.26)
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The equation of motion of the Wigner function can be derived from (4.24) as [6, 47, 86]
K] 12 ’
aW(z; t) + 2H(z;t)sin (-5--6) W(z;t) =0, (4.27)

where H(z;t) is the Weyl symbol of H(#;t), and

o a8 0.0 . |
o= E (6k 3z, Bz, Ok; ) - (4.28)
w1th the arrows indicating in which dJrectlon the derivatives act.

If we restrict the Hamiltonian & (7;t) to be (inhomogeneously) quadratic, then (4.27)

degenerates to the classical Liouville equation,
0 OH 0 O0H 8 _ 4
5V (z0) + Z ok, Da; —W(z;t) - Z 52, 6k t) 0, - (429
where H = H (z;t) is (inhomogeneously) quadratic in z and is in general time-dependent.

Using Hamilton’s canonical equations in classical mechanics,

. _8H . _ BH | |
;= ﬂ;, kJ = _3_1!_—,' N , . - (430)
Eq. (4.29) can be rewritten as
9 . 0 A d_ o
(a + zJ::cJ—a—;c—J + ;kj—a—g) W(z;t) = EW(z, t) =0. | (4.31)

Therefore the time evolution of z, i.e., the solutions of the corresponding classical equa-
tions of motion (4.30), completely determines the solutioﬁ of (4.31).

In general the solutlons of (4.30) w1th respect to a (mhomogeneously) quadratic
H(z;t) can be denoted as

Iy O\
Z'(t) = R(t)z"(0) +Ia.T(t), R(0) = ( o 'l ) , and a(0)=0. (4.32)

Since the time evolution of the classical canonical variables is a canonical transforma-
tion, R(t) is a 2N x 2N symplectic matrix. a(?) is a time-dependent vector in the 2/V-
dimensional phasé space, which vanishes for all ¢ if and only if H(z;1) is flomogeneously'
quadratic. The geometric meaning of a(t) is the trajectory traced by the point which is
‘initially at the origin in phase space. Eq. (4.32) is essentijally a time-dependent inhomo-

geneous linear canonical transformation, and we will call it “phase flow” hereafter.
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Using (4.32), the general solution §f (4.31) can be éxpreésed as
W(zit) = W ([z — a(®)R"T(¢);t = 0), (4.33)

and we say that the time evolution of the Wigner function follows the phase flow in
phase space. ,
The time evolutibn of the corresponding characteristic function can be obtained from

(4.33) via (3.10):
. O(z;t) = exp{inaT(t)}q)(zR“T(t); t= O) 3 ' : (4.34)

which is also completely determined by the phase flow. However, the time evolution of -
the characteristic function follows the phase flow if and only if a(t)=0, i.e., if and only

“if H(z;t) is homogeneously quadratic.

4.4 Time Evolution of the Mean Vectors and the

Covariance Matrices

For a qua/mtum linear system, the time evolution of the operators # in the Heisenberg

picture is formally isomorphic to (4.32) via the Weyl cori‘espondenée:
#T(t) = RE#FT(0) + a'(t). | (4.35)

For an arbitrary initial state with the mean vector (#*(0)) and the covariance matrix

3(0), the time evolution of the mean vector is a direct consequence of (4.35):
(FO) = ROFO) +a7(2), | (4.36) -

and the time evolution of the covariance matrix can be derived by substituting (4.35)

into (3.22):
() = ROSOR®). (4.37)

Note that (4.37) is determined solely by R(t) and X(0), and is -independent of (#(0)) and
a(t). This relation can also be obtained by using (4.7).

- 45



'Chaptér 5
Reduction of Density Operat_ors

5.1 General Theory

Consider a quantum system made of two éubsystems_ (A) and (B) whose density
operator is denoted by §,5. With respect to this division, a reduction of ignoring the
subsystem (B) is a commitment that no measurement on (B) will be made. After we
perform this reduction, an operator o, originally corresponding to a measurement on the
total system reduces to O,® 1, where O, corresponds to a measurement on (A). The

expectation value of O, can be calculated as
- (0a) = Tr(eas(0a0 D)
= Tr,Tra(22(04© 1)
= Tra([Tr5(845)104)
= Tr(é,;OAA), | (5.1)

where T'r, denotes the partial trace Qperation with respect to the degree(s) of freedom in
(A),'a.nd Trp is defined in a similar manner. 9, =T75(845) is called the reduced density
6pera.tor for the subsystem (A) which includes the influence from (B). The normalization
condition (3.1) is an extreme case of I'r5(845) =304, Where (A) is empty and (B) is the

total system.
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5.2 Reduction of a Density Operator via Its

Representatives -

For the quantum system (A)+(B) discussed in Sec. 5.1, let us assume that the

/
number of degrees of freedom in (A) is (N —X) and that of (B) is A, and define = =
(Ta,p), Y=(¥.,Ys), and k= (k,4, kp) according to this division. The corresponding

representatives of the reduced density operator ¢, =Trg(g45) can be easily obtained as

+co
0a(Ta,Y,) = /dAxEQAB(:_l:Aa T5,YarTr), (5:2)
—c0
. +00 .
Wa(za, k) = / P25 d ks Wan(@ay @5, kayks), (5.3)
.@A(:BA, kA) = QAE(:BA7 0, kA, 0). - (5.4)

As we mentioned earlier, the normalizatiop conditions (3.5), (3.7), and (3.11) can be
taken as the extreme cases of (5.2), (5.3), and (5.4). Note that (5.3) is an analogue of
the marginal probability density in probability theory [53]. ‘ '

Since (5.4) is simply a restriction 6f the original ®(z 4, x5, k4, k5) to a subspace in the
2N-dimensional phase space, the reduction becomes a geometric operation (a pro jection
in phase space) via the characteristic function. Compared with (5.2) and (5.3), it is

obvious that the easiest way to perform the reduction is using the characteristic function.

5.3 Reduction of the Gaussian States

As we discussed in Sec. 3.4, a Gaussian state is completely determined by its mean
vector and covariance matrix. Therefore the reduction of a Gaussian state can be realized
by the corresponding reductions of these two entities. Using the same assumptions as in
Sec. 5.2,‘the‘reductions of the mean vector z. 45 and the covariance_matrix 34 can be

obtained by substituting (3.31) into (5.4):

Zc,AB = (wc,'Aa T, kc,A7 kc,B) == Zca = (xc,zh kc,A)’ ) (55)
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: / ' 4
Fqq Tgp T qq Ogp _
Yap = . = X, = ) (5'6)'
T ' T ! o
Tap T pp Tp T pp

where X, is a 2(N —-A) x 2(N —)) matrix with the elements

Ogquv = Taquuvs : (5.7)
O opuv = Oppyuv s ‘ (5.8)
g qu,yu = Tgp,uv s . v (5.9)

for.u,V;—_O,l,...,(_n—)\). _

Hence we see that the reduced mean vector is a projection of the original mean vector,
and the reduced covariance matrix is a submatrix of the original covariance matrix. If we
use the characteristic ellipsoid (3.32) as the geometrical representation of the Gaussian .
state in phase space, then the reduction becomes the restriction of this ellipsoia to a

" 2(N —X)-dimensional subspace.

5.4 Time Evolution of the Reduced .Density Operators

For a quantum linear system, the time evolution of the Wigner function is given by
(4.33) and that of the characteristic function is (4.34). Using the same assumptions as
in Sec. 5.2, Egs. (5.3) and (5.4) give the time evolution of the reduced Wigner function

and the reduced characteristic function as follows:

WA(wA) ka; t)

= /d/\msd)‘kBWAB(wA,mBakA7kB§t)
—o0

40 : :

= / P2ad*kaWas (@425, ka, ka) — a(OIRT(@;1=0),  (5.10)
Bu(Taska,st)

= exp{i(:cA, 0,k,, O)JaT(t)} P45 ((:n,,, 0,k,,0)R™T(2);t = 0). (5:11)
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Similarly, from (5.2) we have the time evolution of the corresponding reduced coor-

dinate representation:

. +o0 ,
QA(mA7yA;t) = / dAxBQAB(wAvaayAa mB;t)a (512)

—o0
where o(z4, Tp, Y4, Tp;t) can be solved exactly in terms of the classical action for a
quantum linear system [26, 82). The complexity of (5.12) is similar to that of (5.10).
From (5.11), we see that once the initial (total) characteristic function is obtained,
we can write down the time evolution of the characteristic function in tefms of the phase
flow without doing any integrations. Among all representatives of the density operator,
only the characteristic function possesses this advantage. Therefore we conclude that the

characteristic function is the best representative for the pfoblems involving reduction.
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- Part 11

v - The Model -
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Chapter 6

Equations of Motion and the

Solut i'ons

NOTE: Unless otherwise mentioned, the time ¢ >0 throughout this chapter.

6.1 The Model Hamiltonians

In the literature, there have been several successful models for the quantum dissipa-
tive heat bath [30]. For quantum h\a.rmonic Brownian motion, the one used most often is
the linear-coﬁpling model [10, 16, 22, 25, 40, 44, 45, 48, -73, 76, 85, 95]. Since the Hamil-
tonian of the linear-coupling model is not positive definite, a renormalization procedﬁre |
is necessary. After the renormalization is performed, the linear-coupling model is then

‘equivalent to the indépendent-osciliatér model [28, 29, 30], in which the heat bath is
modeled by an infinite set of mutually independent oscillators attached to the Brownian
particle by Hooke springs. In this paper, We shall use the independent-oscillator model
exclil‘sively without loss of generality. V

In the independent-oscillatér model, the total system of é harmonically bound Brow-
nian particle immersed in a quantum dissipative heat bath is described by the Hamilto-
nian

P

H=2m‘

1 R p2 1 PO
+ ?mwng + Z [5% + —2—mgwf(qe - Q)z] . . ‘(6-1)
V4

where § =g, and p = P, are the operators for the Brownian particle, m = m, and my’s
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are the characteristic masses, and w;’s are the characteristic frequencies defined as in’
Sec. 1.1. (From now on we shall never drop the subscript “o” in w,.) Among the terms
in (6.1),

P 1 222 .

o + 5 mwsd _ (6.2)

" is the Hamiltonian of the harmdnjca,lly bound Brownian particle,

> [ﬁ— + lmewzéz] | (6.3)
Z 2m£ 9 £4¢

is the Hamiltonian of the heat-bath oscillators,

Z —mew}Geq | (64)
£ » .

corresponds to the interaction, i.e., the linear coupling, between the Brownian particle

and the heat bath, and
(% > mewf)éz (6.5)
corresponds to the renormalization counterterm in the linear-coupling model. It is ob-
vious that the Hamiltonian (6.1) is positive definite as long as w; > 0. Without loss of _
generality, we shall assume that all w,’s are different. The mechanical analogue of (6.1)
is shown schematically in Fig. 1. '
Without changing the essential structure of the Hamiltonian in (6.1), we can linearly

couple the Brownian particle to a classical time-dependent external force by adding the

linear term —§fx (t) to (6.1) and get
H'(t) = H - §/x(t). | - (66)

Hence the time-independent H in (6.1) becomes a special case of this H’(t). We shall use v
both (6.1) and (6.6) as the model Hamiltonians, but note that only the former represents
the “total system.” The total number of heat-bath oscillators is assumed at first'to be -
finite, and the thermodynamic limit n—oo will be taken starting in Chaﬁ. 8.

6.2 Classical Equations of Motion

From the discussion in Chap. 4, we know that for a quantum linear system the

dynamics is completely determined by the corresponding classical equations of motion.
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Figure 6.1: Mechanical analbgue of the independent-oscillator model. Note that d;

locates the center of mass of the j-th oscillator with respéct to its balanced position.
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Therefore our study of the model Hamiltonians begins with the equations of motion for
the classical correspondent of the quantum system described by (6.6).
The corresponding classical Hamiltonian, i.e., the Weyl symbol, of the model Hamil-

tonian (6.6) is
H(t) = k—2 g muis +Z [ -l—mgwg(:z:g — ) } —efx@®).  (6.7)

Using Hamilton’s canomca.l equations (4.30), we have the following equations of motion

for this corresponding classical system:

mi=k, (6.8)
k= —-muwiz + > mewi(ze — ) + fx(2), (6.9)
, ¢
mege = ke, - .(6.10)
ke = ;mgwf(ie -z). - (6.11) |

From (6.10) and (6.11), the equations of motion for the heat-bath osc111ators take the

form
Fo+ Wiz = Wiz, (6.12)

which indicates that each heat-bath oscillator is driven by a time-dependent force w3z (t).
The formal solution to the above equation is

sm(wgt)

ze(t) = z¢(0) cos(wet) + k(022D / dra(r) sin(we(t — 7))

= :L‘g(O) cos(wet) + ke(0)——— sm(wet)

+ z(t) — z(0) cos(wet) — /O dri(T) cés(wg(t' - 7)). i | (6.13)

Combining (6.8), (6.9), and (6.13), we get the classical equation of motion for the position

of the Brownian particle:
v . _
mi(t) + mwlz(t) + / drz(r) [Z mew), cos{we(t — 1'))] (6.14)
. o 7

s1n(wet)]

= —z(0) Z mew), cos(wet) + Z mewj [:l:g(O) cos(wet) + ke(0)————=1 + fx (t) ,
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or equivalently,
mi(e) + [ dra(t—)a(r) + meia() = —eOn) + O + fx@),  (619)
where | |
n(t) = > mew} cos(wt) o (6.16)
) .
serves as the memory kernel, and

£(8) = 3 [22(0)maecw cos(wet) + ke(0)we sin(wet) | S (617)
4
isa fime—dep'endent force acting on the Brownian particle. From the Wey! correspon-

- dence rule, the quantum analogue of (6.15) is

mi(®)+ [ drnft= () + metdE) = ~4On@ + FO + O, (619
where
f@) = > [(j@(O)mgu}? cos(wyet) + Pe(0)we sin(wgt)] . - (6.19)
. . : '

Eq. (6.18) can also be. obtained from (6.6) using the Heisenberg equation of motion
[22, 28, 30].

6.3 Solutions of the Classical Equations of Motion

. In this section, we shall apply the Laplace transform method to solve the classical
equation of motion (6.15) in terms of fx(t) and the initial values z;(0) and k;(0). Firstly

we make a Laplace transform on (6.15):

where the variable s is complex with Re(s)>0,

1=y AmendQ RO (6:21)
| ; ,
fx[s] = Ls{fx (t)}7 _ , (6.22)
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and

Z(s) = m(s® + w2) + sij[s], ' (6.23)

with
(
== m“"f‘s . (6.24)
£

Note that Z(s) is an even function of s, and
Z(r)>0,VreR, , (6.25)

with

Z(0) = mwZ, and lim 2(r)

r—oco 72

=m. (6.26)

Since (6.7) is an ¥V -fnode Hamiltonian with its homogeneous part positive definite,
there are exactly N real normal mode frequencies corresponding to those N normal
modes of the corresponding classical system, whiéh will henceforth be denoted by €;>0.
From the Laplace transform of z(t) in (6.20), we know that if Q; is a normal mode

frequency of (6.7), then both +iQ); are zeroes of Z(s), ie.,
Z(£iQ) = —m(Q? — w?) + }: me‘”" Q (6.27)

is the equation for those normal mode frequencies. Using the graphical method (referring
to Fig. 2',7 where N'=1 + 3), we see that as long as the wg’s are all different from each
other, those NV normal mode frequencies §2;’s are also mutually different. The claim that

all ;’s are real is also confirmed since 2% >0. Moreover, we find that
0< < <Y <wr <P < <Qpo1 <wp <Oy < 0. (6.28)

Because (6.27) is of the form

N—degree polynomial in 0?2

T o =0, (629

it is guaranteed that (6.27) has no other roots in addition to £4€2;. Therefore we conclude
that Z(s)~! contains exactly 2N simple poles which lie on the imaginary axis of the

complex s-plane and are symmetric about the origin. It is worthwhile to emphasize
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Figure 6.2: Graphical meﬂlod for determining the roots of Eq. (6.27) with N =1+ 3,

’

which is equivalent to y; =y, where

mgwiﬂz

s . Y1 = m(Q2 _ wo), and Yo = Z 02 _We
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again that Z(s)™! is analytic on the s-plane except for these 2N simple poles lying on
the imaginary axis. _ '
We then define the fundamental solution u(t) of (6.15) as
1 1 &+ - exp(st) o
=L = — d .
u(t) = £° {Z(s)} " omi /5_i°o 720 (6-30)

where ¢ is an arbitrary positive real number since Z(s)™* is analytic for Re(s)>0. Since

this fundamental solution u(¢) is defined in terms of the inverse Laplace transform, it
vanishes for ¢<0. From (6.15) and (6.20), we can determine the initial conditions of the

fundamental solution u(t) as
1
w0) =0, ¥0)=-—, u€0)=0. (6.31)
Using this fundamental solution u(t), the time evolution of z(t) can be expressed as

x(t) = mz(0)u(t) + mz(0)u(t) + /otdru(r) [f(i -7+ f?( (t - T)]

mi(t)z(0) + u(t)k(0) + 3 [meite(t)ze(0) + ue(t)ke(0)]
¢ ' v

+ /otd'ru(f)fx(t—‘r), o - (6.32)

where
, . | |
ue(t) = wg/ dru(r)sin(we(t — 7)), : (6.33)
0 .
" and
¢
wp(t) = wﬁ/ dru(T) cos(we(t — 7))
0
¢ : : '
= we / dri(r) sin(we(t — 7). (6.34)
o . o '
~ The time evolution of k(t) can be obtained from (6.32) straightforwardly:

k(t) = m2ii(t)2(0) + ma(t)k(0) + m 3 [meiie(t)ze(0) + we(t)ke(0)]
£

+ m/td‘r ﬂ(rjfx(t -7), | ' . (6.35)
where |

tig(t) = wj [otdﬂl(r) cos(we(t — 7)) | | (6.36)
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according to (6.34). v

in principle, we can substitute (6.32) into (6.13) to calculate the explicit solutions
of z¢(t) and then ke(t) in terms of u(t), fx(t), and the initial values z;(0) and k;(0).
However, it will be clear later that it is not necessary to obtain the explicit solution of

z(t) or ke(t) for determining the dynamics of the Brownian particle.

6.4 Linear Responses and the Generalized Susceptibility

. According to the Weyl correspondence rule, the solution of the operator e‘quzition of

motion (6.18) is formally isomorphic to (6.32):

i(0) = mi(®30) + PO + [[dra) -7+ f1e-7)]  (637)

mi(B3(0) + uOHO) + X [meie®ie(®) + ue@pe®)]  (6:39)
| A |

4 [,
and the time evolution of the momentum operator p(t) is
: t " -
50) = mPa)0) + mi(OpO) + m [ drilr)[f6 =)+ x(6=7)]  (639)

= mR(£)(0) + mi(t)p(0) + m >~ [meiie(£)de(0) + we(®)e(0)]  (6.40)
. : £ .

ot
+ m/ dru(r)fx(t — 7).
o o
From the above two expressioris, we can calculate the responses of the Brownian
particle with respect to an applied force which corresponds to fx(t) in the model Hamil-
- tonian (6.6). Taking the expectation value of (6.38) with respect to a given initial

quantum state, we get

(@) = ma(t)a(0)) + u(t)(HO)) + 3 [mete(t)(@(0)) + uel)(5e(0))]
. ’ 4 .

+ [arumsxe-n). S (641)

If the mean vector of this initial state is zero, then the above expectation value reduces

to

14

(G@t)) = ‘/otdru(r)fx(t - T) = '[:odru(t - fx(7), .(6.42)
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where u(t<0)=0 has been used. As a comparison, the linear response of the momentum

expectation value for the same initial state is

(3(1) = m /0 Zdra(t — 7)fx(7). | (6.43)

In (6.42), if we iriterbret u(t<0)=0 as the causality condition, then the fundamental
solution u(t) serves as the retarded Green’s function for (g(t)) with respect to the applied
force fx(t). From linear response theory, we know that it is convenient to consider the
retarded Green’s function as a Fourier transform of the so-called generalized suscepti-
bility a(w). The expiicit expression for a(w) corresponding to u(t) can be obtained by
setting £=¢ in (6.30): |

+o0

_ 1 exp((€e + ww)t]
ut) = o / W et i)

+o0 L
1 /dw exp(—iwt)

or Z(€ — iw)
1 | |
= o /dwexp(—iwt)a(w), (6.44)
. =00
ie.,

a(w) = E (6.45)

Z(e—iw)  Z(—€+iw)
is the generalized susceptibility of the total system for the response (§(t)) with respect
to the applied force fx(t). Note that in (6.44) we have made a change of variable w——w
in order to follow our convention for the Fourier transform.

The reason that we took £ in (6.30) to be the infinitesimal € is because other\;srise we
will not be able to put the fundamental solution u(t) in (6.30) as a Fourier transform
of a function of w, and accordingly it is impossible to deten_njne the explicit form of
the susceptibility a(w) in terms of Z(s). The physical meaning of this limit is the
manifestation of the resonant behavior of the total system, which is analogous to the
resonant absorptién in electfodynamjcs [50, 57], the continuous-spectrum transition in.
quantum perturbation theory [58], and Landau damping in collisionless plasmas [62], etc.
This resonance is also the physical mechanism which allows us to construct a dissipative

environment out of a conservative model- Hamiltonian.

.
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Conversely, we can take a(w) as the Laplace transform of the fundamental solution

Cu(t): | |
a(w) = /Ooodt exp[i(w + i€)t]u(t), ~ (6.46)

where i€ guarantees the convergence of the integral. This 7¢ can be omitted if and only
if we take the thermodynamic limit, which will be discussed in Chap. 8. -
Following the convention in linear response theory, we use the notations o’(w) and

o"(w) to denote the rea.l and 1mag1na.ry parts of a(w), individually. From (6.45) or

+ (6.46), it is obvious that a’ (w) and o’ (w) are even and odd functions of w, respectively.

Moreover, from (6.45) we find that
1 .

/(0) Z(O) a2 a”(O) = 0, : (647)
and |
lim 'a”(w) =0@). (6.48)

In linear response theory, it is- more convenient to take the generalized susceptibility
as a function of the complex frequency. Hencé we shall now extend the frequency w into
a complex variable w=w + w”. It is necessary to emphasize that, although the original
réal w is the imaginary part of the complex ya.ria.ble s, the complex w-plane does not
* overlap with the complex s-plane! According tb (6.46), () is analytic for w” >0 on
the complex w-plane, which is a generic property of the generalized suscepfibility as a
. consequence of the causality principle. o | (
Since a(w) is analytic for W 2 0, o/(w) and o”(w) are related via the dispersion

relation:
- /I ’ '
o (w) = P / dv (”) | (6.49)

Using the well-known formula in complex ana.lys1s:

| /du y—(V) - Pr/du +z7rf(w), | - (6.50)‘

or the symbolical expression
. L
vV — i€

(D), e
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we have

. +o0 "
q(w) = _Tlr— /du-:_oi-a%z . (6.52)

It then follows that the fundamental solution u(?) in (6.44) can be expressed as

. +oo
ut) = — [ dwexp(~iwt)a’(w)

4o . : .
—71;- /dwsin(wt)a”(w). ' (6-53)

Note that when ¢t < 0, the right hand side of (6.53) is equal to —u(—t) # 0. This is
because a”(w), unlike a(w), is not analytic for w” > 0. For t € R, we define another

fundamental solution w(t) as
w(t) = u(t) - u(—t)

S
= _:r_ /dwexp(éwt)a"(w)

1 “+co -
=— / dw sin(wt)a” (w), - (6.54)

which is an odd function of t € R..
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Chapter 7
Thermal Equilibrium State

NOTE: Unless otherwise mentioned, t € R and 0< < oo throughout this chapter.

- 7.1 Diagonalization of the Model Hamiltonian

As a preparation, we consider the diagonalization of the model Hamiltonian (6.1)

[8, 29, 95] in this section. First let us put (6.1) into the matrix form
H= i(& P) (V 0) (§D)" = $7K#T ‘ (7.1)
9 ’ o U ’ =" ’ | ) .

.where U and V are two N X N symmetric and positive definite matrices defined as

= . 1 1 1 1 ‘
U—dmg{m’m1’"”&z,”.’mn}’ (72)
(E mw?  —mw —mwi - —mnw%\
i .
—-myw?  muw? o @ - 0
V=1 —muj 0 muZ - 0 . (7.3)
\‘—mnwfb 0 0 cee MpW? /

Accordihg to Theorem 1.2.3, the matrix K can be diagonalized by a congruence

symplectic.transformation: ‘ A

’ V o Q o -

K= =857 S, (7.4)
o U 0o N :
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where S is a 2N X 2N symplectic matrix, and the diagonal N X N matrix € has the
normal mode frequencies §2;’s as its diagonal elements. The explicit form of S can be

calculated via an orthogonal transformation as follows:
; (9% 0 )(X 0) (U-% 0) <n%xu-% 0 ) 5
=1 = " , 7.5
o o3%/\o x/\ o .uz 0 9-3xus

USVU3 = XTQ?X, and X"X=XXT =1, ‘ (7.6)

with

i.e., the square of each- normal mode frequency ); is an eigenvalue of the symmetric
" matrix U3VU3. Since we will only use (7.4) formally in the following, it is not necessary

to calculate the explicit form of the matrix X or S.

72 Phase Flow of the Classical System

We shall now derive the phase flow (4.32) for the classical system corresponding to the
quantum Hamiltonian (6.1) [8, 44, 45, 95] using the results obtained in the last section.
First of all, we can make sure that a(t) =0 since the Hamiltonian (6.1) is»homogeneous.
Because this Hamiltonian is tirne-indei)endent, the time-evolution operator defined by

(4.26) is simply
U(t) = exp{-ath }, (7.7)

which is an element of the group Mp(2N,R). According to the Weyl correspondence
" rule, R(t) in (4.32) can be calculated via the time evolution of #. Using the results in

Sec. 1.2.2, we have

#T(t) =UT)FTU() = R()7T, (7.8)
where |
' cos(Q2t)  sin(Q2)
R(t) = exp {tJK} =571 S, (7.9)
' —sin(2t) cos(2t)
with |

cos(f2t) = djag{cos(Qot), cos(2;t), éOS(Qﬁ), .o ,cos(Qnt)}, _ | (7.10)
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and sin(€2t) defined in a similar way.

- Comparing the definition of the phase flow in (4.32) with (6.32) and (6.35), the latter
two equations give the explicit expressions for the elements in the 0-th and N-th rows
of R(t > 0), which will be the only elements we need for studying the dynamics of the
Bronnia.n particle. Hence it is not necessary to obtain the explicit form of R(?) in (7.9).

From the solutions (6.32) and (6.35), along with the explicit form of the phase flow
(7.9), we find tvha.,t the two-dimensional restricted phase flow on the Brownian phase
plane takes the form | _

mw(t) w(t) ,
R = , o (711)
() m(t) S

where w(t).is defined by (654) For t>0, Eq. (7.11) reduces to

n'»_m(t) u(t)

- R®T = | : “ C(712)

m2i(t)  mat)
7.3 Correlation Functions of the Brownian Particle

If the total system described by the Hamiltonian (6.1) is immersed in an ideal (i.e.,
non-d.issip_ative) phenomenological heat bath of temperature 8-, the state of the total
system will finally a.pproa.-ch the thermal state with the canonical density operator (3.33),
which will hereafter be called the “model thermal state.” After the total system reaches
the model thermal state, i.e., reaches thermal equilibrium with the phenomenological
heat bath, ’the total system can be isolated and the phenomenological heat bath can be
- removed. Conceptually, in order to define the model thermal state of the total system,
the introduction of this phenomenological heat bath is necessary.

The correlation matrix Cg(ty,t2) of the tofa.l system with respect to the fnodel ther-

mal state is defined as

Coltasta) = (#T(t)#(2),

= R(t1)<q=T(0)f(0)>ﬁ'RT(t2), - - (1.13)
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where ( ), denotes the expectation value with respect to the model thermal state, the
same nofation will be used throughout the remainder of this paper. Since the model
Hamiltonian (6.1) is homogeneous, the mean vector of the model thermal state is zero.
Therefore it is not necessary to include the mean vector in the above definition of the
correlation matrix. |

Since the Hamiltonian H in (6.1) is time-independeént, the model thermal state is a '

steady state. Hence we have

<i-T(t)$'(t)>ﬁ = <;~T(0)1“'(0)>ﬁ =%5+4) | (7.14)

“according to (3.22), where 3 denotes the covariance. matrix of the model thermal state

which satisfies
Rt)SR™(t) = Z5. - (715)

Since S in (7.5) is block-diagonal, 3¢ is also block-diagonal according to (3.46).
From (7.14) we can infer that the operator #(t) is a multivariate (quantum) stationary -
process with respect to the model thermal state since the latter is a Gaussian state. The .

explicit expression of the correlation matrix Cg(t1,12) is .

Caltrt2) = R(tr — 12)(Zp + £J), - (7.16)
hence we can merely study

Cp(t,0) = Ca(t) = Sp(t) + £R(¥)J, | (7.17)

where Sﬁ(i) =R(t)X 3. Note that Cg(t) #Cs(—t). _
Among all the elements in Cg(t), those four in ||Cg(¢)]] are those corresponding to

‘the Brownian particle:

ICs@N = [Ss@ + IR

(@®)d0)s  (dt)B(0))s
- (7.18)

B(t)40))s  (B()B(0))g
Comparing Cg(t) with Cg(—t), we find that the two diagonal elements in [[Sg(t)] are the

symmetrized auto-correlation functions for the position and momentum of the Brownian
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particle:

1Ss@u = ${4®)i(0) + 4(0)4()), (7.19)

- 1Ss(®)T22 = —<p(t)p(0)+p(0)p<t)) . - (720)

. thch are both even functlons of t.

Using the Helsenberg picture, it is easy to derive the following relations:

m e ICo®n = ~ICo(®z = Co®ar, (721)
and
G =~ o, (722)
where |
<q*<i)a(0)>ﬁ=(é(O)q*(—t»ﬂ, | )
- o | |
~ {a0#0), = (0)K-1), ey

“ have been used in deriving (7.21).

Applying (7.21) and (7.22) to (7.18), we get similar relations among the elements in

- [5s(@)]:

mAISs @l = 15T = S6®N, (729

[Se()]22 = —m Et;usﬁ(t)ﬂll (7.26)

Hence ||Sp(t)]} can be expressed as ‘
o(tB)  —mo(tB) \ |
1S5 = | I (e
mi(t; B). —m?é(t; B)
where v(t; 8)= (Q(t)cj(O)) s is the counterpart of the fundamental solution u(t) for ét_ﬁdy—
ing quantum harmonic Brownian métion. The expljcit expressions .of the elements in

H_Sg (t)] will be calculated in the next section.
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7.4 Fluctuation-Dissipation Theorém

In this section, we shall derive the ﬁuétuation-dissipa.tion theorem (or fluctuation-
dissipation relation) [14, 56, 57, 59, 91] for our model, and then apply this theorem
to obtain the correlation functions of the Brownian particle with respect to the model
thermal state [51, 76]. The advantage of using this theorem is that, instead of diago-
~ nalizing the Hamiltonian explicitly, we can use the fundamental solution u(t) to obtain
these correlation functions. This is one of many examples of using the analogy between
the canonical density operator and the time-evolution operator in connecting quavntum’.
statistical mechanics with quantum dynamics.

Firstly, we shall apply the results from Chap. 6 to prove the fluctuation-dissipation
theorem for our model. Using (%) in (7.7), the time evolution of Q(t) in the Heisenberg

picture can be expressed as
§(t) = U®YOU()
= U(=HgO)u®. . - (7.28)

Since up to a proportionality constant, the canonical density operator can be taken

aé the time-evolution operator with imaginary time, i.e.,

| . __U(=iB) |

Qs = Tr [L?(—zﬂ)] ’ . . (729)
we have
Tr[tl(=iB)d(0)4(2)]
Tr[t(~iB)|

Tr[A(=iB)d(s - iB)i(0)]

Tr [Z:{ (—-iﬂ)]
(4t - iB)a(0)),

- exp{—iﬂat}@(tm(o»ﬁ; (7.30)

(40aw)),

On the other hand, from the canonical commutation relations (1.1) and the time
evolution of §(t) in (6.38), it is easy to get the following operator identity:

[4(t), 4(0)] = —su(t)l, t>0. (7.31)
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Accordingly, fort e R:
[§(t), 4(0)) = ~iw(t)i. (7.32)

Taking the expectation value of (7.32) with respect to the model thermal state and
using (7.30), we get

(l1®,q01), = [1 - exp{-ip03](4050)), = ~tuy. (739
The ﬂuci:ﬁationfdissipation theorem can be easily obtained from (6;54) and (7.33):
ot:8) = $(a0)i0) +4(0)i(),
= 3 [1 +exp{-i603]{2)2(0)),

1 [1 + exp{—:00;}

+00
= 5 o) [ 4 ort-ina’w)

1+ exp(—ﬂW)]

= %Zodw exp(—iwt)a’(w) [1 — exp(—pw)

+o0 : . :
_ -21; / dw exp(—iwt) o(w) coth(Bw/2)

oo ,, . :
= 2%_ / dw cos(wt)a” (w) coth(Bw/2). (7.34)

Note that the integrand of the above integration is finite at w = 0 according to (6.48)

and
coth(,Be/2)=-IB2—€‘+'O(e). : | | (7.35)

‘It is worthwhile to mention that in the proof of the ﬂuctuation—dissipa.tior; theorem
for a generai system‘ [56, 57, 59], the geﬁera,lized susceptibility a(w), hence o (w),. has
to be defined from the retarded Green’s function with respect to a perturbing force
which corresponds to fx(t) in (6.6). However, since our m_o_deI is linear hence exactly
solvable, o’ (w) can be defined directly from the fundamentai solution u(t), and we do not
even have to introduce the perturbing force fx(t) in stating the fluctuation-dissipation .

theorem for our model [91]. (Although u(?) is indeed the retarded Green’s function
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with respect to fx(t), and we can still interpret our o//(w) in the traditional way. But
note that fx(t) does not have to be a small perturbation in this case.) Therefore the
fluctuation-dissipation theorem is exact for our model, and it can be proved that the
above argument is valid for any quantum linear system.

Substituting (7.34) into (7.25) and (7;26), we get

. 4oo _
IS5z = ~Sa(B)lar = 5= [ dwsin(wt)wa”(w) coth(Bw/2), (7.36)
and

2 +eo ] .
S6ez = 5= [ dos exp(—iwt)?e’ (w) coth(Bw/2)

2 oo V
= —;—7}7;-_/ dw cz)s(wt)cfa”(w) coth(Bw/2). - (7.37)

Similar to (7.34), the integrands of the above two integrations are also finite at w=0.
Substituting (7.34), (7.36), and (7.37) into (7.18), we then get the explicit expressions
for the four correlation functions of the Brownian partic_le. As a comparison, we list two

anti-symmetrized auto-correlation functions as follows: -

Ki0a0 - 0i0), = —4v, (7.38)

F(BAO) — BOBW)), = Fmri@), (7.39)

which are both temperature-independent.

7.5 Thermal Equilibiriumv State of the Brownian Particle

If the total system described by (6.1) is isolated and is in the mOflel thermal state,
then the Brownian particle is in thermal equilibrium with the remainder of the system,
i.e., the heat-bath oscillators. Therefofe, it is legitimate to define the thermal equilibrium
state of the Brownian‘ particle in our model as the state corresponding to fhe 0-th mode
reduced density operator of the canonical density operator. In the following, we shall

derive the explicit form of this thermal equilibrium state of the Brownian particle.
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Since the Hamiltonian (6.1) is homogeneously quadratic, the model thermal state is _é,
Gaussian state with zero mean vector, thus it is completely determined by the covariance
matrix 3g according to the discussion in Sec. 3.4. The characteristic function of the

model thermal state takes the form
— 17 T |
d5(2) = exp {— >z) Xplz } (7.40)

From the reduction theory studied in Chap. 5, the reduced state out of the model
fhermal state that corresponds to the Brownian particle is characterized by the reduced
covariance matrix |Xg]], which is also a Gaussmn state w1th zero mean vector. This
reduced state is then defined as the thermal equilibrium state of the Brownian particle |
immersed in a quantum dissipative heat bath modeled by the independent- oscillator

model. The correspond_lng one-mode cha.ractenstlc functlon is -

1 :
@ 5(z, k) = exp {—— (:c k) 12513 ( )} (7.41)
Since Xg is _block-djagonal, 124l is diagonal. Hence we can define '

e8] O )

(7.42)
0 Opplf]

12s] = (

where [] indicates that these two variances are with respect to the thermal equilibrium
state with the tempera.ture B~*, and ogqls) and opplB) can be taken as the the initial

values of (7.34) and (7.37), respectively, as follows:

+co -
Tgql81 = v(0; ﬂ) = -2%1_- / dwa"(w) coth(fw/2), : (7.43)»

. . 2 +oo : ) )
el = —m5(0; 0) 3 5 [ dweo’ () coth(Bw/2). (7.44)

 Both (7.43) and (7.44) can be transformed into series expansions by using the

Parseval-Plancherel theorem in Fourier analysis:
+o0 . 1 +o0 . ' v :
[arimg =52 [dF@EE), (7.45)

where (f(t), F(w)) and (g(t), G(w)) are two Fourier transform pairs according to the
definitions in Sec. 1.1. ' ‘
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In order to apply the Parseval-Plancherel theorem fo (7.43) and (7.44), first we have
to replace coth(Bw/2) by its principal value Prcoth(8w/2) in (7.43) and (7.44) since the
former has no Fourier transform but the latter does. This replacement will not change
the results of the integrations since, as we just mentioned, the integrands of (7.43) and
(7.44) are both finite at w=0. -

Since the Fourier transform of Prcoth(Bw/2) is [—iPrcoth(wxt/B)/A] and that of
o (w)is giveh by (6.54), according to the Parseval-Plancherel theorem we can transform

(7.43) into

OgqlB] = /d [w('r)] [ PI‘COth(ﬂ'T/ﬁ):l

1 P
-3 L drw(r) coth(nr/ )

= %— /ooo.dru(r) coth(nr/B)

=3 / dru(r) [1 +2 Z eXP( 2/-“‘"7'/,3)]

u=1

- SfroeaE e ()

p=1
1 == 2ur\ - |
=—= Y 2z (-) , (7.46)
5,2~ 5
where Ls{u(t)} = Z-*(s) = Z7*(—s) has been used. Note that Pr disappears from the
integration of (7.46) since the integrahd is finite at 7=0.
Similarly, from (7.44) we have

s [

Z(s) ]s=2u7r/ﬁ '
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3£ @) e ) oo

— _ 4 __.:__Z_(s_)
70 O ="

where we have used

Es{u(t)} = (7.48)

It is intéreéting to note that 2um /8 in the above two series is the Matsubara frequency
of the temperature Green’s function [67], and Z—* (2ur/B) followé as the Matsubara sus-
ceptibility analogous to the susceptibility a(a}).[62]. Eqgs. (7.46) and (7.47) are convenient

for practical calculation of gg5] and oppl4] -
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Chapter 8
Quantum Langevin Equation

m this chapter, we shall begin to take the thermodynamic limit and derive the
quantum Langevin equation for the positidn operator of the Brownian particle from the
independent-oscillator model. The purposes of studying the quantum Langevin equation
are: (1) Among all equivalent formalisms, fhe quantum Langevin equation is the most
suitable one for constructing the dissipative heat bath. (2) The quantum Langevin equa-
tion is the simplést approach for some special problems of quantum harmonic Brownian
motion. (3) The independent-oscillator model is a well-defined quantum system which
can be studied by first principles of quantum mechanics. But before we can make any
prediction from it, we have first to verify the validity of this model. This verification
can be done via the construction of the quantum Langevixi equation, and we will show .
that in the classical limit this quantum-mechanical model gives results conipatibleiwith

the classical phenomenological théories discussed in Chap. 2.

8.1 Spectral Density

In this section, we shall define the spectral density for the heat-bath oscillators of the
independent-oscillator model. ‘As we discussed in Sec. 6.4, the manifestation of resonant
behavior is the mechanism for the heat-bath oscillators being able to model a dissipative
heat bath. Therefore in order to define the spectral density, we should first examine in

more detail the behavior of Z(s) near the imaginary axis.
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Using (6.51), we can express fj[¢ — iw] in (6.24) as

ﬁ[e—iw]=%z;mew3[ — et T | | (8:1)

—w — Wy + € —iW 4wy + €

='—iPrZ mew} (__w__) + % Z mgw?[&(w + we) + 6(w — wz)].
¢ ¢ :

2 2

Note that the real part of 7j[e — w] is an even function, while the imaginary part is an
odd function of w.

The spectral density p(w) is then defined as the real part of 7j[e — w]:
p(w) = Reffle — iw] = % > mew} [6(w + we) + 8w — wr)], - (8.2)
. 7 ‘

- which is a non-negative even function of w. Using this p(w), we have the following general -

relation:
. 1 +co )
Y meiGlur) = — [ dop@)G(w), (8.3)
£ - —o0

for any even function G(w). Accordjngly, 7le — iw] can be transformed info

e —iw) = —iPr() + p(w), | (84)
where
e | . -
Pr(w) = —7—1_—'Pr / dvp(v) (lﬂ — w2) . (8.5) -
Substituting (8.4) into (6.23), we get |
Z(e — w) = —m(w® — wg) — wPr(w) — wp(w). ’ (8.6)
Note that |
Z(c—iw) #0,VweR, | (8.7)

since all zeroes of Z(s) lie on the imaginary axis of the complex s-plane. Using (8.6),

a(w) in (6.45) becomes

a(w) = la(@)f [~m(? - &) — wPr(@) + iwp@)], 89)
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hence
o'(w) = la(w)Puwp(w). (8.9)

In terms of p(w) we can also transform 7(t) in (6.16), as an even function of t€R,

into the integral form:

1
n(t) = — / dwp(w) cos(wt).

+co
- .2_1;_ / dwo exp(—iwt)[2p(w)], (8.10)

i.e., n(t) is the Fourier transform of 2p(w).
Since both a(w) and 7(t) are completely determined by p(w), it is convenient to
work on this spectral density. In Sec. 8.3, we will show that p(w) also determines the

correlation function of quantum noise.

8.2 Quantum Dissipative Heat Bath

If a quantum harmonic oscillator is isolated, the time evolution of this oscillator will
be periodic since the system is free of dissipation. On the other hand, if we intend to make
a dissipative heat bath model out of our model Hamiltonian, then the corresponding
fundamental solution u(t) in (6.44) or (6.53) must decay with the increasing t.

* From the Riemann—Lebesgﬁe Lemma in real analysis [98], the fundamental solution
u(t) in (6.53) approaches zero as t—oo if o”(w) is a measurable function of w, which
is impossible when n is finite. This can be understood from R(t) in (7.9), in which
every elemenf is a linear combination of periodic functions of ¢ with frequencies ;’s, the

normal mode frequencies of the total system, when n is finite. This means that o'(w)
| in (6.53) is a linear combination of delta functions é(w + Q;), and each delta function
corresponds to a simple pole on the imaginary axis of the complex s-plane.

Therefore, in order to make o” (w) meaéurable, there must be a cut instead of a
collection of finitely many simple poles on the imaginary axis of the complex s-plane. In
other words, to construct a dissipative heat bath model we must take the thermodynamic

limit n--o0, such that the accumulation of those infinitely many simple poles produces
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an effective cut. From the relative positions among the wp’s and ;s described in (6.28),
we know that this can be achieved by a (uniform) distribution of infinitely many we’s.
In addition, we have to demand that the spectral density p(w) be a 1;1easurable function
since o’ (w) is a function of p(w) according to (8.6) and (8.9). It is interesting to note that
this thermodynamic limit is equivalent to a field description of the heat bath (23, 30, 96]. -

. From noW on, we shall assume that the thermodynamic limit n—oo is taken and
p(w) is a legitimate spectral density. Acéordir_lgly, u(t), v(t; B), and 7(t) all approach
zero Wher; t—o00, and we have the well-defined Fourier transform pairs: (w(t),2i0/'(w)),
(v(t; B), &(w) coth(Bw/2)), and (n(t),2p(w)) according to (6.54), (7.34), and (8.10).

" Thus we are allowed toldrop' ¢ in all related formulas henceforward.

v Conventionally, the heat bath models a;re élassiﬁed in terms of the spectral density

I (w) instead of p(w). I(w) is defined as ‘ ‘ .
I(w) = %Zmzwfé(w -—wg), © (811)

which corresponds to the positive frequency part of p(w) since I(w<0)=0. I{w) can be

expfessed in terms of p(w) as
1) = wp()B(w), | (812)
where 6(w) is the Heaviside unit step function. Conversely, ‘we have | |
wp(w) = I(w) — I(~w). _ (8.13)

Hence these two spectral densities p(w) and I{w) are mathematically equivalent.

In contrast to an ideal (quantum) heat bath which has only one parameter, the
 temperature 57!, to characterize a Qua.ntum dissipative heat bath we have to- specify
both the temperature and the spectral density I{w) or p(w). We usually let the spectral
density I(w) take the form ' '

I(w) = myw®R(w; A)0(w), : | (8.14)

where ~ is a constant, and R(w; A) is the cutoff function with A as the high-frequency
cutoff. The heat bath is called ohmic for a = 1, sub-ohmic for 0 < a < 1, and supra-
ohmic for a > 1. Note that in defining the spectral function (8.14), we have implicitly
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assumed that each coupling constant myw7 is mﬁmtes1ma.1 since otherWJse I(w) will be
divergent. However, this is not the weak-coupling limit [7] because the couplmg between
the Brownian particle and the heat bath is described by I(w) which is finite in general.

In the literature, the cutoff function R(w; A) usually takes the following forms: o
(i) Abrupt cutoff (Debye-Zwanzig model) [10, 108]: | | |

Rw;A)=0(A-w); | | (8.15)

(ii) Lorentzian cutoff (Drude model) [38, 44, 45, 76, 95]:

v A2
R(w; A) Xk (8.16)
(iii) Exponential cutoff [17, 48, 61, 73]
R(w; A) x exp (—wb/Ab) , b=1or2. (8.17)

It is obvious that I(w), hence p(w), is a measurable function of w for the above three
cutoff functions. | _

According to (8.11), by smtably choosmg the distributions for m, and wy of the heat-
bath oscxlla,tors we can construct any given physmal spectral density I(w) in the limit
n—o0. Therefore we have verified that the independent-oscillator model is a legitimate

model for a general environment [30].

8.3 Quantum Noise

Consider a Brownian particle immersed in a quantum dissipative heat bath modeled
by the Hamiltonian (6.1). We assume that initially the Brownian particle and the heat-
bath oscillators are independent of each other, i..e.,A the initial state of the total system is
a product of the state of the Brownian particle.and that of the heat-bath oscillators, the
' so-called fatctorizable initial state. If we want to model a quantum dissipative heat bath
of temperature 3!, the natural choice of the initial state for those independent heat-
bath oscillators is the thermal state with the same temperature. According to (3. 48),

the characteristic function of the thermal state of the heat-bath oscillators is
Te
Bpotn(ze, ko) = Hexp —-Z coth(Buwe/2) (a:g,‘kg)gg X
£ 74
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‘1 Ty L
= exp {—Z Z coth(Buwe/2) (.’I?g, kg)ge ( X ) } . (8.18)
St AN 7
Using { )p,¢n to denote the expectation value with respect to the initial state of the

heat-bath oscillators, we have

(Gedbath = {Pdparn = 0, - (8.19)
fa Sepr .
.<‘”q">bath = e coth(Buwe/2), | A , (8.20)
A Sopr '
<P2Pe/>bath = —5~ Mewg coth(Bwe/2), (8.21)
(@ebe), , = —(pede),, , = %o (822)

In the following, we shall a.rgue that under fhe above assumptions, the force term |
f(t) on the right hand side of (6.18) serves as the qﬁantum noise (or quantum random
force) [31], which is the quantum analogue of the colored noise diséussgd in Sec.‘.2.5.

(I) Since f(2) is a linear combination of §(0) and $¢(0), and the thermal state of the
heat-bath oscillatdrs is Gaussian, we conclude that f (t) is a quantum Gaussian process
with respect to ( _’}bath. | |

(I0) (F())posn =0 according to (8.19).

(IIT) The symmetrized correlation function of f (t) is defined as

K (11,123 8) = ${ f(t2) f(t2) + f(t2) f(t1)>bath. (8.23)
From (8.20)—(8.22), we have .
< ft)f (i2)>bath = % Z mpwj, coth(Bwe/2) cos(we(ts — t2))
. £ .
~ i zljméwz’ sin(we(ty — 12)),  (8.29)
hence the explicit expression of the correlation function K (1,%2;8) in (8.23) is
K(t1,t2:8) = 1 3" maw coth(Bur/2) cos(we(ty — 1))
. 14 . .
1 | ’
= / deop(w)w coth(Bw/2) cos(w(t: — t2))
1 /
=z / dwp(w)w coth(Bw/2) exp(Fiw(ty — £2)). (8.25)
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Since wcoth(Bw/2) is an even function of w for finite B, it is suitable to use (83) to
convert the sum into an integration.
Because K (t1,12; 8) = K (t; — ta,0; B) according to (8.25), f(t) is a stationary pchesé

with respect to { ),.,. Hence we can merely study
o 1 +oo
K(t,0;8)= K(t;8) = o /dw exp(—iwt)wp(w) coth(Bw/2), tER, (8.26)

and accordingly wp(w)coth(Bw/2) can be interpreted as the powef.épectrum of f(t), the
qua.nfum analogue of Ir(w) in (229) K(t; B) is usually called the noise kernel in the
path-integra.l approach.

In order to discuss the classical limit of K (; 8), let us first approkimate K(t;B) in
(8.26) by

v AopA
K(t8)~ 5 /_  doo exp(—it)p(u) coth(Bis/2), (827)

where A is the cutoff frequency. Note that we have let % appear explicitly in the above
equa,tidn. If we impose the classical limit BAA < 1, which corresponds to the high

temperature limit and/or the limit A—0, then it follows that

Kt 6) ~ ;15 /_ i de exp(—iwt)p(w) ~ % (8.28)

which is analogous to the correlation function of the classical colored noise given by
(2.28). ,

" From (I)-(III), we conclude that f(t) serves as a quantum analogue of the classical
colored noise. As a comparison, we also calculate the commutator of f(t1) and f(t;) as

- follows:

[f(t), f(t2)] = ~i 3 mewf sin(we(tr — 1))

¢
i .
= — /dwp(w)wsin(W(h —to))1
= it - )i, | (8:29)

which is an odd function of (t;—t;) and is temperature-independent just like (7.38) and

(7.39).
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8.4 Quantum Langevin Equatioh

From the above discussions, we find that if (i) n—oo and the spectral density of the
heat-bath oscillators is defined according to (8.14), and (ii) the initial state of the total
| system is factorizable with the heat-bath oscillators being in a thermal siafe, then 1t is
legitimate to call (6.18) the quantum (generalized) Langevin equation for the position
operator §. Note that 7(t)/m and f(t) in (6.18) are, individually, the quantum analogues
of the memory kernel and colored noise in the classical generalized Langevin equa,tioﬁ
~ (2.26). The solution of (6.18) is given by (6.38). ' ' ‘
Comparing the quantum Langevin equation (6.18) with fx(t) =0 with the classical
generalized Langevin equation (2.26), we find that: (1) There is no classical correspori;
“dent to the term —§(0)n(t) in (6.18), which is an intrinsic defect of the linear-coupling
and independent-oscillator models. (2) The lower limit of the integral term in (6.18) is -
t=0, in contrast to that in (2.26) which is taken to be —oo. This is because in Chap. 6,
we took t=0 as the initial moment when we solved the equations of motion. Therefore
the statiéna.ry solution of (6.18), which corresponds to the thermal equilibrium state of
the Brownian bargicle, only exists when t-+co in general . On the other hand, for the
clz;ssiéal genera,iized Langevin state (2.26), the stationary solution exists for any finite ¢.
For the thermal equilibrium state of the Brownian particle, since a'(w)coth(Bw/2)
and v(t; §) form a Fourier transform pair, we can interpret a”(w)coth(Bw/2) as the

power spectrum of the stationary quantum process §(t). Compared with (8.9), we get
o/"(w) coth(Bw/2) = |o(w)[* [wp(w) coth(Bw/2))]. ~ (8.30)

According to the discussion in' Sec. 8.3, wp(w)coth(Bw/2) is interpreted as the power
* spectrum of the quantum noise f(t), hence for the stationary solution of the quantum
Langevin equation (6.18), Eq. (8.30) is the quantum analogue of (2.31). Through the
successful derivation of the quantum Langevin equation from the independent-oscillator
model, the validity of this model is herewith verified. )

The advantage of the quantum Langevin equation (6.18) are: (1) Its solution (6.38)
is state-independent, hence we can take the expectation value with respect to any given
initial state (not necessarily fax:torizé,blé) to calculate the time evolution of the mean vec-

tor of the Brownian particle. (2) Using the solution of the quantum Langevin equation,
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we can derive the time evolution of the covariance matrix of the Brownian particle with
respect to an a.rbitfary factorizable initial state, which will be discussed in Sec. 10.3.
The limitations of the quantum Langevin equation are: (1) It is derived under the
assumption that the initial state is factorizable, hence it cannot be applied to the general
problems with non-factorizable initial states. (2) With respect to the factorizable initial
states, it is inconvenjent (although not impossible in principle) to study the relaxation
of the non-Gaussian initial states of the Brownian particle using the quantum Langevin
equation, because these kind of states cannot be complétely determined by the first two

v
moments.

8.5 Ohmic Dissipation

In this section we shall study the simplest example of quantum harmonic Brownian
motion, i.e., the case corresponding to ohmic dissipation with infinite cutoff. In this case

I(w)=mywl(w), and p(w)=my becomes the friction constant. From (8.10),
n(t) = =X / deo exp(—iwt) = 2my5(t), - C(831)
and accordingly the»qua,ntum Langevin equation (6.18) with fx(t)=0 reduces to
WHw@ﬂmw—JMM®+@) | (8:32)
or equivalently,

60+ i) + (44 +2160) a0 = O (8:33)

where (1.11) has been used.
The corresponding generalized susceptibility a(@). takes the form

» 1
m(—w? — tyw + w?) ’

a(w) = (8.34)

hence

"N yw/m B : '
o'(w) = =)t P | (8.35)
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The fundamental solution u(t) for (8.32) is easy to solve using (6.44). Let us consider
the underdamped case as an example. In this case the two zeroes for the denominator

in (8.34) can be expressed as

— . ' = 2 12. ) |
wie = tvg - 2-2— , Vo= jwi-— ) eR. (8.36)

Using a contour integral on the complex w-plane, we get from (6.44):
u(t) = %:‘:Qexp (——%—’yt) . : (8.37)
‘Note that the corresponding i(t) has a jump at ¢=0.

In contrast to the classical Langevin equation, where ohmic dissipation is associated
with white noise, the power spectrum of the ohmic quantum noise is myw coth(Bw/2),
which is obviously colored. This difference can be traced to the failure of the classical
equipartition law in quantum statistical mechanics. In the classical limit discussed in

Sec. 8.3, we have
K 8) ~ -2%5@), | (8.38)

which cbrresponds to claséica.l white noise discussed in Sec. 2.4. Hence we find that, using
ohmic dissipation accompanied by the classical limit, the quantum Langevin equation
(8.32) becomes the analogue of the cléssical Langevin equation (2.21) with an extra
8(t)-term, which can be interpreted as a frequency shift according to (8.33).

Before closing this section, let us discuss two more interesting questions. The first
one is the weak-coupling limit of the ohmic quantum dissipative heat bath [7], which

corresponds to the case y—0. From (8.35), we have under this limit:

_ T .
= sign(@)d(e? - uf)

oo
2muw,

(6w = wo) = 6(w +wo)]. . (8.39)

Hence the heat bath model reduces to.an ideal heat bath free of dissipation. According
to (7.43) and (7.44), in this limit the thermal equilibrium state of the Brownian particle
is consistent with the thermal state of a harmonic oscillator.” It is obvious that this_

conclusion is also true with respect to a finite cutoff.
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The second interesting question is the long time thavidr at low temperature. Let
us use v(t; 3) with large t > 0 as an example to compute the so-called long-time tail
[38, 44, 45, 51, 76]. The formulation we shall use is a generalization of that discussed in
Sec. 7.5. | ‘

Applying the Parseval-Plancherel theorem (7.45) to (7.34), in analogue to (7.46) we
have for any t>0:

v(t; B) = % +/°°dw [a" (w)] [exp(z;wt) cotil(ﬂw/2)]*
- 7°d7' [wg)] [ - Prcoth(w(r—t)/ﬂ)]

% /Ooo dru(r)[coth(r(r + 1)/B) + Prcoth(m(r —.t),/ﬂ)]. (8.40)

This formula is especially useful for low temperature expansions. For the spécial case
that the temperature approaches absolute zero and t is large, we get the asymptotic

value of v(t; 3) as

v(t; B) = —71—l_— Pf/oodfu(T) [ g 7_; m

ZZ
>.\
o~
N
\

Q..

s‘

|4

~~

\‘

i ——

s‘

>(8.41)

where (6.46) has been used, and we have taken advantage of u(t) being very small for

large t.
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Part III

‘The‘ Dynamics
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Chapter 9

General Formulations

9.1 Time _Evolution of the Brownian Particle -

Fro‘m'the discussion in Sec. 5.4, we know that once we have the éxplicit form of
the initial characteristic function, we can immediately write down the time evolution of
the reduced characteristic function in terms of the phase flow. For qﬁa.ntum harmonic
Brownian motion, the subsystem A is the Brownian particle and B is collection of
the heat-bath oscillators according to the notations in Chap.'5. With respect to the
Hamiltonian (6.1), if the characteristic function of the initial state of the total system
is ®;;(2), according to (5.11) the time evolution of the reduced characteristic function

. ®o(z, k; t), which corresponds to the reduced density operator for the Brownian particle

at t, is given by
Bo(2, k3 2) = Bini ((2, 0, %, O)R™T(2)) = Bimi (2(2)), (9.1)

where (2,0, k,0) is a vector in the 2/N-dimensional phase space with only two non-zero

components, and Z(t) is a 2N-dimensional vector defined as
£(t) = (2,0,k,0)R™(2) = (2,0,k,0)J7R(), (9.2)

which is a function of z, k, and t. Note that z¢ and ke are not involved in the definition

of 2(t)! Comparing (9.2) with (6.32) and (6.35), we can decompose

2(t) = (2(2), 51(8), B2(8), - -+, Bn(), B(D), Fa(), Ralt), -+, Bn(1) 93
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&«

O\ _ [\ -
(l@(t)) = r;(t) <k) ) (9.4)

into the following expressions:

where _
mat) ~u(t) )
ro(t) = | 5 =j"IRO1™,  (99)
-m2i(t)  ma(t)
and
» miiig(2) —ug(t) o
re(t) = |, | (9.6)

—mm[ile(t) Mgty (t)

with the initial values |
10 o | |
ro(0) = 0 1)’ and ry(0) = 0. : : (9.7)

The quantum dynamics of the Brownian particle is then completely determined by
the matrices r;j(t), whose elements are the elements of the 0-th and N-th rows in R(?).
Hence our claim in Part II that only these two rows in R(t) are needed for studying the
. dynamics of the Brownian particle has been confirmed. . |

Eq. (9.1)_ is the main result of this vpaper. We shall show in the following two chapters
that it can be appiied to quantum harmonic Brownian motion with great efficiency. If
the model Hamiltonian is (6.6) instead of (6.1), according to (5.11) there will be an extra
fa,ctor_eﬁcp {i(2,0,k,0)Ja™(t)} in (9.1), which corresponds to a shift in the mean vector
of the Brownian particle and is easier to deal with using the quantum Langevin equation

discussed {n Chap. 8.

9.2 _Two. General Relations

Since there is no coupling term involving the momentum operators in the model
Hamiltonians, there exiét two general relations which are useful in simplifying the calcu-
lations. With respect to the model Hamiltonian (6.1) or (6.6), the Heisenberg equation
of motion for § of the Brownian particle takes the form .

dg .

eq _ B 9.8
m— =P, | (9-8)
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which is the quantum correspondent of (6.8). Taking the exp.ecta,tion value of the above

equ@tion with respect to a given physical state, we have
mZ{a) = (5)). | (99)
dt _
Accordingly, the time derivative of o4(t) is related to g, (t) by
md _mdyy. 2
T aon® = 55 [(107) - (1) ]
, 1, o ) )
= {4080 + 301 - (4®)(p(2)) |
= og(t)- - (9.10)

Since (9.9) and (9.10)-afe valid for any given state, we can always calculate (p(t))
and og,(t) from the time derivatives of (§(t)) and agq(t), respecti;\fely. Therefore we
shall henceforward omit the explicit expression for o4p(t). Note that due to the coupling
terms in the model Hamiltonians, there is no simple relation between c4,(t) and o,,(t)

nor between og4,(t) and opp(t).
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Chapter 10
Factorizable Initial States

In this chapter we shall consider the time evolution of a Brownian particle whose
initial state is indepeﬁden_t of that of the heat-bath oscillators, which is a thermal state.
In other words, the initial state of the total system is the factorizable state that we
assumed in deriving the.qua,ntum Langevin equation. As we mentioned in Chap. 8, the
quantum Langevin equation is only convenient for obtaining the time evolution of the -
mean vector. For general problems, wé shall use the reduced characteristic function to
stﬁdy the time evolution of the Brownian particle.

Throughout this chapter, the denéi’cy operator of the total system corresponding to

the factorizable initial state is assumed to be
6(t=0)= 045, (10.1)

where the density operator g, corresponds to an arbitra.ry physical state of the Brownian
particle, and 9p to the thermal state of the heat-bath oscillators at temperature 3-* as

discussed in Sec. 8.3.

10.1 Time Evolution: General Formulation

We define the characteristic function corresponding to the density operator (10.1) of

~

the factorizable initial state as -

 Bini(2) = Bale, k) Bs(ae, k), (10.2)
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. where the characteristic function ®,(z, k) corresponds to g,, and ®5(z¢, k¢), which is
the same as ®pqen(ze, ke) in (8.18), corresponds to gp. Note that both & ,(z,k) and
- ®p(zy, ke) are individually normalized.

- According to the formulations in Sec. 9.1, the time evolution of the reduced charac-
teristic function for the Brownian particle with respect to the facforizable initial state

(10.2) is
Bo(a, kit) = .4 (5(2), K(1)) @5 (Ze(t), Re(t))- 103)

Substituting (9.4) into &5 (ig(t), Z?g(t)) and comparing with (8.18), we get the following

exact expression: -

5 (Ze(t), ke(t)) = exp {—-} ; coth(Buwe/2) (=, k) r5(2) gerelt) ( :) }

1 NE: -
= exp | ——2—(:c,k)@(t; ﬁ‘) k , | (10.4)
which is the a.nalogue. of the influence functional in the path-integral approach. The 2x2
matrix ©(t; B) is defined as '

Ot:f) = + T cothBur/DOgere) (105)
£

m?[ig(t)® + wue(t)’]  —mi(t)[de(t) + wiue(t)]

= ZZ: ;Z—ee coth(Bwe/2)

—mie(Olie(t) + fue] (0P +uFue(®?
At t=0, ©(0; 8)=0 according té the initial values of ry(¢) in (9.7), hence we have
 @5(2(0),ke(0)) =1 (10.6)
according to the normalization condition of ®5(Z,, Zfz). It follows that
Bo(z, k; t=0) = 8, (2(0), k(0)) = @a(s, k), (10.7) -

which means that there is no initial influence from the heat bath on the Brownian

particle, consistent with the assumption that the initial state is factorizable.
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The explicit expressions for the elements in ©(¢; 8) can be calculated by using (6.33),
(6.34), and (6.36), with the aid of (8.25) and (8.26) as follows:

t pt
©1(t;8) = m? /0 /o dridryi(r)i(r) K (1 — 723 B)

m2 T “ t ‘ 2

= ;_n; /dwwp(w) coth(ﬂw/?),/o dr exp(iwr).it(f) , (10.8.)

@22(t; ,3) = Atltdfldrgu(rl)u(rg)fi’(rl.— Tg;ﬁ)
| +50 | . .

= 5}7; /dwwp(w) coth(,Bw/.?)l/o dr exp (iwT)u(t)|, (10.9).
©12(4;8) = 921(t; B)

= -m [ [dndnitar) K -8)

= -%3(;)22@ B), | ) o | (10.10)

where K (t; 8) is the correlation function of the quantum noise defined in (8.26).
Summarizing the above results, we get the time evolution of the reduced characteristic

function for the Brownian particle as , _ ,
| Bo(z, ki) = B4 ((2), k(2)) exp {-;1- (=, k) o(t; 6) <x. ) } , (10.11)
o 2 k

which is completély detefmjned by the initial state of the Brownian particle, the fﬁn-
damental solution u(t), and the spectral density as wéll as the temperature of the heat
bath: Note that the elements of the matrix O(t; ,8‘) depend expliciﬂy on the spectral
density p(w), which means that (10.11) depends on the cutoff frequency A in (8.14).

10.2 Approach to Equilibrium

In this section we shall prove that for an arbitrary factoringle initial state, as time
t—oo the Bro;avnja.n particle always aﬁproalches the thermal equilibrium state defined in
~Chap. 7. - 7

As discussed in Sec. 8.2, if we take the thermodynamic limit n—oco and use the

‘measurable spectral density p(w), then the fundamental solution u(t) approaches zero as =
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t—00 according to the Riemann-Lebesgue lemma. Similarly, @(t) and ii(t) also approach

zero in this limit according to (6.53). Hence we have
tlircr)xo ro(t) =0, (10.12)
and
lim &, (2(), k(1)) = @4(0,0)=1 (  (10.13)

according to the normalization condition on @,(z,k). Thus we find that the final state
of the B'roWnian particle is independent of its initial state. As t—o0, the reduced char-

acteristic function for the Brownian pa.rticle‘takes the form
; [ z
tl_lf& Bo(z,k;t) = tli.%lo eXpy = (w, k) O(t;B) .

| 1 | z ’ |

exp —?(x,k‘) O(o0; B) e (10.14)
The explicit expressions for the elements in ©®(o0, B) can be obtained by applying (6.46)
and (8.9) to (10.8)—(10.10): ’ '

2

Cm2 +co . o )
Ou(ei0) = 5 [ dowp(w) coth(Buo/2)| [ dr expliwr)i(r)
m2 +oo . :
-5 / dos"p(w) coth(fo/2) ()

2 +oo . 7
- % / dw e (w) coth(Bw/2), | , (10.15)
. 1 +oo ' oo 2
O2(o0; f) = o /dwwp(w) coth(ﬁw/2)4’/o dr exp(iwT)u(T)
. -1 oo ‘ .
== / dwowp(w) coth(Bw/2)|a(w)[?
1 +co .
= / dw'(w) coth(es/2), (10.16)
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and
©12(c0; B) = —%(:322(00; B)=0. | (10.17)

Note that we have omitted i¢ from the kernel exp(iw) in (10.15) and (10.16). This is
because, after taking the thermodynamic limit, both Fourier-Laplace transforms of u(t)
and u(t) converge.
Comparmg the four elements of ©(oc; ﬂ) with (7. 43) and (7.44), we find that the
final characteristic function of the Brownian particle is
tlirgo Bo(z, k;t) = exp {—% (:c, k) (Upg[ﬁl aq(:[ﬁ]) (:) } y (10.1.8)
which is exactly the characteristic function (7.41) for the Brownian particle in thermal
' equilibrium with the heat-bath oscillators. Therefore we have proved that, with re-
spect to an arbitrary factorizé,ble initial state, the Brownian particle a.lway(s qpproaches

thermal equilibrium when t—oco0. o

10.3 Time Evolution of the Gaussian States and the

Covariance Matrices of Arbitrary Initial States

To illustrate the application of the resilts derived in the last two sections, let us
consider a simple example where the initial state of the Brownian particle is the Gaussian
state defined in Sec. 3.4. The characteristic function of this initial state is the one-mode

version of (3.31):

. » 1 . -T " . x - . xc ’ .
b ,(z,k) = exp {———2— (x,.k)Jv Yoj (k) + z(a:, k)_] (kc >} o (10.19)
wheré (z¢, k) is the mean vector and Zg is the 2.x2 covariance matrix of this one-mode
_ Gaussian state. '

Substituting (10.19) into (10.11) and using (9.5), we get the time evolution of the

" reduced characteristic function of the Brownian pé.rticle as
- ®o(z, k; 1) | | (10.20)

- exp{;é—(x,k)[ IRETSo [RET ™) + ©(t; ﬂ)]( ) +i(c,k); [LR(t)'n‘(::)}.'
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From this characteristic function, we find that the mean vector follows the restricted
phase flow with (z., k.) as the initial value, and the covariance matrix evolves according

to

Sot) = [RETZ IR +i7 (% 8);. (10.21)

Therefore the state is Yalways Gaussian in the course of time evolution, and it approaches
the thermal equjlib‘rium state as t—oo.

Using the formulas in Sec. 4.2, we can generalize the above results to that of the
time evolution of arbitrary factorizable initial states. Suppose that a given initial state
of the Brownian particle has the initial mean vector (z., k;) and the initial covariance
matrix Xg. It is eésy to prove that (i) the time evoluti<;n of the mean vector follows the
restricted phase flow with (z., kc) as the initial value; and (ii) the time evolution of the |
covariance matrix obeys (10.21). Nevertheless, (i) and (iil) cannot completely determine
-the time evolution of the Brownian particle for a non-Gaussian initial state.

The above results (i) and (ii) can also be obtained from the solution of the quantum

Langevin equation. This can be easily done if we put (6.37) and (6.39) into the following

Q(t) 4(0) - rt | u(T) ) |
<ﬁ(t)> lL()Tl( (0)> fodr (ma(r))‘[f(t_r),+fx(%_T)]’ (10.22)

then set fx(t—7)=0.

form:

10._4 Environment-Induced Damping of Quantum

Interference

In this section we discuss an interesting problem where the initial state of the Brow-
nian particle is a superposition of two coherent states [12, 48, 73, 107]. We shall show
how to use the characteristic function to calculate the damping of quantum interference
due to influence of the environment in the course of time evolution.

In order to simplify the formulatlon, we introduce a new notation z = (:1: k) for the
vector on the Brownian phase plane. Accordingly, (—z) represents the correqundmg

one-mode Weyl operator. Note that this notation will be employed only in.th_is section.
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We then assume that the initial state of the Brownian particle is a superposition of

- the following two one-mode coherent states:
lza) + |25), | (10.23)

where z,=(z,,k,) and z, =(zp, ky) are two non-identical constant vectors on the Brow-
nian phase plaixe. The mean and difference of z, and z; are defined as -

e e | - (10.24)

The density operator correspondiﬁg to the initial state (10.23) is
6a = Ca(lza) +129) ((@al + @sl), ~ (10.25)
where
Cp= L | (10.26)
= . .
2(1 + Re(z, l25)) S

is the normalization constant, with

(2a|2) = exp {—%zAgozz + -%zasz} ' | (10.27)

accordipg to (1;48).

Using (3.12) and formulas in Sec. 1.3.1, the characteristic function of g, can be

obtained as
8,(2) = Tr[eD(-0)] = Culbule) + 4(0) + 0@+ @], (1029
where
| #a(2) = (@l D(~2)lzo) = exp{~} 207" + iz}, (10.29)
and | | S |
| | #b(2) = (2| D(~2)|) = exp{—%zgg,f + iz } (10.30)

are analogies of (3.13), and
Gu(2) = (zal D(-2)I2)
= exp{—%(z + z;)go(z +2z,)" +izjz;, + %zajz{}
= (Zal2s) ex‘p{—%zg(,z'r + izj(z, — -%jgoz’;)}, ' | (10.31)
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and

d0a(2) = (26l D(=2)I2a)

exp{—%(z —24)80(z — 2a)" + izjz;, — %zajzg}

= (zp|za) exp{—-}fzgoz'r + 1zj(z,, + ;—'jgozl'\)} -(10.32)

correspond to the interference terms.
Once we get the explicit expression for @ 4(2), the characteristic function for the
initial state of the Brownian particle, we are ready to derive the time evolution of the

reduced characteristic function ®o(z; ) for the Brownian particle. Using the notation

IT(t) = (i(t)) = ro(t)z" - (10.33)
T \kw) T | '
Eq. (10.11) becomes |
Bo(z;t) =B, (i(t)) exp{——%—z@(t; ,B)ZT}. ' .(10.34)

Substituting (10.28) into (10.34) gives the explicit expression of ®o(z;t). In order to

keep track of the interference terms, we express Po(z;t) in (10.34) as

Bo(z;t) = Ca[®a(z:t) + Bo(238) + Bas(2:8) + Bra(2: 1)), | (10.35)

with | |
2a(zt) = exp{ -1z [FT (D) garo(t) +20(t; )2 + izizL(H)}, - (10.36)
(2 1) = exp{ ~2z[T () goro(t) + 20(t: B)|2" +i2i7 (1) }, (10.37)

Bas(z3) = (zalzs) exp{— 2 2[5 () gorol2) + 20(t: B)] 27 + izi[2h () — £irt (oL}

(10.38)

Boa(z3t) = (mlza) exp{ ~ 12 [T (D) gorol(t) + 20(5; B)| 27 + izi[2h, (1) + $irT (o7l }

(10.39)
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where

20= RO, 0= RO,  (040)

and

2 (8) = [ROT, o  (1041)

e, 2,(t), zo(t), and () all follow the restricted phase flow on the Brownian phase
plane, with z,, z;, and z,, as their initial values, respectively.

Since among those four terms in (10.35), &, (z, t) and ®y(z;t) correspond to the time
evolution of the coherent state |za} and |z), individually. It follows that [@vab(z; t)+
Bpe(z; 1)) ’corresponds to the interference. Because the characteristic functions have no
direct physical meaning, in order to make a quantitative study of this interference we

have to transform the characteristic function (10.35) into the Wigner function:
Wo(z;t) =C, [Wa(z; t) + Wi(z; t) + Wan(z;t) + Waa(z; t)] , (10.42)

with W,(z;t) being the Wigner function corresponding to the characteristic function
®,(z;t) in (10.35), etc.
Since ®,(z;t) in (10.36) is Gaussian in z, we can use the formulas in Sec. 3.4 to get

the corresponding Wigner function:
Wa(z;1) = C1(t: 8) exp_{— e - 2] N A - 2]}, | | (20.43)

where | .
nE6) =" [ en® +206A)] 5, (1044)

and

UiV o)

T

Ci(t;8) =
Similarly, we have

WEn=Gher{--a@nEAf-uw] }, (1040
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and a.nalogously,
Was(z32) = W23 0) - | (047
= C1(t; B){zalzs) exp { = [2 = 2m(t) + S22 €oro()i" | TL(t: B) 27 — Z5,(8) + £irT (D)2l } -

Hence we get the explicit form of the Wigner function corresponding to the interference:

P

Wint(23) = Was(231) + Wha(z3 1) = 2Re [Was(z; )]
= 2C1(t; 6) (zal2s)] exp{ 42ag0%o(t)]IL(% B)irs (£)gozh }
exp{~[z — zn(&)[TL(t B)[z — 2 (1) }
cos{ $2aj2] + zagoro(t)iTI(t: B)lz — 2 (8)] | (048)

In order to quantitatively analyze the influence of the environment on the interfer-
ence, we have to define a function which measures the relative strength of the interference
term Wip¢(z;t) compared with the direct terms W,(z;t) and Wj(z;t). Consider the nor-

malized ratio

X(8) = I(zalzs)| exp{ 320 goro®) TI(E B)irS (Dgazl }

exp{~J2algo — £oro()i TI(: B)ir (DeolZL | (10.49)
which is one half the ratio of the upper limit of W;,:(z; 1),

2C1(3; B)(zalzs)] eXP{%zAgo ro(t)j II(t; ﬁ)jrl(t)gozg} , (10.50)

to the maximum value of Wa(z;t) or W;(z; t), which is equal to C;(¢;8). Eq. (10.50)
is only the upper limit instead of the maximum value of Wint(z;t) in general because
of the cosine term in (10.48). From the quasi-probability interpretation of the Wigner
function, we know that this x(t) meets the requirement as an indicator of the relative
strength of the interference. Note that x(t) depends on z, explicitly, and x(0)= 1

In general x(t) is a monotonically decreasing function of ¢, which indicates the damp-

ing of the interference induced by the environment. When t—o00, we have

X(00) = exp{-—%z,;gozl} <1 : - (10.51)
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As a comparison, let us consider the séme problem for an isolated harmonic oscillator.
The cofresponding X(t) can be obtained by setting ©(t; 8)=0 and |
o cos(woi) — sin(wet)/(Mmwy)
ro(t) = : ’ ' o (10.52)
mw, sin(wot) cos(wot) N
in all related formulas. Hence we get II(t; 5) = go, and x(t) =1 for all ¢ in this ép‘ecial
case, which means that the interference does not decay if there is no environment coupled

to the Brownian particle.

10.5 Quantum Fokker—Planck Equéﬂ;ions

In this section we shall derive the equation of motion for the reduéed characteristic
functioh bo(z, k; t), and from it obtain the equation Qf motion for the corresponding
reduced Wigner fﬁnction Wo(z, k;t). Both equations are usually called the quantum
Fokker—Planck equations and are equivalent to the méster equation for the reduced
density operator of the _Browhian particle [10, 44, 45, 48, 79, 96]. »

It is necessary to eﬁlphasize that, the purpose of constructing these quantum Fokker—
Planck equations is not to determine‘the time evolution of the Brownian particle. We
have already obtained the time evolution 6f ﬁhe reduced characteristic function Bo(z, k; 1)
in (10.11). The main ﬁlotivation of this construction is to derive the quantum analogues
of the classical Fokker-Planck equations discussed in Sec. 2.6, and from them to deter-
mine the quantum version of the diffusion coefficients.

The Fokker-Planck equation (2.43) for the classical characteristic function is a first-
order linear partial differential eqilation. Since all formulas for quantum Brownia.n mo-
tion have classical analogues, we start the derivation of the quantum Fokker-Planck
equations by‘ éonsidering the following linear combination of first-order partial deriva-

tives of the reduced characteristic function ®o(z, k; t):

. . . -t
L(z,kit) = —E’-‘I"’—g‘t’-k—’@ +C, a%(a’;’ BN e 3q’°g”k’ ki) (10.53)

Using (10.11), we have the explicit expression of the time derivative of Po(z, k; 1):

Q‘I’L(g_tﬁﬂ =, (5;(t),7c(t))%exp {-%(w,k)G(t; ) (:)} : | (10.54)
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8% ,(3(), 1,

4 (f(;) k(t)) ex’p{—%(x,k)@(tﬁ)(Z)}
= o) [-5 (=)o) ()|

004 (30), k() 024(8(0.k®)) & (2®\ [ 1 NG
*( 0 ok )5'(k(t)) Xp{_?(x’k)ev(t’ﬂ )<k>}
= ®o(z, k; 1) [——1-(3: k)@(t ﬂ)( )] |

Y (rc(t),k(t)) 0@, ((t), k() z
+ ( o7 (1) ’ ok (t) ) folt) (k)exp{ o k)g(t ﬂ)( )}

- Similarly, we have

_v____a‘l’og’; 5 (s, ks t){ 2, k)0 ﬁ)((l))] . (105 -
0®,(3(1),k(t)) 884 ((t), k(t) 1
+ ( 5% (1) ’ k() ) "olt) 0) {__ = K)o ﬁ)( )}
and |
aQ()(l‘ k't)

6k, = <I>o(x,k t)[ z, k e(t ﬁ)( )} (10.56)

0@, (%(2), k(t)) 8<I>A(E(t),k(t)) /0 1 z\)
+( RZO N0 )r°(t)‘(1)6@{'7($’k)®(t;5)<k)}’

with ro(t) defined by (9.5). Note that the above three expressions are expressed in terms

of matrix multiplications. Substituting (10. 54)—(10 .56) into (10.53), we get B

, L(z, k;t) = —o(z, k; t)[ (z, k)0t ﬂ)( > (z,k)@(t;ﬂ)<gz>]
k
+ (a@"(ift)’fc(t)) , a%(i.(t)’k(t)))[fo(t) <$>+ro(t) (Cx)} |
. k .\ Cr

OZ(t) Ok(t)

X exp {—%(x,k)e'(t; ﬁ)(Z) } ‘ | (10.57)

Noticing that on the right hand side of the above equation, there are two terms

0% 4 (%(t), k(1)) ; 0@, (3(2), k()
0%(2) = k()

(10.58)°
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which are not functionals of ®o(z,k;t). Since ®,(z,k) is an arbitrary function, we
cannot make any further simplification or transformation on the above two derivatives. -
Therefore in order to construct a linear partial differential equation for ®¢(z, k;t) from

(10.57), we must demand that

;t ’ f<cx =0 | 10.59
ool e

such that both terms in (10.58) disappear from (10 57) The coefficients C;; and Cj, are

Cz\ 1 T _ z { .
<Ck> = —r;}(t)ro(t) (k) >_ A(?) (k) , (10.60)

where A(t) is a 2X2 matrix with the elements:

then determmed as

UL —ulU

Au(t) m s (10.61)
An(t) = —, : . (10.62)
As(t)=m (Z—:%) o (10.63)
Axa(t) = 0. (10.64)
Substituting (10.60) into (10.57), we have
L(z,k;.t) = -.—<I>0(:c,‘k;t) (a‘c,k) [ (55) +®(t ﬂ)A(t)} (k) (10.65)

Rearranging (10.65) and using (10.62) and (10.64), Eq. (10.65) becomes

[% + ( L An(t)w) 9 . A21(t)~’° 5+ Di(t; 8)2° + Dak(t; ﬂ)wk] Po(z, k;t) =0,

(10.66)

where

——-——éng; 8) >+ An(1)®n(t; B) + An(8)©12(4;8), (10.67)

Dix(t; 8) =
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+ A11()O12(t; B) + A (£)O2(t; 8).  (10.68)

Di(t;8) = éu(t; B8)+ .(21_17%1.@2

Eq. (10.66) is the quantum Fokker-Planck equation for the reduced characteristic func-
tion corresponding to the Browma,n particle [96], which can be taken as the c-number
_representation for the master equation of the reduced density operator. Note that in
(10.66) the coefficient of the term k?®o(z, k;t) vanishes because of the relation (10.10).

From the expressions (10.8)—(10.10), we see that in general the elements in o(t; 8), |
hence Dy (t; 8) and Dzi(2; 8), depend on the hlstory of the Browma.n particle. Thus in
general the solution of the quantum Fokker-Planck equation (10 66) corresponds to a
non-Markovian process.’

.Eq. (10.66) can be easily transformed into the quantum Fokker-Planck equation for
the reduced Wigner function Wy(z, k;t). As discussed in Chap. 3, the Wigner function
and characteristic fuﬁction are éymplectic Fourier transforms to each other, ilence we
have the following correspondence: |

8 .8 @ ” o
(‘”%’ ko TR "o 81:2’ 3x6k> W(m k; t)

a‘ a a 2 .4 .
= (ak,ka o, @ k,mk)@(m,k,t). (10,69

From this correspondence ‘the quantum Fokker-Planck equation for the reduced W1gner
function Wy(z, k;t) corresponding to (10.66) follows as [44, 45, 48, 79, 96]

a k 0 d 0? 62 '
[5‘; -+ -7—7;--6-; -+ % (Agl(t)m — An(t)k) —Dkk(ta ﬂ)'a—k; +.D,_-k(t, ,B) _825];] Wo(x, k; t) =0.

- (10.70)

The corresponding equation of motion for the coordinate representation o(z, y;t) of
the reduced density operator [48] can also be obtained from (10.66) by a similar method.
Both (10.66) and (10.70) are mathematically equivalent to the quantum Langevin equa-
tion discussed in Chap. 8. o

In the following, we shall calculate the explicit expression of (10.70) for ohmic dissipa-
tion with infinite cutoff frequency. From (8.33), we see that in this case the fundamental

solution u(t) satisfies the following second-order differential equation:
(t) + yu(t) + wo(t)u(t) = 0, (10.71)
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where

wa(t) = wi + 2v6(2). - (10.72)
The matrix A(t) follows as : | _
. ] - -
A(t) = < | > . (10.73)
~-mwi(t) O :

Substituting (10.73) into (10.70), we get the quantum Fokker-Planck equation for
the Wigner function of a harmonically bound Brownian particle coupled to ohmic heat

bath with infinite cutoﬂ frequency:
9 ko 0, ., N K N

lﬁ +— 5 = 52 (meB Oz +7k) — Dir(t; )5 + Dan(t; B)5 ak] Wo(z, k;t) = 0.

| (10.74)

- To calculate the coefficients Dyx(t; 3) and D (t; 3), we first need to use integration
by parts to express ©11(t; 8) and ©;4(t; 3) as follows:
. \ . .

Ot ) | | | (10.75)
= 2m? fo td‘riz(T)'&(t)K t—7;06)
= 2m? AtlthldTg’U/(_Tl)’ll(Tz)I((Tl - T2; ,3) 4+ 2m ‘/(;thu(T)I((Ta 13)7
OB _ | (io.m)
= —-m /otdru(f)'&(t)K(t‘— T;8) — m‘/oth'&(T)u(t)K(t'— 73 0)

= o [ [[andra i )utr) + i )im)| K = 58) - [(aru(rK (i),

Substituting (10.8)~(10.10), (10.73), (10.75), and (10.76) into (10.67) and (10.68),
and using (10.71), we get

Dyk(t;8) = m/otdric(T)K(T;ﬂ), : (10.77)

. Dz (t;8) = —Lthu(T)I{(T; B). ~ (10.78)
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In the classical limit with K(¢; 8) given by (8.38), we have from the initial conditions
(6.31):

Dyx(t; B) = %Z = Dy, (10.79)
ka(t; :6) =0, . (1080)
and (10.74) becomes [10]
| 8 k9 0, .. . > N
[E + o - %(mwn(t)x +k) — Di akQ]Wo(:c, k;t) =0, (10.81)

which is the quantum analogue of the classical Fokker-Planck equation (2.41). Obviously,

the solutions of (10.81) correspond to Markovian processes.
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Chapter 11~ o
Non—-fa(:torizablé Initial States

In the previous chapter we have discussed in detail the time evolution of a Brownian
particle with respect to the fa,c_toriza.ble initial sta.tes,‘which is based on the assumption
that there is no initial correlation between the Brownian particle and the heat bath,
and the interaction bétween them is switched on only aftér t > 0. The sEmplicity 6f
these kind of inifial states allows us to derive many explicit results. Unfortunately, such
naive and simplified initial stétes are not realized in most applications. Initial states of
a Brownian particle which can be prepared in the laboratory are those non-factorizable
states called perturbed thermal states. These non-factorizable initial states have been
discussed by sevéral'authors in the literature [16, 40, 80, 85]. In this chapter we shall

use the characteristic function to calculate the time evolution of the Brownian particle

with fespect to these non-factorizable initial states.

11.1 Perturbed Thermal State: General Formulation |

The perturbed thermal state of the total system described by the Hamiltonian (6.1)

is defined as

83 = C2,ad4b, o ary)

a

where é,g is the canonical dénsity operator of the model thermal state defined in Chap. 7,

a=a(g,p) and b= I;(Q, P) are two operators which only act on the Brownian particle, and

o 1

ab = Ty (a é;@) - (11.2)
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" is the normalization constant. The operators & é.n.d b must safisfy certain conditions
in order to guarantee that the perturbed thermal state (11.1) is a legitimate density
operator. In this section, we shall derive the general fofmulation for the time evolution
of a Brownian particle with respect to the initial state (11.1). |

According to Chap. 9, we have first to obtain the explicit form of the initiai charac-
teristic function corresponding to (11.1). Using (3.12), we have

(I>,-m-(z)_ =Tr [éZbD(—z)] :
= C8,Tr|ag,bD(-2)]. (11.3)
In order to get an explicit expression for ®;,;(z), we need to resort to the character-

istic symbols defined in Sec. 4.2. According to (4.9) and (4.12), the operators &, b, and

0s can be expressed as

oo - »
a= | d"za(2)D(2), (11.4)
+00 _
b= | d&®¥zb(2)D(2), : (11.5)
and
+00 ) -
85 = (2m)~" / PY284(2)D(2), (11.6)

where a(z) and b(z) are the characteristic symbols of the operators a and b, respectively,
and ®p(z) is the characferisticvfunction corresponding to g, which is defined by (7.40).
Substituting the above three representations. into (11.3), it follows that .

+oo :
®,n:(2) = (2r)"NC5, / Pz N2 d* 25024 )b(26) Bp(25)

tr[D(2a) D(26) D(2) D(~2)) (11.7)

Note that the trace in (11.3) has been replaced by the equivalent pseudo-trace in (11.7)

since the product of the Weyl operators is not in the trace class. Using the formulas in
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Secs. 1.3.1 and 1.3.3, the pseudo-trace in the ‘abbve integrand can be evaluated as
tr [f)(za)D(z,g)f)(zb)f)(—z)]
= (27)6(za + 21 + 25 — 2) €XD {-;'—zJ(za —2zp) + %zan{.} ,  (11.8) |
hence (11.7) reduces to
- . +w . ’ .
®;ni(2) = C5 /(szacFsza(za)b(zb)Qg(z —z,—2z)
. -0

exp{$2)(za — 26" + $2al2] } . (1L.9)

Substituting (11.9) into (9.1) and using (7.40), we get the time evolution of the

reduced characteristic function for the Brownian particle:

oz, kit) = Bini(2(1) | (L10)

" 40
= C’fb /J"NzadQsza(za)b(zb)@g(E(t) — za. - Zb) ,

exp {%E(t)J(za —z) + %—zanZ}

€Xp {-%(x7 0,k, O)JTEﬁJ(x’ 0.k, O)T}
+oo | ' : :
ce, / P 2 P 2y (20 )b(2b) exp {%zanZ - 3(za + 2" Zp)(za + Zb)T} _
OO . : . ‘ » . |

exp {(z,0, K, 07S5(6))(za + )" + 4 (2,0, k, O)JR()(za — 27 },

where 2(t) is defined as in (9.2), and we have used (7.15) and Sg(t)=R(t)Xg in six;rxpli-
' fying (11.10). | | '

| Since both & and b are one-mode operators which iny act on the Brownian particle,
according to the discussion in Sec. 4.2 the characteristic symbols a(z) and b(z) can be

specified as

 a(2) = a0, k) [] 6(z0)6(ke), (11.11)
e

b(z)=b0(m,k)H¢5(xe)6(kg).v . . (11.12)
£ . .
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Therefore we can further simplify ®o(z, k; t) into

@o(z, k;t) = expk{—-;—(x,k)f [=s1j (Z)} (11-1_3)

. [Tt T i Ta = %
eXP{(z’k) [’ L5600 (ka+kb) I (k—kbm

. <oo ’
c?, / diq dk, deydk U2, (T, T, kay ks)

where
‘I’Zb(xa, Tp, km kb) = a'o(xay ka.)bo(mba kb) . . B (1114)

exp {% (20rka) (::) - 5 (ot 2kt )L (Z : ZZ) },‘
and [LR(t)'[]‘, ISg(?)]], and |[3g]} are defined by (7.12), (7.27), andr (7.42), respectively.
Note that the first line.of (11.13) is the characteristic function of the thermal equilibrium
state for the Brownian particle given by (7.41).

Finally, the easiest way to determine the normalization constant C’fb is to imposé the

normalization condition on (11.13):
,(0,0;¢) = C%, / drodesdhodky VP, (2, oh kasks) = 1. (1L.15)

In summary, Eq. (11.13), together with (11.14) and (11.15), describe the time evolu-
tion of a Brownian particle with the perturbed thermal state (11.1) as the initial state. |
Note that in (11.13), unlike in (10.11), the spectral dénsity -p(w) of the heat bath does
not appear explicitly, which means that all the results derived from (11.13) are indepen-
dent of the cutoff frequency. The time evolution of the mean vector and the covariance
matrix corresponding to (11.13) can be caiculated via (4.19)-(4.23).

When t—o0, according to the Riemann-Lebesgue Lemma: |

Jim [R($] =0, and ;l_iEi ISs()] =o. . | (11.16)

t—rc0

Applying the above results to (11.13) and using (11.15), we find that
lim ®o(z, k;t) = exp _L (a: k)jT =50 7 . (11.17)
iron s vy 9 ) . A\ ’
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which means that with an arbitrary perturbed thermal state as the initial state, the state
of the Brownian particle always approaches the thermal equilibrium state corresponding
to (7.41) as t—oo. ' \

The above formulation can be trivially generalized to the the most general perturbed
thermal state, which is a linear combination of several 8°,’s defined in (11.1) with the

same d, but different &@’s and b’s [40].

11.2 Lo_calized Thermal State

. In this section we‘ shall consider a practical example of the perturbed thermal state
called the localized thermal state. It is i)repa.red by filtering the ensemble of the Brow-
nian pa.rtide, which is originally in thermal equilibrium with the heat bath, through a
Gaaussian slit represented by the operator [40, 85]

Paiod = (=) sz exp (-2}

21a,

1 \V4- 1 . ' . -
2.(27“70) exp{—z(q—wc)z}, . (11.18)

where z and ¢ correspond to the position of the Brownian particle, z. is the center and
0, is the variance of the filter. 'Nt_)te that o, cannot be arbitrarily small due to the °
uncertainty principle. According to the definition in the last section,'this initial state is

the perturbed therma.l,staté (11.1) w_ith' '
a=b= P(z00). (11.19)

From the Weyl correspondence rule discussed in Sec. 4.1, we know that the Weyl
symbol of the operator P(z; 0,) is

( 1 )1/4exp{—4i%(é'xc)2}° _ - - '(11.20)

2ma,

It follows that the characteristic symbols ao(z, k) in (11.11) and bo(z, k) in (11.12) take

the form

aq(z, k) = bo(z, k) = Cob(z) exp{—aok2 - i:z:ck} , (11.21)
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where

23

Co= ( Jo )%/4.' (11.22)

Substituting the above results into (11.13) gives

®o(z,k;t) | (11.23)
= exp {—-% (a:, k)jT 1ZsT] (:) }
+o0 L
czce, / dhadky exp { —0u(kZ + ) — izc(ka + ks) — Sogglol(ke + ko))
exp {[~mi(t; B)z + (t; B)K)(ka + ko) + £[ma(®)s — u(t)k)(ka — ko) }
 =ew {--;(x,k)jTuzﬁm(:)}

Lt ’ k, | z
Cé’Cfb_[o dkqdky exp {—% (ka_, kb)A<kb) + (ke k) [B(2) ( k)-+ d] } ,

‘where
A= 20, (1 0) + 9gql8] (1 1), (11.24)
01 . 11
B(t) = —md(t; B) (1 0) + v(t; B) (O 1) + %mu(t) (,1 .0) + Lu(?) (0 _1),
\1 0 0 1 \-1 0 0 1
| (11.25) -
and
d= —z:§c (1> . (11.26)

After performing the double Gaussian integrals in (11.23), we get

| <I>0(a:,,k; t) = exp {——%—(x, k) [jf L2675 - BT ()AB(2)] (:) + (k) BT(t)A-ld} ,
‘ (11.27)

where

A~ — (200 + Gal61) X 0) (0 N, s
= (o] O, — 0, 9 .
Sog(o0 + agqtal) [V 0T g 1) TN 0, -
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hence .

meo(t B —mu(t; B)i(t; B)

1
BT(H)AT'B(t) = ————
’ ®) ®) 0o + 04qlAl :
. —mu(t; B)o(t; B) u(t; B)?
' , m2a(t)® —mu(t)u(t)
1
el | - (11.29)
—mu(t)a(t) ' u(t)?
and | . |
' o mo(t; B
BT(t)A™'d = - ( ( )) . - (11.30)
‘ G0 + 0gqlBl \ —v(t; B) ' S
From (11.27), we find that the time evolution of the mean vector is
z(t v(t; B |
(O):—ﬁ——( ( )>, - (11.31)
k(t) o + TgqlBl \ mi(t; B) : :
with the initial value »
z(0 1 ' o
( ( )) = JadlflPe ( ) : (11.32)
k(0) % + 0gqlf] \ 0 _
and the time evolution of the variances are . |
v B | bv(t; B)? u(t)? '
04q(t) = 04qlA] R + o , (11.33)
and
m2o(t; B m2u(t)?
Opp(t) = Oppls] — (&5) ®) = (11.34)

Oo+ 0o qq[ﬁ] 40,
Note that v(0; 8) =044[8]. It is interesting to notice that at t=0, the ﬁltering operation
changes the original variances og,[8] and opp[8] into
- To0gqlf]
Gog(0) = —2299% : 11.35
ou(0) = ;2 (1135)

which is the harmonic mean of g, and 044[8], and
S|
om(0) = oalfl + 5= a - (1136

When t—o00, it is obvious that this state approaches the thermal equilibrium state,

as discussed in the last section.
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11.3 Thermal Squéezed Coherent State

As another example of the non-factorizable initial state, we consider the thermal

squeezed coherent state of the Brownian particle {40, 80]. Although it is a special case '

of the perturbed thermal state (11.1), because of the symplectic symmetry it is easier
to first derive the time evolution of the total system, then perform the reduction to get
the time evolution of the Brownian particle.

Let us first briefly discuss the general multimode thermal squeezed coherent state
‘constructed from the thermal state of the total system; which is defined as a quantum

state corresponding to the density operator

Ups 05U%s, - (11.37)
where
Z/?Dg = ﬁ(ZC)S(Q) . (11.38)

is the same operator for constructing the ordinary squeezed coherent state (1.37), with
Q=g ¥ exp(mp)g? € Sp(2N, R). (11.39)

‘In order to construct the thermal squeezed coherent state for the Brownian particle,

we define the one-mode analogue of Q in (11.39) as
e d

(e d) (4

isa positive definite and symmetric symplectic matrix, hence the elements in @), satisfies

1fa e\ 1 a b | - v.
-Qo=g§2( )_&?E( , ) (11.40)

where

ad—bc=1, and a,d>0. (11.42)

The inverse of Qq follows as
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The thermal squeezed coherent state for the Brownian particle can be defined as a
special case of the general (11.37) with Ups only actlng on the Browman pa.rtlcle ie.,
with the Ups in (11 38) spec1ﬁed by

zo = (Zc, 0, ke, 0), o o (11.44)

Q=Q®hLdhLod - ®lh=ly+A, | (11.45)

where | and |,y are the 2x2 and 2N x2N unit matrices, respectively. We make a special

a.rrangement of the elements in Q such that

a b\ : )
[Ql=Q=| - |, | - (11.46)
hence . | . v _ ‘ '
| LAT (a—r b ) o o (11.47) |
= : . A47) .
S v c d-1 :
We then define the matrix E via |
Q' =JQI=by+E, | (11.48)
where
/d=1 —b |
E=JTAT), |E] = ' : . (11.49)
_ -c a-1

After these preparations, we can begin to study the time evolution of the Brownian

. particle with respect to the thermal squeezed coherent state. Firstly, we use (3.12) to

calculate the characteristic function of the multimode thermal squeezed coherent state -

(1 1‘.37) as follows:
zm(z) [ SQ/SZ’{DS D(—Z)]

- Tr[alths D(~2)Uns]

Tr [@ﬁ.ﬁ(—zQT)] exp{inz'cr}. _ (11-50)

Comparing with (3.31), we find that”this ®;,:(z) has the initial mean vector z. and the

initial covariance matrix -
Q'ZQT = =¥, - (11.51)
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Substituting (11.48) into (11.51), the latter becomes
% = 55+ SeET + EXp + ESgET . (11.52)
According to (4.37), the time evolution of the above covariance matrix is

() = R(t)ZsRT(¢) + R(t)XETRT(¢) + R()EXR™ (¢) + R(E)EZZETRT (2)

= S5 + Sp(t)ETR™ () + RESH(2) + ROESHETR™ (¢): (53)

Now we can perform the reduction by extracting out of (11.53) the elements corre-

spondjng/to the Brownian particle:
135 (0
= [Za]l +1Ss@OETRT(@)] + IRMIESF ()] + IR(HEZSETRT (2)] | |

= [Zg]l + [Ss@OTIETT IR + IRETLETLSs@NT

+ IR@TLET [=sTIETTIRETTS B (11.54) .

where we have used the property that the only four non-zero elements in E are those in

ILET]. The explicit forms of 0q4q(t) and o,p(t) for the Brownian particle follow as
Ogq(t) = —2cu(t)v(t; B) + 2(d — 1)mau(t)v(t; B)
— 2(a.— l)hu(t)ﬁ(t; B) + 2bm?u(t)u(t; B)

+ Ogqlfl] {1 + [(d — 1)ma(t) - CU(t)]z}

+ Opple)[~bmi(t) + (2~ Du(®)’, (11.55)
and
opp(t) = —2ema(t)o(t; B) +2(d — 1)m2i(t)o(t; B)
- 2(a— 1)m3ﬁ(t)i3(t;‘ﬂ) + 2bm*i(t)i(t; B)
+ ogqlal|(d — D)m?ii(t) — cmi(t)]
+ ol {1+ [—bm?i(t) + (a - Dmi()]}. (11.56)
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To obtain the time evolution of the mean vector for ‘th_e Brownian particle, vﬂ'.e first
substitute (11.44) into (4.36) and get the time evolution of the mean vector of the total

system as
27 (t) = R(t)(z, 0, k, 0)", v (11.57)

hence the time evolution of the mean vector for the Brownian particle is .

(x(tj) = IRE)] () (11.58)
k(t)/ k) | o

i.e., the mean vector follows the restricted phase flow.

When t—oo, it is easy to see that this state approaches the thermal equilibrium

state.

11.4 Displaced Thermal State

Our last example of a non-factbrizable initial state is the displaced thermal state
[40, 45], which corresponds to the thermal state of the total system with thé Bréwnian
particle displaced from the original bala.néed position by an external constant force.
The Hamiltonian which describes this initial state can be taken as a special case of the

Hamiltonian in (6.6) of the form
B'(t)= H - §fx0(-1),  (11.59)

where H is the model Hamiltonian defined in (6.1), fx >0 is a constant force, and 0(—t)

is the Heaviside unit step function. The physical picture for the system described by

(11.59) is that the Brownian particle is displaced by an external constant force when
t <0, and accordingly each heat-bath oscillator is also displaced to a new balanced
position. The external force is then switched off at the moment {=0%, so that the total

_system, which cori‘esponds to the Hamiltonian (6.1), begins to evolve in time. |

In the following we shall study the time evolution of the Brownian ‘pa,rticl'e with
respect to this initial state. From Secs. 1.2.2 and 3.5, we know that this initial state is
a specia,l case of (11.37) with Ups = D(z,), hence it is also a perturbed thermal state.

However, an easier way to solve this pérticular problem is as follows:
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Firstly, we need to calculate the characteristic function of this initial state, .which
is the thermal state with respect to the Hamiltonian H'(t) in (11.59) for ¢ <0. From
Sec. 3.5, we know that the covariance matrix of this im'tia,l. state is the same as the model
thermal state defined in Chap. 7, hence the only quantity we have to calculate is the
new balanced position for the Hamiltonian (11.59) at ¢ <0, which corresponds to z; in
(3.35). This new balanced position is easy to determine by completing the squé.re of the
Hamiltonian (11.59) for ¢<0:

w2y tmg (i L) S [ b Lt q*)'?’] S i
£

2m muw? 2my 2muw?

Hence we see that the new balanced pdsition, which minimizes (11.60), is (z1,0) with.
~ @ being an N-dimensional vector and each of its component being equal‘to Fx/(mw?).
The physical meaning of this result is thét the whole system is uniformly shifted by
fx/(mw?) in configuration space, which is a trivial consequence for the independent-
oscillator model since all heat-bath oscillators are attached (and only attached) to the
Brownian particle. ‘ B |
Substituting z; = (:z:.l, 0) into (3.47), we get the characteristic function of the initial

state as
Bini(2) = exp {~ L 20 Sp)z" +iz)(21,0) } . - (11.61)

Since this displaced thermal state diﬁ'ersrfrom the model thermal state (7.40) only by
a mean vector, from (7.15) we know that the total covariance matrix is steady, hence
the reduced 2x2 covariance matrix for the Brownian particle is still {|32,]}. Therefore to
determine the dynamics of the Brownian particle with respect to this initial été,te, we
only have to calculate the time evolution of the mean vector. For t > 0, with the new
balanced position (1, 0) as the initial value, the expectafion value of the position of the

Brownian particle evolves according to (6.41):

{é(t)) = m'&(t)( Ix )+ze:mede(t)< Ix ) (1;.62)

mw3 mwg

Instead of calculating the explicit form of the above expression, let us consider an aux-

iliary system described by the Hamiltonian.
-ﬁc{mz = -E[ - ‘jfx s ) (1163)
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which differs from (11.59) only by the external force fx being constant for all t. Therefore

the position of the Brownian particle is stationary for this auxiliary system, i.e.,

2 2
mw? muw?

(6t > = (UONa= mit) (L) 4 Smeie®) (25) + [ rutr) |
- (11.64)

according to (6.41). Since (§(0))=(d(0)),,,, comparison of (11.62) and (11.64) gives

(@(0) = @O ~ S [ drutr)

=k g |- met [dra(r)] . (11.65)
It then follows that
() = —mfxu(t). (11.66)

As t—o0, accofding to (6.45) and (6.46):

'/o‘o.odru(r) = -2%65 = mtug . | ' | (11.67)

Substituting (11.67) into (11.65), we find that (§(t)) approaches zero when ¢—o0. Since
u(t) decays to zero for t—oo, so does (p(t)). Thus we conclude that when t—oo, the
mean vector of the Brownian particle vanishes, hence the state of the Brownian particle

approaches the thermal equilibrium state.
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Conclusion and O.utlook

" The aim of this dissertation is not to propose a new theory for quantum harmonic
Brownian motion, but rather to develbp an innovative methodology with the most ap-

propﬁate mathematical methods. I began this study by noting that almost all existent

approaches involve complicated calculations due to the inevitable reduction operation, -

which is commonly performed by integrating over all heat-bath degrees of freedom. I
then noticed that the reduction operation can be much simplified by using the char-
acteristic function as the representative of the density operator. Accordingly, the time
evolution of the Brownian particle is also much easier to calculate via the reduced char-
acteristic function, and the modified phase-space approach is the most efficient approach
for studying quantum harmonic Brownian motion. |
Of course, the characteristicfunction is not a new idea. I am neither the first one who
‘noticed the simplicity Qf using the characteristic function for reduction [33, 43], nor the
first who applied it to quantum harmonic Brownian motion [96]. However, I believe that
the systematic study of quantum harmonic Brownian motion ina general environment
via the characteristic function is original, and no one has previously claimed that (at
“least for this problem) the path-iﬁtegra.l approach can be completely'replacéd by a more
efficient phase-space approach. |
-In my opinion, solving a problem involving reduction is an art of doing the mini-
mum calculations. In this modified phase-space approach, the reduction operation is
performed by a projection in the phase space, ‘which guides us to calculate only those
quantities necessary for describing the reduced system. The only inconvenience of this
approach is that the characteristic function has no direct physical meaning. But we can

easily transform it to the Wigner function whose physical meaning is obvious and clear.
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In summary, the success of this modified phase-space approach to quantum Ha.rmonic
Brownian motion relies upon the foilowing three facts: .

@) The model Hé,miltonia.h is (inhomogeneously) quadratic hence the system is li‘nea.r,
therefore it is suitable for_the phése—spacé approach. Moreover, this kind of Hamiltonian
allows an exact and explicit derivation of the fluctuation-dissipation theorem.

(ii) The characteristic function is the most efficient represenfative of the dénsity
' operator for performing the reductlon operatlon _ |

(111) The analogy between the time-evolution operator and the canonical density op-
erator allows the application of results from dynamical problems to the study of the

* thermal equilibrium state of the Brownian particle.

Generally spea.king, all problems of quantum ha_i'monic Brownian motion can be
solved with more efficiency using this modified phase-space approach.. The following are “
some examples that I have not been ablgt_o cover in this disseftati;)n: B

(I) External classical force fx(t) linearly coupled to the momentum of the Brownian ‘
particle: This ‘corresponds to adding 2 term .« |

5t
‘5{[ dr fix(7)
to .fhe model Hamiltonian (6.6). Doing tlﬁs puts the position and momentum operators
on the same footing in the model Hamiltonian. ‘

‘(II) Time evolution of the Wigner function and the coordinate representation of
the Brownian particle: This can be obtained from the time evolution of the'reducedu
characteristic function via the tra.nsfgrma,tion formulas listed in Sec. 3.2. In particular,

' for factorizable initial states the exact propagators [10, 73] can be derived from (10.11).

(IIT) Damping of quantum interference with the initial state being a superposition of
two non-identical squeezed coherent states: This is a trivial generalization of the problem
discussed in Sec 10.4. _

(Iv) System with a few coupled Browma.n particles [16] ‘This cor;‘espon(is to a
reduced system with more than one degree of freedom. According to the formulations
in Chap. 5, the inodiﬁed phase-space. approach can be straightforwardly generalized to
deal with this kind of problem.
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(V) Free Brownian Motion [39, 40, 46]: This corresponds to the limit w,—0 in quan-
tum harmonic Brownian motion. Since the model Hamiltonian becomes non-negative
definite in this limit, the corresponding v(t; 8) diverges in general.. Therefore it is nec-

essary to replace v(t; ) by
('U(t; B) - v(0; ,B)) +v(0;8) = ("’(t§ B) - qu[fo‘]) + 0gqlA]

before taking the limit wo,—0. It can be shown that only (v(%; ﬂ)—aqg[ﬂ]),' which is always
finite, survives after the limit has been taken. To compare with the classical theories dis-
cussed in Chap. 2, the quasi-probability distribution functions over configuration space

and momentum space can be obtained, respectively, via
. —
P(z;t) = /deo(x, k;t),
‘ -0

and

“+oo .
P(k;t) = f dz Wo(z, k; 1),

y —CO

where Wy(z, k;t) is the reduced Wigner function of the Brownian particle.

/ Although I have only discussed quantum harmonic Brownian motion in this disser-
tation, the technique introduced here can be generalized to many other linear quantum
open systems. In pé.rticula.r, the characteristic function is gseful for any problems in-
volving the reduction operation. In the following, I list four possible non-trivial gener-
alizations of this modified phase-space approach:

D Time—_depéndent quadratic potentials, where the characteristic frequency of the
Brownian particle becomes timé—dependent, and wZ(t) is allowed fo be zero or negative
for certain time intervals (e.g., a particle periodically kickeq by a Hooke force [17], a .
charged particle in the Paul trap [35, 72]): The calculations are similar to those in this
dissertation, but the corresponding fundamental solution () cannot be expressed in a
closed form in general. It is believed that some _approxima.tions are necessary for this
- kind of problem. |

(II) Anharmonic poteﬁti'als: The phase-space é,pproa_ches' rely on the model Hamil- .

tonian being (inhomogeneously) quadratic. If the Hamiltonian contains higher degree
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terms [11, 13, 16], e.g., those in quantum tunneling or quantuin coherence problems, then
the time evolution of the Wigner function and the characteristic function cannot be ex-
actly determined by the phase flow. As ih_the path-integral approach, a perturbation
scheme is necessary for dealing with these kind of quantum systems.

(IIT) Finite-state systems:. In contrast to the quantum harmonic oscillator which has
infinite energy eigenstates, many qﬁa.ntum open‘ systems can be apbroximated by finite-
state s3;stems, e.g., the simplest two-state system [61]. Since these so-called spin-boson '
" Hamiltonians have no classical analoguesl, there is no corresponding classical phase space.

Nevertheless, the techniéiue of performiné reduction via the characteristic function is still
valid for these systems [43]. ;
(IV) Fermionic heat baths [15]: The model discussed in this dissertation is, of course,
a bosonic heat bath. It has been not1ced recently that an infinite set of ferm_lomc parti-
- cles can also serve as a heat bath model. It is thus an interesting p_roblem to generalize
this modified phase-space approach to include the fermionic degrees of freedom. A pos-
sible way is to start with the supersymmetric Wigner functien [1].

APOLOGY: Since Brownian mbt‘ion, both classical and qua.ntum-mecha.njcal has -
a long history a.nd has been studied by innumerable authors, it is almost impossible
- to exhaust the literature on this subject. To conclude this discussion, I would like to
make an apology to those authors whose works I have not been able to quote in th.lS

' d1sserta.t10n
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