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Abstract

We investigate the effect of radiative corrections on the Higgs sector
of the minimal supersymmetric model (MSSM). We first consider correc-
tions to the masses of the CP-even Higgs-bosons in the effective potential
approximation. We include all sectors of the theory in the approximation
that each sector is characterized by one mass scale. We demonstrate that
the top-stop contribution dominates the corrections for top-quark masses
above ~ 130 GeV. We than examine the decay rate of the heavy CP-even
Higgs-boson I'(H — ZZ). We compute radiative corrections due to vir-
‘tual top- and stop-loops. We perform a Feynman diagram calculation in
the on-mass-shell renormalization scheme. We find that, while the tree-
level rate falls off as 1/Mp for large Higgs mass, the radiative corrections
cause the rate to grow for sufficiently large My . We find that the rate can
vary by two orders of magnitude when conéidering the effects of squark
mixing. Lastly we examine the branching ratios of the heavy Higgs-boson
of the MSSM. We again examine the effect of squark mixing and conclude
that the squark mixing parameters must-be measured in order to make -

~ precise predictions concerning the properties of the heavy Higgs-boson.

*This work was supported by the Director, Office of Energy Research, Office of High Energy
and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under
Contract DE-AC03-76SF00098. ’
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1 Introduction

This decade may well mark a tnrnjng point in high energy particle physics. The
standard model of particle interactions seems s to describe (amazingly) all of the
presently observed phenomena. Before the end of this decade, however, the next
generation of colliders are due to begin collecting data which will quite probably )
reveal physics beyond the standard model. In this case the standard model of particle
- physics will have to be modified in order to accommodate this as yet undiscovered
phenomena For example, new heavy Z’ bosons possibly the rehcs of some symmetry
larger than that of the standa.rd model, may be found. Another possibility is the
observance of ,qua.rk or lepton substructure, i.e. compositeness of quarks and/or
leptons. A techni-particle spectrum nﬁght_ be discovered; as would be.expected if
the electroweak symmetry breaking arises via technifernﬁon condensation.

‘Many theorists expect thet_ supersymmetry will be disoovered. This expectation "
arises in the context of renormalizing theories with scalars as funda’.tnenta.l particles.
In such theories (e.g. the standard model) the renormalization of the scalar mass

} involves quadratic divergences. These divergences, in the context of an effective ﬁeld
theory, are cut-off by some scale A which is the scale at thch the low-energy theory .
is no longer valid. If the standard model is expected to be a valid .theory until some
grand umﬁed scale or the Planck mass, then the scalar mass will naturally be of the '
order of this large sca.le, unless unnatural fine tuning is 1ntroduced This dlsa,gree-
able situation is cured in the supersymmetric theory, as the fermionic and bosomc »
oontributions to the quadratic divergenc&s suffer the well known exact ca.noell'ations;
Thus, in a softly broken supersymmetric theory, with a scale of soft—supersyrnmetry
breaking of O(1 TeV), the huge hierarchy between the weak scale and the grand



unified scale or the Planck scale is stable under radiative 6orrections. Additiqnally,
the scalar particles that are light at tree level remain light after including ra.diati?e

effects.

Because of this irhproved ultraviolet behavior of supersymmetric models there
has been much interest generated in examining such theories. If the world is in fact
supersymmetric, a supersymmetric version of the standard mode! may emerge from
the analysis of the data of the next generation of supercolliders. It is a natural
starting point to first study the simplest supers;rmmetric model. In this thesis I will
st_;udy radiative corrections to the minimal supersymmetric standard mbdel (MSSM)
[1, 2]. In Chapter 2 we will determine bounds on the masses of the two CP-even
Higgs-bosons including :vradiativé corrections from all sectors of the thébry; We will
find quite la.rgé corrections due to a large top-quark Yﬁkawa coupling. In Chapter 3
we will study the renormalized HZZ vertex of the heavy CP-even Higgs-boson and
the corresponding decay rate. This decay mode is a viable rr;c;de for detecting the |
heavy Higgs-boson at hadron supercolliders for some part of the'parameter space.

“In the final cha,pter,'Chapter 4, §ve’ discuss the renormalized branching ratios of the
- heavy Higgs boson. Wé study iﬁ detail the de’pendehce;s of the branching ratios on

the squark mixing parameters.

2 Bounds on the CP-even Higgs-boson masses

2.1 Introduction

- In this chapter we address two questions of current phenomenological interest. In

. the minimal supersymmetric standard model there are two CP-even Higgs bosons.



These particles, which we refer to as h° and H? , are respectively lighter and heavier
_ than the Z° boson at tree level. We utilize the effective Lagrangian formulation-
to determine the heaviest ‘possible k° mass and the lightest possible H° mass in
the MSSM to one loop order. These results are only logarithmically dependent
on the mass of the CP-odd Higgs-bOSéh, mg, and all other soft parameters in the

Lagrangian, such as superparticle masses and A-term parameters.

At treelevel h° is constrained to be less massive than Mz| cos23 |, wheretan 8 =
v2/vy is the ratio of vacuum expectation values of the two Higgs fields. This bound
is saturated for m4 >> Mz; Sixﬁila.rly, H? satisfies my 2 M at tree level and this
inequality saturates when my4 = 0. We calculat¢ the leading logarithmic one loop
- corrections to these saturated inéqualities. Coﬁecfions to the masses of the Higgs
bosons have appeared in several Ipa.pers [3]. This work has been further elaborated
on in Ref. [4]. Corrections to the charged Higgs bésoh vmasses have been étudied [5],
and corrections to Higgs mass sum rules have been calculated [6, 7]. |

" The two Higgs doublets in this model have the charge structure

- 54 o |
H, 1= 3 H2 = y . (1)
Hy | H}
)
v .
and these acquire vacuum expectation values % | and 715 ' . We choose

\ V2

v; and v; to be real and positive. Writing HS = '\}_E(SI +1iP), HS = %(52 —iP),
we have the tree level potential for the fields S; and S,

gIZ

Viree = S2+ m25'2 §Slsz+ (S2 53)2._ (2)

The coefficient of the quartic term is a combination of g and ¢/, the SU(2) and U(1)

coupling constants, respectively. This is in contrast to the standard model where

3



the coeflicient of the quartic term in the Higgs potential is arbitrary. The masses*

of the CP-even Higgs-bosons are given by the eigenvalues of the mass matrix

. v
mly = Y ®)
| i
where V is the scalar potential. We define v; and v, to be the vacuum expectation
values of HY and H} by requiring
ov ov
—_ =0= — 4
aSl v1,V2 ,. 632 v1,V2 ( )
At tree level, we can use egs. (3) and (4) to obtain the mass relation
- 1 \ )
mEg =5 (i + M F (3 + ME)? — AMEm3 cos?26) )

where M2 = g%+ 92)(v2 +v2) and mg = m3(tan B + cot 3). At one loop level the
potential

VO =V, + AV (6)

~ can be explicitly modified so that v; and v, receive no corrections. To do this

we simply add to AV() terms proportional to Sf and S? by redefining the tree

parameters m; and m,. We have

VO = Vi +AV, ™

AV = AV 4 082 1 bS2, | ®)

where the primes indicate the redefined potentials. We determine a and b by requir-

ihg | ‘ . , |

oAV 0 oAV
05, T 08,

@

U1,v2 v1,v2

*The physical mass'is given by the pole of the propagator. The inverse propagator is p* —
m2.,.+I(p?), where TI(p?) is the self energy. At one loop V()" = m2.__—TI(0), while the physical
mass squared is mZ,,, — II(mZ...). However, we consider cases where ﬂit,.ee ~ Mz, so we expect

the difference II(m2.,.) — I1(0). between V()" and the physical mass to be small.

4.



Hence, ' ' ' : /

_ 1 aAv®) _ 1 8av®) | o)
- 2‘01 aSl V1,2 ’ 21)2 352 v, ’ :
and the correction to the mass matrix is given by |
BZAV(I) 18AVM 1 8AV() :
Am? = —bubjy ——F5— —bigdjp ——7— (11)
i~ "8S.8S; BSJ n " v 851 |, v, 85, o102
The one loop poténtia.l has three contributions,
AV® = AVG) s+ AVjadye +AViake . (12)

and we discuss ‘these three contributions in turn. We should remark on tixe renor-
malizations in eq. (12). By computing the three terms above of we are including
the contributions of the effective Lagrangian.. Some authors utilize jﬁst the effective
potential in calculations and do niot expli‘citlybinclude wave function and gauge cou-
pling renorrnaliza,tion iri their procedure. Instead, they introduce a réhorma.lization
scale which mimics the effect of mcludlng these renormalizations. We note that only
by exphcxtly including these renormalizations do we ﬁnd the oorrect threshold be-
havidr. In particular, the arguments of the logarithms are ratios of particle mass&s;
there are n6 other scales introduced. In the present case, the difference between
“these two proceduf_es is numerically unimportant. As a simpﬁﬁéation, we keep only
leading logarithms whose argument is the ratio of a SUSY-particlé mass to a weak
scale mass. The only terms we ignore which ﬁiay be important are logarithms whose
argument is the ratio of the two stop masses. However, in a large class of MSSM
mass spectrum scenarios the two stops are not ,éxpectec.l to bbe highly nondegenerate,

so that in these cases we are justified in not including these terms.



2.2 The effective Lagrangian

We now calculate the three terms in eq. (12). The first correction, avy eff pots is due

‘to the one loop effective potential [8],

. M? .
AVY = smw ok (13)

where A is an ultraviolet cutoff and M? is the field dependent squared mass matrix
for all of the spin 0, 1/2, and spin 1 particles in the model. The supertrace is defined
as usual for any function f by Strf(M?2) = Ti(-1)*(2J; + 1) f(m?) where m? is
_the ) th squared mass elgenvalue of the mass matrix M?, for a particle of spin J
. .As we are only interested in the logarithmic corrections, we do not differentiate
tfle logarithms in AV} wff pot- Hence, we can evaluate them at the vacuum. Expanding
‘ avy ot pot 0 powers of S; and S, \&e see from eq. (11) that all terms proportional
to S? and S? do not contribute to Am.2 Additionally, terms prdportionai to .5'1.5'2
can be absorbed into a redefinition of the tree pa.rameter ms. This procedure leav&s
terms proportlonal to Si, S5 ax\ld 525'2 It is then stra.xghtforwa.rd to detenmne

AV(flf) pot by calculating the mass matrices for all of the pa.rtncl&s in the MSSM. We

obta.ln the contribution to the mass matrix

Ameff pot =

3g?m2 | mp | (mf) [0 O Mg (mP)[ O cotf
8n2ME, |sin?8 \m? 01 '

p
g*M%sin2p M3 o M2\
g"Mzsmn2p 2 H z
T3mcME, (263 = 41, +3) {hl (Mflz) o (M12/2 }

In

1 4 3 2.2 4 M2 4 2. 2 1/2
641r2{2(g +§g g +g)ln el 2(g +2g g +5g) e

-+




+2(y +2gg+3g)ln A2 + 59 +4g ln X

17 ,4 m? | _”?- - U2
+(129 +4g) A2 2 )

—NV2 » U

where sy, = sinf,. We write a mass M, for the higgsinos and gauginos, a mass
My for the squarks and sleptons (except the stop mass m;) and a mass My for the

Higgs-bosons. While ﬁhe superparticle masses are not degeheljate in this manner,

we can u.se‘ thesg masses to estimate the effect of nondegénera,ci&s and mixing as

ex;;la.ined in Section 23 |

The second contribution from the effective Lagrangian in eq. (12), .A‘?%’,;’

is due to gauge coupling renormalization. We must include this contribution to_
renormalize the mass of the Z°. The part of the tree potential which depends on .

the gauge couphngs is the quartlc piece

1432‘2 = 5(d" +97)(8] - S3)°. - (18)
We relate the renormalized coupling ggr to the unrenormalized coupling gy through
the relation gr = gu — Ag. Writing the tree potential in terms of the renormalized

couplings gives a contribution to the potential

A%auge -
renorm

1 IA 2 ; ‘ '
TRZACRE LA G (16)

and hence (from eq. (11)) a contribution to the mass matrix

- -

) A ca'A\d’' v —U107 )

A, = 2094908 ( | ) o a
renorm _—01'02 U% )

We obtain the MSSM renormalizations of the gauge couplings [9]



. ¢° (1
b9 =3513 |

103 A2 ( A2 ) 1 ( A2 ) A?
4+l +2m (== )+ (=) +2In .,
36 ( Q-) z)/ | 3 [ MZ{ .M;z/Z

' (18)
7. (A2 1 (A2) A2\ 23 (A?)'
+=In|—=}+zIn +2In —In|—1}}-
4 (Mg) 3 \ME M2,2 G M% |
" The third correction in eq. (12), A‘ff% , arises due to wave function renormal-
ization. Renormalizing the fields via H;p = Z; %H,-U, (2 =1,2), where Hy denotes

_ an unrenormalized field and Hgr denotes a renormalized one, we get a correction to

the potentialt

function

_g +~" (S2- DTS -8ZSY) (19)

-Where the fields are renormalized and Z; = 1 + AZ;. As the field H, couples to the
vtop-qua.rk, it receives an additional renormalization compared with Hl We have

the MSSM wave function renormalization [9]

3¢’ + 47 AN 1 [ A A?
AH="Tom [I“(M;%)". I“(M%)*: = (3) |

3 . [A?
82 =07 - |5 )., o (20)

where ), is the top-quark Yukawa coupling (we neglect the others) and the top-quark

mass given by m; = Avp/ V2. This gives a correction to the mass matrix

tWe only need to consider the quartic part of the potential here as well, since the terms pro-
portional to S? and S2 do not contribute to Am? and terms proportional to 5; S, can be absorbed

by the tree parameter mg.



function
C 2 2 2 2\. 2 - '
P +9% ) (a2 ,2[1 (A) A A ¥ —vv
39°+g “lnh|l—]-In{—— |+ |— ‘
21 0. V2
+3)X’In ( ";2) ' 21)
t V1V2 —2‘!}%

2.3 Results

Combining the three corrections from the effective Lagrangian ive find that the cutoff
" dependence cancels. We stress that we must include all three of these contributions
in order to have a physical, finite result. The logarithmic corrections to the CP-even

Higgs-boson mass matrix are .

Amﬂ: cos? B < 6231{;2 ) [(1 +4s2, + 231,) In (g;ﬂ) ‘ (22)

)

M2 166
2 4 2

26 m?
a2 4 £
+ (3 6s;, + 3 sw) In (—?)]

2 _ (_g*M3 _0g.c2 4 M!%( '
Amm—smﬂoosﬁ(gsﬂMeV) [(17 28sw+10.sw)ln (M12/2

SIS

(23)

(a2
+(1 4+ 40s2, — 2658 )In ( M3 ) (21 — 4252, + @sw)ln (]\—/I%)
z

9m? ., 26, m?
+ (——M% Sin2ﬂ 3+68w 3 Sw In ;1-?

3g°M3 m?

2
Bmz, = (167r2M2 ) [ 2::1"/3 W] i (m )+tm2ﬂAmu @)

In order to take into account all possible superparticle masses we vary the

common Imass pa.ra.meters M2, Mz and My appearing in our formulas from 0.1

9



to 1 TeV. The extrema of this variafipn corresponds (either exactly or very nearly)
to the case where the SUSY fermions are light and the SUSY scalars are ‘he.avy, or
vice versa. The vaxiation in our résults represents the theoretical uncertainty due to
the lack of information on the superparticle spectrum. In keeping with the effective
poténtial approximation, we must have some large logarithms in order for our results
to be trustworthy. In particular, our result is not trustworthy for cases where the
top—quark can give a large contributioh to the mass, and m; ~ m,, i.e. for cases
where the 'lc.>ga.rithAm multipiying the top contribution becomes small. Hence, we
always set the stop mass to 1 Tev and neglect sﬁop mixing.

In figures 1(a) and (b) we plot the heaviest possible h° mass as a function of the
top-quark mass and tan 8 , respectively. Hence we set m4 equal to 1 TeV. The two
curves in the plots correspond to the cases vof light SUSY scalars and heavy SUSY
fermions, or vice versa. These two cases correspond to the maximal variation of the
light h1ggs mass when allowing each SUSY mass to vary independently between 100
and 1000 GeV. We find that the uﬁceftainty in the superpa.rtide spectrum typically
gives us an uncertainty of 3 to 5 GeV in the mass of the Higgs-bosons. The difference
in the mass for tan8 = 10 and tan 8 = oo is less than a few pefoentl If @he stop
mass is lés tha.n_ 1 TeV the light Higgs-boson becomes lighter than shown in Figs. 1.

At tree level vthe lightest possible 'va,lu>e_ of the heavy Higgs-boson mass is Mz
and this occurs when m4 = 0. Af, one loop level, however, if my = 0 and if
tan (3 is near 1 we find that the light Higgs-boson can become lighter than the current
experimental lower bqund [10] of 41 GeV. Hence we should incréase the pa..rametaeri

m,4 until the mass of the light Higgs reaches this lower bound. We can then use

imgy does not correspond to the mass of the CP-odd Higgs-boson at one loop level, as it does

at tree level. However, in the limit of no squark mixing the difference is small {4].

10



this value of my4 to evaluate the mass of the heavy Higgs-boson. In figures 2(a)
and (b) we piot the ﬁghf&st posaible heavy Higgs-boson mass consistent with the
bound on the light Higgs-boson. The two curves in the plots show ‘the maximal
variation of the hea&y Higgs—boson mass while letting all SUSY parficle masses to
vary independently between 100 and 1000 GeV. At tree level for tanf =1 the.]ight ,
Higgs-boson is massless, independent of m,4. At one loop level, if m; < 100 GeV,
‘the top quark contribution is not big enough to increase the mass of the light Higgs
boson above the experimental bound. Hence, we see in fig. 2(a) with m; below
around 100 GeV and tan 8 = 1 that my > Mz. Similarly in fig. 2(b) we see for |
the m; = 90 GeV curve that we have no lower. bound on the heavy Higgs-boson |
mass for values of tanf < 1.5. In ﬁgufe 3 we show the excluded region in the |
tan 8 - m; plane for various values of m 4. Note that for amall m4 a large portion
of the parameter space is axcluded. This is because the tree contribution to my, is

small and thus a very large m; is needed to meet the experimental bound.

3 The Higgs-boson decay rate ['(H — ZZ)

3.1 Introduction

In the MSSM we need two Higgs doublets H; and H, to give masses to up and down
type fermions and to aSsure-canoellation of anomalies. The neutral Higgs spectrum
‘consistsy of two CP-even Higgs scalar pafticlee H and h (where My > M), one
~ CP-odd particle A, and a Goldstone boson G wh1ch is absorbed by and gives mass
to the Z boson. The nggs sector of the MSSM is thhly oonstramed At tree level

the Higgs-boson masses and couplings are determined by two input parameters. We

11



take these to be the mass of the CP-odd Higgs-boson M4 and an angle 8 which
at tree level is given by tan 8 = ve/v; where v, and vy are the vacuum expectation
values of the two Higgs-boson fields H, and H;. The tree level masses of the CP-even

Higgs-bosons are then given by

Min= %(Mi + M3 % /(M3 + ME)? — 4MZM; cosz(zﬂ)). (@)

The above equation implies the inequalities M, < Mz, My > Mz and the sum
rﬁle ME + ME = M3 + M3, |

Recently it was shown that one loop corrections involving top-quérk and équa.rk
loops can significantly modify the sum rule [7] and also violate the bound My < Mz
[11, 3, 12]. For 1 TeV squark masses we showed in the previous chapter that the
correction fo the light Higgs-boson mass is of the order 20 (50) GeV for a top mass
of 150 (200) GeV. Corrections to tﬁe neutral Higgs-boson mass sum rule due to the
gauge-Higgs and gaugino-higgsino sectors were considered earlier [6] and were found
to be generically sma]i.

In this chapter we consider corrections to the decay rate ['(H — ZZ) which is -
relevant for the deted:ion of the heavy Higgs-boson at a proton supercollider such
as the SSC via the “gold-plated” mode H — ZZ — £+£~£+¢~, where £ is e or p.
We confine ourselves to corrections due to third family (top and bottom) quark and
squark loops. Previous work on this subject has appea.red-in Ref.’s [13] and [14]
where the effective potential and the renormalization group methods are used. We
perform a Feynman diaéram calculation utilizing the on-mass-shell renormalization
scheme, é,nd present explicit analytic results. The structure of the chapter is as
follows: in Section 3.2 we present our renormalization procedure and in Section 3.3

we discuss our results. In the Appendix we present the necessary explicit formulas.
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3.2 Formalism for radiative corrections

Due to the presence of mixing in the CP-even and CP-odd sectors the renormaliza-
. tion of the Higgs sector of the MSSM presents a few complications when compared
to the standard model. Therefore, in this section we pr@eni: i;1 dgta.il our renor- -
mahzqtion procedure.. We follow the approach of Aoki et. al. [15] ada.ptedv to the
MSSM. |

The Higgs potential in the MSSM is
V = S5 (Hi*H} — Hi'H})’ + G\ HPH? @6
+(m? + ) Hi* Hi + (m} + p?) Hi* Hy — (m3e; HiHj + h.c.),

~ where g(g’) is the SU (2)L(U (1)y) gauge coupling, the m;’s, (i = 1,2,3) are the soft
| supersymmetry brea.kmg Higgs sector mass parameters, and p is the supersymmetnc
Higgs mass para.meter We can absorb 42 in Eq. (26) by redefining m? + u? — m?
and smularly for m3. H, and H, are given in terms of the shifted (but unrotated)
fields by S
o 1 (nt+S—iP L V2H,
l—ﬁ( V2H_ )’ ' T \/2-(024-524-21’2)

In order to discuss the tadpole and mixing structure of the theory we need the terms

that are linear and quadratic in S1, S2 and quadratic in P;, P,. These are given by

2 2 -
V., = (:’;‘;g_(vf - vg)vl +\mfv1 - m?;vz)sl

24 .2 : .
: +
+ (g—-—g—(vg - v'f)vg + mgvg m3v1) S

8
g +47

_+(g +g’2(3vl—v2)+ )s? ( 5@ 2)+ )52'
_ (92:9’2”]1)2 +m§) 5.5, | o (27)
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2 2
g +4g° m
v= (2 (vf—v3)+—2‘)Pf

2”2 _ ‘ .

We now define the coefficients of Sl and S, in Eq. (27) to be

=9’—;ﬁ(v1—v2)v1+m1vl miv, (@)

T, = iﬂ—(vz —v})vy + m202 — m2v;. (30)

Eliminating m2, m2 in favér of Ty, T from Egs. (29,30) and sﬁBstituting back in

Eqs. (27,28) we obtain, using a matrix notation

o 5 ooy sy
V, = (5 52)( )+%(sl' s»(‘ )( ) (31)
T 0 &~ Ss

é-‘1—v1 + mav1 i9—--vlvg - m3) (31 )

—-‘Lf—vlvz —m2 9-2;:-7-—1)3 + m2u S

L oo\ /PA\ ; m32 —mi\ (P |
(A P2)( )( )+§(P1 P,) : )( ) (32)
0 L P2 . —m% mgi’- P2 '

The next step is to 1ntroduce rotation matrices O(a) and O(f) such that the part

+3(51 S») (

V;,:

N =

of the CP-even and CP-odd mass matrices that does not depend on Ti, T is diago-

' nalized. Specifically, by defining |
S, - H fcosa —sina H
(o)) (G ) (0)
S ' h sina cosa h
P, G cosfB —sinfB\ /G
()20 ()= (s o) ()
P A sinf8 cosf / Al
we find that ‘

' Ty | %1 0 H
Vo= (H h) ( ) + 3(H . h)O(—a) ( 1 ) Ole) ( )
T, 0o 2 \RJ

v2

a MZ 0\ (H
s 20
o M) \n

14
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(T o G\ 0 0\ (G !
V——(G A)O(— ﬂ)( )O(ﬂ)( )+§(G A)( )( ) (34)
0 & A 0 M3/ \A T
Here we have defined - '

I A Tu\

( ) = O(a) ( ) .

T v T/

The parameters 8, a, MH, M;, and M, are related to the ongmal funda.mental

' parameters vy, U2 and m3 by the following formulas

wnf= 2, Mj=mi(anp +cotf), 'tan_2a=%—‘_5%tan2ﬂ, (35)

as well as Eq. (25). Here we used M3 = i%ﬁ(vf +v3). Carrying out the remaining
matrix multiplications involving the tadpole contributions to the mass matrices we

obtain the final result

1 Mg +byn b H |
Ve =HTy +hTh+ z(H h) ' ' (36)
S 2 ' brn MZ+bw/ \ R
1 (boc  boa G ' o
G=3G 4) | | 87)
- bea M2+ baa A '
with |
2 5 o nl 3 o o
byy = oen 2B (TH(cos asin B + sin® a cos f) +Th sin @ cos asin(a — B))
sin 2a ) ' | .
by = Y (Ty sin(a — B) + Th cos(a — ﬁ)) - (38)
2 : s s
brn = vsn28 (Th cos asin arcos(a — B) +Th(cos acosﬂv— sin® asin ,3))
and ‘ _
1, L
‘ bee = - (Ty cos(a — B) — Tr sin(a — B))
1, . L |
boa =  (Tusin(a — f) + Thcos(a — B)) (39)
== 55 (TH(smsyﬁ cos & + cos® ﬂ.sm a) + Tx(cos® Bcos a — sin® Bsin a))
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The t'erms linear in H and h va.re to be thoﬁght of as counterterms for the tadpoles.
To each order in the loop expansion we reédre that the total tadpole convtributionv
vanishes.. At tree level this impligs —tTy = 0 = —iT}.. This then gives the conven-
tional tree level masses. At one loop —iTy (—iT}) must cancel the oﬁe loop H (k)
tadpole diagrams i7y (i7,) (fig. 4). These conditions determine T and T}, and Eqgs.
(36-39) determine their contribution to the one loop mass matrices. |

- Taking as renormalized inputs tan f and M4 we calculate the physical masses
My, M, and the decay rate I'(H — ZZ) at one loop. It follows thaf the mea-
surement of any two of the physical quantities M4, My, M, and T (H —+ ZZ) will |
allow us to make a prediction for the other two. We stress that S is only to be
viewed as a useful parametﬁzaﬁon of physical observables. Since by itself 8 has no |
physical meaning we can renormalize it in any suitably convenient way. We explain
our renormalization prescription for 8 below.

From this point on we adopt the following notation conventions: a quantity such
as a field, coupling, ér mass with a subscript 0 indicates a bare quantity, quantities
which are funs:tiqns of the (renormalized) input parameters have a subscript r, a.nd
 renormalized fields and physical observables such as the pole of a propagator do not

- have subscnpts The bare tree Lagrangian contains
£o 19, Hod"Ho + 10,hod"ho (40)

—1(MB, + bun)HE — 1(MZ, + bun)h3 — benHoho

where M7 and M, are taken to be functions of My,, fo and M. Zo as given by equa-

tion (25). We now write the bare parameters in terms of renormalized parameters
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and shifts
Bo=PB+6B, ME =M>:+6M%, MZ = M2 +6ME 1)
and also introduce wave function renormalization
1 1 1 L
Ho = ZgyH + Zgyh,  ho= Zjh + Zjy H. , (42)

Note that Zfy = 1+ O(a), 2%, = 1+ O(a) while Z4,, Z%, bun, bun, and b
are all O(a). Substituting equations (41) and (42) into (40) we obtain the one lodp

renormalized two-point functions

; oM - |
{Tun(p®) = (Z&n)*(0* — ME,) — 3:' bz; — b + Mun(p°) .
. 2 Lo, o M2 9
_ z]--‘l.zh(P ) = (Zhhv) (P ) - _ - bhh + Hhh(p ) ' (43)

‘ 1 1

iTan(p%) = Zn(p* — ME,) + Z:f;z(P2 - MZ,) — ban + H‘Hh(Pz),

where z; = M2, MZ, B and the II’s are the scalar self-energies (fig. 5). The on-shell
renormalization conditions are [15] |

Re (iTun(M%)) = Re (iTmn(MF)) = Re (iCun(M3)) = Re (iCa(MZ)) = 0

Re(i Lry ) =1=Re(i O in )

| O laerg N 0P g
The notation Re denotes the real part. Here My and M}, are the physical masses

(@)

of H and h. Making the definitions §M% = ReHHH(M,?,') — by and similarly for
§MZ, we obtain from Eqs. (43) and (44) |

M= M + a;\f,; bz — SMZ, - (45)
M =M 361\;,3' dz; — M} - (46)
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1 1. .
Zigp=1- §R£ HHH(MI?L) ' (47)
1 1. ., |
' Zih =1-5Rell (ML) (48) -
Zhy = L (~Rellua(M3,) + bms) (49)
y 1
Zfn = =G (—ReTlyn(M2) + bu) , | (50)

where the prime in Eqgs. (47,48)~ iridicat& differentiation with respect to pé. Note
that M7_and MZ have the same functional form as in Eq. (25) except that they are
: ﬁmctibns of renormalized quantities. Eqs. (45,46) determine the physical CP-even
Higgs boson masses in terms of self energies, tadpole contributions, and -shjff:s of the
inputs parameters éz;. We now determine the shifts. The shift §M3% is defined so
that M, is equal to the physical A mass. An analysis similar to that of the CP-even
sector }:ields |

SMZ2 = ReTlua(M2) — baa. | (51)

Additionally, we find for the shift in the Z-boson mass
§M} = ReT1L;(M32) (52)

where 117, is the transverse part of the Z boson self ehergy, ng, = ¢*NZ, +
%:Héz. At this point it is worth noting that if we are only interested in the sum
M3, + M? we do not need a specification for 68 . When Eqs. (45) and (46) are

added the terms proportional to 83 cancel leavmg
M+ ME = M3 + M3 + ReTLua(M) + Re 15,(M3)
—Rellyn(ME) - Rella(M}) + bags + b —baa ~~ (53)

This is just the renormalization of the neutral Higgs-boson mass sum rule and the

divergences in Eq. (53) implicit in the II’s and ’s cancel leaving behind a finite
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correction. Since we demand that My and M, are physical masses they must be
individually finite. Equivalently, since M7+ M} is finite we must have that M — M}

is also free of dlvergenc&s This latter requirement gives

A, A

oA
8P oz ETYeR

where A = \/(M} + M32)2 - 4M3Z M3 cosz(2ﬂ). The above equation clearly deter-

6 ME + ——6M2 = M% + M} = finite (54)

mines only the “infinite” part of §8. By “infinite” we mean the part that is propor- |
tional to Cyy = % —~+log4r in dimensional regularization. To fully specify j5,3 we

take a MS approach and define §3'to be purely “infinite” so that Eq. (54) becomes
COA_. (BA ., A |
3590 =- (6M26MZ+aMz¢5M — 6M2, + 6M? - (55)

where the subscript co on a quantity indicates the “infinite” part of that quantity.

o0

Equation (55) implies |
58 = (2M2MEsin(4B))™" x | (56)
((M2 SM2 + M2 §M2) cos?(28) — ME SM? — M? 5M2)

With this.M S definition of 63 we introduce a scale dependence into the CP-even
Higgs-boson maés&s and thé decay rate. Howéver, we have checked that the final
r&sultsvdepend insignificantly on this scale; we have chosen the scale p2 = M%. This
definition of 8 at oné loop gives renormalized CP-even Higgs-boson masses in close
" agreement with those oBta.ined using the effective potenti.;il [11] for values of Mg n.ot '.
too close to Mz. In order f.o obtain good crossing behavior for the CP-even Higgs-
bbsén masses for values of M, 4 near Mz a procedure like that of Ref. [12] should be
used. In this paper we 6n1y consider values of M, 4 such that M2/M% > 4, and the
values of the C’P—even Higgs-boson masses in this region agree favorably with other

deterrmnatlons [11 12].
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The shift in §8 induces a shift in a through équation (35)

58 '+M§6M%—msm)'
sin(4) 2(M4 — M3) )

ba = sin(4q) ( (57)
We now come to the renormalization of the HZZ coupling. The bare HZZ and
hZZ couplings are given by

eoM3,
‘ MWO (M% M&’o)

Agzz - i cos(fo — ' ao), A-’\gzz — /\gZZ tan(Bo — o).
Defining

co=e+be, Ziy=1+6Z}y, (Z2,)? = 1+ 6222
| (ﬁere Zy = ZéZZ,‘-{-Z% 4 A, where .Z“°(Z“) is the bare (renormaliie&) Z BosOn field
and A, is the renormalized photon field) we obtain for the renormalized one ldop
3-point functjon

I‘HZZ - ( /\sz + /\sz) G + Arnzz - | (58)

where, defining cw = Mw /Mz, NH2Z = (gM_z/cw) cos(B — a,) and

HZZ _ \HZZ(6e , 36M3  18M2-6MZ,  16M;
Xer” = Ar (: TIME T2 MZE—MWE T2 ng (_59)

~tan(B — )88 — 80) + 6Zhy + 6227 + Zhy tan(6 — o))
and AT[I?Z is the explicit one loop Feynman diagram contribution (fig. 6). The .
angle o, is defined as in Eq. (35), but with the right hand side written in terms of |
renormaiized quanfiti&s. The expressions for M3, 68, éc, ZI-;}H and Z,%H in terms
of self energies a.’nﬂ ‘tadpole contribx_itions are given in Egs. (52), (56), (57) aﬁd
(47,48). We sifnply state the results for the \remajning shifts ée, 6ME, and 6Zzz.

We have _
2,-3\ NZ.,0)
I7,'(0) + (—W—jswcj ) 7 . (60)

§MZ, = Rellhw (M),  6Zz7 = —RellL,'(M2)

ol
(ST
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]

where sy, = \/l———c?; We note that Z.(0) vanishes in our case. The H-h r_nbdng
‘gives a contributibn to I'%4,7 through the term proportional to Z,,%H. The quantity
on the right hand side of Eq. (58) is given as a sum of fer’ms which are individually
“ divergent. In the full sum the divergences must of course cancel. We chécked both
~ analytically and ﬁumeﬁcaﬂy that this is indeed the case. The renormalizability of
the theory requires that the definition of 63 which renders the CP-even Higgs-boson
masses finite also gives finite couplings.
The explicit one loop Feynman diagrams shown in fig. 6 give a contribution to

the three-point function which ca.n'be.expanded in terms of form factors as
AT%zz = Dog” + Dipp} + Daphps + Dspiips + Dapspy (61)
(a form factor proportional to €*°Pp, pop vanishes by CP invariance). The formula
for the decay rate at one loop is
I'=/1—-4r(1287r2Mp)™! x
{=ar 412 (0852 + DI ROGF + Do) + NG + Dof?)
+ ME(1—2r)(1—4r) (Af’” Re(D4) + Re[(VEZZ + Do)D;]) |
+ b (3-2r) 108} ©
where r = M%Z/M% and we list Do and Dy in the Appendix. '
We note that the terms in the above expression th;ch do not involve A72Z are
forma:lly of O(g®). Nevertheless we find that for large Higgs-boson mass (My > Mz)
they are numerically important. This is because A#%7 is proportional to cos(a— 3)

which is proportional to 1 /M}, for large My and hence small. Keeping these O(g®)

terms is consistent: the terms in the amplitude that are of O(g®) which arise at
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two loop level also give a contribution of O(g®) in the decay rate, but these two
loop O(g®) terms are proportional to cos(a — ) and are thus suppressed when
My > Mz, in precisely the region where the O(¢®) terms in our one loop expression

become large.

3.3 Discussion

. In the MSSM at tree lefrel the decay rate I'(H — ZZ) is suppressed relative to the
~ same decay rate in the standard model by the factor cos?(« —PB). The “gold-plated”
decay mode H — Z Z.—-» 4¢ has great discovery potential for a standard model
Higgs—bosoq at a proton super collider such as the SSC for Higgs-boson mass&s}
130 GeV £ M, < 800 GeV [16]. The discovery potential for the heavy Higgs-
boson of fhe MSSM in this mode is not as promising due to the above mentioned
suppression factor. However, the “gold-plated” mode may be the only discovery
'mode for the heavy Higgs-boson at a hadron cc;;liider [17). The ‘discovery potential

is improved when radiative corrections are taken into account.

We discuss our numerical results below. We have checked our ‘num_erics in a
number of ways. First, we checked the cancellation of divergences as mentioned in
the last section. Second, we féund ourvr&sult for the correction to the neutfa.l Higgs-
boson mass sum rul;e agreed very closély with that of Ref.[7]. Lastly, we checked
that our calculation, when modified to give the correction to the standard »model
Higgs-boson decay rate to twé Z’s due to an extra heavy fermion doublet, agfe&s

with the results of Ref.[20].

In fig. 7(a) we show the tree level and radiativeiy corrected decay rate versus
the heavy Higgs mass for tan f=>5 and a top-quark mass of 160 GeV. In this figure we

\~
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have not included mixing effects, i.e. At =A,=p=0and the squark masses are all
equal. We show the odrreéted rate for the two squark mass chéic&s M,, =300 GeV
aﬁd M, = 1000 GeV. We see in fig. 7(a) the importance of keeping corrections which
are of O(¢®) in the rate. The one loop corre;:tions which contribute O(g*) to the
rate fall with My (as they multiply the tree ievel coupling). However, the one loop
corrections which contribute O(g®) to the rate increase as My increases. Hence,
th&seﬂ terms eventually dominate the rate as My becomes large. In fig. 7(a) the
corrected ratevis dominated by the ©O(g*) terms for small M};, and hence it inifially
falls as My increases beyénd the kinematic suppression. Eventually, however, the
terms of order O(¢®) become larger than the b(g") terms and the rate then rises
with My. For tan =5 this begins to occur for values of M, 1 of about 500 GeV. For
' larger (smaller) values of tan § the rate begins rising é,t larger .(sma.llerv) ‘values of
My,

In ﬁg; | 7(b) we show the rate versus tan £ for a Higgs boson: mass of 300 GeV, a
. top-quark mass of 160 YGeV, a squark mass of 1 TeV, and again for no mixing. We see
that the corrected rate is approximately twice as large as the tree level value, almost
independent pf tan 3. As we will discuss below, the rate depends dramatically ‘on
tan 8 once mixing is included. |

In ﬁg.» 8 the ratio of the radiatively corrected rate to the tree level rate is shown
versus the top-quark xﬁass, fbr the same set of pé.rameters as fig. 7(b), and tan B=5.
Fig. 8 illustrates that the corrected rate depends étrongly on two parameters in the
cas_é of no mixing.‘ | Cleérly the rate depends on the value of the top-quark mass.
But note for My=1 TeV that even for a top-quark mass as small as 100 GeV the

- corrected rate is still over a factor of two larger than at tree level. Thus the relative
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size of the correction depénds greatly on the value of M 7 as well. thé, however, that
when the top-quark mass is less than around 120 GeV we expect that the oorrécfions
frbm-other sectors will be /of the same order of magnitude as the correction due to
the quark/squark sector inciuded here.

When m1x1ng is included the parameter space increases. We will choose a point
in mixing space. and ekéminé the effect of mixing in deviations from that point. We
choose A—terms A; = Ay = 600 GeV and sqﬁark inass&s/ﬁztl =y, = 600’GeV,_a.tv1d
My, = My, = 300- GeV. Additionally, we will consider the two cases y = :!:40b GeV.

Inall fhree of the figures 9, 16, and 11 the heavy Higgs-boson mass is set to 300 GeV
and the top quark mass is 160 GéV. In order to isolate the effect of mixing we will |
plot the ratio pf the corrected rate including mixing to the correcfed rate ﬁth no
mixing (where the common squark mass is set to 600 GeV). In figs. 9 we plot this
ratio vs. the squark mass . We find that the effect due to mixing is strongly
dependent on tan B and . For large values of tan 3 the effects of mixing are greatly

'enha.nced As shown in figs. 9, the mclusmn of mixing can change the ra,te by a

- factor 1.3 for tan ﬁ=2 and for tan =20 by a factor 2.7 or 0.3, for u = —400 GeV or

p = +400 GeV, respectively.

Siinila.r ratios are seen in figs. 10, where the ratio of the corrected rate including
mixing to the corrected rate with no mixing is shown vs. A, f,hé top squa.rk mixing
paraxneter. Asin figs. 9 the two éurves for g = 400 GeV are similar when tan §=2;

“the rate can be increased by 50% or decreased by 25%. If tan 8=20 .t;h'e effects of
mixing are more pronounced and the ratio varies between roughly 1/3 and 3. The
curves in fig. 10(a) (and fig. 11(a)) do not span fhe entire ordinate axis shown

_ because unphysical regions of the squark mixing parameter space are encountered.
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In fig. 11 we plot the (mixing) to (no mixing) ratio vs. the supersymmetric Higgs
‘mass parameter yu. We see there is little dependence on g for small tan 3, while
for larger values of tan B the dependence is quite signiﬁca._nf. If tan =20 the ratio
varies between 4 and 1/36 as p varies from —750 to 750 GeV. Finally, we note that
there is very little dependence on the bottom squark ma#ses ;nd A—term A, for the
mixing conﬁguratio_ns considered.

- To summarize, we have computed the one loop corrections to the decay rate
I'(H — ZZ) in the MSS_M including third family quark and squark loops. We per-
form a Feynman diagram calculation in the on-mass-shell renérma.lization scheme.

- As the tree level rate falls like 1 /My for large >MH and we ﬁﬁd corrections that .
éow with My, the corrected rate may be /many times the tree level rate. For ex-
 ample, at My = 1 TeV the corrected rate rna,y be 13 times the uncorrected rate for
m;=200 GeV (with no squark mixing). Thé oorfectéd rate depends very strongly
on the Squark mixing pe;;r,ameters. For example, for the mixing configuration oénsid—
ered here, the rate varies by two orders of magnitude as the Higgs mass parameter
| I Va;ies between £750 GeV. Indeed, the'squa.rk mixing parameters p, A, and the
top squark masses, in additio;l‘ to the top-quark mass, must be measured in order

to test the Higgs sector of the MSSM.

4 The branching ratios of the heavy Higgs-boson

4.1 | Introduction

i

In this section we consider radiative corrections to all the relevant two-body de-

cay modes of the heavy Higgs-boson, assuming that all the supersymmetric de-
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cay modes are kinematically inaccessible. Thus we consider the fermidxﬁc decays
H— tf, bb, T+T_, ¢Z, the decays to vector boson pairs H — W+W-, ZZ, gg, '.7'7
and decays to Higgs—bdsons H — hh, AA. In this chapter we will set the top mass
: to m: =150 GeV. There is a window at small values of. M4 where the decay H - AZ

occurs but we do not include this decay mode in our analysis. -

Of course the decay rates to gg and 4+ are zero at tree level. The fonﬁﬂas
for these rates at the one—looﬁ level can be found in Ref. [16]). In determining the
- 4~y rate we includé the contributions from three generations of quarks and charged
leptons and their supersymmetric partﬁers, the W boson, the charged Higgs—boson
and the charginos. We set the slepton masses equal to 1 TeV. For the chargino case
we set the wino mass parameter to M = 500 GeV. We will in sonie cases consider
the Higgsino mass pé.rameter p to be zero (or small), and hence a chargino will be
lighter thaﬁ the present experimental lower bound of 45 GeV [21_], but in axiy case
the chargino contribution to the vy ;fate' is not large. For the gg rate we simply
iﬁclude three generations of quarks and squarks. We assume the first and second
generations of squarké are degenerate with the third. Naturally the third géneration
quark and squark contributions are largest.

Including quark and squark oorrectidns to the fermionic decay rates gives generi-
cally small (O(10%)) corrections. There are no explicit three point diagrazns in these
cas&s The corrections arise from wave-function and counter-term renormalization.
We expect that the.’oorrections due to other sectors of the theory will be of the
same order of magnitude as the corrections we include. In the case of tZ, bb and c¢
~ decays we include QCD corrections [22]. .Th&se corrections can be quite large for the

bottom and charm quarks due to runnixig mass effects, for exémple reducing the bb
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rate by ~50%.

The renorm&ﬁizatiqn of the W+W~— deqay rate is very similar to the ZZ rate
shown in detail in the previous chapter. The normalization of the renormalized
W+HW~ is generically two to three times as large as the ZZ rate and, qualitatively,
the two corrected rates have the same shape. In vparticula.r, the corrected W¥W~—
rate also overcomes th¢ tree-level suppression that occurs at large values of MH,

and dramatically rises for sufficiently large values of Mp.

4.2 _ G}eneral features

We will examine the heavy Higgs branching ratios for two representative values of -
tan B . In this section we will specify, rather than squark masses, the squark mass

parameters My, Mp, and Mg. The squark masses are then given by

. 1 ] - |
y, , =m; + -2—(M3 + M)+ ZM% cos 23 : | (63)
M3 — M3 — 5M; 2 ‘
:i:\l (MR + B 35) i+ oot B
i ,, 1 N P S |
My, = My + 5 (MG + Mp) — 7Mz cos28 | (64)

‘ 2
iJ (M5 ;M’?’ - 4M3V1_2" M coszﬂ) + m3(As + ptan B)2.

- Ifwe réfer to a value of M, then we hdve set the quark mass parameters to be equal,
ie. 'qu =My = Mp = MQ ‘Sir'nila.rly, if we refer to a value of A, we implicitly
* refer to both the top andv bottom A-terms, and they are equa./l.

We show in figures 12(a,b) the branching ratios for tan 3 ='2, M, =1TeV
and A=y =0. In this ﬁgﬁre it is shown that the decay H— AA is only accessible

near the endpoint of the My parameter space. However, whenever this decay mode
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is allowed the rate is substantial. The decay to hh is aléo quite substantial, and
it is the dominant decaly raté for values of My belovfr the ¢t threshold, except in a
small region near Mpy = 132 GeV where the (renormalized) Hhh coupling vanishes.
(At tree level this zero occurs af My = | 104 GeV.).The branching ratio of the
phenomenologically inter&sting decay mode H — ZZ is roﬁghly 6.8% below the top
threshold. Requiring the fwo Z-bosons to decay to e or u pa.iré (the “gold—plated”
mode) reduces this brénching ratio to the 10~ level. Note that this level of branching
ratio is sufficient to detect the heavy Higgs—boson at the SSC or LHC. Of course,
the Z Z branching ratio initially drops for x‘/alus of My above the top threshold,
making deteétiop in this region difficult or impossible. At very high values of My
we find that the ZZ branching ratio begins to rise. If tan 8 = 2 this begins to occur
near My=600 GeV. However, the rate does not rise sufficiently fést to compensate
fof the decrease suffered when crossing the atop threshold. Even at M;j=1200 GeV
the ZZ branching ratio is still an order 6f magnitude less tha.n its value before thé
top ‘threshold. It should be emphasized thét_ even if the branching ratio were an
order of magnitude larger, the orders of magrﬁtude decrease in the productioh Ccross
section of such heavy Higgs-bosons would make detection impossible. |
If we consider srﬁa.ller squark masses, e.g. qu = 300 GeV, we find qualitafively
the same picture. The major differences are that the lower limit for My is decreased
- to about Mpy,,..=101 GeV, down from _'MHW."=116 GeV when M,, = 1 TeV; the
value of M, u where the Hhh coupling vanishes is correspondingly smaller than the
large squark mass case; and the all of the branching ratios except the dominant one

(hh below the top threshold) are decreased by about 20%.

In figures 13(a,b) we show branching ratios for the same values of parame-
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ters as 'ﬁguré 12, but for tanf = 20 At large values of tan 8 the coupling of the
heavy Higgs—boson to down—typé femﬁons is enhanced by the factor 1/ cos 3. Cén— '
~ sequently, the bb branchin\g_ ratio completely dominates the figure, even above the.
tf threshold, while the 7;"'”7" ratio is the second largest at about 7%. Note that
the AA decay méde is only allowed near fhe endpoint My = Mpy,,.. In fact, 'this
curve would appear as a dot on fig. 13, so we do not include it. Similarly, H — hh
is allowed at this endpqint. These two decay mbdes have the largest rates at the
endpoint and each have branching ratios of 49%’. At this la.rgé value of tan 8 the ZZ
branching ratio (not including the branching ratios for both Z’s to decay to e or p) |
is only at most at the 10~ level and thus detection via the “gold—plated” mode is
impossible at the LHC or SSC. Beyond the top and hh thresholds the ZZ branching
| , ra.ti)o begihs_ to nse for values of MHz 900 GeV. This rise is far too mild to be of ;

phenomenological interest.

4.3 Squark miicing effects

We determined in the previous chapter that the fadiatively oorrecfed decay rate
H — ZZ can vary by two orders of magnitude for various valué of the squark mixing
ﬁa.ran;eters. We now determine if éuch variances appéa,r in the branching fgtios asr
- well. We wiil, as in.the previoﬁs chaptgr, pick a point in squark mixing parameter
space and show the results for various branching ratios as we vary individual squark
' mixing parameters away from that point. We will display the l:@ults as ratios of
’ the branching ratio for the mixed configuration divided by the _bra.nching ratio forv
a specific unmixed configuration. The unmixed configuration we choose has A =

p =0 and M,; = 600 GeV. The mixed configuration corresponds to A = 600 GeV,
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Mg = 600 GeV, My = 300 GeV, Mp = 900 GeV, and p = £700 GeV. We will fix
the heavy Higgs-boson maés at My = 260 GeV for the remainder of this discussion.
In figure 14 we show the results for the ratio of the mixed bra.ﬁching ratios to.
the unmixed branching ratios vs. the top squark mass parameter MU. As will be
the case for the next two figures, we show the results for tan 8 = 2 and 20 in figs.
(2) and (b), respectively. We see that, as was f.he case for the ZZ decay ré.te, the
bra.nchmg ratio dependence on the squark mass pa.rameters increases dramatically
when tan B gets la.rge At tanf =2 the branchmg ratios in the mixed configuration
differ by those of the unmixed configuration by <10% for My > 350 GeV. For lower
values of My differences. of roughly 50% can be seen' for the hh and bb branching |
ratios, with the largest d.lfferenoes occurring when My reaches the edge of physical
squark mass parameter space. At this edge of parameter space the 44 branching
ratio is 5 1 of its value in the ummxed configuration. We remark that the results for
 the - mode are, in this and the next two figures, found to be nearly identical
| to the results shown for the bb mode_. Similarly, the W"‘W‘ and ZZ curves are
very similar. For tan 3 =20 and g = 700 GeV the ZZ, W+*W~, and hh modes all
vary by two orders of magnitude as MU varies from 180 to 1000 GéV. In the case
| u = —700 GeV the saxné three branching ratios are a factor 2 to 4 larger than the
unmixed branching ratios as My varies over the same interval. At such large values”
of tan 3 the other branching ratios are bnly mildly depeﬂdent on the the squark
, rmxmg parameters. |
| In figures 15(a,b) we show the ratio of the bra.nchihg ratios including mixing
to the Branching ratios without miﬁing as a functioh‘ of A, for u=700 GeV. We

note that the plots corresponding to the case g = =700 GeV a.ré very similar to
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those shown in figures 15, except that A, — —A;. In figure 15(a) we show, for
tan 8 =2, tile ratio of branching ratios corresponding to the ZZ, hh, bb, and vy
decay modes. As in the figure 14(a), we find fhat at such a low value of tan 3 the
dependence is relativeiy mild (£30%) unless one considers va.lues of A; very nea.f
the edge of the physically allowed péra.meﬁer space. In this case the endpoint region
is near A;=1000 GeV, and near these values of At the branching ratios ﬁth mixing |
included can be reduced by a factor of 10 when wﬁpmed to the branching ratios
veva.lua.,ted with no squa.rk fnixing. Naturally, we do not ezpect the squark mixing
parameters to ha‘ve values very near the edge of the allowed parameter spéce. In the
~ case tan # =20, shown in figure 15(b), égain the branching ratios corresponding to
the ZZ, hh, and WW decay modes are quite sensitive to the value.o'f the squark
mixing parameters, while the other branching ratios are ncr)t.v As A, varies from —700
to 600 GeV the ZZ, | W+*W~-, and hh branching ratios are roughly a factor 3 to 5—10
times the corresponding branching ratios in the unmixed case.

' ‘In figures v16(a,,b) we show the dependence of the branching ratios on the Higgs
mass parameéer 1. We see in figure 16(a) that, even at the relativeiy small value of
tan 8 =2, the bb and ~yy branching ratios can be reduced by two orders magnitude
When p is near its upper limit of ~1400 GeV. However, if we restrict the parameter
space to |p| < 600 GeV, we find that the vaﬁous branching ratios all differ from the
‘branching fatios in the no—mixing case by <20%. If tan 8 =20, of course we expect
" a larger dependence. This is demonstrated in figure 16(b), where the hh, ZZ, and
W*W- branching ratios are seen to encounter severe dips near the regioh § =
900 GeV. At extremely large and negative values of u (u ~ =2 TeV) these three ‘

branching ratios are 8 or 9 times larger than in the unmixed case.
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To conclude, we find large variations in the branching ratios of the heavy Higgs-
boson when varying the squark m1x1ng parameters. For tan § =2 the ratio of the
branching ratios J‘includiﬁg squark mixing effects to the branching rat}iés with no
squark mixing are generally small (~ 20%) unless a squark mixing parameter ap-
proaches the edge of the physically allowed ‘pa.rameter space. At larger vaiu&s of
- tan g the dependence on squark mixing can be quite large for the ZZ, W*W~ and |
h‘l.z decay modes. The branching ratios corresponding to these modes can be sup-
presséd by orders of rﬁaghitude (ér enhanced by a factor 10) when squa;k mixing
is considered. vThus, the squark mixing parameters must be measured in order to
make precise predictions concerning the properties of the heavy Higgs-boson in the

minimal supersymmetric model.
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Appendix

In thxs Appendlx we give explicit analytic expressions for the self energlee;
tadpoles, and form factors introduced in the text. Our expresswns are given in
terms of the standard A, B,C functions introduced by Passarino and Veltman [18]
which appear in one loop calculations. We adopt fhé metric (1,~1,—1,~1), which is
different thén that of Ref.[lSj. vExplicit analytic formula# for thgse fllnétions appear
in Ref.[19]. |

To make the equations more concise we adopt thé following conventions. N,
~denotes the number of quark colors. The index a runs over the top and bottori;yi
sectors while the indices ¢, 7, and k run over squark mass eigenstai&s. Tlius, my

denotes a quark maés while r2,; denotes a squark mass. For the A and B functions we
define Aq = A(m2), Aui = A(HL.), Bo, = Bo(s?sm2,m2), Boy,, = Bo(g, i, ;)
and similarly for the rest of the B’s. A C function has six a;guments: three extemél
squared momenta and the three squared masses of the particles Whivch appear in lodp
of the 3-point diagram. We thus define Co_,;, = Co(M; %, 2, Mp, 2, m2;,m2,) and
Co. = Co(M%, M2, M2, m2, m3,m3) with a.nalogous deﬁnltlons for the rest of the
C’s. |

First we give expressions for the Higgs-boson self energies.

Mua(P?) = NeTais ,,,,)2300., NeYoi U””Am - (65)

—12N; Za(‘/aH)z (mZBoa. + p*(Ba, = B1,) + = (m? — é))-

The various V" and U vertex factors are shown in ﬁg 18 and explicit expressions

a.ppear in R,efs {1, 16]. However, the H -h-qu-qu and H-h-Gxg- qu vertxc&e glven in
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Ref.[16] are incorrect. In the notation of Ref.[16] the above couplings are

[, ) « 2 2 . . 2.0 2
1g°sin2a [, Tsp — exsin“Oy  m; 1g* sin 2a N m
- d =— {2t g, — —
7 (2 o ka an 3 ex tan® Oy M2Dk

respectively (Dyp = 1/sin? 8, Dyoun = —1/ cos? B).

UHH _, Uhh a.nd_VaH - V;‘. g is

Ilas is given as Mgy with VE, — VA, UZX ht

-~

given as Myy with (VH)2 — Vi VH UHH UHh and (VH)2 = VHVE, T4, is

aij atj oty orii
given as Iy with VX, — VA, UBF - U2, VF — VA, and By, — 3Bo,. Next

oigy il it 9

we list the transverse part of the gauge boson self energies.

N%,(%) = N.Y 0% Au o (69)

- 2Nc'2(‘7azij)2 (ﬁzii-éoau - ‘(fhii - ﬁ;‘czzj + pz)Blaij
at)

. 1
B, 5T 6

- SNCE((Vsi)szBoc + ((V2)? + (V2)?) p*(Bar, — Bl°)>
Mow (@) = N3 Ul Ai | (67)

1

= N (VY (7 BY, - (i, — iy + PP BY,
Ry .

1 mi+mi; p
6)

APt 6

— 8N(VY)? (meé" — (m; = m} +2p") B’ +2P2B§Y) -
where E,VJV = B(p?, 7, ™;,) and BY = B(p*,m},m}). I is given as 117, with

aij

VZ. f/;Yij’ UzZz - 02, VZ - V:, VZ — 0. The heavy Higgs-boson tadpole

contribution is given by
Ty = Ne(4 3 Vimo e = T Vi) C
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Th is given as Ty with V. — Vh. and VH - Vk, Lastly, the two three-point
Feynman diagram form factors which are relevant for calculating the Higgs-boson

decay rate are |
| Do= 8N Y m VI (V) + (VE))
2 2 A2/ M?{ 2 .2 2
X (40240 + (MH - 2MZ)C'12° + 2MZCu° -— —2‘000 - BO(Mz, ma,ma)>
+ 8N moVI(VEY( (Mg — 4m2) Co, - 2Bo(M3,m2,m2))  (69)

aij " ajk aij v aij o

- 8Nc Z ‘75“‘72 f/z C~'24at‘jk + NCZVH(‘]ZZBO(M?I, ﬁlzi, ﬁ'laj)

aijk aij

and
Dy =8N, - mo VI (((V2) + (V2)?) (4Css, + Co, = 4C1a,)~2V2)* (Cur, = Cua,))

— 8N, S VAVZVZ, (Cosaize — Crony) - (70)

atjk
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