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Abstract 

We investigate the effect of radiative corrections on the Higgs sector 

of the minimal supersymmetric model (MSSM). We first consider correc­

tions to the masses of the CP-even Higgs-bosons in the effective potential 

approximation. We include all sectors of the theory in the approxill)ation 

that each sector is characterized by one mass scale. We demonstrate that 

the top-stop contribution dominates the corrections for top-quark masses 

above"' 130 GeV. We than exalnine the decay rate ofthe heavy CP-even 

Riggs-boson f(H-+ ZZ). We compute radiative corrections due to vir­

tual top- and stop-loops. We perform a Feynman diagram calculation in 

the on-mass-shell renormalization scheme. We find that, while the tree­

level rate falls off as 1/MH for large Higgs mass, the radiative corrections 

cause the rate to grow for sufficiently large MH. We find that the rate can 

vary by two orders of magnitude when considering the effects of squark 

mixing. Lastly we examine the branching ratios of the heavy Higgs-boson 

of the MSSM. We again exami:g.e the effect of squark mixing and conclude 

that the squark mixing parameters must be measured in order to make 

precise predictions concerning the properties of the heavy Riggs-boson. 

'"This work was supported by the Director, Office of Energy Research, Office of High Energy 

and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under 

Contract DE-AC03-76SF00098. 
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1 Introduction 

This decade may well mark a turning point in high energy particle physics. The 

standard model of particle interactions seems to describe (amazingly) all of the 

presently observed phenomena. Before the end of this decade, however, the next 

generation of colliders are due to begin collecting data which will quite probably . 

reveal physics beyond the standard model. In this case the standard model of particle 

physics will have to be modified in order to accommodate this as yet undiscovered 

phenomena. For example, new heavy Z' bosons, possibly the relics of some symmetry 

larger than that of the standard model, may be found. Another possibility is the 

observance of quark or lepton substructure, i.e. compositeness of quarks and/or 

leptons. A techni:·particle spectrum might be discovered~ as would be expected if 

the electroweak symmetry breaking arises via technifermion condensation. 

Many theoris~s expect that supersymmetry will be discovered. This expectation· 

arises in the context of renormalizing theories with scalars as fundamental particles. 

In such theories (e.g. the standard model) the renormalization of the scalar mass 

involves quadratic divergences. These divergences, in the context of an effective field 

theory, are cut-off by some scale A which is the scale at which the low-energy theory 

is no longer valid. If the standard model is expected to be a valid theory until some 

grand unified scale or the Planck mass, then the sCalar mass will naturally be of the 

order of this large scale, unless unnatural fine tuning is· introduced. This disagree­

able situation is cured in the supersymmetric theory, as the fermionic and bosonic 

contributions to the quadratic divergences suffer the well known exact cancellations. 

Thus, in a softly broken supersymmetric theory, with a scale of soft-supersymmetry 

breaking of 0(1 TeV), the ·huge hierarchy between the weak scale and the grand 
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unified scale or the Planck scale is stable under radiative corrections. Additionally, 

the scalar particles that are light at tree level remain light after including radiative 

effects. 

Because of this improved ultraviolet behavior of supersymmetric models there 

has been much interest generated in examining such theories. If the world is in fact 

supersymmetric, a supersymmetric version of the standard model may emerge from 

the analysis of the data of the next generation of supercolliders. It is a natural 

starting point to first study the simplest supersymmetric model. In this thesis I will 

study radiative corrections to the minimal supersymmetric standard model (MSSM) 

[1, 2]. In Chapter 2 we will determine bounds on the masses of the two CP-even 

Higgs-bosons including radiative corrections from all sectors of the theory. We will 

find quite large corrections due to a large top-quark Yukawa coupling. In Chapter 3 

we will study the renormalized HZZ vertex of the heavy CP-even Riggs-boson and 

the corresponding decay rate. This decay mode is a. viable mode for detecting the 

heavy Riggs-boson at hadron supercolliders for some part of the parameter space. 

In the final chapter, Chapter 4, we discuss the renormalized branching ratios of the 

heavy Higgs boson. We study in detail the dependences of the branching ratios on 

the squark mixing parameters. 

2 Bounds on the CP-even Higgs-boson masses 

· 2.1 Introduction 

In this chapter we address two questions of current phenomenological interest. In 

the minimal supersymmetric standard model there are two CP-even Higgs bosons. 
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These particles, which we refer to as h0 and JlO , are respectively lighter and heavier 

than the ZO boson at tree level. We utilize the effective Lagrangian formulation· 

to determine the heaviest possible h0 mass and the lightest possible JlO mass in 

the MSSM to one loop order. These results ar~ only logarithmically dependent 

on the mass of the CP-odd Higgs-boson, mA, and all other soft parameters in the 

Lagrangian, such as superparticle masses and A-term parameters. 

At tree level h0 is constrained to be less massive than Mzl cos 2,81, where tan ,8 -

v2 fv1 is the ratio of vacuum expectation values of the two Higgs fields. This bound 

is saturated for mA :»· Mz. Similarly, JlO satisfie8 mH > Mz at tree level and this 

inequality saturates when mA = 0. We calculate the leading logarithmic one loop 

corrections to these saturated inequalities. Corrections to the masses of the Higgs 

bosons have appeared in several papers (3]. This work has been further elaborated 

on in Ref. (4]. Corrections to the charged Higgs boson masses have been studied (5], \ 

and corrections to Higgs mass sum rules have been calculated [6, 7]. 

The two Higgs doublets in this model have the charge structure 

(nr) . (nt) H1 = H} , H2 = Jifi , . (1) 

and these acquire vacuum expectation values }, ( : ) and * ( : ) . ~e choooe 

v1 and v2 to be real and positive. Writing Hf = .h(S1 + iP1), H~ = h(S2- iP2), 

we have the tree level potential for the fields sl and s2 

(2) 

The coefficient of the quartic term is a combination of g and g', the SU(2) and U(l) 

coupling constants, respectively. This is in contrast to the standard model where 
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the coefficient of the quartic term in the Higgs potential is arbitrary. The masses• 

of the CP-even Higgs-bosons are given by the eigenvalues of the mass matrix 

·2 82V 
mi; = 8Si8S; (3) 

where V is the scalar potential. We define v1 and V2 to be the vacuum expectation 

values of liP and m by requiring 

avi =O= avi 
as1 "l·V:Z . as2 tll.v:z 

(4) 

At tree level, we can use eqs. (3) and (4) to obtain the mass relation 

mtH = ~ ( m~ + Mi =F V(m~ + Mi)2- 4Wzm~cos2 2~), (5) 

where ~ = ~ (g12 + g2
) (vi+ vi) and m~ = m5( tan f3 + cot (3). At one loop level the 

potential 

v<t> = 'Vtree + 6V<1> (6) 

can be explicitly modified so that v1 and v2 receive no corrections. To do this 

we simply add to 6V(l) terms proportional to Sf and ~ by redefining the tree 

parameters m 1 and m 2 . We have 

v<t> = v:' + 6 v<t>' tree· ' (7) 

6 v<1>' = 6 v<t> + aSi + bSi, (8) 

where the primes indicate the redefined potentials. We determine a and b by requir-

mg . 

a~v<t>' 
(9) 

*The physical mass· is given by the pole of the propagator. The inverse propagator is p2 -

~ree + D(p2), where D(p2) is the self energy. At one loop y(l)" = ~ee-D(O), while the physical 

mass squared is ~ree- D(~ee)· However, we consider cases where ffltree:::: Mz, so we expect 

the difference D(~ree)- D(O) between y(i)" and the physical mass to be small. 
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Hence, 

(10) 

and the correction to the mass matrix is given by 

(11) 

The one loop potential has three contributions, 

(12) 

and we discuss ·these three contributions in turn. We should remark on the renor-

malizations in eq. (12). By computing the three terms above of we are including 

the contributions of the effective Lagrangian. Some authors utilize just the effective 

potential in calculations and do riot explicitly include wave function and gauge cou­

pling renormalization i:ri their procedure. Instead, the)' introduce a renormalization 

scale which mimics the effect of including these renormalizations. We note that only 

by explicitly including these renormalizations do we 'find the correct threshold be­

havior. In particular, the arguments of the logarithms are ratios of particle masses; 

there are no other scales introduced. In the present case, the difference between 

these two procedures is numerically unimportant. As a simplification, we keep only 

leading logarithms whose argument is the ratio of a SUSY-particle mass to a weak 

scale mass. The only terms we ignore which may be important are logarithms whose 

argument is the ratio of the two stop masses. However, in a large cla.Ss of MSSM 

mass spectrum scenarios the two stops are not expected to be highly nondegenerate, 

so that in these cases we are justified in not including these terms. 
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2.2 The effective Lagrangian 

We now calculate the th~ terms in eq. (12). The first correction, ll~Y} pot' is due 

to the one loop effective potential [8], 

(t) · 1 4 M 2 

fl.~!! pot = 647r2 Str M In A 2 ' (13) 

where A is an ultraviolet cutoff and M 2 is the field dependent squared mass matrix 

for all of the spin 0, 1/2, and spin 1 particles in the model. The supertraceis defined 

the i'th squared mass eigenvalue of the mass matrix M 2 , for a particle of spin Ji. 

As we are only interested in the logarithmic corrections, we do not differentiate 

the logarithms in A ~Y} pot· Hence, we can evaluate them at the vacuum. Expanding 

. fl. ~YJ ~t in powers of sl and s2, we see from eq. (n) that all terms proportional 

to S'f and ~ do not contribute to 6.m2 • Additionally, terms proportional to S1S2 

can be absorbed into a redefinition of the tree parameter m3 . This procedure leaves 

terms proportional to Sf, S~ and S'f Si. It is then straightforward to determine 

fl. ~Y} pot by calculating the mass matrices for all of the particles in the MSSM. We 

obtain the contribution to the mass matrix 

" 2 -umeff pot-

+ 9':!2:tp (2s~ -4s~ +3) {m (!?J +3ffi (~J} G :) 
+ ~,2 {2 (~'+ igV+g•)rn (~) -2(9'

4 +2gV+59•)m (~{2) 
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Mq for the squarks and sleptons (except the stop mass mi) and a mass MH for the 

Higgs-bosons. While the superparticle masses are not degenerate in this manner, 

we can use these masses to estimate the effect of nondegeneracies and mixing as 

explained in Section 2.3. , 

The second contribution from the· effective Lagrangian in eq. {12), ~ Vg~~9e , 
renorm 

is due to gauge coupling renormalization. We must include this contribution to . 

renormalize the mass of the ZO. The part of the tree potential which depends on 
·' 

the gauge couplings is the quartic piece 

V.quartic _ _.!.._{ 2 + f2){S2 _ 82)2 
tree - 32 9 9 1 2 • {15) 

We relate the renormalized coupling 9R to the unrenormalized coupling gu through 

the relation 9R = gu - D.g. Writing the tree potential in terms of the renormalized 

couplings gives a contribution to the potential 

~~~ . 1~(gD.g + g'D.g')(Si- Si? {16) 

and hence (from eq. {11)) a contribution to the mass matrix 

. 2 gD.g + g'D.g' ( vi 
~mgav.ge = 2 

renorm -VI V2 
{17) 

We obtain the MSSM renormalizations of the gauge couplings [9] 
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, gr.3 {17 [ (A2) (A2)] ~g = 327r2 36 ln mi + 2ln m; 

+: [m (~) +2ln (!;)] + ~· ~ (~) +2ln (:;,,)]}, 

~g = ~2 {Hm (~;)+2m{~;)] 

+I 1n (~) + ~ 1n (~) + 21n (~) _ 
23

1n (§:_).}. 
4 M3 3 Mk Mf/2 6 Mi 

(18) 

The third correction in eq. (12), A vj,!k , arises due to wave function renormal-
functscm . 

1 

ization. Renormalizing the fields via HiR = z;2 Hiu, (i = 1,2), where Hu denotes 

an unrenormalized field and HR denotes a renormalized one, we get a correction to 

the potentialf 

(19) 

where the fields are renormalized and Zi = 1 + AZi. As the field H2 couples to the 

top-quark, it receives an additional renormalization compared with H1 • We have 

the MSSM wave function renormalization .(9] 

(20) 

where At is the top-quark Yukawa ooupling (we neglect the others) and the top-quark 

massgiven by mt = Atv2fJ2. This gives a correction to the mass matrix 

twe only need to consider the quartic part of the potential here as well, since the terms pro­

portional to S'f and~ do not contribute to !J.m2 and terms proportional to 51~ can be absorbed 

by the tree parameter m3. 
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2.3 Results 

(21) 

Combining the three corrections from the effective Lagrangian we find that the cutoff 

dependence cancels. We stress that we must include all three of these Contributions 

in order to have a physical, finite result. The logarithmic corrections to the CP-even 

Higgs-boson mass matrix are 

(22) 

" 2 . (. 9
2 
Mt ) [( 2 4 ) (. Mk ) um12 = sm {3 cos {3 967r2 Ma, 17 - 28sw + lOsw In M'f/

2 

(23) 

2 . 4 ) ( Mj) 2 166 4 (Af¢) +(1 + 40sw - 26sw In M'f/
2 

- (21 - 42sw + 3sw) In Mj 

( 9m~ 2 26 4 ) (m~)] + Afisin2 {3- 3 + 6sw- 3Sw In m'f 

(24) 

In order to take into account all possible superparticle masses we vary the 

common mass parameters Ml/2, MQ and MH appearing in our formulas from 0.1 
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to 1 Te V. The extrema of this va.riatipn corresponds (either exactly or very nearly) 

to the case where the SUSY fermions are light and the SUSY scalars are heavy, or 

vice versa. The variation in our results represents the theoretical uncertainty due to 

the lack o! information on the superparticle spectrum. In keeping with the effective 

potential approximation, we must have some large logarithms in order for our results 

to be trustworthy. In 'particular, our result is not trustworthy for cases where the 

top-quark can give a large contribution to the mass, and mi ~ mt, i.e. for cases 

where the logarithm multiplying the top contribution becomes small. Hence, we 

always set the stop mass to 1 Te V and neglect stop mixing. 

In figures 1(a) and (b) we plot the heaviest possible h0 mass as a function of the 

top-quark mass and tan/3, respectively. Hence we set mA equal to 1 TeV. The two 

curves in the plots correspond to the cases of light SUSY scalars and heavy SUSY 

fermions, or vice vetsa. These two eases correspond to the maximal variation of the 

light biggs mass when allowing each SUSY mass to vary independently between 100 

and 1000 GeV. We find that the uncertainty in the superparticle spectrum typically 

gives us an uncertainty of 3 to 5 GeV in the mass of the Higgs-bosons. The difference 

in the mass for tan f3 = 10 and tan /3 = oo is less than a, few percent. If the stop 

mass is less than 1 TeV the light Higgs-boson becomes lighter than shown in Figs. 1. 

At tree level the lightest possible value of the heavy Higgs-boson mass is Mz 

and this occurs when rnA = 0. At one loop level, however, if mA = 0 and if 

tan /3 is near 1 we find that the light Higgs-boson can become lighter than the current 

experimental lower bound [10) of 41 GeV. Hence we should increase the parameter* 

rnA until the mass of the light Higgs reaches this lower bound. We can then use 

tmA does not correspond to the mass of the CP-oddHiggs-boson at one loop level, as it does 

at tree level. However, in the limit of no squark ,mixing the difference is small [4]. 
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this value of mA to evaluate the mass of the heavy Higgs-boson. In figures 2(a) 

and (b) we plot the lightest possible heavy Higgs-boson mass consistent with the 

bound on the light Higgs-boson. The two curves in the plots show the maximal 

variation of the heavy Higgs-boson mass while letting all SUSY particle masses to 

vary independently between 100 and 1000 GeV. At tree level for tan./3 = 1 the light, 

Higgs-boson is massless, independent of mA. At one loop level, if mt ;:S. 100 GeV, 

the top quark contribution is not big enough to increase the mass of the light Higgs 

boson above the experimental bound. Hence, we see in fig. 2(a) with mt below 

around 100 GeV and tan/3 = 1 that my >> Mz. Similarly in fig. 2(b) we see for 

the mt = 90 GeV curve that we have no lower bound on the heavy Higgs-boson 

mass for values of tan f3 ;:S. 1.5. In figure 3 we show the excluded region in the 

tan/3 - mt plane for various values of mA. Note that for small mA a large portion 

of the parameter space is excluded. This is because the tree contribution to mh is 

small and thus a very large mt is needed to meet the experimental bound. 

3 The Higgs-boson decay ra,te r(H ~ ZZ) 

3.1 Introduction 

In the MSSM we need two Higgs doublets H 1 and H 2 to give masses to up and dowri 

type fermions and to assure cancellation of anomalies. The neutral Higgs spectrum 

consists of two CP-even Higgs scalar particles H and h (where M~ > Mh), one 

CP-odd particle A, and a Goldstone boson G which is absorbed by and gives mass 

to the Z boson. The Higgs sector of the MSSM is highly constrained. At tree level 

the Higgs-boson masses and couplings are determined by two input parameters. We 
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take these to be the mass of the CP-odd Higgs-boson MA and an angle /3 which 

at tree levelis given by tan/3 = 1J2/v1 where v2 and v1 are the vacuum expectation 

values of the two Higgs-boson fields H2 and H1 • The tree level masses of the CP-even 

Higgs-bosons are then given by 

The above equation implies the inequalities Mh < Mz, MH > Mz and the sum 

ruleAfk+~=~+Ml. 

Recently it was shown that one loop corrections involving top-quark and squark 

loops can significantly modify the sum rule [7] and also violate the bound Mh < Mz 

[11, 3, 12]. For 1 TeV squark mas~ we showed in the previous chapter that the 

correction to the light Higgs-boson mass is of the order 20 (50) GeV for a top mass 

of 150 (200) GeV. Corrections to the neutral Higgs-boson mass sum rule due to the 

gauge-Higgs and gaugino-higgsino sectors were considered earlier [6] and were found 

to be generically small. 

In this chapter we consider corrections to the decay rate r( H __,.. Z Z) which is 

relevant for the detection of the heavy Higgs-boson at a proton supercollider such 

as the SSC via the "gold-plated" mode H __,.. ZZ __,.. ttt-tt.e-, where f is e or p,. 

We confine ourselves to corrections due to third family (top and bottom) quark and 

squark loops. Previous work on this subject has appeared in Ref. 's [13] and [~4] 

where the effective potential and the renormalization group methods are used. We 

perform a Feynman diagram calculation utilizing the on-mass-shell renormalization 

scheme; and present explicit analytic results. The structure of the chapter is as ' 

follows: in Section 3.2 we present our renormalization procedure and in Section 3.3 

we discuss our results. In the Appendix we present the necessary explicit formulas. 
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3.2 Formalism for· radiative corrections 

Due to the presence of mixing in the CP-even and CP-odd sectors the renormaliza­

tion of the Higgs sector of the MSSM presents a few complications when compared 

to the standard model. Therefore, in ·this section we present in detail our renor-

malization procedure.. We follow the approach of Aoki et. al. [15] adapted to the 

MSSM. 

The Higgs potential in the MSSM is 

(26) 

where g(g') is the SU(2)L(U(1)y) gauge coupling, the mi's, (i = 1,2,3) are the soft 
I 

supersymmetry breaking Higgs sector mass parameters, and p, is the. supersymmetric 

Higgs mass parameter. We can absorb p,2 in Eq. (26) by redefining mi + p,2 __,.. mi 

and similarly form~. HI and H2 are given in terms of the shifted (but unrotated) 

fields by 

__ 1 (vi+SI-iPI) 
HI- . rn , 

v2 V?_H;_ 

In order to· discuss the tadpole and mixing structure of the theory we need the terms 

that are linear and quadratic in SI, S2 and quadratic in Pt, P2 • These are given by 

(27) 
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(
9

2 + !f2( 2 2) mi) p2 V, = 16. vt - v2 + 2 1 

9 9 2 2 m2 2 2 ( 
2 + 12 2) . 

. + 16 (v2- vl) + 2 P2 - m3PtP2. (28) 

We now define the coefficients of St and S2 in Eq. (27) to be 

(29) 

(30) 

Eliminating mi, m~ in favor of T1 , T2 from Eqs. (29,30) and substituting back in 

Eqs. (27,28) we obtain, using a matrix notation 

(

li 

S2) ~ (31) 

of the CP-even and CP-odd mass matrices that does not depend on T1, T2 is diagcr 

nalized. Specifically, by defining 

(
S

1
) =O(o:) (H)= (coso: -sino:) (Hh) 

s2 h sin a cos a 

and 

(PI) = 0(/3) (G) = (~s/3 -sin/3) (G) 
P2 A sm/3 cos/3 . A 

we find that 

(33) 
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Here we have defined 

(Tt) = O(a) (TH) . 
T2 Th . 

The parameters {3, a, MH, Mh and MA are related to the original fundamental 

parameters v1 , V2 and m~ by the following formulas 

V2 •12 2 . M1 +~ ( ) 
tan/3 = -, 1Vl,A = m3 (tan/3 + cot/3), tan 2a = ~ An tan2{3, 35 

~ · A- Z 

as well' as Eq. (25). Here we used~= r~912 (vi +vi). Carrying out the remaining 

matrix multiplications involving the tadpole contributions to the mass matrices we 

obtain the final result 

with 

and 

bHH = _2 
213 

(TH( cos3 a sin {3 + sin3 a cos {3) + Th sin a cos a sin( a - {3)) 
vsm 

baa=.!. (TH cos( a- {3)- Th sin( a- {3)) 
v 

baA=.!. (TH sin( a- {3) + Th cos( a- {3)) v . 
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The terms linear in H and h are to be thought of as counterterms for the tadpoles. 

To each order in the loop expansion we require that the total tadpole contribution 

vanishes. At tree level this implies -iTH = 0 = -iTh. This then gives the conven-

tiona! tree level masses. At one loop -iTH ( -iTh) must cancel the one loop H (h) 

tadpole diagrams irH (irh) (fig. 4). These conditions determine TH and Th and Eqs. 

(36-39) determine their contribution to the one loop mass matrices. 

Taking as renormalized inputs tan f3 and MA we calculate the· physical masses 

MH, Mh and the decay rate r(H -+ ZZ) at one loop. It follows that the mea­

surement of any two of the physical quantities MA, MH, Mh and r(H-+ ZZ) will 

allow us to make a prediction for the other two. We stress that f3 is only to be 

viewed as a useful parametrization of physical observables. · Since by itself f3 has no 

physical meaning we can renormalize it in any suitably convenient way. We explain 

our renormalization prescription for f3 below. 

From this point o~ we adopt the following notation conventions: a quantity such 

as a field, coupling, or mass with a subscript 0 indicates a bare quantity, quantities 
I 

which are functions of the (renormalized) input parameters have a subscript r, and 
'· 

renormalized fields and physical observables such as the pole of a propagator do not 

have subscripts. The bare tree Lagrangian contains 

(40) 

where Mko and Aflo are taken to be functions of MAo, f3o and MZo as given by equa­

tion (25). We now write the bare parameters in terms of renormalized parameters 
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and shifts 

and also introduce wave function renormalization 

1 1 

ho = Zlhh + ZlHH. {42) 

1 1 1 1 

Note that ZkH = 1 + O(a), Zlh · 1 + O(a) while Z7Ih, Zl#, bHH, bHh, and bhh 

are all O(a). Substituting equations (41) and (42) into (40) we obtain the one loop 

renormalized two-point functions 

where Xi= M1, M}, f3 and the IT's are the scalar self-energies (fig. 5). The on-shell 

renormalization conditions are [15] 

Re (irHH(M'k)) == Re (irHh(MK)) = Re (irHh(M'k)) = Re (irhh(MK)) = 0 

&(; 8~t=Ml) = 1 = &(; ~~_,=) (44) 

The notation Re denotes the real part. Here MH and Mh are the physical masses 

of Hand h. Making the definitions 6Afk = ReiiHH(M.frJ- bHH and similarly for 

6~, we obtain from Eqs. (43) and (44) 

(45) 
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1 1 I ( 2) ZfiH = 1- 2ReiTHH MHr (47) 

1 1 I ( 2 ) Zlh = 1- 2Re1JM Mh.- (48) 

1 . 1 2 . 
Z~ = Afkr _ ~ ( -ReiiHh(MnJ + bHh) (49) 

1 
. 1 ( 2 ) 

Zkh = Ml,_ _ Mk -ReiiHh(Mhr) + bHh , (50) 

where the prime in Eqs. (47,48) indicates differentiation with respect to p2 • Note 

that Mkr and ~ have the same functional form as in Eq. (25) except that they are 

functions of renormalized quantities. Eqs. ( 45,46) determine the physical CP-even 

Higgs boson masses in terms of self energies, tadpole contributions, and shifts of the 

inputs parameters CXi. We now determine the shifts. The shift 8AJ1 is defined so 

that MA is equal to the physical A mass. An analysis similar to that of the CP-even 

sector yields 

(51) 

Additionally, we find for the shift in the Z-boson mass 

(52) 

where IT~z is the transverse part of the Z boson self energy, Ilti = g~WIT~z + 

~IT~z· At this point it is worth noting that if we are only interested in the sum 

Mk +~we do not need a specification for 6/3. When Eqs. · (45) and (46) are 

added the terms proportional to 6{3 cancel leaving 

This is just the renormalization of the neutral Hi~s-boson mass sum rule and the 

divergences in Eq. (53) implicit in the IT's and b's cancel leaving behind a finite 
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correction. Since we demand that MH and Mh are physical masses they must be 

individually finite. Equivalently, since Mk+ kfl is finite we i:nust have that Mk- kfl 

is also free of divergences. This latter requirement gives 

{} f:l. {} f:l. 2 {} f:l. 2 2 c 2 fini' . ( ) 
7!ijj8{3 + ~8Mz + ""iiiiJ..8MA- 8MH + oMh = te 54 

where f:l. = V(Ml + Ui)2- 4AflWz cos2(2{3). The above equation clearly deter­

mines only the "infinite" part of 8{3. By "infinite" we mean the part that is propor­

tional to Cuv = .~ -;+log41r in dimensional regularization. To fully specify 8{3 we 

take a MS approach and define 8{3'to be purely "infinite" so that Eq. (54) becomes 

{} f:l. ( {} f:l. 2 {} f:l. 2 2 2) 
8{3 8{3 = - 8Wz 8M z + 8A1X8M A - 8M H + 8Mh 00 

'(55) 

where the subscript oo on a quantity indicates the "infinite" part of that quantity. 

Equation (55)· implies 

8{3 = (2MlWzsin(4f3))-1 x (56} 

(<Wz 8M1 + Mj8Wz) cos2 (2{3)- Mk 8kfl - Ml8Mk) 
00

• 

With this M S definition of 8{3 we introduce a scale dependence into the CP-even 

Higgs-boson masses and the decay rate. However, we have checked that the final 

results depend insignificantly on this scale; we have chosen the scale p.2 = Afi.· This 

definition of f3 at one loop gives renormalized CP-even Higgs-boson masses in close 

agreement with those obtained using the effective potential (11] for values of MA not 

too close to Mz. In order to obtain good crossing behavior for the CP-even Higgs-

~<>son masses for values of MA near Mz a procedure like that of Ref. (12] should be 

used. In this paper we only ~nsider values of MA such that M'j/Afi > 4, and the 

values of the CP-even Higgs-boson masses in this region agree favorably with other 

determinations [11, 12]. 
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The shift in cf3 induces a shift in a through equation (35) 

. ( cf3 Ml cAfi- Mi cM1). 
ca = sm(4a) sin(4(3) + 2(Mj- Mi) . (57) 

We now come to the renormalization of the HZ Z coupling. The bare HZ Z and 

hZ Z couplings are given by 

eoM3 
\HZZ = Zo cos(tl _a ) \hZZ . \HZZ tan(f3o :-- eto). 
~ . M ( al2 - ai2 )~ fJO 0 ' "0 "0 

Wo .LV.L Zo .LVl Wo . 

Defining 

eo= e+ce, 
1 1 

ZfiH = 1 + cZfiH, 
. 1 

(Zlz) 2 = 1 + SZzz 

1 1 

{here ZIJO = ZJzZ~-t+ZlAA~-t whert:; ZIJO(Z~-') is the bare (renormalized) Z bos<>n field 

and A~-' is the renormalized photon field) we obtain for the renormalized. one loop 

3-point function 

(58) 

where, defining Cw = Mw/Mz, >..~ZZ = (gA1z/cw)oos(f3-ar) and 

>,.HZZ = >,.HZZ(6e + ~6::f _ 164-oMa, _ !6~ 
CT r e 2 z 2 Mz-.1\fa, . 2 Mw {59) 

1 1 )" -tan(/3- ar)(cf3- ca) + SZfiH + cZzz + z~Htan(f3- ar) 

and Llr~z is the explicit one loop Feynman diagram oontribution (fig. 6). The 

angle ar is defined as in Eq. (35), but with the right hand side written in terms of 
1 1 

renormalized quantities. The expressions for cAfi, c(3, Sa, ZfiH and Z"fH in terms 

of self energies and tadpole contributions are given in Eqs. (52),· (56), (57) and 

{47,48). We simply state the results for the remaining shifts ce, eM-a, and cZzz. 

We have 

6e = !IJT '(O) + (4?w-3) nllio) 
e 2 -rr 4swcw z ' 

{60) 

2 T 2 cMw = Reiiww(Mw), cZzz = -ReiTkz'(Afi) 
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where Sw = V1 - c2w. We note that rr~ .. y(O) vanishes in our case~ The H-h mixing 
1 

gives a contribution to r~zz through the term proportional to Zfn· The quantity 

on the right hand side of Eq. (58) is given as a sum of terms which are individually 

divergent. In the full sum the divergences must of course cancel. We checked both 

analytically and numerically that this 'is indeed the case. The renormalizability of 

the theory requires that the definition of 6(3 which renders the CP-even Riggs-boson 

masses finite also gives finite couplings. 

The explicit one loop Feynman diagrams shown in fig. 6 give a contribution to 

the three-point function which can be expanded in terms of form factors as 

(61) 

(a form factor proportional to ef.Wetf3 Pta'P2f3 vanishes by CP in variance). The formula 

for the decay rate at one loop is 

f = y'1 --'- 4r(1287rr2 Mn )-1 x 

{ (1 - 4r + 12r2) ( (,\~ZZ)2 + 2,\~zzRe(.\ffjZ +Do) + 1,\{fjZ + Dol2) 

+ MA-(1- 2r)(1- 4r) ( g:zz Re(D4) + Re[(.\[qz + Do)D4]) 

+ M~ (~ - 2r) 
2 

ID412
} (62) 

where r = Af'i/Mk and we list Do and D4 in the Appendix. 

We note that the terms in.the above expression which do not involve ,\~zz are 

formally of O(g6
). Nevertheless we find that for large Higgs-bos<>n mass (MH >> Mz) 

they are numerically important. This is because ,\~zz is proportional to cos( a- (3) 

which is proportional to 1/Afk for large Mn and hence small. Keeping these O(g6
) 

terms is consistent: the terms in the amplitude that are of O(g5 ) which arise at 
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two loop level also give a contribution of O(g6
) ·in the decay rate, but these two 

loop O(g6 ) terms ~ proportional to cos( a - {3) and are thus suppressed when 

MH >> Mz, in precisely the region where the O(g6 ) terms in our one loop expression 

become large. 

3.3 Discussion 

In the MSSM at tree level the decay rate f{H--+ ZZ) is suppressed relative to the 

same decay rate in the standard model by the factor cos2 (a- {3). The "gold-plated" 

decay mode H -+ Z Z -+ 4£ has great discovery potential for a standard model 

Higgs-boson at a proton super collider such as the SSC for Higgs-boson masses 

130 GeV ~ Mt/> ~ 800 GeV [16]. The discovery potential for the heavy Riggs­

boson of the MSSM in this mode is not as promising due to the above mentioned 

suppression factor. However, the "gold-plated" mode may be the only discovery 

mode for the heavy Higgs-boson at a hadron collider [17]. The discovery potential 

is improved when radiative corrections are taken into account. 

We discuss our numerical results below. We have checked our numerics in a 

number of ways. First, we checked the cancellation of divergences as mentioned in 

the last section. Second, we found our result for the correction to the neutral Riggs­

boson mass sum rule agreed very closely with that of Ref.[7]. Lastly, we checked 

that our calculation, when modified to give the correction to the standard model 

Higgs-boson decay rate to two Z's due to an extra heavy fermion doublet, agrees 

with the results of Ref.[20]. 

In fig. 7(a) we show the tree level and radiatively corrected decay rate versus 

the heavy Higgs mass for tan,8=5 and a top-quark mass of 160 GeV. In this figure we 
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« 

have not. included mixing effects, i.e. At = ~ = p. = 0 and the squark masses are all 

equal. We show the corrected rate for the two squark mass choices Msq = 300 Ge V 

and Msq · = 1000 Ge V. We see in fig. 7( a) the importance of keeping corrections which 

are of O(g6 ) in the rate. The one loop corrections which contribute O(g4
) to the 

rate fall with MH (as they multiply the tree level coupling). However, the one loop 

corrections which contribute O(g6
) to the rate increase as MH increases. Hence, 

these terms eventually dominate the rate as MH becomes large. In fig. 7(a) the 

corrected rate is dominated by the O(g4
) terms for small MH, and hence it initially 

falls as MH increases beyond the kinematic suppression. Eventually, however, the 

terms of order O(g6
) become larger than the O(g4

) terms and the rate then rises 

with MH. For tan,8=5 this begins to occur for values of MH of about 500 GeV. For 

· 'larger (smaller) values of tan ,8 the rate begins rising at larger (smaller) values of 

MH. 

In fig~ 7(b) we show the rate versus tan ,8 for a Higgs boson mass of 300 Ge V, a 

top-quark mass of 160 GeV, a squark mass of 1 TeV, and again for no mixing. We see 

that the correeted rate is approximately twice as large as the tree level value, almost 

independent of tan {3. As we will discuss below, the rate depends dramatically on 

tan ,8 once mixing is included. 

In fig. 8 the ratio of the radiatively corrected rate to the tree level rate is shown 

versus the top-quark mass, for the same .set of parameters as fig. 7(b), and tan {3=5'. 

Fig. 8 illustrates that the corrected rate depends strongly on two parameters in the 

case of no mixing. Clearly the rate depends on the value of the top-quark mass. 

But note for MH=1 TeV that even for a top-quark mass as small as 100 GeV the 

corrected rate is still over a factor of two larger than at tree level. Thus the relative 
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size of the correction depends greatly on the value of MH as well. Note, however, that 

when the top-quark mass is less than around 120 GeV we expect that the corrections 

from· other sectors will be of the same order of magnitude as the correction due to 

the quark/squark sector included here. 

When mixing is included the parameter space increases. We will choose a point 

in mixing space and examine the effect of mixing in deviations from that point. We 

choose A-terms At=~= 600 GeV and squark masses ffit1 = mb1 = 600 GeV, and 

ffit2 = m~ = 300 Ge V. Additionally, we will consider the two cases f.l = ±400 Ge V. 

In all three of the figures 9, 10, and 11 the heavy Riggs-boson mass is set to 300 GeV 

and the top quark mass is 160 GeV. In order to.isolate the effect of mixing we will 

plot the ratio of the corrected rate including mixing to the corrected rate with no 

mixing (where the common squark mass is set to 600 Ge V). In figs. 9 we plot this 

ratio vs. the squark mass ffit1 • We find that the effect due to mixing is strongly 

dependent on tan {3 and p. For large values of tan {3 the effects of mixing are greatly 

enhanced. As shown in figs. 9, the inclusion of mixing can change the rate by a 

factor 1.3 for tan/3=2 and for tan/3=20 by a factor 2.7 or 0.3, for f.l = -400 GeV or 

f.l = +400 Ge V, respectively. 

Similar ratios are seen in figs. 10, where the ratio of the corrected rate including 

mixing to the corrected rate with no mixing is shown vs. At, the top squark mixing 

parameter. As in figs. 9 the two curves for f.l = ±400 Ge V are similar when tan /3=2; 

the rate can be increased by 50% or decreased by 25%. If tan /3=20 the effects of 

mixing are more pronounced and the ratio varies between roughly 1/3 and 3. The 

curves in fig. 10(a) (and fig. ll(a)) do not span the entire ordinate axis shown 

because unphysical regions of the squark mixing parameter space are encountered. 
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In fig. 11 we plot the (mixing) to (no mixing) ratio vs. the supersymmetric Higgs 

mass parameter Jl· We see there is little dependence on Jl for small tan {3, while 

for larger values of tan f3 the dependence is quite significant. If tan /3=20 the ratio 

varies between 4 and 1/36 as Jl varies from -750 to 750 GeV. Finally, we note that 

there is very little dependence on the bottom squark masses and A-term~ for the 

mixing configurations considered. 

To summarize, we have computed the one loop corrections to the decay rate 

r( H -+ Z Z) in the MSSM including third family quark and squark loops. We per-

form_ a Feynman diagram calculation in the on-mass-shell renormalization scheme. 

As the tree level rate falls like 1/MH for large MH and we find corrections that 
. -

grow with MH, the corrected rate may be many times the tree level rate. For ex-

ample, at MH = 1 TeV the corrected rate may be 13 times the uncorrected rate for 

mt=200 Ge V (with no squark mixing). The corrected rate depends very strongly 

on the squark mixing parameters. For example, for the mixing configuration consid-

ered here, the rate varies by two orders of magnitude as the Higgs mas.s parameter 

Jl varies between ±750 GeV. Indeed, the squark mixing parameters ·Jl, At, and the 

top squark masses, in addition: to the top-quark mass, must be measured in order 

to test the Higgs sector of the MSSM. 

4 The branching ratios of the heavy Higgs-boson 

4.1 Introduction 

In this section we consider radiative corrections to all the relevant two-body de-
, 

cay modes of the heavy Higgs-boson, assuming that all the supersymmetric de-
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cay modes are kinematically inaccessible. Thus we consider the fermionic decays 

H ~ tf, bb, r+r-, ce, the decays to vector boson pairs H -+ w+w-, ZZ, gg, 11 

and decays to Higgs-bosons H-+ hh, AA. In this chapter we will set the top mass 

to mt =150 GeV. There is a window at small values of MA where the decay H -+ AZ 

occurs but we do not include this decay mode in our analysis. 

Of course the decay rates to gg and 11 are zero at tree level. The formulas 

for these rates at the one-loop level can be found in Ref. [16]. In determining the 

11 rate we include the contributions from three generations of quarks and charged 

leptons and their supersymmetric partners, theW boson, the charged Higgs-boson 

and the charginos. We set the slepton masses equal to 1 TeV. For the chargino case 

we set the wino mass parameter to M = 500 Ge V. We will in some cases consider 

the Higgsino mass parameter p. to be zero {or small), and hence a chargino will be 

lighter than the present experimental lower bound of 45 Ge V [21], but in any case 

.the chargino contribution to the 11 rate is not large. For the gg rate we simply 

include three generations of quarks and squarks. We assume the first and second 

generations of squarks are degenerate with the third. Naturally the third g~neration 

quark and squark contributions are largest. 

Including quark and squark corrections to the fermionic decay rates gives generi­

cally small ( 0{10%)) corrections. There are no explicit three point diagrams in these 

cases. The corrections arise from wave-function and counter-term renormalization. 

We expect that the corrections due to other sectors of the theory will be of the 

same order of magnitude as the corrections we include. In the case of tt, bb and ce 

. decays we include QCD corrections [22]. These corrections can be quite large for the 

bottom and charm quarks due to running mass effects, for example reducing the bb 
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rate by ""50%. 

The renormalizatiQn of the w+w- decay rate is very similar to the ZZ rate 

shown in detail in the previous chapter. The normalization of the · renormalized 

w+w- is generically two to three times as large as the zz rate and, qualitatively, 

the two corrected rates have the same shape. In particular, the corrected w+w-

rate also overcomes the tree-level suppression that occurs at large values of MH, 

and. dramatically rises for sufficiently large values of MH. 

4.2 General features 

We will examine the heavy Higgs branching ratios for two representative values of 

tan f3 . In this section we will specify, rather than squark masses, the squark mass 

parameters Mu,.MD, and Mq. The Squark masses are then given by 

-2 2 1( 2 2) 1 2 mt1,2 = mt + 2 Mq + Mu + 4Mzcos2{3 (63) 

(
M3 - M3 sw. ·-5~ )

2 

± 
2 

+ w 
12 

z cos 2{3 + m~(At ~ Jl cot (3)2 

-2 2 1( 2 2) 1 2 . .J ( ) 
mb1,2 = mb + 2 Mq +MD - 4Mzcos2{3 64 

~(M3-Mb 4W. -~ )
2 

± 
2 

- w
12 

, z cos2{3 +m~(~+ptanf3)2. 
. \ ' 

If we refer to a value of Msq then we have set the quark mass parameters to be equal, 

i.e. Msq = Mu = MD = Mq. Similarly, if we refer to a value of A, we implicitly 
I 

refer to both the top and bottom A-terms, and they are equal. 

We show in figures 12( a,b) the branching ratios for tan f3 = 2, Msq = 1 Te V 

and A · Jl = 0. In this figure it is shown that the decay H-+ AA is only accessible 

near the endpoint of the MH parameter spa.Ce. However, whenever this decay mode 
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is allowed the rate is substantial. The decay to hh is also quite substantial, and 

it is the dominant decay rate for values of MH below the tf threshold, except in a 

small region near MH = 132_ GeV where the (renormalized) Hhh coupling vanishes. 

(At tree level this zero occurs at MH = 104 GeV.) The branching ratio of the 

phenomenologically interesting decay mode H-+ ZZ is roughly 6.8% below the top 

threshold. Requiring 'the two Z-bosons to decay to e or p. pairs (the "gold-plated" 

mode) reduces this branching ratio to the 10-41evel. Note that this level of branching 

ratio is sufficient to detect the heavy Higgs-boson at the SSC or LHC. Of course, 

the Z Z branching ratio initially drops for values of MH above the top threshold, 

making detection in this region difficult or impossible. At very high values of MH 

we find that the Z Z branching ratio begins to rise. H tan {J = 2 this begins to occur 

near MH=600 GeV. However, the rate does not rise sufficiently fast to compensate 

for the decrease suffered when crossing the top threshold. Even at MH=1200 GeV 

the Z Z branching ratio is still an order of magnitude less than its value before the 

top threshold. It should be emphasized that even if the branching ratio were an 

order of magnitude larger, the orders of magnitude decrease in the production cross 

section of such heavy Higgs-bosons would make detection impossible. 

Hwe consider smaller squark masses, e.g. Msq ~ 300 GeV, we find qualitatively 

the same picture. The major differences are that the lower limit for MH is decreased 

to aOO,ut MHm;,.=101 GeV, down from MHm;,.=116 GeV when Msq = 1 TeV; the 

value of MH where the Hhh coupling vanishes is correspondingly smaller than the 

large squark mass case; and the all of the branching ratios except the dominant one 

(hh below the top threshold) are decreased by about 20%. 

In figures 13( a,b) we show branching ratios for the same values of parame-
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ters as figure 12, but for tan {3 = 20. At large values of tan {3 the coupling of the 

heavy Riggs-boson to down-type fermions is enhanced by the factor 1/ cos {3. Con­

sequently, the bb branching ratio completely dominates the figure, even above the 

tl threshold, while the r+r- ratio is the second largest at about 7%. Note that 

the AA decay mode is only allowed near the endpoint MH = MHmin. In fact, this 

curve would appear as a dot on fig. 13, so we do not include it. Similarly, H -+ hh 

is allowed at this endpoint. These two decay modes have the largest rates at the 

endpoint and each have branching ratios of 49%. At this large value of tan {3 the Z Z 

branching ratio (not including the branching ratios for both Z's to decay to e or p,) 

is only at most at the w-4 level and thus detection via the "gold-plated" mode is 

impossible at the LHC or SSC. Beyond the top and hh thresholds the ZZ branching 

ratio begins to rise for Values of MH~ 900 GeV. This rise is far too mild to be of 
I 

phenomenological interest. 

4.3 Squark ·mixing effects 

We determined in the previous chapter that the radiatively corrected decay rate 

H -+ Z Z can vary by two orders of magnitude for various values of the squark mixing 
. . 

parameters. We now determine if such yariances appear in the branching ratios as 

·, well. We will, as in the previous chapter, pick a point in squark mixing parameter 

space and show the results for various branching ratios as we vary individual squark 

mixing parameters away from that point. We will display the results as ratios of 

the branching ratio for the mixed configuration divided by the branching ratio for 

a specific unmixed configuration. The unmixed configuration we choose has A = 

p, = 0 and Msq = 600 Ge V. The mixed configuration corresponds to A = 600 Ge V, 
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. MQ = 600 GeV, Mu = 300 GeV, Mv = 900 GeV, and p, = ±700 GeV. We will fix 

the heavy Higgs-boson mass at MH = 260 GeV for the remainder of this discussion. 

In figure 14 we show the results for the ratio of the mixed branching ratios to . 

the unmixed branching ratios vs. the top squark mass parameter Mu. As will be 

the case for the next two figures, we show the results for tan {3 = 2 and 20 in figs. 

(a) and (b), respectively. We see that, as was the case for the ZZ decay rate, the 

branching ratio dependence on the squark mass parameters increases dramatically 

when tan f3 gets large. At tan {3 = 2 the branching ratios in the mixed configuration 

differ by those of the unmixed configuration by ~10% for Mu > 350 GeV. For lower 

values of Mu differences of roughly 50% can be seen for the hh and bb branching 

ratios, with the largest differences occurring when Mu reaches the edge of physical 

squark mass parameter space. At this edge of parameter space the 11 branching 

ratio is 1~ of its value in the unmixed configuration. We remark that the results for 

the r+r- mode are, in this and the next two figures, found to be nearly identical 

to the result~ shown for the bb mode. Similarly, the w+w- and ZZ curves are 

very similar. For tan/3 =20 and p, = 700 GeV the ZZ, w+w-, and hh modes all 

vary by two orders of magnitude as Mu varies from 180 to 1000 GeV. In the case 

p, = -700 Ge V the same three branching ratios are a factor 2 to 4 larger than the 

unmixed branching ratios as Mu ·varies over the same interval. At such large values' 

of tan {3 the other branching ratios are only mildly dependent on the the squark 

mixing parameters. 

In figures 15( a,b) we show the ratio of the branching ratios including mixing 

to the branching ratios without mixing as a function of At, for p,=700 GeV. We 

note that the plots corresponding to the case p, = -700 Ge V are very similar to 
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those shown in figures 15, except that At -+ -At. In figure 15(a) we show, for 

tan {3 =2, the ratio of branching ratios corresponding to the Z Z, hh, bb, and 11 

decay modes. As in the figure 14(a), we find that at such a low value of tan/3 the 

dependence is relatively mil~ (;S,30%) unless one considers values of At very near 

the edge of the physically allowed parameter space. In this case the endpoint regi~n 

is near At=lOOO GeV, and near these values of At the branching ratios with mixing 

included can be reduced by a factor of 10 when compared to the branching ratios 

evaluated with no squark mixing. Naturally, we do not expect the squark mixing 

parameters to have values very near the edge of the allowed parameter space. In the 

case tan/3 =20, shown in figure 15(b), again the branching ratios corresponding to 

the Z Z, hh, and WW decay modes are quite sensitive to the value of the squark 

mixing parameters, while the other branching ratios are not. As At varies from -700 

to 600 GeV the ZZ, w+w-, and hh branching ratios are roughly a factor 3 to io 
times the corresponding branching ratios in the unmixed case. 

In figures 16( a,b) we show the dependence of the branching ratios on the Higgs 

mass parameter p,. We see in figure 16(a) that, even at the relatively small value of 

tan /3 =2, the bb and 11 branching ratios can· be reduced by two orders magnitude 

when p, is near its upper limit of ,....1400 GeV. However, if we restrict the para.rileter 

space to IJ.tl < 600 Ge v' we find that the various branching ratios an differ from the 

·branching ratios in the no-mixing case by ;S20%. If tan {3 =20, of course we expect 

a larger dependence. This is demonstrated in figure 16(b), where the hh, ZZ, and 

w+w- branching ratios are seen to encounter severe dips near the region p, = · 

900 GeV. At extremely large and negative values of J.t (J.t ,.... ..:...2 TeV) these three 

branching ratios are 8 or 9 times larger than in the unmixed case. 
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To conclude, we find large variations in the branching ratios of the heavy Higgs-

boson when varying the squark mixing parameters. For tan {3 =2 the ratio of the 

branching ratios includi:rig squark mixing effects to the branching ratios with no 
} 

squark mixing are generally small (....., 20%) unless a squark mixing parameter ap­

proaches the edge of the physically allowed parameter space. At larger values of 

tanf3 the dependence on squark mixing can be quite large for the zz, w+w- and 

hh decay modes. The branching ratios corresponding to these modes can be sup­

pressed by orders of magnitude (or enhanced by a factor 10) when squark mixing 

is considered. Thus, the squark mixing parameters must be measured in order to 

m:a.ke precise predictions concerning the properties of the heavy Higgs-boson in the 

minimal supersymmetric model. 
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Appendix. 

In this Appendix we give. explicit analytic expressions for the self energies, 

tadpoles, and form factors introduced in the text. Our expressions are given in 

terms of the standard A, B, C functions introduced by Passarino and Veltman [18] 

which appear in one loop ~culations. We adopt the metric (1, --1,-1, -1), which is 

different than that of Ref.[18]. Explicit analytic formulas for these functions appear 

in Ref.[19]. 

To make the equations more concise we adopt the following conventions. Nc 

denotes the number of quark colors. The index a runs over the top and bottom~ 

sectors while the indices i, j, and k run over squark mass eigenstates. Thus, ma 

denotes a quark mass while mai denotes a squark mass. For the A and B functions we 

define Aa = A(m!), Aai. A(m!i), Boo= Bo(p2 ,m!,m!), Boo;;= Bo(#,m!i,m!;) 

and similarly for the rest of the B's. A C function has six arguments: three external 

squared momenta,and the three squared masses of the particles which appear in loop 

of the 3-point diagram. We thus define Cooi;t = Co(Mi, Mi, Mil, m!i, m~;' m~k) and 

Coo = Co(Mi, M1, Mil, m!, m!, m!) with analogous definitions for the rest of the 

C's. 

First we give expressions for the Higgs-boson self energies. 

(65) 

The various V and U vertex factors are shown in fig. 18 and explicit expressions 

appear in Refs.[1, 16]. However, the H-h-qkL-qkL and H-h-qkwqkR vertices given in 
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Ref.[16] are incorrect. In the notation of Ref.[16] the above couplings are 

tg sm .c.u 2 .L 3k - ek sm w - mq Dk and tg sm a 2ek tan2 Ow - mq Dk • 2 • tl-. ( ,., • 2 0 2 ) . 2 • 2 ( 2 ) 

4 cos2 Ow Mar 4 Mar 

respectively (Dup = 1/ sin2 (3, Ddcwn = -1/ cos2 (3). 

• • • · - H - h - HH - hh H . h 
nhh IS giVen as nHH With vaij -+ vaii' UOtii -+ uaii' and VOl -+ VOl. nHh is 

• • - H 2 - h - H - HH - Hh H 2 H h giVen as nHH With (VOtij) -+ vaij VOtij' UOtii . -+ UOtii ' and (VOl ) -+ VOl VOl. nAA is 

· • - H -A - HH - AA H A 1 giVen as nHH With vaij-+ vaii' UOtii -+ UOtii' VOl -+VOl 'and Boo -+ 3B0o• Next 

we list the transverse part of the gauge boson self energies. 

nTzz(p2) """ - zz-= Nc L- UOtii Aai (66) 
Oti 

2N. ""'(V"" z )2 (- 2 B- ( - 2 ..: 2 2)B-- c ~ Otij · m0ti Ooij - . m0ti - m0tj + p loij 
OtiJ 

2 - 1. m~ + m~; P2 >) + p B2loij + l67r2 ( 2 - B 

- 8NcL((Ys!)2m~Boo + ((V!) 2 + {Vs!)2
) p2{B210 - Bt0 )) 

Ot 

(67) 
Ott 

2N. ""'(V:-W)2 ( - 2 B-w ( - 2 - 2 2)B-w 
- c ~ ij mti o;i - mti - mbi + P l;i 

. tJ ' 

h B- w B( 2 - 2 - 2 ) d Bw B( 2 2 2) TIT · · JIT "th w ere ij = p , mt; , mbi an = p , mt , mb . n IS giVen as zz WI 

- z - - zz - z z VOtii -+ ~;, UOtii -+ u:J., Va -+ v;, Vsa -+ 0. The heavy Higgs-boson tadpole 

contribution is given by 

TH = Nc(4L:V:maAa- ~Va~Aai)· 
a at 

(68) 
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Feynman diagram form factors which are relevant for calculating the Riggs-boson 

decay rate are 

c:r 

x(4C24a + (M~ -2Mi)Ct2a +2MiCn.,- ~Coo- Bo(Mi,m!,m!)) 

+ 8Nci:maV0H(Vs!)2
( (M~ -4m!) Coo -2Bo(Mi,m!,m!)) (69) 

c:r . 

and 

(70) 

35 



References 

[1] H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75. 

[2] H.P. Nilles, Phys. Rep. 110 (1984) 1; 

J.F. Gunion and H.E. Haber, Nucl. Phys. B272 (1986) 1. 

[3] S.P. Li and M. Sher, Phys. Lett. B140 (1984) 339; 

Y. Okada, M.Yamaguchi and T. Yanagida, Prog. Theor. Phys. Lett. 85 (1991) 

1; Phys. Lett. B262 (1991) 54; 

J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B257 (1991) 83; 

H.E. Haber and R. Hempfling, Phys. Rev. Lett. 66 (1991) 1815; 

R. Barbieri, M. Frigeni and M. Caravaglios, Phys Lett, B258 (1991) 167; 

R. Barbieri, M. Frigeni, Phys Lett. B258 (1991) 395; 

A. Yamada, Phys. Lett. B263 (1991) 233; 

P.H. Chankowski; preprint IFT-7-91-WARSAW, Institute of Theoretical 

Physics, Warsaw University 00-681, Hoza 69, Warsaw, Poland, 1991 (unpub­

lished); 

J.R. Espinosa and M. Quiros, Phys. Lett. B266 (1991) 389; 

J.L. Lopez and D.V. Nanopoulos, Phys. Lett. B266 (1991) 397; 

. Z. Kunszt and F. Zwirner, to appear in Proc. of Large Hadron Collider Work­

shop, Aachen, Germany, Oct. 4-9, 1990. 

[4] J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B262 (1991) 477. 

[5] A. Brignole, J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B271 (1991) 123. 

36 

.. 



.. 

[6] J.F. Gunion and A. Turski, Phys. Rev. D39 (1989) 2701; D40 {1990) 2333. 

[7] M.S. Berger, Phys. Rev. D41 {1990) 225. 

[8] S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1883. 

[9] M.K. Gaillard, Nucl. Phys. B268 (1986) 669; 

I 

J.W. Burton, V. Jain, and M.K. Gaillard, Phys. Rev. D41 (1990) 3118. 

[10] D. Decamp et al., ALEPH Coli;, preprint CERN-PPE/91-111, Organisation 

Europeenne Pour La Recherche Nucleaire, 1991 (to be published). 

[11] D.M. Pierce, A. Papadopoulos and S.B. Johnson, Phys. Rev. Lett. 25 (1992) , 

3678. 

[12] A. Brignole, Phys .. Rev. Lett. B281, (1992) 284. 

[13] V.Barger, M.S. Berger, A.L. Stange and R.J.N. Phillips, Phys. Rev. D45, (1992) 

4128. 

[14] J.F. Gunion, R~ Bork, H.E. Haber and A. Seiden, Phys. Rev. D46, (1992) 2040. 

[15] K. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta, Prog. Theor. Phys.73, 

Suppl. (1.982) 1. 

[16] J.F. Gunion, H.E. Haber G. Kane and S. Dawson, The Higgs Hunter's Guide, 

Addison-Wesley ·publishing Company, Redwood City, CA, 1990. 

[17] J.F. Gunion, preprint UCD-91-22 (1991), to appear in Proc. of QCD at 200-TeV 

con£., Erice, Italy, June 11-17, 1991. 

[18] G. Passarino and M. Veltman, Nucl. Phys. B160 (1979) 151. 

37 



[19] G. 't Hooft and M. Veltman, Nucl. Phys. Bl53 (1979) 365; see also Ref.[20]. 

[20] B.A. Kniehl, Nucl. Phys. B352 (1991) 1. 

[21] K. Hidaka, Phys. Rev. D44 (1991) 927. 

[22) S.G. Gorishny et al., Mod. Phys. Lett. AS (1990) 2703. 

38 



~ ..... s 
~ C"'" 

r--1 
~ ,c;l CD en 
~ < ,-..... L...-J 

~ ...._.... 

t-' 
0 
0 

t-' 
01 
0 

~ 
0 
0 

0 01 
0 

39 

mh [GeV] 

~ 
0 
0 



"'%j ..... 
~ 
~ 
CD 
f--ool 
r--.. 
0"" 
'-"' 

c+~ 
s:» 
l:j 

"'0:) 

"""""' 

0 01 
0 

I I 
\ \ 
\ \ 
\ \ 
\ \ 

mh [GeV] 

"""""' 0 
0 

\ \ 

.. ... .. 
.. 

\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\\ 
\ \ 
\ \ 
ll 
I l 

. . l\ 

II 
I I 
I I 
II 

II II 
..- N 
01 to­
o 0 

~ ~ 
CD CD 
< < 

~ 
0 
0. 

o~~~~~~~~~~~~~~~~~~~ 

40 

.. 



'~ 

~ 
~· s 
~ c+ 

,......., 
'"1 c;'} 
~ ('1) 

~ < ,........ L.....J 

~ ...._., 

~ 
0 
0 

~ 
C1l 
0 

~ 
0 
0 

~ 
0 
0 

I 

I I 

41 

mH (GeV] 

tv 
0 
0 

~ 

II 
ro 

~ 

II 



~ 

~ 
0 
0 

If 
I \ 
I \ 
\ l 
\1 
I I . · · . 

. rf 
: II ... 

. : .11 
: : II 

I I 
II 
II 
I I 
II 
II 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

mH [GeV] 

.. . . . 

~ 
0 
0 

........... . . . • . 

. . . . . . .. ..... . . . .. . .. . 

I 

8 8 8 
~ ~ ~ 

II II II 
(0 ..... ro ' 0 01 ..... 
c;'l 

0 0 

~ c;'l c;'l 
(I) (I) 

< < 

o~~~~~~~~~~~~~~~--~~ 

42 



~ ..... 
~ c+ 

P> 
t-1 t:J 
CD 

~ 
~ 

0 . 
~ 
0 
0 

mt [GeV] 

~ 
0-
0 

~~~~~--~~~~--~~~~--~~~~~~~ 

s s s s 
> > > 

> II II II 
II Cb ~ ro 

...... 0 0 0 
0 

t-:3 Q Q ~ . 
01 (t) (t) (t) (t) 

< < < < 

~ 

0 

/ 
/ -

I 

43 



H 

Figure 4 ·• 

H H 
--- = iflHH 

. yv ·I1Jlv 
= -1 w 

Figure 5 

. <' z - ... ~ \ 
H----' 

\ ~ ,_ z 

z 

H---

z 

Figure 6 

44 



10 I .... I .... I .... J L . . I . . . . I . . . . I u 
10.0 

, , MH=300 GeV 

- - M =1 TeV ,·1 ~ \ - - M =1 TeV sq sq 
\ 

8 ~ · .,__ · M =300 GeV \ -tree level sq 
5.0 

-tree level \ 
' \ ,....., 

I 1 ~ \ ::a \ 
I . 

' '--I 6 I - \ I ~ 2.0, . ' N . I 
N \ I . ' t \ I I ' lil ' / I ' I ~ ..._ 

' / 1.0 ' ~ ' I \ 

' 4 ........ _ 
/ 

' I ' ' ' I ' 
/ 

0.5 
·~ ~·~· 

2 
(b) ....._ I \ 

I I 
200 400 600 800 1000 °'2 

5 10 15 20 
MH [GeV] tan {3 

Figure 7 

.. 



i --N 
N 

t 
::X:: 
~ 

~ 
~ 
0 

f .... --N 
N 

t 
::r: 
~ 

~ 

"' 

15.0 

12.5 

10.0 

7.5 

5.0 

2.5 

100 

tan {3=5 

no mixing 

-- MH=l TeV 

- - MH=300 GeV 

120 

,, 

~ 

----------------
140 160 180 200 

mt [GeV] 

Figure 8 



tan (3=2 tan {1=20 
3.0 

I 

1.3 ~ ..... 
(a) ( ..... (b) 

2.5 ..... 
QO ..... 

~ 
..... 

..... 
..... 

0 ..... 
~ - 2.0 

..... 
N ..... 
N 

t 1.2 
::r:: ...._ 

~ I 1.5 

f t MH=300 GeV 1 t--.....,. -N 1.0 N 

~ 
· - · J.L=-400 GeV 

t 1.1 ' 
::r:: -- J.L= 400 GeV ...._. 
r-. 0.5· 

l.O 600 700 800 900 1000 o.o . 600 700 800 900 1000 
rllt, [GeV] 

Figure 9 
fDt, [GeV] 

• •· 



• <0 

tan (3=2 tan {3=20 
2.00 3.0 

1111 
1.75 MH=300 GeV ~ 2.5 L \ 1 

-e · - · p, -400 GeV , r \ I 

a -1 1- , 1 
g - p,= 400 GeV 

1 
I- \ 

1 N' 1.50 2~0 

~ _/ ~. ·\ I 
:I:· - I ~ I 

) 1.25 lf-\~\ /,/j---1 1.5 ;- \\ II. 

a ·, / r · , 1 ~ 

E 1.00 . \ / 1.0 I \ I 

t 

e 0.75 ~ '~ ./ (a) ~ 0.5 t- /I '\_ (b) 
/ 

F , i ~ -._.~ 
0 50' I I I I, I I I I I I I I I, I I I I I I I I I, I I I 0 0 . I 

. -750 -500 -250 0 250 500 750 . -750 -500 -250 0 250 500 750 

At [GeV] At [GeV] 
Figure 10 



~ ...... 
~ 
~ 

,(D 

~ 
~ 

I 
-.:I 
01 
0 

I 
01 
0 
0 

( 

I 
. t.:) 
01 
0 

1:: 
~0 
!;'} 
CD 
< ........., 

t.:) 
01 
0 

01 
0 
0 

-.:I 

r(H -+ ZZ)m;xing/r(H -+ ZZ)no mixing 

0 ~ 0 ....... 
0. ....... bt 0 
01 0 0 0 

a:: ('+ ('+ 

= Pl Pl 
II ::s ::s 

UJ "0) 
0 II 0 ro 
c;'l 
(1) 

< 

g~~~~~~~----~--._~~~~._----~~~ 

49 



0 
:0 e 
1 
~ 
aS 

&s 

~ ., ~ 

• 

10° L 1 1 1 I I I I tan {3=2; Msq=l TeV 
I I I I i i I I I I I !L ~. I I I :::::I =+* pue I ==-v i I I **T" I I I .,... t===i ==5. 

to-1 

to-2 

10-3 

lo-4 

10-5 

I - --· . . . - "'"' 
..... ,. "/ ·-""-·-·-· ~. ·.. , 

."\ I ... · · · ·i· .. . b.b ...... -~ . 1\..... . : I' I . z ., . ' . . I. ....... 

,, ·,_ ...... -l_gJ!.---
,, ' ', TT 

If • ' • i . ' . C.£ 
II i . -,_ ·-. 
~ 

' ' I 
.. ' . I ... 
I 
I 
I 

(a) I 
· .... .1· ... rr ... 

\ 

I ' 
I 
. f . 

(b) 

ww_.-.­
. - . ............... - ..... . 

• ;...J•<., •• : .... :·...:_-----
. - . - . :::::.--:::. -<' -

-
TT 

-·-·-·-·-·-C~·-·-· 

... · ............. . rr. . ...... . 

10-6 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
120 140 160 180 200 400 

m 8 [GeV] 
Figure ~2 

600 800 
m 8 [GeV] 

1000 1200 

0 
lQ 



' 

0 
•.-4 
~ 

~ 
b.O 

] 
0 
~ 
CIS .... 

I=Q 

1oo "' I I .. I I tan {3=20; M -1 TeV 
I I I II I II I II i D I I 0 I 0 0 I iO II I II I II I 0 I I I :Z: I 0 sl~l 01 I II • .0 • :0 I I i I i Q • I. iii II I II • ol o 5 - ;a • I • L • t. ::a 

1o-1 7'7' 

10-2 

10-3 gg ww -
10-4 

\ 

' 10-5 ...... 
-. _cc 1 

·-·-·-·-. 
-to-6 

'1'1 I ...... ·•· .... . . . . . . . . . . . . . . . . . . . 

10-7 
(a) (b) 

10-8 
100 120 140 160 180 200 400 

mH [GeV] 
Figure 13 

~ 

7"T 

___ . _____ tt_ --

-
---- . hh ---- ...... _ gg 

·- ·ww- · zz 

·· .... n .. . . . . . . . . . . . 

600 800 1000 1200 
mH [GeV] 

~ • 

..... 
lQ 



.. ; 

( 

tan (3=2 tan (3-:20 

1.0 p,=-700 GeV ---
100 il 

.,....... 0.7 bO s:: 

:~ 
/1""700 GeV 

0 s::. 
0.5 10-1 

~ 
~ I J C"' bO 
s:: lQ 

:~ I . .. 
I 1- II '-" 

~ 

~ I I I' ~ 0.3 p,=700 GeV -zz 
10-2 

(a) ~I --hh (b) 

0.2 200 300 . 400 500 250 500 750 1000 
Mu [GeV] Mu [GeV] 

Figure 14 
'-



/ 

, ... • 



• 

tan (3=2 
101 

tan {3=20 

~ ......::: 
~ 
~ I 

to0 ~z~·,s:i:.-- ..... ·-··I'.:.... - I too 
....... . -- ....... . - . ,_. ,. 

,....... F 1111 
\. b1) 

s:: 
:~ ~ \· .. \~ to-1 

I= -zz 0 s:: 
'-" . 

I ~ ·. \ I l-~ ·-· ww 
~ 

1o-t L I~ 10-2 l= I~/, -3 &1; ~ --"--hh 

:~ 
'-" 
~ 
~ -. 

10-3 
,_ 

(b) 

~ t .. ,. 
10-2 I , I I I I I I I I I I I I I 10~2~00 -2000 -1000 0 1000 -1000 0 1000 2000 

J.t [GeV] J.t [GeV] 
Figure 16 



-Hk ' / 'Iai ' / ',// ·u-~H~ 
/' 1 aij 

/ ' 
/ ' -HI / ' 'Iaj 

H~1 stands for llll, Hh, hh, or AA. 

t 

q(l 

i"f(V~-V~a y5) 

q(l 

-p / ~ 
WJ.1 /"' 
'\/VV\1(, iv~ (p+p')v. 

b 

ZJL> / Ciai / 
/ . · iU~ gv.v 
' . Cllj 

' 'Z:' I ' '"'· 'iaJ 

...,, -
p b­

J 

-/ qai 
/ 

H,h / .-Hh ----< IV.'. 

Figure 17 
55 

' Cllj 

' -' 'Iaj 

-A 
vaij 



-.:--~-

LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
TECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

--- ,..£.· 


