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University of California 
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ABSTRACT 

This dissertation is concerned with vacuum polarization in the 

field of finite radius nuclei. In particular, the higher order, 

a(za)n, n ~ 3, vacuum polarization charge density is studied. The 

Wichmann-Kroll formalism relating the vacuum polarization charge den-

sity to the Green's function of the Dirac equation is reviewed, and the 

modifications necessary for very large Z systems with Z > 137 are 

discussed. The radial Green's functions for the Dirac equation in the 

field of finite radius nuclei are constructed and the higher order 

vacuum polarization charge density, p3+, is calculated numerically from 

those Green's functions. The third order vacuum polarization charge 

density, p3, is calculated separately using the third order radial 

Green's function in order to provide a check on the calculation of 

3+ p and to estimate the dependence p3+ on different models for the 

nuclear charge density. The nuclear size effect is calculated explicit

ly for only the lowest angular momentum (j = ~) contribution to the 

vacuum polarization density. The effect on the contribution from 

higher angular momentum (j ~ ~) is estimated from the known results 

for point nuclei. Specific calculations are made for muonic Pb and 

for superheavy electronic atoms. For muonic Pb the energy level 



shifts due to 3+ 
P 

-iv,;.. 

and p3 on high angular momentum states 

(5g9/ 2, 4f7/2, 3d5/ 2 ) are calculated in view of reported discrepancies 

between theory and experiment. The point nucleus limit is checked 

against known results, and the finite size effects are compared with 

other calculations. Also, the accuracy of previous approximate calcula-

tions based on the smallness of the electron mass and of the nuclear 

radius are investigated numerically. For superheavy electronic atoms, 

the problem of whether the higher order vacuum pOlarization can prevent ~ ~ 

the lSl/2 state from reaching the lower continuum, 2 E = -m c , e for 

some critical chargeZcr > 137 is investigated. The charge density 

of the overcritical vacuum is then calculated and the stability and 

localization of a helium-like system for Z in the neighborhood of 

Zcr is studied. 

.. . 
..,... 
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INTRODUCTION 

The three papers that comprise this dissertation present the 

results of a study of the nuclear size effects on higher order vacuum 

polarization. The first two papers, Chapters I and II, present specific 

results for muonic Pb and superheavy electronic atoms. The last 

paper, Chapter III, presents the general discussion of the calculation 

of the higher order vacuum polarization density, p3T
, and the specific 

details and methods used in arriving at the conclusions reported in the 

first two papers. 

Chapter I is organized as follows: Reasons are given why the 

calculation of p3+ for finite radius nuclei is of interest in 

connection with muonic Pb. Then the approximation obtained by ca1-

culating the nuclear size effect for only the lowest angular momentum 

(J = ~) contribution to p3+ is made, and the size of the contribu

tion from J ~ ~ is estimated from the results of Wichmann and Kroll. 

For this estimate, the vacuum polarization charge accumulated at. the 

1 origin for the case of point nuclei is calculated for the J = 2 

contribution to the third order density p3. Then, the results of the 

energy level shifts due to p3 and p3+ in the"limi t of apc>irit 

nucleus are compared to known results for the 5g9/ 2 and 4f7/2 

muonic levels. The finite size effects are investigated first for the 

third order density p3, and the dependence of these effects on the 

nuclear charge. density, PN ' is studied by calculating p3 with two uc 

different models of PN • The higher Ol'.der density P3+ is then uc 

calculated with the simplest model, PN = ~(r - R)/4~R2, where R uc 

is chosen to equal the root mean square radius of Ph as determined 
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experimentally. Finally, the accuracy of the approximation used by 

other workers in analytic calculations of the finite size effect on 

p3+ is studied. 

In Chapter II, the results for very large Z systems encoun-

tered in heavy ion collisions are discussed. First, the reasons why 

we may expect a rapid increase in the effect of higher order vacuum 

polarization for Z ~ 137 are given. Then the approximation obtained 

by neglecting the Ikl ~ 2 contribution to p3+ is justified. 

Specific calculations of p3+ and p3 for Z .... Z ... 170 are made cr 

in order to see if (higher order) vacuum polarization can prevent the 

electronic state from reaching the lower continuum, 
_ 2 E - -m c , , e 

for Z = Z • The tests made to determine the accuracy of the computed cr 

bound state wavefunctions and pJ+ are then described. The dependence 

of the 181/ 2 energy shift on the different models of PNuc is then 

estimated as in Chapter I by calculating p3 with two different models 

of PN • uc For P3+ Z > Z , the relation of cr to the helium-like 

. density PHe is discussed. The helium-like density is then calculated 

for Z < Z cr and Z > Z , and the continuity and localization of cr 

PHe are examined in detail for Z in the neighborhood of Zcr. 

In Chapter III, the formal relations between the Green's 

J '. 

function for the Dirac equation and the vacuum polarization density are ~ 

reviewed, and the regularization of those relations is discussed. The 

radial Green's functions are constructed for finite radius nuclei. 

Expressions valid to all orders in ~ as well as for terms of first 

and third qrders are given. Then, the results for muonic Pb and 

Buperheavy electronic atoms are further elaborated upon. In particular, 

the effect of finite nuclear size on the vacuum polarization density 
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itself is discussed in order to supplement the discussion of the first 

two chapters, where the emphasis was on the resulting energy shifts. 

Finally, the numerical techniques employed in the calculation of the 

radial Green's functions and of the vacuum polarization charge 

densities are discussed. 
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CHAPTER I 

NUCLEAR SIZE EFFECTS ON VACUUM 

POLARIZATION IN MUONIC Pb 

Phys. Rev. Letters ;g, 1393 (1974) 
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NUCLFAR SIZE EFFECTS ON VACUUM 

* roLARIZATION IN MUONIC Pb 

M. Gyulassy 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

April 22, 1974 

ABSTRACT 

LBL-2699 

The effect of finttenuclear size on the vacuum 

polarization charge density is studied. The results to 

third order, a(za)3, and to all orders, a(za)~, 

are presented with special attention focused on the 

5g
9

/ 2 - 4f7/2 transition in muonic Pb. In addition, 

the accuracy of analytic calculations exploiting the 

smal1ness of the electron mass and of the nuclear radius 

is discussed. 

One of the major tests of quantum electrodynamics l.ies in the 

calculation of transition energies in high-Z muonic atoms. The most 

important radiative corrections to these transition energies come from 

vacuum polarization (vp). Even the higher-order, a(za)n~ 3, VP is 

important due to the high resolution of recent experiments. Since 

. 1 
discrepancies between theory and experiment have been observed, most 

notably in Ba
56 

and Pb
S2

' several workers2,3,4 have looked at the 

higher-order VP in more detail. In !8rticular, the effect of finite 
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nuclear size on the VP charge density has been studied. However, 

complete agreement on the size of this effect has not yet been reached. 

In the hope of eliminating this uncertainty, this letter presents the 

results of an independent numerical study of the problem. 

In muonic :Al, a 42 ± 20eV discreIRnc; exists between theory 

and experiment for the 5g
9
/ 2 - 4f7/2 transition when the theoretical 

contribution to the transition energy due to higher-order VP is cal-

culated for a point nucleus. For a finite size nucleus, characterized 

by a radius R, the VP charge density, peR, r), differs from its point 

nucleus form in such a way as to increase the transition energy. This 

has the effect of increasing the discrepancy between theory and exper

iment. For the 5g - 4f transition this increase was calculated 

numeriCa~lY by Rinker and Wilets
2 

to be 16 eV. On the other hand, the 

analytiC calculations of Arafun; and Brown, et al. 4, using the approx-

imations based on the smallness of me and the ratio of the nuclear 

radius to the muonic orbit, R/aO' gave 5 eV. 

The calculation reported in this letter gives 6 eV for the 

energy shift of the 5g - 4f transition. The central assumption in 

this calculation is that the finite nuclear size 1s felt only by the 

1 
j = 2' electrons in the VP density. It is shown that this assumption 

leads to an error of less than 0.5 eV for the 6 eV calculated. The 

third order, a(za)3, contribution and the contribution to all orders, 

a(za)n ~3, are studied seIRrately. This provides a check on the 

internal consistency of the final results since the numerical techniques 

required to calculate each are quite distinct. As a further check, the 
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point nucleus limit, R - 0, is examined and compared to the results 

of Wichmann and Kro1l5 and of Blomqvist6. Finally, setting m = 0 e 

and. expanding to lowest order in R/ao in our calculation, we recover 

the 5 eV result of Ref$. 3 and 4. 

Wichmann and Krol15 showed that p(R,r) is proportional to a 

contour integral along the imaginary energy axis of the trace of the 

Green's function, TrG(;,;;z), for the Dirac equation. Expanding G 

in terms of the radial Green's functions, Gk' for "angular momentum, " 

k = t(j + ~), we define the VP density, Pk:' for a given k, through 

the contour integral of TrG
k

• The radial Dirac equation for' G
k 

may 

be converted to an integral equation from which a power series expansion 

of G
k 

in powers of za is obtained. In this way the Uehling term, 

pl k:' and the third order density, p3 k:' may be isolated. Since the 

k = i:l(Sl/2' P1/2) states are most sensitive to nuclear size, a natural 

approximation forp(R, r ) is 

p(R,r) ,." p.' (R,r) 
Ik/=i 

+ p (0, r) ; 
Ikl 

(1) 

i.e., the energy shift due to finite size effects on VP is assumed to 

come mainly from the Ik I = 1 density. The accuracy of this approx

imation depends on how large the contribution from the Ik / ~ 2 density 

is. The size of the /k / ? 2 contribution to the total density can be 

estimated using the results of Ref. 5 for a point nucleus. The ratio, 

~ ~2/~=1' of the VP charge accumulated at the origin for Ik I ~ 2 

and for Ik I = 1 gives a measure of the relative size of Pk ~2 to 
"/ 
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F d (17",)n ~ 5, to Pk=l. or or er ~ 5+ / 5+ in Ph, Ref. 5 gives ~?2 ~=l IV o.ooB 

54· 
with ~:l = -6.83 )( 10- Ie I. From this we conclude that the Ik I ~ 2 

contribution to the density is less than rIo for these orders. For third 

order, Ref. 5 gives the charge summed over k: Q3 WI( = -4.487 x 10-3 Ie I. 

To calculate what fraction of Q3 WI( comes from Ik I = 1, we calculated 

p3
k=1 numerically using the integral equatio~ for G3

k=1 in which we 

set m = O. The nuclear charge distribution used in the calculation e 

was a shell of radius R. The me = 0 limit isolates the piece of p3
1 

which is only a function of r/R. It is precisely this piece that 

reduces to a delta function as R .... O. (This assumes that the integral 

of p3
1 

over all space exists, which is the case here.) The third 

order charge due to Ikl = 1 is then 

Q31 c 1'" dr 4otr
2 

p31 (R,r,me=O) • 

Note that Q3
1 

is in fact independent of R. This was checked 

numerically by calculating Q3
1 

for R = 6., 0.6, 0.06 F with the 

result in each case being Q3
1 

= .:.4.177)( 10-3Iel. Thus Q3l / Q3WI(= 0.93; 

Le., 7fo of the third order density comes from Ik I ~ 2. Summarizing 

these relations, 

Q3k=1 ~ 13.5 Q3k ?2 ~ 6.12 Q5~=1 ~ 770 Q5~? 2 • (3) 

6 
For the case of a point nucleus Blomqvist has calculated the 

5g - 4r energy shift in Pb due to third order VP to be 

~(R=O) = -43 eVe For a finite size nucleus we calculated p3l (R,r) 

numerically with m ! 0 using two different models of the nuclear e 
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charge density: (I) a shell density, p = 5(r - R)/ (4rrR2) and. 
nuc 

(II) a uniform density, Pnuc = G(R - r)/(4rrR3/3). Tables I and II 

contain the results. The R -+ 0 limit was examined by calculating the 

energy shifts for R = 0.6 and 0.06 F. Extrapolating to R = 0, we 

get ~ k=l = -40 eV for the 5g - 4f transition. From Eq. (3) we 

estimate the/k / ~ 2 contribution to be ~ ~ k ~2 = -3 eV. Thus, 

6. J? k ~l = -43 eV, in agreement with Ref. 6. For the calculation of 

the finite size effect, R was chosen in each model so that 

[ <r2) J~ = 5.5 F • 7 Dirac wave functions were used in the expectanu -

tion values, although Schrodinger wave functions gave the same results 

to within 1 - 2~. (It should be noted that the uncertainty in the muon 

mass, t 400 eV, alone generates a i: 2 eV uncertainty in the 

5g - 4f X-ray.) Comp3.ring the two model distributions in Table I, we 

see that the energy shifts are sensitive only to < r2 ) for these 
nuc 

high angular momentum states. The result from Table II is ~ 1 = -36 eV 

for r (r2) ] t = 5.5 F. Thus the finite nuclear size caused a lCfl, L nuc 

increase in the third order VP contribution for Ik I = 1. Since the 

Ikl ~2 electrons are less sensitive to nuclear size, we estimate 

-3 eV:S ~ k~2(R) :S 0.9 )( ~ k~2(0) ~ -2.7 eV. Thus the total 

contribution to the 5g - 4f X-ray from third order VP is d = -39 eV 

as compared to the point nucleus value of-43 eV. 

To solve for the energy shift to all orders, 
n~3 

a(w) , we 

construct the Green's function for the Dirac equation in the field of a 

finite size nucleus and remove the Uehling term. Since the third order 

calculation showed that the energy shift is sensitive only to {r2)nuc' 
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a shell distribution (model I) is used with R = 5.5 F. The shell 

distribution is most convenient since both the internal and external 

wa ve functions are simple. The Green's function is then constructed5 

with the regular and irregular solutions of the Dirac equation: for 

r < R these are spherical Bessel. functions and for r > R they are 

Whittaker functions. Both types of functions are subject to rapid, high 
8 . 

precision numerical computation. The Uehling contribution is obtained 

from the integral equation for the radial Green's function and may be 

expressed in terms of elementary and exponential integral functions. 

The details of these and of all other calculations mentioned in this 

letter will be given in a subsequent paper. 

The results of the calculations are listed in Tables I and II. 

In the R ~ 0 limit we get for orders n ~ 3, 
.~+ . 
~ = -46 eV. k=l. From 

Eq. (3), the contribution of Ik I ~ 2 to these orders is estimated to 

be -3 eVfrom third order and < 0.1 eV from orders n ~ 5. The 

total shift for orders n? 3 is then ~+(R=O) = -49 eV in agreement 

with Ref. 6. For finite radius we rewrite Eq. (1) 

(4) 

where the Ik I ~ 2 term is estimated from ~~ (0) using Eq. (3). 

The accuracy of Eq. (4) is then estimated by 

5 = ~~ ~2(R) - ~~~2(0) 

';; 0.074 x (~l (R) - ~ 1 (0» + 0.008 x (6EY~(R) - ~~(O» , 

(5 ) 

where Eq. (3) has again been used. For the 5g - 4f transition, the 
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error in the approximation in Eq. (4) is then estimated to be less than 

0.5 eV with the result that ~+(R) = -43 eV. Thus, the finite 

nuclear size effect on VP increases the energy of the X-ray by 6 eV. 

The VP densities p3
1 

and p3~ calculated here with the energy 

contour along the imaginary axis satisfy gauge invariance. Therefore a 

good check on the numerical accuracy of these densities is provided by 

the evaluation of their integral over all space. It was found that for 

r ~ 60 F the densities were negative, while for r ~ 60 F, they were 

positive; the densities were calculated out to 8 ~. The amount of 
e 

charge contained in the region r ~ 60 F was '" -4 x 10-3 Ie I, while 

the total charge out to r = 8"" was - _10-
8 

Ie I. Thus, better than e 

five place accuracy was achieved far these densities. 

To study the accuracy of' the m = 0 and lowest order in R/r e 

approXimation
4 

in the calculation of ~ p = p(R,r) - p(O,r), f'or 

r ~ R, we note that 6. p is proportional to the energy contour integral. 

of the diff'erence, 6. G, between the Green's function for the Dirac 

equation for a f'inite radius and point nucleus. The difference 6. G 

can be expressed as b. G = f(R,z,m ) W(r,z,m ), e e where z is the energy, 

W involves products of' Whittaker f'unctions and f' depends on R 

through the ratio of internal and external wave functions evaluated at 

R. The approximation of neglecting the electron mass in comparison to 

l/aO is implemented by setting me = 0 in both f' and W. The 

approximation based on R/ao « 1 is obtained by expanding 

f'(R,z,m = 0) in powers of R and retaining only the first term. We e 

have made calculations with and without these approximations. The 
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resul.ts for Ik I = 1 are presented in Table III for the following 

three cases: (1) no approximation, (2) m = 0 only and (:~) both e 

m = 0 and l.owest order in R/r. The resul.ts for the third case are e 

in good agreement with Refs. 3 and 4. Numerically, the comment in 

2 
Ref. 3 that corrections to 6: p(me=O) appear to O( (mer» is supportai 

by our resul.ts, and the functional form of 6 P~e=O' o (R/r ») is in good 

agreement with the analytic formula of Ref. 4. A simple comIBrison of 

6 P in the various approximations is indicated by the values of the 

two integrals 

Il. ~ = 1?J(JR dr(4otr2 ) Il. p , 

Il. ~ = I: dr(4nr
2

) Il. p , 

listed in Table III. The error commited in the m = O,O(R/r) e 

(6) 

approximation is seen to be 1 eV for the 5g - 4f transition and 13 eV 

for the 4f - 3d transition. To this ,error, the uncertainty in the 

Ikl = 1 approximation, Eq. (5), must also be added. For such high 

angular momentum states, the accuracy of these approximations is 

nevertheless found to be quite adequate. The Uehling contribution was 

calculated 1n the two nuclear models and found to be the same for 

l< r2) J-k = 5.5 F. When this contribution is subtracted from nuc 

resul.ts of order n ~ 1, the n ~ 3 energy shifts are in agreement 

with Table I, as they must be. 
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The problem of vacuum polarization in sUPerheayy electronic 

atoms, Z - 170, has also been investigated and will be reported 

elsewhere. 

The author is very grateful to Dr. P. J. Mohr for many stim

ulating discussions on the theoretical and numerical aspects of this 

prob1em. Discussions with Dr. W. J. Swiatecki, Dr. E. Wichmann, Dr. 

R. N. Cahn, and Mr. L. D. McLerran are also gratefull.y acknowledged. 
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Table I. Absolute energy shifts (in eV) due to VP orders (za)n in 

Pb using nuclear models I and II described in text. The /k/ ~l 
are calculated f'romEqs. (4) ana. (5). 

Order, Ikl Model R(F) 5g9/ 2 41:1/ 2 3d
5/ 2 .. ~ 

n = 3, Ikl = 1 I 5.5 43.39 19.24 151.9 

II 1·1 43.41 79.28 152.1 

I 0.6 45.16 85.10 . 177.0 

I 0.06 45.20 85.21 178.0 

n ~ 3, Ikl = 1 I 5.5 48.51 88.36 168.3 

I 0.6 51.34 91.12 202.6 

I 0.06 51.39 91.42 204.3 

n ~ 5, Ikl = 1 ,I 5·5 5.12 9.12 16.4 

I 0.06 6.19 12.15 26.3 

n ~ 3, Ikl p 1 I 5.5 51.9 ± 0.1 94.8 ± 0.5 181.1 ± 2 
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Table II. The VP contribution to 5g
9
/ 2 - 4f9/2 transition in Pb 

energy (in eV) for orders (~)n. The error in the contribution 'from 

/k/ ~ 2 is less than 0.5 eV. 

Order, /kl 

n = 3, /kl = 1 

Ikl ~2 

n ~5, Ikl = 1 

Ikl.?2 

n ~ 3, Ikl ~1 

R = 5.5 F rms 

- 3 

- 4 

« 0.1) 

-43 

R = 0 

-40 

- 3 

- 6 

« 0.1) 

-49 

.' . 
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Table III. Perturbation of muonic levels (in eV) in Pb due to finite nuclear size effect on 

vacuum polarization, Ikl = 1, orders (za)n. ~~,2 are given by Eq. (6) in units of -Ie I. 
;0 

Model R(F) Approx. 4f7/2 3~/2 ~~ ~~ 
C' Order 5g9/ 2 

. ..,-" . 
. ~""~ 

n~l I 5.5 none -5.48 -116.1 7 .020 x 10-2 1. 60')( 10-4 0 
-20.53 .... 

7.018 x 10-2 1.95 x 10-4 d~ 

m = 0 -6.03 -21.43 -117.7 
I\: e 

m = O,O(R/r) -5.79 -19.99 -102.6 4.481 x 10-2 1.91 x 10-4 
..-" e --
& 

6.598 x 10-2 6.03 x 10-5 . I' 

n = 1 I 5.5 none -2.60 -11.46 - 80.02 I-' 
w 
I 

II 7.1 none -2.60 -11.46 - 79.38 CO 
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CHAPTER II 

VACUUM POLARIZATION IN HEAVY ION COLLISIONS 

Submitted to Phys. Rev. Letters 
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VACUUM POLARIZATION IN HEAVY ION COLLISIONS* 

Miklos Gyu1assy 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

July 10, 1974 

ABSTRACT 

The results of a study on vacuum polarization, orders 

a(Za)n, n ~ 3, for large Z systems encountered in heavy ion 

collisi~ns are presented here. It is shmm that the higher 
~. 

order vacuum polarization cannot prevent the lSi state from 

reaching the lower continuum, 2 E = -m c , e for some critical 

charge Zcr'" 170. In addition,. the stability and localization 

of a helium-like system for Z > Z is demonstrated. cr 

An interesting application of heavy ion collisions is to the 

study of quantum electrodynamics of strong fieldS. For short t~mes, 

at least, systems with large effective charge Z will be formed with 

Za > 1. In the strong fields of such systems, highly relativistic 

electronic bound states are expected to occur with binding energies B 

exceeding the electron rest mass m, and for some critical charge, e 

Z ... 170, the lS1 cr 2" 
state is expected to reach the lower continuum 

with B = 2m.l For Z > Z , it has been predicted2,3 that spon-e cr 

taneous e+e- pair production will occur with the subsequent capture 

of two electrons into a tightly bound helium-like state and the 

ejection of two positrons into continuum states. These predictions 
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have been based on solutions of the Dirac equation for finite size 

nuclei in which radiative corrections such as vacuum polarization (VP) 

and the Lamb shift are ignored. For these predictions to be applic-

able to heavy ion collisions, it is essential to show that radiative 

corrections are indeed negligible for large Z- Zcr and thus cannot 

prevent the IS! state from reaching the lower continuum. Several 

qualitative arguments2 ,3 and a model ca1culatiohbased on effective 

limiting field Lagrangians4 suggest that the effect 01' VP does remain 

small up to Z • Yet, a complete quantum electrodynamic calculation cr 

had not been carried out to all orders in Za. The purpose of this 

Letter, then, is to present the results of a numerical calculation of 

the higher order VP, orders a(Za)n, n ~ 3, based on the methods of 

Wichmann and Kro11. 5 The results confirm that VP remains a small 

perturbation even up to Zero 

Although the effect of higher order VP is always much less 

than that of the first order (Uehling) potential in atoms with 

Z 5 100, the results of Wichm8.ILTl and Kro115 for a point nucleus show 

that the size of the higher order VP increases sharply near Za = 1. 

If the VP charge accumulated at the origin for orders a(Za)n, 

n ~ J, is denoted by ~, then while ~ is finite and much 

smaller than the nuclear charge when Za = 1 

(I~I ~ O.05Ie/ « IJ7/e/), d~~/dZ = _00 at Za = 1. Furthermore, 

the infinite slope of ~ can be seen to come from the lowest angular 

momentum (k = ±(j + ~) = ±l) contribution to the VP density. The 

higher angular momentum (/ k I ~ 2) contrfbution to 

vary smoothly past Za = 1 until Za = 2, where the 

3+ 
Q;VK 

Ikl 

is seen to 

= 2 contri-

bution becomes singular. Of course, tnese singularities in the VP 

charge density arise because of the assumed point structure of the 
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nucleus. Nevertheless, these results indicate that we may expect a 

rapid increase in the higher order VP for Za > 1 when the finite size 

of the nucleus is taken into account. Furthermore, the fastest 

growing part Should be that due to the lowest angular momentum 

tiki = 1) electron loops. Another important property that can be 

deduced from the results of Ref. 5 is the relative size of the 

Ikl = 1 to the Ikl ~ 2 contributions to the VP charge density. The 

Ik/ ~ 2 contribution was found to be always less than 10% of the 

/k/ = 1 contribution for orders a(Za)n, n ~ 3, for all Za 5 1.6,7 

Therefore, a good approximation in the calculation of higher order 

VP, relevant for heavy ion collisions, is obtained by calculating the 

Ik/ = 1 contribution exactly for finite size nuclei while neglecting 

the Ikl ~ 2 contribution. In this way tne dominant and fastest 

growing part of the VP density is calculated exactly while leaving an 

overall uncertainty of less than 10% in the final results due to 

neglect of the /kl ~ 2 contribution. 

The calculation of the VP density, Pvp' involves an energy 

contour integral of the trace of the Green's function, TrG, for the 

Dirac equation. 5 For Z < Zcr' the choice of this contour is clear 

and is given by GO in Fig. 1. With this contour, Pvp is equal to 

the vacuum expectation value of the Heisenberg current operator, 

(o/Jo(x)/o). Thus to first order in a and to all orders in Za, 

Pyp can be written formally as 

(1) 

where w+ refer to the positive and negative energy eigenfunctions of 

the Dirac. equation. 8 Here positive energy refers to all eigenvalues 
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greater than -me 0 In particular, the lSi state is contained in the 

first sum. The helium-like charge density, PH ' is defined as the _e 

expectation value of the current operator ror a state of two electrons 

in the IS~ state: (2e-(lS)IJo(x)12e-(lS». This density is related 

to by 

, (2) 

which is equivalent to the addition of a counter-clockwise contour 

around the IS pole to Co in Fig. 1. The sum of these contours may 

then be deformed to CHe • For Z < Zcr' then, Pvp and PHe are com

puted via a contour integral along paths Co and CHe respectively 

(in uni ts of f e I ). 
For Z > Z I the IS~ pole moves off the physical sheet cr ~ 

through the branch point of the lower continuum. Since the vacuum 

around the bare nucleus can then decay into a helium-like state plus 

two free 'posltrons,2,J it is natural to redefine the vacuum to 

correspond to the helium-likestate.9 The VP density, Pvp' is thus 

defined to equal PHe for z > Z . cr While Eq. (2) is no longer 

meaningful for Z > Z , the contour integral representation for cr 

around path CHe in Fig. 1 is still well defined. The charge distri

bution of the overcritical vacuum is thus calculated with contour CHe • 

The higher order Vp density, pJ+, for k = ±l and Z < Z 
cr 

is calculated by expanding TrG in terms of radial Green's functions, 
. 

TrGk , and removing the first order Green's functions, 

Isolating the terms correspondir~ to k = ±l, the contour integral 

over path Co is performed. In practlce , Co is deformed to the 

imaginary axis I, picking up the negative of the residues of all 

which lie between zero and -me. The negative of 



·o~ . 1'0,' :'. '"~ 0 . _ . f~ ':J fJ .G. ... .;4 8 4 

-19-

those residues are, of course, the modulus squared of the normalized 

bound state wavefunctions. The calculation of PHe involves adding 

to the contour integral along I all but the lSi wave functions 

squared with me < B < 2me • 

J+ In addition to P ,the,third order, a(Za)J, VP density, 

is calculated for k = ±l and Z < Zcr to provide a check on internal 

J+ consistency and to estimate the dependence of p on different 

nuclear charge densities. The calculation of pJ involves the contour 

integral of the third order Green's function, Tr~J, for k = ±l 

along contour I. Two models for the nuclear charge densities were 

used for calculating J. p • 

and (II) a uniform density, 

( I) a shell density, 0.. = ;cSl r - R)/ 4'lfR2 
rNUC 

PN = 6( R - r )/( 4 'lfRJ IJ ). The nuclear uc 

radius was chosen to be 10 fm in both models. The densities pJ+ and 

PHe were calculated with model I. 

The construction of Tr~, 
1 . J 

TrGk ,and TrGk is the same here 

as in Re1'. 6 and will be discussed in more detail in a subsequent 

paper. 

The following tests check the numerical accuracy of the con-

structed Green's functions. First, the location of the 1St and 2P
i 

poles were computed as a function of Z. The values of (~)cr were 

determined for model I nuclei for R = 8,10, and 12 fm, with 

(Za)cr = 1.25189, 1.27459, and 1.295JO respectively for the lSi 

state, and (Za)cr ~ 1.J8J for R = 10 fm, for the 2P; state, in 

agreement with Ref. J. Furthermore, in agreement with Ref. 2, 

dB/dZ at Z = Zcr was calculated to be 27 keY for the 1S; state 

and J5 keY for the 2P, state. Secondly, the residues at those poles 

were calculated in order to check that the normalized bound state 

wave functions were given correctly. All S; and Pi wavefunctions 
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calculated thereby were normalized to unity to better than one part 

per 105• The R -+- 0 limit -was taken numerically t"or Za < 1 to 

check that these wavefunctions reduce to the point nucleus form. In 

addition,the (l/r) was computed for these wavefunctions since 

dB/dZ ::: am c2 < l/r> which can be compared to the values computed e 

abovej at Z = Z , cr e.g., dB/dZ = 28 keV and 37 ke V ror the lSi 

and 2Pi states respectively, in good agreement with the above values. 

Thirdly, for the special case of Z = 82, extensive checks on the 

charge densities were made showing that the limit R -+- 0 and the 

finite nuclear size erfect agreed with other calculations. 6 Finally, 

the total space integral QHe of PHe was computed ror the range 

0.6 s Za ~ 1.38 since the extent to wnich Q = -21el He measures the 

accuracy of the numerical contour integration along I. The computed 

values of QHe were equal to -21el to better than 1 part per 104 

over the entire range. The accuracy of the computed p3+ for Z < Zcr 

is less due to cancellations necessary to insure that the total charge 

of the vacuum vanish. This accuracy is estimated from the magnitude 

of the ratio of the integral 01' 

the integral over the range where 

3+ P over all space 

p3+ is negative 

(r :; l>(e) to 

(r ~ 100 fm). 

This ratio was found to be $0.01, indicating a numerical accuracy on 

the order of one percent. 

The computed lSi energy shifts for Z < Z due to higher cr 

order VP are listed in Table I. These energy shifts should be compared 

to the shift due to the Uehling potential. The Uehling potential is 

attractive and increases the binding energy of the lS1 state by approx-
2 

imately 10 keV at Z .1,10 The higher order VP is repulsive but is cr 

seen in Table I to reduce the binding energy by only 1 keV at Z . cr 
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The last two lines, in particular, in Table I indicate the absence of 

any singularities of ll.E3+ at Z • Thus, even though the shift cr 

~E3+ due to higher order VP increases rapidly for Za > 1, it remains 

too small to prevent the lSi state from reaching the lower continuum. 

Furthermore, the results for third order indicate that the dependence 

of ~E3+ on the specific nuclear charge density is a 10% effect, i.e., 

on the same order as the uncertainty in ~E3+ due to neglect of the 

Ikl ~ 2 contribution to the VP density. 

Since the results for Z < Z show that VP remains a small cr 

perturbation up to Zcr' the use of the unperturbed Green's function, 

TrGk and T~l, in computing p3+ = PRe for Z > Zcr will not lead 

to large errors, In Fig. 2(a}, PRe is plotted for several values of 

Za around (Za)cr = 1.27459. The continuity of PRe at Zcr was 

examined by calculating PRe for Za = 1.2732, 1.27445, 1.27545, 

and 1.28 and checking point by point in the range 0 ~ r < 13~ that ... e 

the values of PRe for the different Z can be smoothly connected. 

The increased localization and continuity of PRe as a function of 

Z is illustrated in Fig. 2(b), where the average (l/r) for PRe 

is plotted. These results demonstrate that the helium-like system is 

stable and well behaved around Zcr and that the charge density of 

the overcritical vacuum is indeed highly localized. ll 

It should be noted that for Za = l.J83, the 2P; state reaches 

the lower continuum and the helium-like system will decay to a 

beryllium-like system plus two freepositrons. 2,3 The charge density 

of the beryllium-like system can be studied in the same way as PHe ' 

simply by shifting the contour eRe to the right of the 2Pi pole •. 



-22-

In this Letter the effect of VP in very hign Z atoms has 

been considered. The effect of the Lamb shift has been estimated by 

10 other workers, but agreement on the size of that effect has not yet 

been reached. More work is needed.on that problem. 

The author gratefully acknowledges helpful conversations with 

Dr. P. J. Mohr, Dr. W. Greiner, Dr. W. J. &wiatecki, and Dr. E. H. 

Wichmann. 
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Table I. The lSi energy shifts in eV due to vacuum polarization 

orders a(Za)n, with ~E3+ for n ~ J, and bE~,II for n = 3, 

model I and II nuclei •. E1S! and E2Pi locate the bound state 

poles in units of m. The nuclear charge density for all but the . . e 

last column was taken to be model I with R = 10 fm. 

Z E1Si E2Pi 
AE3+ ~E 3 AEII 

3 
I 

0.95 0.362 0.817 6.26 x 10 4.70 x 10 4.92 x 10 

1.12 0.137 0.570 3.07 x 10 2 1.97 x 102 2.11 x 102 

1.205 ~0.550 , 0.265 6.41 x 102 3.68 x 102 3.99 x 102 

1.2732 -0.990 -0.118 1.14 x 103 5.66 x 102 6.20 x 102 

1~27445 -0.999 -0.126 1.15 x 103 5.70 x 102 6.24 x 102 
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FItiURE CAPTIONS 

Fig. 1. Singularities of the Greenrs function in the complex energy 

plane and contours CO' eRe' and I giving the VP and he1ium

like charge densities in units of lei. 

Fig. 2. (a) The helium-like charge density for several values of 

y == Za around 

nucleus. 

(Za) = 1.27459 with a model I, cr R = 10 fm 

(b) The average (l/r) for PRe as a function of Za. 
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ABSTRACT 

The calculation of the higher order, a(Za)n, n ~ 3, 

vacuum polarization charge density induced by high Z nuclei of 

finite extent is discussed here. The Wichmann-Kroll formalism 

relating the vacuum polarization charge density to the Green's 

function of the Dirac equation is reviewed with attention drawn to 

modifications necessary for very large Z systems (Z > 137) e~ 

countered in heavy ion collisions. This paper is concerned with the 

construction of the radial Green's functions for the Dirac equation 

in the field of finite radius nuclei and on the numerical calculation 

of the higher order vacuum polarization density from those Green's 

functions. Specific calculations are, made for muonic Pb and super-

heavy electronic atoms. The results from these calculations have been 

published elsewhere but are further elaborated upon here. 

* This work was supported by the U." S. Atomic Energy Commission. 
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1. rntroduction and Summary 

The purpose of this paper is to supplement the discussion of 

two previous papers (lJ2) on the calculation of the higher order 

vacuum polarization charge density in the field of high Z nuclei of 

finite extent. The problem considered in Ref. (1) was the calculation 

of the nuclear size corrections to the vacuum polarization (vp) den

sity for orders a(Za)n, n ~ 3, in muonic Pb. In particular, the 

effect of those corrections on the 5g9/ 2-4f7/ 2 transition was cal

culated. This is of interest in view of the 42:20 eV discrepancy 

reported between theory and experiment (3-5). As reported in Ref. (1), 

these corrections do increase the discrepancy but" by only 6 eVe In 

the work of Arafune (4) and Brm'ffi et ale "(5) approximations based on 

the smallness of the electron mass and of the nuclear radius were made. 

The accuracy of those approximations was studied in Ref. (1) and found 

to be quite adequate ( ... 1 eV) for this transition in muonic Pb. In 

Ref. (2), the effect of the higher order VP density on electronic bound 

states in the field of very large Z nuclei was discussed. The main 

conclusion reported there was that the higher order VP cannot prevent 

the lSl/2 state from reaching the lower continuum (E = -m ) 
lSl/2 e 

for some critical value of the nuclear charge Z ... 170, (6). Then cr 

the calculation of the VP charge density for overcritical fields (7) 

was discussed, and finally, the stability and localization of the heli~ 

like charge density for Z in the neighborhood of Z were cr 

demonstrated through precise calculations of ~e for Z < Zcr and 

Z > Z • In this paper, we discuss the details and methods used in cr 

arriving at the results reported in Refs. (1,2). This paper, then, 

serves as the basis for both those papers. 
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The discussion here is divided into the following sections. 

In section 2, the Wichmann-Kroll forma.lism (8) for the calcula.tion of 

the VP density Pvp is reviewed. The modifications necessary for very 

large Z nuclei are discussed in detail, and formal relations between 

Pvp and the Green's function for the Dirac equation are established. 

A partial wave decomposition of PvP is then made, and each partial 

wave contribution is further expanded in powers of the coupling con-

stant Za. Then, the regularization of the formal expressions involv

ing the Green's functions is discussed and illustrated through a calcu

lation of Pvp in the field of a constant external potential. 

In section 3, expressions for the radial Green's functions, 

required in the calculation of the partial wave contributions to Pvp ' 

are constructed valid to all orders in Za. The construction of the 

radial Green's functions to first and third order in ia is then 

carried out in section 4. 

Section 5 is designed to supplement the discussion of Ref. (1). ~ 

While the emphasis in Ref. (1) was on the energy shifts due to nuclear 

size corrections to PvP' the emphasis in section 5 is on the effect 

of those corrections on Pvp itself. The results for high Z systems 

reported in Ref. (2) are further elaborated upon in section 6. The 

critical charge Z is calculated for the particular model of the cr 

nuclear charge density considered in Ref. (2). The ISl/2 wave

functions and the higher order VP density for 137 < Z < Z are cr 

also calculated. Again, the emphasis is on the structure of PvP 
rather than the resulting energy shifts. In both sections 5 and 6, 

Pvp is calculated only for the lowest partial wave (j = 1/2) 
. 

contribution. The contribution from higher partial waves (j > 3/2) 
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may be estimated from the J;'esults of a point nucleus as in Refs. 

FinallY, in section 7, the numerical techniques applied to the 

evaluation of the special functions and integrations in the calculation 

of Pvp are discussed. 

2. Relation of Pvp to the Green's function of the Dirac equation 

A. Formal Expressions 

The Vp density Pvp is given by the vacuum expectation value 

of the }.l = 0 * component of the current operator, 

In terms of the Feynman propagator SF(x,x'), ~ can be written 

(10) as 

(2.2 ) 

where SF satisfies 

(2.3 ) 

For time independent potentials ~,SF(x,xI) depends on time only 

through t - t', and consequently, 

d -i( t-t')z z e G(x,x'; z), (2.4) ....... 

where the Green's function G then satisfies 

* The metric, gamma matrices, units (~= c = 1), and notation are 

chosen to agree with the conventions of Ref. (9). 
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, 

(2.5) 

and the contour C is determined from the Feynman boundary conditions 

(which depend on the definition of the vacuum). 

In terms of G, eq. (2.2) can be written as 

= !~l 1 dz Tr G(::.!':'; z )1 
~'-+-~ 

(2.6) 

This relation, then, is the basis of the Wichmann-Kroll formalism 

(8) for the calculation of Pvp to all orders in Za.. Note that the 

Green's function in this relation must be properly regulated to insure 

that the limit Xl -+- JC! exists and that the integral over z con-

verges. This regularization is discussed in the next section. In 

this section, though, all expressions are to be understood to involve 

only regulated Green's functions. 

The well-known formal solution of eq. (2.5), 

G(x,x'; z) = ...... 
['fib) 1/1~(~' ) 
E E - z.-

, (2.7) 

where l/J E are properly normalized eigenfunctions of the Dirac 

equation, exhibits the singularities of G in the complex z-p1ane. 

'!'h:se singulari ties are illustrated in Fig. 1. 

The path of the contour C in eq. (2.6) through these singu-

1arities is chosen so that the contour lies above the singularities of 

G associated with positive energy states and below the singularities 

associated with negative energy states. With this choice of C, ~ 

in eq. (2.4) satisfies the Feynman boundary conditions. The definition 

of which states correspond to positive and negative energy states is 
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equivalent to the definition of the vacuum and is completely deter

ndned by the energyEc' where the contour crosses the real axis in 

Fig. 1. When there is no external potential, EC can obviously be 

chosen anywhere between E = ~me. As the strength of the potential 

increases, bound ,states are formed and G develops poles between the 

two branch points at E = +m • - e The energy EC must then be adjusted 

so that all bound state energies re~in greater than EC for the case 

of attractive potentials or less than EC for the case of repulsive 

potentials. With this specification of EC' the converitional vacuum 

in the bound-interaction (Furry) picture is obtained (11). On the 

other hand, if EC is chosen so that there are bound states with 

energies both greater and less than EC~ then the corresponding vacuum 

state will be charged. This is easily seen by calculating PvP in 

eq. (2.6) with two different contours corresponding to different choices 

of EC. Figure 1 illustrates two such contours. 

The contour Co corresponds to the usual definition of the 

vacuum for the case of attractive potentials since all bound state 

energies are greater than EC. On the other hand, CHe corresponds 

to a charged vacuum (2) since, from eq. (2.7), the difference of the 

VP densities' calculated in eq. (2.6) with contours Co and CHe is 

Just 21 e II$lS . (x) 12. Thus, in fact, eq. (2.6 ) with C = CHe gives 
1/2 

a helium-like charge density PHe that contains a total charge of 

-21 el. 
In the choice of the contour Co for the calculation of Pvp ' 

it was assumed that all binding energies were less than 2m and, e 

thus, that no poles of G have crossed from one branch point to the 

other. However, for overcritical fields (z > Z ) the pole of G cr 
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correspond~ng to the state (the 181/ 2 pole) moves from the 

branch point at E = +m through the branch point at E::; ... m off of e . e 

the IIphysical" sheet of the Riemann surface for the Green's function. 

In that case, the vacuum is predicted to decay spontaneouslY into a 

. * helium-like state plus two free positrons (7). Thus, the stable VP 

density for Z > Z cr corresponds to a helium-like density PRe 

obtained .vith contour CRe in eq. (2.6) rather than to the analytic 

continuation of Pvp from Z < Z , cr (2) . Furthermore, if the 

potential becomes so strong that the 2Pl/2 pole also moves off the 

physical sheet through the branch point at E = -me' then the helium

like state will spontaneously decay to a berylium-like state plus two 

more positrons, and consequently, the stable vacuum must again be 

redefined by shifting the contour CRe to the right of the 2Pl / 2 

pole. Each time a bound state pole moves off the physical sheet, the 

contour in eq. (2.6) must be shifted so that EC stays to the right 

of the branch point at -m and to the left of any remaining bound e 

state poles on the physical sheet. A simple expression for the stable 

vacuum density for any strength of the potential can be written by 

deforming the contour C to the imaginary axis I. Thus, fromeq. 

(2.7), 

= iy)1 } • 
x'-+x ..... 
(2.8 ) 

* . We neglect inter~ction be~ween the twC) electrons. 
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This equa.tion contains the fa.ct tha.t each time a. pole of ,G moves off 

the physical sheet through the branch point at .... me, the total charge 

. '* of the vacuum around the nucleus changes by -2Iel. 

For spherically symmetric potentials, the Green's function 

G(X,X'i z) has a partial wave decomposition (12) in terms of radial ...... 
Green's functions Gk satisfying 

me + VCr) - z 

1 d + k 
Far r r 

1 d k 
---r+-r dr r 

-m + VCr) - z e 

= oCr - r') 
rr' , 

(2.9) 

where k = :!:( j + 1/2) for a given total angular momentum j . From 

the following relation (8,12) 

Tr G(X,x'i z)1 ... .. ~ '-+-~ 
= (2.10) 

the contribution to the VP density for a given k is then given by 

= 

lellkl 1 ( )1 2 c dz Tr Gk r,r'; z r'-+-r 
(21T) i 

L 
-m <E<O e 

1~,k(r>l2 + 2~f~ dy Tr,\(~,r' ;iYllr'->r}' 

(2.11 ) 

* + 21 e 1 amount of charge e'scapes with two free positrons; -21 e 1 

is localized with two bound electrons. 
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where WE k are the normalized radial wave functions with eigenvalues , 
E and k for the potential V. 

For a given angular momentum J , there exists a simple symmetry 

for ~. Let Gk(V; r/r'; z) be the solution of eq. (2.9). Then it 

is easily seen that 

G_k(V; r,r' ; z) = -°1 ~(-V; r,r'j -z) 01 I 

where 
a =C 1 1 :) Thus, 

Tr G_k(V; r,r'; z) = - Tr Gk(-Vj r,r'; -z) 

With this relation, the sum of the VP densities for k = ±Ikl, 

Plkl = Pk + P-k, can be written as 

= LI~'k(r)12 
-m <E<O e 

(2.12 ) 

(2.13 ) 

r,r'; iy) - Gk(-V; r,r'; iyvl -, } . 
r--+T 

(2.14) 

The integral along the imaginary axis is manifestly odd as a function 

of V~ To see that the sign of the first term also changes as V + -V, 

note that for repulsive potentials the bound state poles emerge from 

the branchpoint at -me and approach the branch point at +me from 

the left. The contour C giving the VP density in eq. (2.11) must 

then cross the real axis to the right of those poles on the physical 

sheet but to the left of the branch point at +m. Deforming C to e 

the imaginary axis I, the residues of Tr Gk , k = ±Ikl, in the 
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interval a < E < m must then be added to the c.ontour integral along 
e 

I with the opposite sign as in eq. (2.14). Thus . PlklCr) is an odd 

function of V as required by Furry's theorem. 

In addition to a partial wave expansion of·, Pvp ' it is useful 

to consider the expansion of each Pk in powers of the external 

potential. Wri ting this potential as V = -Za Va{ r ), where Za is 

an expansion parameter and Va is a function of r, the power series 

expansion in Za for the Green's function is given by the Neumann 

series for the resolvent 

(2.15) 

where ~a is the resolvent in the absence of an external potential. 

The trace of the nth order Green's function for a given k is then 

. given by 

(2.16) 

The nth order Vp charge density for k = ±Ikl is thus given by 

(2.17) 

From eqs. (2.13 and 2.16) 1 

(2.18 ) 
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Also for a given n and k / · Tr Gk
n has no poles. between +m. - e 

Therefore, deforming C to the imaginary axis , Plkl can be written 

as, 

= 

o (n even) (2.19 ) 

This equation again contains the requirement of Furry's theorem that 

the VP density must be an odd function of Z. 

B. Regularization 

The formal manipulations that led to the equations of the 

previous section are of course justified only if the operations indicated 

in ~hem, such as taking limits and performing integrations, are well 

defined and if there is no ambiguity associated with the interchange 

of those operations. However, as noted in the previous section, eq. 

(2.6) is not well defined since neither the limit x' + x nor the ... .... 

integral over z exist. Therefore a regulator scheme is essential if 

meaningful results are to be obtained from any of the equations of the 

previous section. 

One well-knovrn regulator scheme that is known to give unambig

uous, gauge invariant results is due to Pauli ~~d Villars (14). In 

that scheme the Green's function is regulated with auxiliary masses 

as follows: let G(mi ) denote the solution of eq. (2.5) for an electron 

of mass m.; the regulated Green's function is then defined through 
1. 

= (2.20) 
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where the coefficients~i ~e . chosen such that 

L ai [ 2 
0 = ai mi = 

and 

,a
l = 1 I ~ = m e (2.21 ) 

With G replaced by GReg in eq. (2.6), the limit ~r +! exists, 

the integral over z converges, and there is no ambiguity associated 

with the interchange of those operations. Furthermore, the steps 

leading to the subseq~ent equations of section 2A, which include the 

changing of the original contour of integration C to the iIiJaginary 

axis I. and expanding Pvp in terms of Pk ' and PI kl' are permissible 

with GReg. After renormalization of the nuclear charge, the limits 

~ + 00, i.=::. 2, are taken and the unamqiguous, gauge invariant result 

for Pvp is thus obtained to all orders in Zaand for each partial 

wave contribution. 

On the other hand, if we consider the FeYnman graphs for . Pvp 

in the field of finite radius nuclei, it will be clear that regulariza-

tion is needed only for the contributions from the first few orders in 

Za. The graph corresponding to the term linear in Za ( Fig. 2a) is 

well known to be quadratically divergent. It is also well known that 

the electron loop integral for orders (Za)n, n.=::. 5, is finite. The 

third order graph is a borderline case and will be considered in detail 

later. Of course, in addition to the electron loop integral, the 

graphs in Fig. 2 als.o involve integrals for each . external poten

tial. For bounded potentials, such as those due to nuclei of finite 

extent, these integrals are finite an~ hence, do not introduce new 

singularities, This is most easily seen by considering the integrations 
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in momentum space, where the rapid decrease of the nuclear charge form 

factor insures the convergence of the integrals, However, for the 

point nucleus (constant form factor) considered by Wichmann and Kroll 

(8), additional singularities appear due to the singularity of the 

potential at ~ = O. Thu~while regularization will always be needed 

for first order, for orders (Za)n, n ~ 5, regularization will not 

be needed as long as nuclei of finite extent are considered. 

Considering the contribution from order (za)~ the electron 

loop integral in Fig. 2b is seen to diverge logarithmically. It is 

well known, however, that this divergence is eliminated if gauge 

invariance is imposed on the Feynman amplitude or, alternately, if the 

graph is regulated with one auxiliary mass (15). Therefore, an 

ambiguity is expected in the calculation of p3 with eq. (2.6) if 

some regularization is not performed. To see how this ambiguity 

arises in eq. (2.6), consider the calculation of p3 for the case of 

a constant external potential V. This calculation is carried out in 

Appendix I. The results show that if the limit Xl ~ x is taken first ... .... 

and then the contour integral is performed in eq. (2.6), then a non

gauge invariant result, p3 = V3/3n2, is obtained.* On the other hand, 

if the contour integral is performed first and then the limit Xl ~ x .... 

is taken, then the gauge invariant result, p3 = 0, is obtained. Thus, 

the ambiguity expected from the third order Feynman graph shows up in 

eq. (2.6) as an ambiguity associated with the interchange of a limit 

and integral. This ambiguity is of course eliminated if the regulator 

condition, eq. (2.21), with one auxiliary mass is applied to the 

* See also Ref. (3) for a discussion of this point, and note that gauge 

invariance requires that p3 ~ 0 as V ~ constant. 
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Green's function. Note, by the way, that the calculation of the 

contribution from higher than third order is found in Appendix I to 

be free from this amb.igui ty, ~s it must be since the corresponding 

Feynman graphs are finite and unambiguous. 

Although the calculation of pJ in eq. (2.6) suffers from the 

above-mentioned ambiguity, the calculation of the contribution from 

each partial wave with eq. (2.19) is free from ambiguity. This 

is because the radial Green's function is much less singular than the 

full Green's function G. In particular, the limit \~'\ + \~\ exists 

for Gk while the limit ~'+ ~ does not exist for G. The results 

for the example of a constant external field considered in Appendix I 

confirm that is indeed free from ambiguity and thus automatically 

satisfies gauge invariance. Note, on the other hand, that the calcula

tion of the first order density Plk\ is ambiguous with eq. (2.19) 

since different results are obtained if the limit r' + r and the 

contour integral are interchanged. For third order, though, the cal

cUlation of pJ by summing PTk\ gives the unambiguous, gauge invar

iant result, pJ = 0, for the case of a constant external potential. 

This study of pJ in a constant potential suggests that for 

bounded potentials, regularization of pJ is achieved by calculating 

pJ as a sum over the partial wave contributions PTk\. In particular, 

each PTkl ~s expected to be well defined and gauge invariant~ 

Therefore, the total charge contained in each partial wave density is 

. * . expected to va~sh. Prov1ded that the sum over k converges 

* For undercritical potentials (z < Z ). cr 
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fast enough, the sum of 'Pfkl should then give the regularized result 

for p3~ 

The convergence of the sum over k has been discussed in Ref. 

(1) based on the results of Wichmann and Kroll (8).* It was found that 

the lowest partial wave, Ikl = 1, contains already 93% of the contri

bution to P~ from all partial waves. Thus the sum over k is 

expected to converge very rapidly. In fact; for the VP density 5+ p , 

for orders five and higher, the contribution from Ikl = 1 amounts to 

more than 99% of the contribution from all k. Therefore, one expects 

that a good approximation for p3+ is obtained by calculating only the 

lowest partial wave contribution 3+ 
Plkl' Ikl = 1, where 

3+ lellkl \ L 2 
Plk.' (r) = L IwE, k ( r ) I 21T 

k=!lkl -m <E<O e 

( 2.22) 

This equation follows from removing the first order contribution, eq. 

(2.19), from Plkl in eq. (2.14). As it stands, eq. (2.22) is 

expected to require no further regularization for bounded potentials. 

Indeed, the explicit calculation of Ikl = 1, reported in Refs. 

(1,2) for finite radius nuclei confirms this expectation. 

* See also Ref. (16). 
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For the first order (Uehl~ng) contribution, the regulated VP 

denSity in an arbitrary potential is known (17,18).· The energy shifts 

due to the Uehling potential have been worked out in detail for muonic 

atoms (3,19) and for superheavy electronic atoms (6,29) and, thus, need 

no further consideration here. 

We now turn to the construction of Tr Gk, 

necessary for the calculation of the energy shifts 

due to higher order VP. 

3. Construction of Tr Gk 

1 3 
Tr Gk ' and Tr Gk ' 

quoted in Ref. (1,2) 

The power of the Wichmann-Kroll formalism is that the radial 

Green's functions needed in eq. (2.22) can be readily constructed in 

terms of two, particular solutions of the radial Dirac· equation.* Let 

~R be the solution regular at r = a and $1 be the solution regular 

at r = 00 (1. e., ~1 + a as r + (0). Then for an eigenvalue k and 

energy z, these two component wavefunctions satisfy 

1 + VCr) - z 1 d + k ~l(r) ---r r dr r 

= a (3.1 ) , 
1 d + k -1 + V(r) ~2(r) --r - z r dr r 

where the radius and energy have been scaled by the electron mass. 

Then in terms of these solutions the radial Green's function is given 

by, 

Gk(r,r l
; z) = J(~) ~(r' - r) ~R(r) ~1(rl)T + e(r - r' )~1(r)lJlR(r' )T}, 

(3.2 ) 

* See also Ref. (21). 
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wi th the Wronskian J( z ) gi yen by 

J( z) 

and where T stands for transpose and the subscripts 

, (3.3) 

1 and 2 refer 

to the upper and lower components. It is easy to verify from eq. (3.1) 

that J(z) is independent of r and that ~ does satisfy eq. (2.9) 

for me = 1. 

From eq. (3.2), we get 

, 

where r> (r<) is the greater (lesser) of r and rl. The potential 

due to a nucleus of finite extent is of the form 

__ -Zrv {f(rIR)IR , 
VCr) u. 

l/r , 

r < R 

(3.5) 

r > R 

Two models of the nuclear charge distribution ,vi11 be considered in 

this paper: 

f(r/R) = 1; 

MOdel I, a shell density, PN = oCr - R)/4~R2, uc 

Model II, a uniform density, PNuc = S(R - r)/(4~R3/3), 

The solutions of eq. (3.1) for the potential of eq. (3.5) are 

constructed by matching the interior solutions (r < R) to the exterior 

solutions (r > R) With a continuity condition at r = R. 

The exterior solutions satisfy eq. (3.1) for the case of a pure 

Coulomb potential (R = 0). These solutions are well known (8,12). 

Letting ~~ denote the solution regular at r = 0 and ~ denote 

the solution regular at r = ~, then 
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f 
?1zl = 1+ z [(S -V) "\. (2cr) - (k - ric) "\+> (2cr)] r312 , . - ,S 2,S 

l ~ = ~ [(s - v) "\_i,s(2cr) + (k ~ ric) "\~.,s(2cr)] 

and 

~ = 1+ z 
[(k + ric) Wv_!,s(2cr) + Wv+.,s(2cr)] 312 r 

, (3.6 ) 

where 

'Y = Za , s = , 

c = -VI v = 'Y~ c (3.7) 

The branch of the squar~ root for c is taken such that Re(cl~ O. 

The functions Ma,e and Wa,e in eq. (3.6) are the Whittaker 

(confluent hypergeometric) functions as defined in Ref. '" (22) . 

To obtain the interior solutions, the nuclear charge density 

must be specifie.d. The simplest case for which the interior solutions 

are known is the shell distribution of model I. In that case, the 

interior potential is a constant Vo = -y/R. The solutions of eq. (3.1) 

for a constant potential Vo are obtained from the solutions of eq. 

(3.1) with V = o simply by shifting the energy from z to z - VO' 

Denoting the solution regular at r = 0 by u and the solution regular 

at r = 00 by v for the case V = 0, we find '(12) 
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and 

(3.8 ) 

where jand h(l) are the spherical Bessel and Hankel functions as 

" " defined in Ref. (23). The solutions of eq. (3.1) with V = -y/R are 

then given by 

u = u(z + y/R) 

and 

v = v(z + y/R) (3.9) 

Thus,the solutions of eq. (J.l) for a model I nucleus are 

given by 

(3.10 ) 

where the coefficients a, b, 
..., 
a, and 0 are determined by the con-

tinuity condition at r = R. As in eq. (3.3), we define the bracket-

expression for two arbitrary wave functions as 
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The coefficients in eq. (3.9) can then be expressed as 

a = ( u,<WjR" [~cW1 

b = [~,u JR;[~,'hJJR 

... 
[1tJ,v)R/ [u,v]R a = 

ti = [u,'W )R/[ U, v JR ". (3.11 ) 

This form for the coefficients is partiuc1ar1y useful because the 

different brackets are related to the Wronskians for different pot en-

tia1s. In particular, the Wronskian J ul for a pure Coulomb potenco 

tia1 is given by (see Appendix II) 

-J () = [«}')I"j I!> ,1 = 4( 1 + ) 2 r( 2s + 1) coul Z • (, -w -'a Z c t( s _ V ) 

The Wronskian JV for a constant potential is given by 
o 

Jvo(Z) ~ [u'V)R = 1 

-.. 
as may be verified with eq. (10.1. 31) of Ref. (23). 

(3.12 ) 

(3.13 ) 

Finally, the Wronskian for the potential of eq. (3.5) as com

puted via insertingeq. (3.10) into eq. (3.3) is given by 

(3.14 ) 
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The zeroes of J(z) determine the location of the poles of Tr Gk 

corresponding to.bound states of the radial Hamiltonian with the 

potential of eq. (3.5). Note that the condition J u1(z) = 0 gives co 

the usual Sommerfeld's fine structure formula for a point nucleus. 

The radial Green's function for several potentials of interest 

can now be constructed via eq. (3.2). The free radial Green's 

function ~o referred to in eq. (2.15) is given by 

G
k 

O( r, r'; z) = e( r' - r) u( r) v( r,)T + e (r - r' ) v( r) u( r' ) T , 

(3.15) 

in terms of the solutions in eq. (3.8). The pure Coulomb Green's 

function is given by (8,12) 

coul( , ) Gk r,r; z = {e( r' - r) ~ (r ) tvt r' ) T 

, (3.16 ) 

in terms of eqs. (3.6) and (3.12). Finally, for the case of a finite 

radius nucleus, ~ is given by substituting eq. (3.10) into eq. 

(3.2). The trace of Gk for r' = r, appearing in eq. (2.22), can 

be written convenientlY for the case of a model I nucleus as 

Tr ~(r,r ; z) = 

T G~ou1( . r K r,r, 

< z + y /R) + Tr L\~ , 

z) + Tr L\G > 
k 

r < R 

r > R , 

(3.17) 
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f ··· :l All « :;. ) where the ~~te s~ze cor~ect ons ~~ are given by 

and 

. > ",_r. T" fj 
Tr flGk (r,r; z) = b"W(r) w(r)/J(z) (3.18 ) 

In this form, the expected properties of Tr Gk that 

TrG Tr CLO 
k -+ -k as R -+ co 

and that for y < I, i.e., Z < 137, 

. Tr G
k 

-+ Tr ~OUI as R -+ 0 (3.19) 

are easily derived from the asymptotic behavior of a as R -+ co and 

of b as R -+ 0 (see Appendix II). Note, however, that for y > I, 

the limit R -+ 0 does not exist, confirming the result that for 

superheavy nuclei (Z > 137), nuclear size effects·must be taken into 

account (6). 

Furthermore, the nuclear size correction to the VP density is 

computed directly from Tr ~Gk> in eq. (3.18). This calculation is 

discussed in section 5. 

The bound state wave functions appearing in eq. (2.22) are 

computed from the residues of Tr Gk for poles in the energy range 

-me < E < O. As noted before,the location of these poles is deter

mined by the condition J(z) = ° for the Wronskian in eq. (3.14). The 

residues at those poles are seen from eqs. (3.17, 3.18) to come only 

from the finite size corrections, Tr ~G~«). These residues are 



.. , .... 

... 50-

proportional to . 1 li( r ) 12 for r < R and to 1'1.v( r )12 for r > R. 

This is expected since the bound state wavefunctions must be ~egular 

both at r = 0 and r = co, Furthermore, the continuity of the wave-

functions at r = R is insured by the choice of . a and b and may 

easily be verified with eqs. (J.1l, 3.14, J.18). Note that the 

construction of ~ in eq. (J.2) also guarantees that these wave

functions are normalized to unity. See section 6 for further discus~ 

sion on the calculation of the lSl/2 and 2Pl/2 wavefunctions. 

4. Construction of Tr Gk
l and Tr Gk

J 

In this section the trace of the radial Green's function to 

first and third order in y = za are constructed from eq. 

The Tr ~l 

eq. (2.22). 

is of course necessary for the calculation of 

The trace Tr Gk
3, for k = -1, is calculated 

(2.16 ). 

J+ 
P\kl 

(1) to 

in 

provide a check on the numerical calculation of pl
J+ to third order, 

(2) to estimate the dependence of p1
J+ on different models of the 

nuclear charge density, and (J) to determine the size of the contri

bution of P1
3 to pJ. The ratio of the Ikl = 1 contribution to 

the Ikl ~ 2 contribution for the third order term is considered in 

order to estimate the accuracy of the approximation used in Refs. 

(1,2) for calculating the nuclear size effect by including only the 

Ikl = 1 contribution to J+ 
P • 

The construction of Tr Gk
1 and Tr Gk

3 will be carried out 

first generally for all k and then specifically for . Ikl = 1. To 

simp1ify·the nota~ion, define 
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(UU)r = u(rl u(r) 

(uv) = u(r)T vCr) :; v(r)T u(r) 
,r 

T ' 
( vv ) = v( r ) v( r ) 

r . , 

From eq.' (2.16), Tr Gk
1 is seen to involve the trace of a 

product of two free radial Green's functions This trace is 

easily calculated from eq. (J.15) to be 

(4.2) 

where r< (r:» is the lesser (greater) of rand r1 • Thus, 

To third order, Tr ~J involves the trace of a product of 

four free Green's functions. Let T4(r,rl ,r2,r
J

) denote this trace. 

The explicit analytic expression for T4 de~ends on the relative 

ordering of the four radii. Consider, for example, the ordering in 

eq. (2.16) with r > r 1 > r 2 > r
J

• From eq. (J.15), 

T
4
(r > r 1 > r 2 > r

J
) = (vv) (uv) (uv) (uu) • (4.4) r r l r

2 
r

J 



-52-

Similar expressions m~ be written for the other 23 orderings~ Tne 

contribution from the particular ordering in eq. (4.4) to Tr Gk
J \nll 

then be 

The contributions from other orderings will have analogous forms. 

However, three other orderings, (r > r l > r
J 

> r 2 ), 

(r > r 3 > r 1 > r 2 L (r > r 3 > r 2 > r 1)' give rise to the same 

contribution as eq. (4.5). In fact, there are only eight different 

contributions to Tr Gk
J out of the possible 24. 

From the following simple property, 

b x f b )2 r dx f(x) f. dy fey) = ~)f. dx fex) ~ , 

Ja a l a J 
(4.6) 

all the occurring three dimensional integrals can be reduced to two 

dimensional ones and some two dimensional integrals reduce to one 

dimensional ones. Defining three fundamental integrals by 

Jl(a,b) i
b 

2 = dr r VCr) (uu)r 

J2(a,b) fb 2 
= dr r V( r) (uv) r 

J
3
(a, b) = Jab dr r2 V(rl (vvlr , 
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the e,ight different contributions to Tr Gk

J can be expressed in 

terms of the above integrals·and the following six integrals 

II = Ir drl r/ V(rl l (uul ¥J2(rl ,r »)2 
o rl 

12 = Lr drl r I
2 

V(rll (vvl
rl 

KJ1(O,rllY 

I J = J:r drl r I
2 

V(rll (uvl
rl 

JI(O,rll 

14 = i~ drl r/ V(rll (uv l
rl 

JJ(rl_l 

15 = f~ . 2 1 2 
r drl r l V(rll (vvl

rl 
~2(r,rll) 

16 = f· ~ drl r/ verI l (uulr KJJ(rl'~ lY 
r 1 

(4.8 ) 

Then Tr ~J is given by 



Note that in this notation eq. (4.3) can be written as 

(4.10) 

The reason that this notation is convenient is that analytic expressions 

may be obtained for the Ji , and thus, the calculation of Tr G
k

3 

involves only one dimensional numerical integrations. Also, Tr ~1 

can then be evaluated without any numerical integrations. 

To proceed further, only the k = -1 radial Green's functions 

will be considered. Note that Tr Gk
n for k = +1 is related to ',the 

trace for k = -1 by eq. (2.18). From eq. (3.8), we get the 

following products for k = -1: 

(uv) r 

(1 + z)2 sinh
2 

cr 1 [Sinh cr ] 2, --""'2~ + ""2 - cosh cr 
(cr) r cr 

= c e -c; ~ 1 + z) sinh cr .. 

(cr) r 
+ (1 - z)( 1 + -b {Si~r cr - cosh cr]} , 

-2cr e 
2 

r {
1 + (1 - z)2 (1 + .l..)2} 

2 cr c 

I 

The fundamental integrals J. may now be calculated for the two 
1 

different models of the nuclear charge distribution considered in 

connection with eq. (3.5). Since the potential in eq. (3.5) has 

different forms for r < R and r > R, it is natural to define the 

indefinite integrals J.< and J.> such that 
1 1 
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·d < 
r2 (r/R) (vv)r/R dr J 3 (r) = 

and 

d > 
r (uu)r dr J l (r) = 

d > 
r (uv)r dr J2 (r) = 

d > d.'r J3 (r) = r: (VV)r ' (4.12) 

where f(r/R) = 1 for a model I nucleus and f(r/R) = (3- {r/R)2)/2 

for a model II nucleus. Thus, for example, 

From eqs. (4.11, 41.2), the integrals for the case k = -1 and 

for a model I nucleus are easily verified to be 

< J
1 

(r) = 1 { 1 1 z sinh
2 

cr} cR (1 - z) 2 sinh 2cr - (1 _ z) cr - cr 

< J
2 

(r) = , 

< J
3 

(r) = 

Equation (4.14) continued next page 
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Equation (4.14) continued 

+ 1 {Sinh 2cr _ 8inh
2 

cr _ I} 
'2 cr ()2 cr 

, 

= ~ {E1(2Crl + 1n(2crl + YE } 

+ _1 - z {e -2cr 11 + 1) 
c 2cr \: Fr 1 + !.} 

(2cr)2 2 
, 

. 2 . 1 -2cr (, .. 1 ) 
= - (1 : z) El ( 2cr) - 1.: : e cr ~ + m , 

where YE is Eu~er's constant, ~ is the exponential integral and 

Chi is the hyperbolic cosine integral defined in Ref. (23). In this 

form the integrals J i «» can be easily evaluated numerically 

(see section 7). 

For model II nuclei, the interior integrals J~< have a 

different f9rm. These are related to Ji < in eq. (4.14) by 

{ ( 2) < 1 r 2 < 1 2z (cr) 
JIll (r) = 2' ~ - (if) ) Jl (r) - 3 cr 3(1 _ z) - 1 

2(cR) 

1 C 2cr( ) -2cr( .)" 1. } + ':ra'P'!( l:--"_-z"'l'") e 1 - 2cr - e 1 + 2cr ') + 2' s~nh 2cr 

Equation (4.15) continued next page 
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Equation (4,15) continued 

<. i ( .. r. 2\ <:. . 1 . {I . ~ z ( . 2z . ( c~ )2 ) 
J II2(r) = 2' 3 - (ir)jJ2 (r.) - . 3 c cr 1 - 3el - z) 

2(cR) . 

e-
2cr G + cr -2c 

+ 1) + I, _ 1.)' + ( )2 2z - 1 ) 
z 2 2c' z 2 cr 2c 

The integrals I j may then be computed numerically for either 

nuclear model. 

I 

(4.15) 

In order to estimate the ratio of the Ikl = 1 contribution 

to the higher partial wave contribution for the third order VP density, 

the total VP charge accumulated at the origin for a point nucleus has 

to be calculated for Ikl = 1. This charge is calculated through eq. 

(2) of Ref, (1). For that calculation, PTkl for Ikl = 1 is needed 

in the limit me -+ O. To get the me = 0 limit for Tr~3, recall 

that in eqs. (4.11, 4.14, 4.15) the energy and radius have been scaled 

by the electron mass. In those equations the IDe =0 limit is 

obtained by replacing z: 1 by z and c by -iz in the upper half 

z plane and c by +iz in the lower half z plane. With these 

substitutions, Tr ~3 is computed as for the me I 0 case with 

eq. (4.9). 

5. Finite Size Effects in Muonic Atoms 

Having constructed. all the relevant Green's functions for the 

calculation of the higher order VP density p3+, we turn to a more 

detailed discussion of the effect of finite nuclear size on p3+. 
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~ p~rticu1ar, this section elaborates upon the calculations reported 

in Ref. (1) for muonic .Pb. 

For the region r > R, the correction to the trace of the 

> Coulomb Green's function is given by Tr AGk in eq. (3.18). In this 

region, the difference, APk' between the VP charge density for a 

finite radius nucleus and the density for a point nucleus is then 

> . given by eq. (2.11) with Gk replaced by AGk In .the discussion of 

section 2B, it was noted that the first order contribution has to be 

subtracted from Gk, as in eq. (2.22), to eliminate an ambiguity 

present in the calculation of the first order contribution to Pk • 

However, the calculation of the first order contribution to the 

difference APk for r > R is free from ambiguity. To see this, 

consider the difference, Tr A~ l(r,r'), between Tr <\l(r,r.) for 

a finite radius and point nucleus. From eqs. (2.16, 3.15, 4.12), 

we get for r,r' > R 

, (5.1 ) 

where it was noted that Jl«O) = J1>(O) = O. It is easy to verify 

from eq. (3.8) that as a function of z, °Tr A~l(r,r') decreases 

exponentially as exp(-Iyl(r + r' - 2R») for z = iy, IYI ~~. 

For r,r' > R, then, this exponential decrease insures the uniform 

convergence of the contour integral in eq. (2.19) for r' in the 

neighborhood of r and thus eliminates the ambiguity associated with 

the r' ~ r limit. For r,r' < R, thoug~ the ambiguity in the cal-

culation of is still present because Tr AGk
l decreases 

exponentially only as exp(-Iy(r - r' )1) for that region and the 
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contour,integral does'not converge uniformly for' r' in the nelghbor

. hood of or •. Thus regUlarization is required for the calculation of 

~Pkl in the region r < R. 

Because we are interested in transitions in muonic atoms 

between states of high angular momentum, the calculation of ~Pk for 

r < R may be avoided and we can restrict our attention to the calcula-

tion of ~pt' for r > R, where no regularization is required. This 

is due to the observation by Arafune (4) and Bro'wn et al.!, (5) that the 

mean radii of the muonic states involved in high angular momentum 

transitions are much larger than R. Thus, the energy shifts due to 

~Pk should be quite insensitive to the actual distribution of the 

VP density inside the nucleus, r < R. Since after regularization the 

total charge AQ< contained in the regionr < R must cancel the 

charge, ~Q>, in the region r > R, the approximation of setting 

APk(r) = -~Q> o(r)/r2 for r < R, will generate only small errors in 

the calculation of energy shifts for high angular momentum muonic 

states. Therefore, the energy shifts due to the nuclear size correc-

tions to the VP density are calculated from the density ~Plkl given 

* by 

* 

flP1kl 
= 

o(r) 
--"2 r . 

r < R 1 (5.2 ) 

Note that this procedure is applicable only for y < 1, so that 

Pvp for a pure Coulomb field is still defined. 
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where . A.Gk> is evaluated with either k = Ik\ or k = ~\kl ~ The 

contribution 6P1k
\, linear in y, is calculated from eq. (5.2) by 

replacing Tr ~~> with the first order correction Tr ~Gkl(r,r) in 

eq. (5.1). 

The primary purpose of calculating ~Plkl in Ref. (1) was to 

check the accuracy of the approximations in Refs. (4,5) of setting 

me = a and expanding ~Plkl in powers of the radius R. These 

approximations are implemented by setting me = a in eq.(3.18) and 

expanding b in powers of R. Note that the function f(R,z,m) e 

defined in Ref. (1) is related to b in eq. (3.18) by 

f(R,z,m ) = b/J(z).* 
e 

The m = a e approximation requires the m + a limit of . e 

eqs. (J.6~ J.8). The m and W functions for m = a are obtained e 

from eq. (3.6) by making the following substitutions: z ~ 1 + z, 

c + ~iz (-1 for 1m z > OJ +1 for 1m z < 0), and k ~ y/c + k. 

The u and v functions for m = 0 are obtained from eq. (3.8) e 

by making the first two of the above substitutions. With these new 

functions, Tr ~~> (m = 0) is calculated as in eq.(3.18). e 

The further approximation of retaining only the lowest power 

of R in an expansion of f(R,z,me = 0) is obtained by calculating 

the small R limit of b/J(z) in eq. (3.18). For the case of a model 

1 nucleus with radius R, the leading term i~ an expansion of 

f( R, z, me = 0) in powers of R is given by (see Appendix II) 

* Note a misprint in Ref. (1), p. 1395, line 30: 

should read f(R,z,m = 0). e 

f(R,z,m ) = a e 
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f(R,iy,m ~ 0) ~ 
e [ 

iA - Y I( s - k) ] R2s (2Y )2s03 
i -iA r7(s - k) . 

x0 - iY) (r(s _ iy»)2 
~ s '( r(2s) 

, (5.3) 

where fA = ";ij2r~, evaluated in the limit me'" ° . and R ... ° from 

eqs. (3.8 and 3.9 ).With this formula, the integrals in eq.. (5.2) 

may be evaluated analytically (4,5). 

The nuclear size corrections llPlkl to the VP density for 

Ikl ~ 1 are listed in Table I for Pb (Z = 82, model I, R = 5.5 fro) 

as a function of the radial coordinate r. The range of r covered 

in the first column is R < r < 500R. The next three columns list 

APl for the following cases: (l) me 'lOin eq. (5.2), (2) me = 0, 

and (3 ) both m = ° and lowest power in R/r. The first order e 

density APl
l is then listed in the last column. The energy level 

shifts due to these corrections have been discussed in Ref. (l)~ Here 

we want to discuss the differences in APl as calculated within the 

different approximations. 

high degree of accuracy, 

For rt.re « 1, AP1~· AP1{me =0) to a 

In fact, the assertion in Ref. (4) that 

= 0) appear to order (mer)2 is supported by 
-

corrections to Apl(me 

our numerical results. On the other hand, the approximation of 

retaining only the lowest power of R as in eq. (5.3) is not 

particularly accurate for r ~ R. In fact, AP10e = o,O(R/r» is 
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smaller than llPl (me 'I 0) by roughly a factor of 2 in that r.egion. 

For 0.1 < r /-'1\.. < 0 ~ 5 " "', . e .... · all three approximations are seen to give the 

same value of l1Pl to wi thin 10%. For r fK. > I, the rela ti ve accuracy . e 

of the m = 0 approximation decreases, although the relative e 

accuracy of the O(R/r)· approximation increases, i.e., 

llpl(me = 0) :.:s l1PI Crne = O,O(R/r») but l1PI(me t- 0) i l1PI (me = 0). 

The inadequacy of the O(R/r) approximation in the region 

r ~ R for computing the charge density does not affect the accuracy 

of the energy shifts computed from llPI (me = 0".. O(R/r») in Ref. I (1) 

very much, becaus~as noted before, the overlap of the muonic wave-

functions with the region r < R is very small for the high angular 

momentum states (e.g., 5g9/2,4f7/2). The inadequacy of the me = 0 

approximation for computing l1Pl in the region r >1re does not 

affect the computed energy shifts very much because llPI is very 

small in that region and only a small fraction of the charge contained 

in llPl in the region r > R is contained in the region r >I~e; 

this can also be seen by comparing l1QI ,2 in Table III of Ref. (1). 

The region that determines the accuracy of the computed energy shifts 

is thus the intermediate region, where all three approximations give 

the same llPI to vdthin 10%. 

Note that a test on the numerical integrations required for 

the construction of Table I is given by a comparison of the values for 

llPl(me = O,O(R/r») - in Table I to the values determined from the 

analytic formula (eq. (J~of Ref. (5). These values were found to 

agree to better than four places throughout the range R < r < 500R. 
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* . In connection with Tables I and II of Ref, (1), the VP 

densities PTkl andPT~1 for Ikl = 1 from eqs" (2.,19, 2,22) 

are needed. These are listed in Table II here. As disucssed in Ref. 

Pfkl and PT~I are expected to agree to within 10% for Pb. 
3 . 3+ 

indeed reassuring that the values of Plkl and Plkl are in It is 

such close agreement, then, considering that they were obtained with 

totally different computational techniques. A more demanding test of 

the numerical accuracy of each VP density in Table II is given by the 

degree of cancellation between the charges Q- contained in the 

region where that density is negative (r ~ 60 fm) and the charge 

Q+ contained in the region where the density is positive (r 2 60 fm). 

As reported in Ref. (1), these charges were ·found to cancel to better 

than five decimal places for both pl
J and P1

3+ See section 7 for 

further discussion of the numerical techniques employed in calculating 

these densities. 

6, Vacuum Polarization in Heavy Ion Collisions 

In this section some of the results reported in Ref. '. (2) for 

the.case of Za > 1 are elaborated upon. Consider a nucleus of type 

I with a radius R::; 10 fm. The evaluation of PT~I in eq. ·(2.22) 

requires, for large Z, the determination of bound state wavefunctions 

with energies E between 
\. 

-m < E < O. e The energy eigenvalues 

determined from eq. (3.14) for this type of nucleus are plotted in 

Fig. J as a function of Z for the lSl/2 and 2Pl / 2 electronic 

states. The curves for R = 0 and 0.1 fm are also shoivn for 

* Note that in the last line of Table I in Ref. (1), the second 

column should read I k I .~ 1 rather than I k I = 1. 
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comparison, Figure J is included here to exhibit the range of Za 

for which the lSl/2 and 2Pl/2 state are present in eq. (2.22) for 

the particular model of the nucleus chosen here. Also the slopes of 

the curves in Fig. J provide a measure of the accuracy of the computed 

lSl/2 and 2P1/ 2 wavefunctions (2). We note that the energy- eigen

values in Fig. J are in general agreement with the results of calcula

tions using more realistic models of the nucleus (6,20), and that the 

values of Z and of the slope dE/dZ at cr Z cr compare favorably 

with those obtained in other calculations (2). It can be seen that 

the lS1/ 2 state is present in eq. (2.22) for range 

1.275 ~ Za ~ 1.086, and that the 2P1/ 2 state is present for the 

range 1..383 ~ Za ~ 1.254. 

The critical value of the nuclear charge Z , where cr 

has been determined in two different ways. First E1S1/
2 

= -me' 

the zeroes of J(z) in eq. (3.14) have been determined as a function 

of Za for z = -m + E \vith E/m = 0.05, 0.01, 0.001, 0.0001. e e 

Then (Za) is determined from the extrapolation to E = O. This cr 

method gave the value (Za) = 1.274587. cr The second method of cal-

culating (za.) is based on deriving the asymptotic form of J( z ) cr 

for z.... -m (c -+ 0, V -+ _00) and determining the zeroes of J( z ) in e 

that limit (24). From the relation between the upper and lower 

components of the radial wavefunctions obtained from eq. (3.1), it 

is easy to see that the condition J(z) = 0 is equivalent to 

w,' "', . 1 ul (6.1 ) :: 

~ 
, 

'" 
r=R 

u
l r=R 

... 
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where only the upper components of the inner and outer wavefunctions 

enter, and the prime denotes the derivative, This equations is con-

venient because the asymptotic limit (z ~ -m) of the left-hand e 

side is calculable from the relation 

limr(a + 1) W Q(~) ::; 2--V-; K2Q(2Vx) -a, I-' a I-' 
(l-+<lO 

valid for 2f3 I integer and for real x > O. Thus 

W' 
1 

WI > 
z-+-m e 

where the modified Bessel function K2f3 and its derivative are 

calculable from the relations (22) 

and 

The solution of eq. (6.1) in the limit z = -m e with eqs. (6.3 

(6.2 ) 

(6.3) 

(6.4 ) 

and 

6.4) gives the value (Za) = 1.274588 in very good agreement with cr 

the value determined from extrapolation. In addition to providing a 

check on the calculation of (Za) , this agreement shows that the cr 

nontrivial relations eqs. (6.2, 6.4) are satisfied by the computed 

Whittaker functions to a high degree of accuracy. The comparison of 

(za) from the two methods therefore provides one important test on cr 
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the accuracy of the numerical techniques for computing the W . a,B 
functions (see sec·tion 7). 

The calculation of the lSl/2 bound state wavefunction in the 

range 1.275 ~ Za ~ 1.086 is necessary not only for the calculation 

of P1
3+ in eq. (2.22) but a~so for the calculation of the lSl/2 

energy shift due to the VP potential.* Figure 4 has 4TIr21$lS ,2 
1/2 

plotted for several values of Za in that range for the case of the 

model I nucleus with R = 10 rm under consideration here. As noted 

in Ref. (2), one test of the accuracy of the computed wavefunctions 

(computed from the residues of the radial Green's function as discussed 

in Section 3) is given by the value of their norm. As reported there, 

all lSl/2 and 2Pl/2 wavefunctions so computed were found to be 

normalized to better than one part per 105• Another, more qualitative 

test of the accuracy of these wavefunctions is given by the comparison 

of the slope dE/dZ 

dE/dZ ::: -arne < l/r) ) 

obtainec from Fig. 3 to the approximation 

where the expectation value (l/r) is 

evaluated from the computed ";';"avefu..T1ctions. Table III lists the values 

of the slope dE/dZ obtained in the two ways. The good agreement in 

Table III gives further assurance that the lSl/2 and 2Pl/2 wave

functions were correctly calculated. Finally, we note that the lSl/2 

wavefunctions in Fig. 4 are in good qualitative agreement with those 

calculated using more realistic models of the nucleus (20). 

For the study of the stability and localization of the helium-

like density PHe as a function of Z in the neighborhood of Z , cr 

* See Table 1 of Ref. (2). 

.' 
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~ -2Iell$lS (r)1 2 + P 3+ + P 
1/2 1 

(6.5 ) 

where Pvp has been divided into two parts: P13~., which includes the 

contribution from higher orders for Ikl = 1, and P, which includes 

the first order (Uehling) and the higher order, Ikl > 2 densities. 

It is clear that P is a continuous function of * Z for around Z • cr 

Furthermore, the Uehling contribution is known (17), and the ratio of 

P3+ f I k I > 3+ • (2) f f I kl or . 2 to P1 1.S small • Thus, or the study 0 

the continuity of PRe around Zcr we may neglect P in eq. (6.5). 

The curves for PRe given in Fig. 2a of Ref. (2) for Z < Zcrare 

thus obtained by adding to -21 ell $lS ( r )1 2 in Fig. 4 the VP 
1/2 

density P
1

3+ as computed from eq. (2.22). These vP densities are 

plotted in Fig. 5 for several values of za approaching 

(zp) = 1.27459. Note that these densities were also used in connec-cr 

tion with Table I of Ref. (2). For Z > Zcr' the 181/ 2 wave function 

in eq. (6.5) is no longer present and PRe is computed directly from 

eq. (2.22) by setting PRe = P1
3+. The continuity of PRe as a 

function of Z around Zcr may be seen from Table IV, where PHe 

for several values of the radial coordinate are listed as a function 

of Z. This table is intended to supplement Figs. 2a and 2b in Ref. 

(2). The continuity of PRe has been expected on the basis of 

* The first discontinuity of P occurs for Z = Zcr(2P3/2)' where the 

2P3/ 2 state reaches the lower continuum. This value of Z is 

much large than Z cr ( 181/ 2 ) though (6). 
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general arguments presented by Muller et al. (7).. What we ha.ve 

presented here are precise calculations demonstrating this fact. 

7. Numerical Techniques 

This section describes the numerical techniques that were used 

to evaluate the Green's functions constructed in se,ctions 3 and 4. , 

The calculation of Tr Gk in eq. (3.17) requires the calcula

tion of the Whittaker functions M Q and W Q in eq. (3.6). The 
a,~ a,~ 

techniques employed to calculate these functions are those discussed 

extensively in Ref. (13). With those techniques an accuracy of better 

than 10 decimal places is achieved for the range of the arguments 

needed in the present study. Tests on the accuracy of the subroutines 

for calculating these functions include verification that those 

* functions satisfy particular recursion relations and that they also 

satisfy eq. (3.12) to more than 10 decimal places for a large range 

of the arguments. Another test is described in section 6. 

For the calculation of Tr Gk
l and Tr Gk

3, the integrals 

J.> in eq. (4.14) require the evaluation of exponential integrals 
1 

E1(x) and Chi(x). These functions are computed from the power 

series representations eq. (5.1.11) and eq. (5.2.18) of Ref. (23) 

for x'< 1 and from the techniques described in Ref. (25) for x > 1. 

The subroutines for these functions were tested against tabulated 

values in Ref. (26). Again, better than 10 place accuracy was achieved. 

The calculation of the integrals I. 
J 

in eq. (4.8) requires a 

numerical integration. All numerical integrations were done with a 

Gauss-Legendre quadrature method (27). This method is 

* See p. 303 and 304 of Ref. (22). 
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particularly suited for the integration of functions that are well 

approximated by polynomials of relatively low degree on a given 

interval. This is because an n point quadrature formula is designed 

to give the correct value of the integral for a polynomial of degree 

2n - 1. The accuracy of the numerical integration with an n point 

formula for an arbitrary function is customarily estimated from the 

variation of the value of that integral as n is varied. This pro-

cedure was followed in the present work. Thus, if the value of an 

integral changes only in the eleventh decimal place as n is increased 

to n + 10 or n + 20, then the numerical integration is considered 

to be accurate to ten places with the n point formula. 

For the integrals required in eq. (4.8), modification of the 

integrands is required in order to achieve ten place accuracy with low 

n. This is because many of the integrands contain terms such as 

inverse powers or logarithms that are not directly suited for integra-

tion by Gauss-Legendre quadrature. However, thse terms are easy to 

isolate in each integrand, ~~d the integral over those terms may be 

done analytically, The remainder of the integrand will contain only 

terms such as m m r or r log r for m ~l, for which Gauss~Legendre 

quadrature converges fast. To illustrate this procedure, consider the 

integral 

= , (7.1 ) 

which is needed in the evaluation of I, in eq. (4.8). As y ~ 0, 

the integrand is of the form 
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. (IJ :;l It (2z + I) y - (I + z) st J + o( I) (7.2 ) 

as is easily seen from eqs. (4.11, 4.14). Vfuile Gauss-Legendre 

quadrature is not suitable for the terms exhibited in eq. (7.2), their 

integral is trivial to do analytically. Thus, I5 is computed for 

b < llc by 

> I, (a,b) = 

+ 2z + 1 2 [1 1] 
(1 + z)2 J a - b 

1 ~ z ~ tn(b/a) 

z ..!..} 2y 

(7.3) 

With eq. (7.3), the number of quadrature points n found necessary to 

hi t f I >· 0 I ac eve en place accuracy or 5 1n the range < a < b < 1 c 

was n = 20. For large values of the argument (cy.> 1), the integrand 

in eq. (7.1) behaves as 

2(1 - z)z -2cy 
e y tn(2cy) 

c3 (7.4) 

However, because the exponential dominates this term, the presence of 

the logarithm and inverse power do not effect the convergence of the 

numerical integration very much. In fact, ten place accuracy is 

achieved for I/'(a,oo) when a> llc with a 30 point quadrature 
> . > 

formula applied to I5 (a,a + 20/c). Therefore, 15 (a,oo) for any 

a > 0 may be computed to ten place accuracy with a maximum of 50 

evaluations of the integrand. This numerical integration is then very 

rapidly performed. There are altogether 19 integrals of this type that 
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are required for the calculation of the I j in eq. (4.8). All integ

rals are handled in the· manner of the above example. 

A critical test of the accuracy of the so computed Tr Gk, 

Tr Gk
l , and Tr Gk

3 with the techniques described above is given by 

the comparison of the right- and ~eft-hand sides of the equation 

(7.5) 

For a model I nucleus with R.= 10 fm, the right- and left-hand sides 

were computed for Y = Ztl = 0.001 a.p.d r = aR with· '{a = 0.01, 0.1, 

0.3, 0.7, 1.0, 1.05, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0, lOOO.O} and 

z = iy with· {y = 0.0, 0.5, 1.0, 2.0, 4.0, 10.0, 20.0, 40.0, 100.0, 

500.0, 1000.0}. Better than ten place agreement was found between 

the two sides for the range of variables considered. 

The contour integral along the imaginary axis, which is 

required for the calcualtion of PTkl and PT;I in eqs. (2.19, 

2,22), is performed by dividing the interval (O,ioo) into two or 

three segments and applying a 30 point quadrature formula on each 

interval. The integrands falloff roughly as l/z5 rather than 

exponentially, and consequently, the 30 point formulas were found to 

give five place accuracy. Of course, such accuracy is still quite 

adequate for the applications described in Sections 5 and 6. The 

charge densities were calculated for 60 values of 

the radial coordinate in each of the intervals 0 ~r ~ 30 Rand 

30R < r < 500 R. The 60 values in each interval were chosen to - -
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coincide with Gauss-Legendre quadrature points so that integrations 

involving the charge densities (in the calculation of energy shifts 

due to vp) could be done immediately. 

Finally, we note that all numerical calculations were done 

with the CDC 7600 at the La\vrence Berkeley Laboratory. 

Acknowledgments 

The author most gratefully acknowledges Dr. P. J. MOhr for 

many discussions on the theoretical and numerical aspects of this 

problem. Helpful discussions with Dr. E. H. Wichmann, Dr. W. Greiner, 

Dr. W. J. Swiatecki, Dr. R. N. Cahn, and Dr. L. Wi1ets are also 

gratefully acknowledged, 

Appendix I 

The calculation of the VP density for the case of a constant 

external potential V is discussed here in detail. The purpose of 

this calculation is to supplement section 2B by illustrating the 

properties of the Green's function G that makes regularization of 

eq. (2.6) necessary. 

The Green's function GV for a constant potential V is 

obtained from the free Green's function GO simply by shifting the 

t V h GO •• b energy Z 0 z - ,were 1S g1ven y 

....... 

where 6. = Ix - x'I ..... ..... 

= 
..;.c6. . 

( -:i(x·V + f3 + z) e47T6. 

2 )A and c = (1 - Z 2, 

° = G (x,x'; z - V) ....... 

Re( c) ~ O. 

(L1) 

Then 

(I.2) 
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From eq. (1.1), it is clear that the limit A -+ 0 does not exist. 

However, consider the'Taylor series expansion of TraV in powers of 

V: 

T aV( 'z ) = z ~cl::. _ V(! + t.) -cl::. 
1T r ~,~ j l::. l::. c e 

2 ~4) -cl::. + l::. ~ e ',+ •••• (1.3) 

From this expansion, the singularity of Tr aV as l::. -+ 0 is seen to 

be confined to the terms of order zero and one in V. Note also that 

the contour integral along the imaginary axis does not converge 

absolutely until third order for l::. = O. 

Consider now the calculation of the third order density pJ 

as in eq, (2.B). Then in units of -lei, p3 is given by 

(1.4) 

From eq. (1.4), it is clear that depending on which order the limits 

are taken, p3 = VJ/31T2 or O. For higher orders, though, a similar 

calculation shows that pn = 0 for n ~ 4 independently of the order 

of the limits. 
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To calculate ~he contribution Plkl . to Pvp consider eq. 

(2.14). The· trace Tr ~ V is obtained from Tr GkO ' in eq. (3.15) 

again by shifting z to z - V. With reference to eqs. (3.4, 3.8, 

3.13), we define 

11 1 V ° where :!: stand for Ik:!:"2" - 2". Then Dlkl = D1kl(z - V). Again a 

power series in V may be obtained by taking successive derivatives 

° of Dlkl with respect to z. Note that the ~ + ° singularity is 

absent for each Ikl to any order in V. However, ·the calculation of 

the first order density Plkl in eq. (2.17) gives 

= lim DOl k I (r, r'; z)· 
r'-+r 

(1.6) 

If the limit r' + r is taken first, then from the high z limit of 

eq.(I.5) for r< = r>, we get Plkl = Iklv/(nr)2. On the other hand, 

if r' t r, then since the product jv{icr<) and ~l)(icr» 

decreases exponentially for z + iw, we get Plkl = 0. Thus there is 

an ambiguity associated with the calculation of Plkl' and hence, 

regularization is required for first order, For higher orders, though, 

it is easy to verify that terms of even orders vanish because even 

° derivatives of Dlkl are odd functions of z and that terms of odd 



.' 

2 

-75-

9.~ders va.nish because the.even.derivatives v~ish at . z ;: !. i oo,. Also 

there is no ambiguity associated with the' interchange of limits for 

the terms of higher orders. 

Appendix II 

The properties of Tr Gk given in eq. (3.19) as well as the 

asymptotic form of b/J(z) in eq. (5.3) are derived here. 

First, from eqs~ (3.111 3.13)1 i = [~'V)R' Since both 

Wa,a(z) and h~l)(iZ) in eqs. (3.6, 3~9) decrease exponentially for' 

Re (z) .. 00 (23) ,it follows at once that a .... 0 as R .... ClO. 

The calculation of b in eq. (3.11) in the small R limit 

is obtained from relations (22,23) 

(II.l) 

+ for x" O. Note that eq. (3.12) follows from the calculation of 

~,1J)R with these relations. Restricting now to the case y < Ikl 
(s is real), the ratio b/J(z) in the small R limit may be written 

from eqs. (3.11, 3.12, 3.14, and 11.1) as 
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b/J(z) = 

{
( s - V - k + y I c)A - (s - v + k - yl c ) _1 
(-s + V + k + y/c) - (s - v + k + y/c}Aj( 

r( s - V + 1) 
x (2cR)2s r(2s) 

1 , (II. 2) 

where A = (U2!Ul)(1 + z)/c. Note that corrections to the small R 

. 4s 2s+1 form in eq. (11.2) appear ~n orders R and R . For a model I 

nucleus, the small R limit of A is found from eqs. (3.8, 3.9) to 

be 

where 

1 + z 
c 

J stand for + 

k ~JY). 
TkT j)y) 

, (II.3) 

From eq. (11.2)1 the second property of Tr Gk in eq. (3.19) 

follows, since Tr I1Gk> + 0(R2s ) + 0 as R + O. Note, however, that 

for y > 1, (Z > 137), s is purely imaginary for Ikl = 1, and, 

thus, the limit R + 0 does not exist. 

Finally, eq. (5.3) is obtained by taking the me + 0 limit in 

eq. (11.2). As described in section 5, this limit is taken by making 

the following substitutions: for z = iy, y ~ 0, z ± 1 + iy, 

c + Y I V + i Y I k:!: Y Ic + k. 
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Table I. The finite size correction to the /k/ ~ 1 vacuum polariza

tion density for Pb , R:::; 5.5 fm :: 1.42 x 10-
2 -K .flp is given . e . 

for three approximations: (1) m ! 0, ( 2 ) m ~ 0 and e e 

( 3) me = 0, O( R/r ). The first order correction.: flp1 is also 

listed for m ! O. The radius is measured in -X and the quan-e . e 

titles r 2flp are given in units of -4~lel!X . ... . e 

r 2tf.p 2 
r r tf.p (me =0) 

1.51 x 10-2 1 8.15 x 100 8.15 x 100 

i 
3.16 x 10-1 

14.56 x 10-2 i 3.16 x 10-
1 

1.14 x 10~112.56 x 10-2 2.55 x 10-2 I 
12.99 x 10-1 i 1.92 x 10-3 i 1.92 x 10-3 1 

, I 

4.V x 10-1 i 7.39 x 10-417.51 x 10-4 1 

6.95 x 10-1 ;1.91 x 10-4 12.09 x 10-4 
I 

I I 
1.03 x 100 I 5.71 x 10-5 i 7.43 x 10-5 

I 6 ! 6 
2.50 x 100 1.34 x 10- 17.33 x 10-

7.02 x 100 

I 
1.63 x 10-

8
11.55 x 10-

6 

9.80 x 10-1~ 4.99 x 10-7 

r~p (me =O,O(R/r» 

4.35 x 100 

2.45 x 10-1 

2.28 x 10-2 

1.83 x 10-3 

7.26 x 10-4 

2.05 x 10-4 

7.33 x 10-5 

7.29 x 10-6 

1.54 x 10-6 

4.98 x 10-7 

r%.p1 

8.05 x 100 

2.74 x 10-1 

1.76 x 10-2 

9.55 x 10-4 

3.23 x 10-4 

6.99 x 10-5 

1.82 x 10-5 

3.15 x 10~71 
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Table II. The Ikl = 1 vacuum polarization density times r2 for Pb 

(model II R = 5.5 fin) in the range 0 < r < 500 R •.. The· contributions 

from third order and orders rt ~ 3 are listed separately in units 

of·47TlellX as ·functions of r (in units of 1:") • . : ._ e .... e .. 

I 
I 

I 
i 
I 

I 

r 

1.6875 x 10-4 

2.1817 x 10-3 

6.4730 x 10-3 

1. 2997 x 10-2 

1. 7075 x 10-2 

2.6808 x 10-2 

3.8554 x 10-2 

6.7561 x 10-2 

1.0285 x 10-1 

1.4290 x 10-1 

-1 1.6417 x 10 

2.0810 x 10-1 

2.8439 x 10-1 

3.6762 x 10-1 

4.2081 x 10-1 

6.9479 x 10-1 

1.0313 x 100 

2.0386 x 100 

i 4.0348 x 100 
i 
I 5.5101 x 10

0 

I ·7,0200 x 100 

. .,.1.8351 X.10 -5 

-3.0541 x 10-3 

-2.5i96 x 10-2 

-7.7206 x 10-2 

-9.2082 x 10-2 

-7.4151 x 10-2 

-4.6475 x 10-2 

-1. 5718 x 10-2 

-4.4931 x 10-3 

-7.5815 x 10-5 

1.0772 x 10-3 

2.3900 x 10~3 

3.2348 x 10-3 

3.4147 x 10-3 

3.3712 x 10-3 

2.6325 x 10-3 

1. 7118 x 10-3 

3.8784 x 10-4 

1.6036 x 10-5 

1,6088 x 10-6 

1. 9882 x 10-7 

-1.9439 x 10-5 

-3.2450 x 10-3 

-2.6746 x 10-2 

-8.1857 x 10-2 

-9.7962 x 10-2 

-8.0434 x 10-2 

.-,5.1769 x 10-2 

-1. 8589 x 10-2 

-5.7939 x 10-3 

-5.2797 x 10-4 

8.8277 x 10-4 

2.5152 x 10-3 

3.5907 x 10-3 

3.8399 x 10-3 

3.8013 x 10-3 

2.9663 x 10-3 

1.9183 x 10-3 

4.2928 x 10-4 

1.7329 x 10-5 

1.6946 x 10-6 

2.0379 x 10-7 

i 
I 
i 
! 

i 
I 
i 

f 

I 
; 
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Table III. Slope dE/dz of curves in ~ig. 3 

for 1S1/2 and 2P1/2 states for 

R = 10 fm compared to approximation 

..arne (l/r) in units of keV. 

Za -dE/dz arne (l/r) I state 

0.95 8 8 ! 181/ 2 I 

1.12 15 16 
! 
I 
I 

1,205 21 22 I 1.27445 27 28 I 

1.27445 25 "26 2P1/2 I 
1,28 I 25 26 

1.295 27 28 

1.38 35 
I 

37 
I 
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Table. IV\ Computed values of 41Tr2pH~(r} in units 

of -Iel/~ as a function of zct for different . e 

values of r (in units of K'). These values . e 

show the continuity of PRe around 

(Za)cr = 1.27459. 

~a 1.2732 1.27445 1.27545 

0.0036 0\1082 0.1091 .' O~1097 
I 

0.0261 I 3.8384 3.8671 3.8901 I 
O~0681 6.4124 6.4495 6.4791 

0.1505 5.0467 5.0600 5.0705 

0.4035 1.6789 1.6726 1.6676 

1.0330 0.1852 0.1831 0.1815 

1.28 

0.1124 

3.9959 

6.6144 

5.1160 

1.6448 

0.1742 

-. 
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FIGURE CAPTIONS 

Fig. 1, Singularities of the Green's function in the complex energy 

plane and contours CO' CHe , and I giving the VP and 

helium-like charge densities in units of . leI. 

Fig. 2. Feynman graphs corresponding to Pvp to lowest order (a) 

and higher orders (b) in Zcx, where X denotes the nuclear 

charge form factor. 

Fig. 3. Energy eigenvalues for the 151/ 2 and 2P1/2 states as a 

function of Zcx for a model I nucleus with R = 0.0, 0.1, 

and 10.0 fm. 

Fig. 4. The 151/ 2 wave functions for several values of .y = Zcx 

approaching (Zcx)cr = 1.27459 for a model I, 10 fm nucleus. 

Fig. 5. The Ikl = 1 VP density for orders (Zcx)n, n ~ 3, for 

several values of y:; Zcx corresponding to Fig. 4 • 
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Fig. 2 
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