A I R A

LEI.-3350

HIGHER ORDER VACUUM POLARIZATION FOR
FINITE RADIUS NUCLEI: AFXPLICATICN IO
MUONIC Pb AND HEAV Y ION COLLISIONS

Miklios Gyulassy .
(Ph, D. thesis)

September 25, 1074

Prepared for the U, S, Atomic Energy Commission -

under Contract Vwr—7405-ENG--’;8

a | )
~ For R_eference

Not to be taken from this room

- 4 _

C./

/2

ot

IR

€y
<



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



“~

HIGHER ORDER VACUUM POLARIZATION FOR FINITE RADIUS NUCLEI:

APPLICATION TO MUONIC Pb AND HEAVY ION COLLISIONS

Miklos Gyulassy

CONTENTS

BOSETaCt « v v v v e e e e e e e e e e e e e e e e e e
Introduction . « v v v v v b e b v e et e e e e e e ..
Chapter I: Nuclear Size Effects on Vacuum Polarization

in Muonic Pb . .. . . ... e s s i e e e s
Chapter II: Vacuum Polarization in Heavy an Collisions
Chapter iII: Higher Order Vacuum Polarization for Finite

Radius Nuelei . . . . . . . e .'. e s e e .

) ACKIIOW].edgmentS . . s o o . . . o . e = o s . . 3 . e o @

PAGE

e

14

89 .



,:u

-iii-
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APPLICATION TO MUONIC Pb AND HEAVY ION COLLISIONS

' Miklos Gyulassy
Lawrence Berkeley Labofétory

University of California
Berkeley, California 94720

September 25, 1974

ABSTRACT

This dissertation is concerned with vacuum polarization in the
field of finite radius nuclei. In particular, the higher order,
d(zd)?, n > 3, vacuum polarization charge density is studied. - The
Wichmann-Kroll formalism relating the vacuum polarization charge den-
sityrto the Green's function of the Dirac equation is reviewed, and the
ﬁodifications necessary for very large 7 systems with Z > 137 are
discussed. The radial Green's functions for the Dirac equation in the
fieid of finite radius nuclei are constructed and the higher order
vacuum polarizationcharge densify, p3+, is calculated numerically from
those Green's functions, The third order vacuum polarization charge

3

density, P~, is calculated separately using the third order radial

Green's function in order to provide a check on the calculation of

p3+ 3+

and to estimate the dependence p on different quels for the
nuclear charge density. The nuclear size effect is célculated explicit-
1y for only the lowest angular momentum (j = %& contribution to the
vacuum polarization density. The effect on the contribution from

higher angular momentum (j i_%J is estimated from the known results
for point nuclei. Specific calculations are‘méde for muonic Pb and

for superheavy electronic atoms. For muonic Pb the energy level
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shifts‘dﬁe to ,p3+ and 03 on high angular momentum states
'(5g9/2: 4f7/2, 3&5/2) are calculated in view of reported discrepancies
between theory and experiment. The point nﬁcleus’limit is checked
against known results, and the finite size effects are compared with
other calculations. Also, the accuracy of previous approximate calcula-
tions based on the smallness of the electron mass and of the nuclear
radius are investigated numerically. For superheavy electronic atoms,
the problem of whether the higher order vacuum polarization can prevent

- the 1S state from reaching the lower continuum, E = —mecz, for

1/2
some critical charge Z,, > 137 is investigated. The charge density
of the overcritical vacuum is then calculated and the stability and
localization of a helium-like system for Z in the neighborhood of

A is studied.
cr B
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INTRODUCTION
The three papers: th#t comprise tﬁis dissertation present the
,‘results of a study of the nuclear size effects on-highér orderbvacuum
polarization. The first two papers; Chapters I and II, present specific
results for mwonic Pb and superheavy electronic atoms. The last
' paper; Chapter III, presents the genéral discussion of the calculation
6f the higher order vacuum polarization density; p3¥, and the specifice
details and méthods used in arriving at the conciusions reported in the
first two papers.

Chapter I is organized as follows: Reasons are given why the

calculation of p3+ for finite radius nuclei is of interest in

connection with muonic Pb. Then the approximation obtained by cal-

culating the nuclear size effect for only the lowest angular momentum

(§ = %J contribution to p3+ is made, and the size of the contribu-

tion from J 3_2- is estimated from the resglts of Wichmann and Kroll.

2
For this estimate, the vacuum polarization charge accumulated at the
origin for the case of point nuclei is calculated for the j = -g_,;

contribution to the third order density 03. Then, the results of the

3 3+

energy level shifts due to p° and p in the limit of a point

nucleus are compared to known results for the 5g9/2 and 4f7/2
muonic levels. The finite size effects are investigated first for the

third order density p3, and the dependence of these effects on thé

3

nuclear charge. density, PNuc? is studied by calculating p~ with two

3+

different models of Pyyc: The higher order density p is then

calculated with the simplest model, = G(r_- R)/4HR2, where R

pNuc

is chosen to equal the root mean square radius of Pb as determined
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experimentally. Finally, the accuracy of the approximation used by
other workers inanalytic calculations of the finite size effect on

0" is studied.

In Chapter II, the reéults for very lgrge Z systems encoun- -
teréd in heavy ion collisions are discussed. First, the reaéons why
‘we may expect a rapid increase in the effect of higher order vacuum
polarization for Z > 137 are given. Then the approximatipn obtained
by neglecting the |x]| 2 2 contribution to 03+ is justified.
Specific calculations of pr and 03_ for Z —+ Zcr ~ 170 are made

in order to see if (higher order) vacuum polarization can prevent the

181/2 electronic state from reaching the lower continnum, E = -mecz,
for Z =Z, . The tests made to determine the accuracy of the computed
3+

bound state wavefunctions and P are then described. The dependence

of the 1S energy shift on the different models of ® Nue is then

1/2
estimated as in Chapter I by calculgting 03 with two different models
. of P Nuc* For Z> Zcr’ the relation of p3* to the helium—like

* density Ple is discussed. The helium-like density is then calculated
for 2 <:Zcr and Z > zcr’ and the continuity and-localizatiqn'of

Ppe BoTe examined in detail for Z in the neighborhood of Zcr‘

In Chapter III, the formal relations between the Green's
function for the Dirac equation and the vacuum polarization density are
reviewed, and the regularization of those relations is discussed. The
radial Green's functions are constructed for finite radius nuclei.
Expressions valid to all orders in 'Zx as well as for terms of first
and third qrders are given. Then, the results for muonic Pb and

superheavy electronic atoms are further elaborated upon. In particular,

the effect of finite nuclear size on the vacuum polarization density
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itself is discussed in order to supplement the discussion of the first
two chapters, where the emphasis was on the resulting energy shifts.
Finaily, the numerical techniques employed in the calculation of the
radial Green's functions and of the vacuum polarization charge

densities are discussed.



CHAPTER I
" NUCLEAR SIZE EFFECTS ON VACUUM
POLARIZATION IN MUONIC Pb

Phys. Rev. Letters 32, 1393 (1974)
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University of California
Berkeley, California 94720

April 22, 19Th
ABSTRACT

The effect of f:_ln:we nuclear size on the vacuum
polarization charge density is studied. 'i‘_he results to
'.third order, a(Za)3, and to all orders, a(m)n%,
é.fe presented with special attention focused on the
5g9 Jo l}f,( /o transjjtion in muonic Pb. In additionm,
the accuracy of analytic calculations exploiting the
smallness of the electron mass and of the nuclear radius

is discussed.

'One.of the majof tests of quantum electrodynmamics lies in the
calculation of transition energies in high-Z muoﬁic atoms. The most
important radiative corrections to these transition energies come from
vacuum polarization (VP). Even the higher-order, . d(Za)n? > , VP is
Jdmportant due to the high resolution of recent experiments. Since
discrepancies between theory and experiment have been obs‘erved,l most

notably in Ba.56 and Pb82 , several workersz’ 3, b have looked at the

higher-order VP in more detail. In particular, the effect of finite



nuclear size on the VP charge density has been studied. However,
complete agreemént on the s;lze of this effect' has not yet been reached.
In the hope of eliminating this uncertainty, this letter presents the
results of an independent numerical study oflthe problem.

In muonic Po, a k2 % 20 eV discrepancy5 exists between theory
and experiment for the 5g9/2 - hf7/2' transition when the theoretical
contribution to the transition energy due to higher-order VP is cal-
culated for a point nucleus. For a finite size nuéleus, characterized
by a radius R, the VP charge density, p(R,r), differs from its point
nucleus form in such & way as to increase the transition energy. This
has the effect.of increasing the discrepancy between theory and exper-
- iment. For the 5g - 4f <+transition this increase was calculated
numericaily by Rinker and Wilets® to be 16 eV. On the other hand, the
analytic caléula.tions oi’.l\:c‘afune3 and Brown, et al.h, | using the approx-
imations based on the smallness of m, and the ratio of the nuclear
radius to the muonic orbit, R/ao, gave 5 eV,

The calculation reported in this letter gives 6 eV for the
energy shift of the 5g - Uf transition. The central assumption in‘
this calculation is that the finite nuclear size is felt only by the
J = %- electrons in the V? density. It is shown that this assumptién
leads to an error of less than 0.5 eV for the-6 ercalculated. The
third order, a(Za)B, contribution and the contribution to all orders,

11>3, are studied separately. This provides a check on the

afza)
internal consistency of the final results since the numerical techniques

reguired to calculate each.are quite distinct. As a further check, the



point nucl_eus limit, R — O, 1is examined and compared to the results
of Wichmann and K'roll5 and of Blomqvist6. Finally, setting m, = 0
and expanding to lowest order in R/za.0 in our ca.lculafion, ve recover
the 5 eV reéult of Refs. 3 and k4.

Wichmann and Kroll5 showed that p(R,r) is proportional to a
contour integral along the imaginary energy axlis of the trace of the
Green's function, TG (¥, T;2z), for the Dirac equation. Expand.ing G
in temé of the radial Green's functions, Gk’ for 'iangul.ar momentum, "
k=%(j + éli), we define the VP density, p,, for a given k, through
the contour iqtegral of Ter. The radial Dirac equation for -Gk may

be converted to an integral equation from which a power series expansion

of G, 1n powers of Za is obtained. In this way the Uehling term,

k
plk, and the third order density, pp3 ¥ may be isolated. Since the
= 't y < 2 Y
k l(Sl /2, Pl /2 ) states are most sensitive to nuclear size, a natural

approximation for p(R,r) is

o(Ryr) = (Rr) Z o (0r) ; @)

p:.
i |=1 x|
lxl>2

i.e., the energy shift due to finite size effects on VP is assumed to
come mainly. from the lkl = 1 density. The accuracy of this approx.-
imation depends on how large thé coﬁtribution from the |k| 22 density
is. The size of the Ikl 2 2 contribution to the total density can be
estimated using the results of Ref. 5 for a point nucleus. The ratio,
kae/Q'k=l , Oof the VP charge accumulated at the origin for [k|>2

and for |k| = 1 gives a measure of the relative size of Px >0 to
. 7



00V Ud420ag 74

5w

| >
to p,_,. For order (za)*?>, in Po, Ref. 5 gives Q,i;z/ 51_'1 ~ 0.008

with 5:1'= -6.83 x 1o“l‘|el. From this we conclude that the |k| =2

contribution to the density is less than 1% for these orders. For third

. order, Ref. 5 gives the charge summed over k: Q'BWK -4,487 x 1072 le].

I

To calculate what fraction of Q'SWK comes from lkl 1, we calculated

p3 k=1 nume;'icalJ.y' using the integral eq_ua.tibn for "G5 k=1 in which we
set m, = 0. The nuclear charge distribution used in the calculation
was a shell of radius R. The m, = 0 1limit isolates the piece of p31
which is only & function of r/R. It is precisely this piece that
reduces to a delta function as R - 0. (This assumes that the integral
of p31' over all space exists, which is the case here.) The third
order cha.rge due to Ikl =1 1is then. |
00

Q?l = f dr br® p31(R,r,me=O)' . (2)

_ _ 5 _
Note that 'Q.5 1 is in fact independent of R. This was checked
numerically by calculating Q5 , for R= 6., 0.6, 0,06 F with the
result in each case being -Q3l = 4,177 x 102 |e|. Thus Q51/Q5WK= 0.93;
i.e., T% of the third order demnsity comes from lkl 22, Summarizing

these relations,

3 3 . 5+ s oo 05F
Cpop ¥ B5 Q5 ¥R, FTOXL 5 - (3)

it4

For the case of a point nucleus Blomqvist6 has calculated the
5¢ - 4f energy shift in Pb due to third order VP to be
e (R=0) = -43 eV. For a finite size nucleus we calculated pjl(R,r)

numerically with m‘e ;4 0 using two different models of the nuclear



charge density: (I) a shell density, Prue = 5(r - R)/(lmRe) and

(II) e uniform demsity, p = (R - r)/(lmR3/3). Tables I and IT

nuc
contain the results. The R -+ 0 1limit was examined by calculating the
energy shifts for R = 0.6 and 0.06 F. Extrapolating to R = 0, we
get AE‘3 k=1 = -‘ll-O eV for the 5z - 4f transition. From Eq. (3) we
estimate the |k| 22 contribution to be A Ejk >é = -3 eV. Thus,

A E3 = -43 eV, 1in agreement with Ref. 6. For the calculation of

k21~
the finite size effect, R was chosen in each model so that
[<r2)nu _—2-= 5.5 F. T Dirac wave functions were used in the expecta-
tion values, although Schrodinger wave functions gave the same results
to within 1 - 2%. (It should be noted that the uncertainty in the muon
mass, T 40O eV, alone generates a 1 2 eV uncertéinty in the
5g ~ hf X-ray.) Comparing the two model distributions in ’I‘able I, we
see that the energy shifts are sensitive only to ( r2 )nuc for these
high_angulai' momentum states. The résult from Table II is AEB 1= —36 eV
for [(r2 )nuc‘]% = 5.5 F. Thus the finite nuclear size caused a 10%
increase in the third order VP contribﬁtion for lkl = _l. Since the
|k| 2 2 electrons are less sensitive to ﬁuclear size, we estimate
-3 evs AE3k22(R) $0.9 x AE3k22(O) x

contribution to the 5g - Uf X-ray from third order VP is AE? = -39 eV

2.7 eV. Thus the total

as compared to the point nucleus value of =43 ev.

To solve for the energy shift to all orders, a(m)n23 , we
construct the Green's function for the Dirac equation in the field of a
finite size nucleus and remove the Uehling term. Since the third order

calculation showed that the energy shift is sensitive only to (r2 )nuc’
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a shell distribution (model I) is used with R = 5.5 F. The shell
distribution is most convenient since both the internal and external
wave functions. are simple., The Green's function is then éqnstructed
with the regular and irregular solutions of the Dirac equation: for
r <R these are spherical Bessel functions and fqr r >R they ai'e 3
Whittaker functions. Both types of functions are subject to rapid, high
precision numerical com;pu’c.a.tion'.8 The Uehling contribution is obtained
froﬁ the integral equation for the radial Green's function and may be
'expressed in terms of elementary and exponential integral functions.
The details of these and.. of all other'calculations mentioned in this
letter will be vg'iven in a subsequent paper.

The results of the calculations are listed in Tables I and II.
In the R~ O 1limit we get for orders n 3 3, AEP;:]_ = -U6 eV. From
Eq. (3), the contribution of  |k| 2 2 to these orders is estimated to
be -3 eV from third order and < 0.1 eV from orders n 2 5. The
total shift for orders n 2> 3 is then AR *(R=0) = -49 eV in agreement

with Ref. 6. For finite radius we rewrite Eq. (1)

MHR) 2 P @) S (), )

k=22
where th_e k| 22 term is estimated from AEBI(O) using Eq. (3).

The accuracy of Eq. (4) is then estimated by

2Pt (®R) - a2 __(0)

k >2 k 22

o}

= 0.07h x (B () - A, (0)) + 0,008 x (APF(R) - AP} (0))
(5)

where Eq. (3) has again been used. For the 5g -~ 4f transition, the
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error in the approximation in Eq. (4) is then estimated to be less than
0.5 eV with the result that AE'(R) = i3 ev. Thus, the finite
nuclear size effeét on VP increases the energy of the X-ray by 6 ev.

| The VP densities psl and pBI calculated here with the energy
contour along the imaginary axis satisfy gauge invériance. Therefore a
good check on the numerical accuracy.of these densities is provided by
the evaluation of their integral over all space. Iﬁ was found that for
r S 60 F the densities were negative, while for r R 60 F, they were
positive; the densities were calculated out to 8 Ké. The amount of
charge contained in the region r S 60 F was ~ ‘-h x 1070 lel, while
the total charge out to r = 8-%; was ~ —10-8 le]. Thus, better than
five place accuracy was achieved for these densities. |

To study the accuracy of the m, = O and lowest order in R/r

a.pproximati_onh in the calculation of Ap = p(R,r) - p(0O,r), for
r 2R, we note that Ab 1s proportional to the energy contour integml
of the difference, AG, between the Green's function for the Dirac
equation for a finite radius and point nucleus. The difference AG
can be expressed as AsG’= f(R,z,me) W(r,z,me), where z '1s the energy,
,W involves products of Whittaker functions and f depends on Rv
through the ratio of internal and external wave functions evaluated at
R. The approximation of neglecting the electfon mass in comparisomn to

l/a is implemented by setting m, = O in both f and W. The

)
approximation based on R/a0 << 1 is obtained by expanding
£ (R, z,m, = 0) in powers of R and retaining only the first term. We

have made calculations with and without these approximations. The
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results for Ikl = ] are presented in Ta.bie ITI for the following

three cases: '(l) no approximation, (2) m, = 0 only and (3) Dvoth

m, = 0 a.nd lowest order in R/r. The resuits for the third case are

in good agreement with Refs. 3 and L. Numerically, the cbmment in

Ref. 3 that corrections to & p(me=0) appear to 0((mer )2) is vsuppoxin'l.
by our results, and the functional form of A p<me=o,o(R/r )) is in good
agreenient with the analytic formula of Ref. h, A simﬁle comparison of
A p in the yé.rious approximations is indicated by the values of the

two integrals

50R
AQ = 'dr(hna)Ap,
‘ R
0o o
AQ, = dr(lmra) Ap, ' : (6)
" R

listed in Table TII. The error commited in the m_ = 0,0(R/r)
approximation is seen to be 1 eV fbr the 5g - LUf transition and 13 eV
for the Uf - 3d transition. To this error, the uncerf.ainty in the |
lkl = 1 approximation, Ea. (5), must also be added. For such high
angular momentum states, the accuracy of these approximations is
nevertheless found to be quite adequate. The Uehling contribution was
calculated in the two nuclear ﬁodels and found i:o be the same for

[( r° )nch% = 5.5 F, When this contribution is. subtracted from
results of order n 21, the n 23 energy shifts are in agreement

with Table I, as they must be.
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. The problem of vacuum polarization in superheavy electronic

atoms, Z ~ 170, has also been investigated and will be -réported

elsewhere.

The author is very grateful to Dr. P. J. Mohr for many stim-

wlating discussions on the theoretical and numeri’ca.l.aspects of this

problem. Discussions with Dr. W. J. Swiatecki, Dr. E. Wichmann, Dr.

R. N. Cahn, and Mr. L. D. McLerran are also gratefully acknowledged.
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Table I. Absolute energy shifts (in eV) due to VP orders (zo)™ im
Pb using nuclear models I and IT described in text. The [k|>1
are calculated from Egs. (4) and (5).

Wmm

Order, |k| Model R(F) 5€6/o hf7 /21 . 345/
n=3 [kl=12 1 5.5 43.39 79.2h 151.9
' II 7.1 b3 43 T79.28 152.1

I 0.6 45.16 85.10 . 177.0

I 0.06 45.20 85.27 ' 178.0

'n23 jkl=12 I 55 48.51 88.36 168.3
I 0.6 51.34 9712 202.6

I 0.06 51.39 97.h2 20k.3

n>5, |kl =1 I 5.5 5.12 9.12 16.4
I 0.06 6.19  12.15 26.3

5.5 51.9 + 0.1 94.8 * 0.5 181.7 + 2

a1
\\Y;
™
[
WV
(=)
|
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Table II. The VP contribution to Seg /2 - hfg /2 transition in Pb

energy (in eV) for orders (Zx)®. The error in the contribution from

k]| 22 4s less than 0.5 eV.

Order, |.k| R, =55F - R=0

n=3 [kl=1 - -36 - ~4o
k| >2 -3 S -3

n 35’ 'kl =1 - l" - 6
x| 22 (< 0.1) (< 0.1)




Table III. Perturbation of muonic levels (in eV) in Pb due to finite nuclear size effect on

va.cuum polarization, |k| = 1, orders (za)™. AQ,l o &re given by Eq. (6) in units of -lel.
. 3

Order | Model R(F) Approx. 539 /2 hf,(/2 36.5 /2 AQ v AQ,

n2>l I 5.5 none -5.48 -20.53 -116.1 7.020 x 10'? 1.60 x 10'1‘
m, =0 -6.03 -21.43 -117.7 7.018 x 1072 1.95 x 10'1‘
m, = 0,0(R/r) ~5.T9 ~19.99 -102.6 4,481 X 10°2 1,91 x 10'1‘

n=1 I 5.5 none  2.60 -11.46 - 80.02 6.598 x 1072 6.05 x 107

IT 7.1 none -2.60 -11.46 - 79.38

-£T=
S B A
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CHAPTER II

VACUUM POLARIZATION IN HEAVY ION COLLISIONS

Submitted to Phys. Rev. Letters
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VACUUM POLARIZATION IN HEAVY ION COLLISIONS*

: Miklos Gyulassy
Lawrence Berkeley Laboratofy

University of California
Berkeley, California 94720

July 10, 1974

ABSTRACT
The results of a study on vacuum polarizétion, ordefs
a(Za)n, n > 3, for large Z systems encountered in heavy ion
coliisipns are presented here. It is shown that the higher
order vacuum polarization cannot prevent the 18% staéé from
reaching the lower continuum, E = —mec?,_ for some critical
Vcharge Zcr ~ 170, In addition, the stabiiity and localization

of a helium-like system for Z > Zcr is demonstrated.

An interesting appliéation of heavy ion collisions is to the
study of quantum electrodynamics of strong fieids. For short times,
at least, systems with large effective charge Z will be tformed with
Za > 1. ~In the strong fields of such systems, highly relativisticb
electronic bound states are expected to occur with binding energies B
exceeding the electron rest mass m» and for some critical charge,
Zcr ~ 170,. ﬁhe 18% state is expected‘to reach the lower continuum
with B = 2me.1 For 7 > Z ., it has been predicted2’3 that spon-
taneous e e pair production will occur with the subsequent capture

of two electrons into a tightly bound helium-like state and the

ejection of two positrons into continuum states. ‘these predictions
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have been based on solutions of the Dirac equation for finite.size
nuclei in which radiative corrections such as vacuum polarization (VP)
and the Lamb shift are ignored. For these predictions to be applic-
able to heavy ion'collisidns, it is essential to show that radiative
corrections are indeed negligible fdr large 2 ~ Zér and thus cannot
prevent the lS% state from reaching the lower continuum. Several

2,3 and a model calculation based on etfective

qualitative arguments
limiting field Lagrangians4 suggest that the effecﬁ of' VP does remain
small up to Zcr’ Yet, a complete quantum electrodynamic calculation
had not been carried out to all orders in Zo. The purpose of this

Letter, then, is to present the results of a numerical calculatioh of
the higher order VP, orders a(Za)n, n 2 3, based on tﬁe methods of

Wichmann and Kroll.5

The results confirm that VP remains a small
perturbation even up to zcr'

Although the effect of higher order VPbis always much less
than that of the first order (Uehling) potential in atoms with |

Z £ 100, the results of Wichmann and Kroll5

for a point nucleus show
that the size of the higher order VP increases sharply near Za = 1.

If the VP charge accumulated at the origin for orders a(Za)n,

n 2> 3, 1is denoted by Qai, then while Q%E is finite and much
smaller than the nuclear charge when Za =1 B

(lodel = 0.05]e| << 137]e]), dQ,f,;/az = = at Za=1. Furthermore,
the infinite slope of Qﬁi can be seen to come from the lowest angular
momentum (? = +(j + %J = :;) contribution to the VP density. The
higher angular mémentum (]x] 2 2) contribution to Qﬁ; is seen to
vary.smoothly past Zo = 1 until Zoa = 2, where the [kl = 2 contri-

bution becomes singular. Of course, these singutarities in the VP

charge density arise because of the assumed point structure of the
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nucleus.v Nevertheless, these results indicate that we may expect a
rapid increase in the higher order VP for Za_§ 1l .when the finite size
of the nucleus is taken into account. Furthermore, the fastest
growing part'snould be that due to the lowest anguiar momentum

(Ikl = l)‘ electron loops. Another imporfant property that can be
dedﬁced from the results of Ref. 5 is the relatiVé size of the

[x|

1 to the |k| 22 contributions to the VP charge density. The
J .

k| > 2 contribution was found to be always less than 10% of thne

6,7

k| = 1 contribution for orders o(Z), n23, for all Za < 1.°°

n

Therefore, a good approximation in the calculation of higher order
VP, relevant for heavy ion collisions, is obtained by calculating the
Ikl = 1 contribution exactly for finite size nuclei while neglecting
the |Xx| > 2 contribution. In this way the dominant and fastest -
growing part of the VP density is calculated exactly while leaving an
overall unéertainty of less than 10% in the final results due to
‘neglect of the |k| 2 2 contribution. '

The -calculation of the VP density, Pyp’ invqlves an energy
contour integral of the trace of the Green's function, TrG, for the
Dirac - equation.5 For Z < Zcr’ the choice of this contour is clear
and is given by CO in Fig. 1, With this coﬁtour, Pyp is equal to
the vacuum expectation value of the Heisenberg current operator,
<b|J0(x)|0>. Thus to first order in a and to all orders in Zaq,

pyp can be written formally as

LI OIS @

where ¢ _ refer to the positive and negative energy eigenfunctions of

the Dirac- equation.8 Here positive energy refers to all eigenvalues
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greater than -m, . In particular, the ISé state is contained in the

first sum. The helium-like charge density, Phe? is defined as the

!

expectation value of the current operator tor a state of two electrons

in the _lsé state: <2e'( lS)[JO(x)IZe-.( 1S)? . This density is related
to Pyp by' |

. = -2lelvd, +op (2)

He lS% vp : v

which is equivalent to the addition of a counter-clockwise contour
around the 1S pole to Cy in Fig. 1. The sum of these contours may
then be deformed to Cﬂe' For Z < Zcr? then, Pyp and Ppe B8re com-

puted via a contour integral along paths C. and CHe respectively

0
(in units of [e]).

For Z > Zcr’ the 13% pole moves off the physical sheet
through the branch point of the lower continuum. Since the vacuum
around the bare nucleus can then decay into a helium-like state plus

2,3 it is natural to redefine the vacuum to

9

two free -“positrons,
correspond to the helium-like state. The VP density, Pyp? is thus
defined to equal py_ for Z > Z . While Eq. (2) is no longer

meaningful for Z > Zcr’ the contour integral representation for PHe

around path C in Fig. 1 is still well defined. The charge distri-

He
bution of the overcritical vacuum is thus calculated with contour CHe’
The higher order VP density, p3+, for k=211 and Z < Zcr
is calculated by expanding TrG in terms of radial Green's functions,
TrG,, and removing the first ordér Green's functions, Terl.
Isolating the terms corresponding to Xk = t1, the contour integral
over path C0 is performed. In practice, -CO is deformed to the

imaginary axis I, picking up the negative of the residues of all

poles of Ter’+l which lie between zero and -m,. The negative of



-19-
those residues are, of course; the modulus squared of the normalized
bound state wavefunctions. The calculation of. Ple involves‘adding
to the contour integral along I all.but the 1S, wave functions
squared witn m, < B< 2me.'

In addition to p3+, the third order, 'a(Za)3, VP density, p3,

is calculated for k = +1 and Z < Zor 'to provide a check on internal
3+

3

cbnsistency and to estimate the dependence of p on different

nuclear chgrge densities. The calculationqu p infolves the contour
integral of the third order Green's function, TerB, for k = 114
along contour I. 7Two models for the nuclear charge densities were
used for calculating p3 : (I) a shell density, Pue = 8L - R)/sz2
and (II) a unifgrm density, Phuc = o(R - r)/(4ﬂR3/3). The nuclear
3+

radius was chosen to be 10 fm in both models. The densities p and

o

He were calculated with model I.

The construction of Ter, Terl, and 'TerB is the same here
as in Ret. 6 and will be discussed in more detail in a subsequent
paper. ‘ |

The: following tests check the numerical accuraéy of the cdn— '
structed Green's functions. First, the location of the 18, and 2P,
poles were computed as a function of Z. The values of (Zu)cr were
determined.for model I nuclei for R = 8, 10, and 12 fm, with
(Za)cr = 1,25189, 1.27459, and 1.29530 _respective}y for the 1s§
state, and '(Za)cr = 1,383 for R = 10 fm, for the 2Pé state, in

agreement with Ref. 3, Furthermore, in agreement with Ref. 2,

dB/dZ at Z = Z . was calculated to be 27 keV for the 1S, state

cr
and 35 keV for the ZPQ state. Secondly, the residues at those poles

were calculated in order to check that the normalized bound state

wave functions were given correctly. All S% and Pé wavefunctions



-20-
calculated thereby were normalized to unity to betfer than one part
per 105. The R >0 1limit was téken numerically tor Za <1 +to
check that these wavefunctions reduce to the point nucleus form. In
addition, the (1/r) was computed for these wavefunctions since
dB/4dzZ = Otm.ec2 (1/r> which can be compared to the values computed

above; at Z = Z e.g., dB/dZ = 28 kev and 37 keV for the 1S§

er’
and 2Pé states respectively, in good agreement with the above values.
Thirdly, for-the special case of Z = 82, extensive checks on the
charge densities were made showing that the limit R + O and the
finite nuclear size effect agreed with other calculatibns.6 Finally,
the total space integral QHe of pHe was coriputed tor the range
0.6 < Za £ 1.38 since the extent to wnich Q. = -2]e| measures the
~accuracy of the numerical contour integration along I. The computed

values of Qg ~ Were equal to -2|e] +to better than 1 part per 10

3+

over the entire range. The accuracy of the computed p for Z < Zop

is less due to cancellations necesséry to insure that the total charge
of the vacuﬁm vanish. This accuracy is estimated from the magnitude

3+

of the ratio of the integral of op over all space (r £ 13Ke) to

the intégral over the range where 03+ is negative (r < 100 fm).
This ratio was found to be £0.01, indicating a numerical accuracy on
the ordér of one percent.

The computed lS% energy shifts for 2 < Z,. due to higher
order VP are listed in Table I. These energy shifts should be compared
to the shiff due to the Uehling potential. The Uehling potential is
attractive and increases the binding energy of the IS% state by approx-

1,10

imately 10 keV at Zcr' The higher order VP is repulsive but is

seen in Table I to reduce the binding energy by only 1 keV at Zcr'
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: The last two lines, in parpicular, in Table I indicate the absence of
any singularities of AES  at Z,. Thus, even ﬁhough the shif't

AE?+ due to‘higher order VP increases rapidly for Za > 1, it remains
too.Small to prevent the lSé state from reagning the lower continuum.
Furthermore, the results for third order in&icate that the dependence
of‘bAE3+ .on the specific nuclear charge density is a 10% effect, i.e.,
on the same order as the uncertainty in _AE3+ due to neglect of the
k] 2 2 contribution to the VP densitf;

Since the results tor 2 < Zcr show that VP remains a small
perturbation up to Zcr’ the use of the unperturbed Green's function,'
TrG, and Terl, in computing p3+ % pye for zZ> Z,. Wwill not lead
to large errors, In Fig. 2(a), PHe is plotted for several values of
- Zo. around '(Za)cr = 1.27459. The continuity of Phe at Zcr was
examined by calculating PHe for 2o = 1.2732, 1.27445, 1.27545,
and 1.28 and checking point by point in the range 0 <r < 13%; that
the values of PHe for the different Z can be smoothly connected.
The increased localization and continuity of Phe 28 8 function of
Z is illustrated in Fig. 2(b), where the average {1/r) for Phe
is plotted. These results demonstrate thﬁt the helium-like system is
stable and well behaved around Zcr and that the charge densitj of
the 6vercritica1 vacuum is indeed highly localized.11

It should be noted that for Zgq = 1.3483, the 2P§ state reaches
the lower pontinuum and the helium-like system will decay to a
beryllium-like system plus two free.positrons.z’3 The charge density

of the beryllium-like system can be studied in the same way as PHe?

simply by shifting the contour CHe to the right of the 2Pi pole. .
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In this Letter the effect of VP in very high Z atoms has

been considered. The effect of the Lamb shift has been estimated by

other workers,10 but agreement on the size of that effect has not yet

been reached. More work is needed on that problem.
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Table I. The 1s§ energy shifts in eV due to vacuﬁm polarization

orders ofZa)", with AE>' for n 2 3, and AES

model I and II nuclei. E

and  E,p,

1,1I

for n = 3,

locate the bound state

poles in units of m,. The nuclear charge density for all but the

last columm was taken to be model I with R = 10 fm.

z Eigy Eypy aE>* aE,> AE>
0.95 0.3%2 | 0.817 | 6.26 x10 | 4.70x 10 | 4.92 x 10
1.12 0137 | 0.570 | 3.07 x 10 | 1.97 x 10° | 2.11 x 102
1.205 | =0.550 0.265 | 6.41 x10° | 3.68 x 10° | 3.99 x 10°
1.2732 | -0.990 | -0.118 | 1.14 x 10° | 5.66 x 10° | 6.20 x 102
1.27445 | -0.999 1.15 x 10° 2 1 6.24 x 102

5.70 x 10




Fig. 1.

Fig. 2.
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FIGURE CAPTIONS

Singularities of the Green's function in the complex energy

‘plane and contours Cy, Cy , and I giving the VP and helium-
' like charge densities in units of |e].
(a) The helium-like charge density for several values of

Y = Zo around (ZOL)cr = 1.27459 with a model I, R = 10 fm

nucleus.

(b) The average <l/r> for PHe as a fﬁnction of Za.
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ABSTRACT

The calculation of the higher order, ofZa)", n > 3,
vacuum polarization charge density induced by highj Z nuclei of
finite extent is discussed here, The Wichmann—Krbil formalism
relating the vacuum polarization charge density td the CGreen's
function of the Dirac equation is reviewed with attention drawn to
modifications necessary for vefy large Z systems (Z > 137) en-
countered in heavy ion collisions. This‘paper is éoncerned with the
construction of the radial Green's functions for the Dirac equation
in the field of finite radius nuclei and on the nuherical calculation
of the higher order vacuum polarization density frdm those Green's
functions. Specific calculations are made for muonic Pb and super-
.heavy electronic atoms. The results from these calculations have been

published elsewhere but are further elaborated upon here.

This work'was supported by the U.”S. Atomic Energy Commission.
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1. TIntroduction and Summary

The purpose of this paper is to supplement the discussion of
two previous papers (l;Zj on the caleulation of‘the higher order
vacuum polarization charge density in the field of high Z nuclei of
finite extent. The problem considered in Ref. (1] was the calculation
of the nuclear size corrections to the vacuum polarization (VP) den-
sity for orders a(Za)?, n > 3, in muonic Pb. In particular,.the
effect of those corrections on the 5g9/2-4f7/2‘ transition was cal-
culated.  This is of intérest in view of the 42+20 eV discrepancy
| reported between theory and experiment (3-5). As reported in Ref. (1),
these corrections do increase the discrepancy but by only 6 eV. In
the work of Arafune (4) and Brown et al. (5) approximations based on
the smallness of the electron mass and of the nuclear radius were made.
The accuracy of those approximations was studied in Ref. (l) and found
to0 be quite adequate (~1 eV) for this transition in muonic Pb. In
Ref. (2), the effect of the higher order VP density on electronic bound
states in the field of very large Z nuclei was discussed. The main
conclusion reported there was that the higher ordér VP cannot prevent

the 18 state from reaching the lower continuum (E1S = 'me)

1/2 | 1/2

for some critical value of the nuclear charge Zcr ~ 170, (6). Then
the calculation of the VP charge density for overcritical fields (7)

was discussed, and finally, the stability and 1o¢alization of the helium
like charge density PHe for Z in the neighborhood of Zcr were
demonstrated through precise calculations of pHe. for Z < Zcr and

zZ > Zcr" In this paper, we discuss the detaiis And methods used in

arriving at the results reported in Refs. (1,2). This paper, then,

serves as the basis for both those papers.
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" The discussion here is divided into the following sections.
Tn section 2, the Wichmann-Kroll formalism (8),forthe calculation of
the VP density Pyp is reviéwed; The modifications necessary for very
~ large Z nuclei are discussed in detail, and formal relations between
Pyp and the Green's function for the Dirac equatidn are established,
A partial wave decomposition of Pyp is then made, and eaéh.partial
wave contribution is further expanded in powers of the coupling con-
stant Zd. Then, the regularization of the formal expressions involv-
ing the Green's functions is discussed and illustrated through a calcu-
lation of 'pVP in the field of a constant external potential.

In section 3, expressions for the radial Green's functions,
required in the calculation of the partial.wave contributions to va,
are constructed valid to all orders in Za. The construction of the
radial Green's functions to first andvthird order in Zd is then
carried out in section 4.

Section 5 is designed to supplement the discussion of Ref. (1).\
While the emphasis in Réf. (1) was on the energy shifts due to nuclear
size correétions to pVP,rthe emphasis in section % is on the effect
of those corrections on  Pyp itself. The results for high Z systems
reported in Ref. (2) are further elaborated upon in section 6. The
critical charge 2., is calculated for the particular model of the
nuclear charge density considered in Ref. (2). The 131/2 wave-
functions and the higher order VP density for 137 < Z < Zcr are
also calculated. Again, the emphasis is on the structure of Pyp
rather than the resulting energy shifts. In both sections 5 and 6,
is calculafed only for the lowest partial wave (J =1/2)

yp
contribution. The contribution from higher partial waves (J > 3/2)
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may be estimated from the results of a point nucleus as in Refs.
' (1,2).
Finally, in section 7, the numerical techniqﬁes applied to the
evaluation of the special functions and integrations in the calculation

of Pyp are discussed.

2. Relation of Pyp to the Green's function of the Dirac equation
A. Formal Expressions
The VP density Pyp is given by the vacuum expectation value

of the p =0 component of the current operator,*
Ju(x) = -l-g-l-[ﬁ(x),vuw(x)} . - (2.1)

In terms of the Feynman propagator SF(x,x'), pyp can be written

(10) as-

Pyp = i|e|Tr<§F(x,x')Yo) s (2.2)

x'->x

where SF ‘satisfies
(PG, - e AGD - m) Sglxx) = Sx-x) L (2.3)

For time independent potentials Ap’ SF(x,x') depends on time only

through +t - t', and consequently,

—

v - ] - ' .
18t b -ty = oo [ aa TG00 0, (2.0)

C

where the Green's function G then satisfies

The metric, gamma matrices, units (B = ¢ = 1), and notation are

chosen to agree with the conventions of Ref. (9).
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L = . , A 3 .
(g'(—;z - eA(x)) - z + eA(x) + Bme> Glx,x'; 2) = &(x-x") ,
- (2.5)
and the contour C is determined from the Feynman boundary conditions
(which depend on the definition of the vacuum).

In terms of G, eq. (2.2) can be written as

= e 1. :
Pyp %ﬁ%’ dz Tr G(§,§ 3 2) o - (2.6)
C ' ol

This relation, then, is the basis of the Wichmann-Kroll formalism .
(8) for the calculation of pyp to all orders in Za. Note that the
Green's function in this relation must be properly regulated to insure
that the iimit f‘ X exists and thaf the integral over é con-
verges. This regularization is discussed in the next section. In
this section, though, all expressions are to be understood to involve

only regulated Green's functions.

The well-known formal solution of eq. (2.5),

’ ‘ (2.7)

ZIPE(}) ‘PE(}') :

G(X,X'S z) =
.~ E-2z.

E
where wE éie properly normalized eigenfunctions of the Dirac
equétion; eihibits the singularities of G in the complex z-plane.
Thesesingularities are illustrated in Fig. 1.

The path of the contour C in eq. (2.6) through these singu-
larities is chosen so that the contour lies above the singularities of
G associated with positive energy states and below the singularities
associated with negative energy states. With ﬁhis choice of C, Sy
in eq. (2.4) satisfies the Feynman boundary conditions. The definition

of which states correspond to positive and negative‘enérgy states is
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equivalent to the definition of the vacuum and is completely deter-

~ mined by the energy 'EC, where thé'bontour crosses the real axis in
Fig. 1. When there is no external pqtential; EC can obvioﬁsly be
chosen anywhere betwéeh E = ime. As the stfength of the potential
increases, bound-states are formed and G develops poles between the
two branch points at E = 1me. The energy EC must then be adjusted
so that all bound state energies remain greater than Eq fdr the case
of attractive potentials or less than E, for the case of repulsive
potentiais.v With this spécification of EC, the conventional vacﬁum
in the bound-interaction (Furry) picture is obtained (11). On the

other hand, if E., 1is chosen so that there are bound states with

C
energies both greater ahd less than EC; then the corresponding vacuum
state wi;l be charged. This is easily seen by cglculating PyPp in

Aeq. (2.6) with two different contours corresponding to different choices
of Eé. Figure 1 illustrates two such contours.

The contour .CO. cofresponds 1o the uéual definition of the
vacuum for the case of atiractive potentials since all bound state |
energies are greater than EC' On the other hand, CHe corresponds
to a charged vacuum {2) since, from eq. (2.7), the difference of the
VP densities - calculated in eq. (2.6) with contours C, and CHe is
just 2|e||1plsl/'2(.x)‘|2, Thus, in fact, eq. (2.6) with C = Cyo 8ives
a helium-like charge density PHe that contains a total charge of
-2]el.

In the choice of the contour C0 for the calculation of pVP’
it was assumed that all binding energies were less than Zme and,

thus, that no poles of G have crossed from one branch point to the

other. However, for overcritical fields (Z > Zcr) the pole of G
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corresponding to the 181/2 _siate (the .181/2 pole) moves from the
.branch point at E = +mé through the branch point at E = -, off of
the "physical" sheet of the Riemann surface for the Green's function;
In that case, the vacuum is predicted to decay spontaneously into a
heliumelikevstate* plus two free positrons (7). Thus, the stable VP
density for Z > Zcr corresponds to a helium—iike density PHe

obtained with contour C in eq. (2.6) rather than to the analytic

He

continuation of Pyp from 2 < ZC R (2]. Furthermore, if the

T
potential becomes so strong that the 2Pl/2 pole also moves off the
phyéical'sheet through the branch point at E = —me,then.the helium-
like state will spontaneously decay to a berylium-like state plus two
more positrons, and consequently, the stable vacuum must agéin‘ﬁé

- redefined by shifting the contour C to the right of the 2P

He 1/2
pole, Each time a bound state pole moves off the physical sheet, the
contour in'eq. (2.6) must be shifted so that EC stays to the right
of the branch point at -, and to the left of any remaining bound
state poles on the physical sheet. A simple expression for the stable
vacuum density for any strength of the potential can be written by

deforming the contour C to the imaginary axis I. Thus, from eq.

(2.7),

~. ~

~me<E<O

| _— |
Pyp © ‘ell Z I‘JJE(f)l -+ -2—1}-[ dy Tr G(,}f’fi; 1y) '
-0 X X

(2.8)

¥
-We neglect interaction between the two electrons,
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This eQuétion contains the faét that each time a pole ofA,G' moves off
the phy'sicél éh_eet thrb_ugh the branch point at M, the total charge
of the vacuum around the nucleus changes by —2le|;*
For spheridally symmetric potentials, the Green's functioﬁ
G(f,g'; z) has a partial wave decomposition (12) in terms of radial

Green's functions G, satisfying

C 14 k-
m, + V(r) - 2 “FETT
§(r - r'
G (r,r'; 2) = “——r——( = ),
14 k - - -
Ly + -m_+ V(r) - z
| T r e i (2.9)

where Xk = #(j + 1/2) for a given total angular momentum J. From

" the following relation (8,12)

or = L B slix o), . 20
k

-~ -~

Tr G(x,x'; z)

-~ ~

the contribution to the VP density for a given X is then given by

n

eflk
i—il—L dz Tr Gk(r,r'; z)lr‘+r

(r)
Pr* (2n)2i c

o

. 2 1 : : :
Y D Y Iey

-m_<E<Q —00
e o

(2.11)

¥ ' | . , ‘
+2|e| amount of charge escapes with two free positrons; -2]|e|

is localized with two bound electrons,
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where wE x are the normalized radial wave functions with eigenvalues
?

E and Xk for the potential V.-
For a given angular momentum J, there exists a simple symmetry
for G.. Let Gk(V; r,r'; z) be the solution of eq. (2.9). Then it

is easily seen that

G_k(V;.r,r'; z) = -0, Gk(-v; r,r'; -z) o 5 (2.12)
: . 0 1
where ol = . Thus,
‘A1 O
Tr G_k(V; r,v'; z) = - Tr Gk(—V; r,r'; -z) . (2.13)

With this relation, the sum of the VP densities for k = #|k]|,

plkl = Py + p_y» can be written as

Plx| ~ Lflel }: Z Tog, ()1

k=t|k| -m_<E<O

¥ -217,-[ ay (G (V5 75 1y) - G(-V; 7,7'; inlr',_.*r
(2.14)

The integral along the imaginary axis is manifestly odd as a functibn
of V. To see that the sign of the first term also chénges as V=~ -V,
no{e that for repulsive potentials the bound state poles emerge from
the branch point at -m, and approach the branch point at tm, from
the left. The contour C giving the VP density in eq. (2.11) must
then cross the real axis to the right of those poles on the physical
sheet but to the left of the branch point at +me. Deforming C +to

the imaginary axis I, the residues of Tr G, k = +|x|, in the
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interval 0<ECZ< m, must then be added to the contour integral along
I with the opposite sign as in eq. (2 14) - Thus p‘kl(r) is an odd
function of  V as requlred by Furry's theorem.

In addition to a partial wave‘expahSion of * pyp, It 1s useful
tovconsidér the expansion of each .pk‘ in powers of the external
potential. Writing this potential as V = -Za Vb(r), whére Zo. 1is
an expansion parameter and Vb is a funcfién”of T, the powér series
expan31on in Za for the Green's function is given by the Neumann

series for the resolvent

Y @)l el - Z(Za)nG( " (2.15)

where Gko is the resolvent in the absence of an external potential.
The trace of the nth order Green's function for a given k 1is then

~glven by

Tr Ganr,r') = /[- '~r2§r. r,° v (r E)
, | o

x Tr@ko(r,rl)- . -Gko(rn,'f" ) I C (2.16)

The nth order VP charge density for k = ilkl is thus given by

k - + ',
kal(r) = (Zw) : (Za)n4j£-dz Tr(?kn(r,r ,’?) G_kn(r,r ; z)) .

(2.17)

From eqs. (2,13 and 2.16) ,

Tr G_kn(r,r'; z) =-(-1) Tr Gkn(r,r'; -z) . (2.18)



-38-
Also for a given n and k,. Ir Gk? has no poles.between im,.
Therefore, deforming C to the imaginary axis, ka' can be written

as,

ellk
( (2m)

2(Za ) dy Tr G(z,'; 1y)|r,+r (n o0dd)

ol () = § | :

0 (n eveh) : (2.19)

\
This equation again contains the requirement of Furry's theorem that

the VP density must be an odd function of Z.
B, Regularization

The formal mahipulations that led to the equations of the
previous section are of course justified only if the operations indicated
in them, such as taking limits and performing intégrations, are well
defined and if there is no ambiguity associated with the interchange
6f those.operations. However, as noted in the previous section, eq.
- (2.6) is ﬁot well defined since neither the limit f' + X nor the
integral over 2z exist. Therefore a reguiator sch;m§,i§ essential if
meaningful results are to be obtained from any of the equations ofAthe
previous section.

One well-known regulator scheme that is known td give unambig-
uous, gauge invariant results is due to Pauli and Villars (14]. In
that scheme the Green's function is regulated with auxiliary masses

as follows: 1let G(mi) denote the solution of eq. (2.5) for an electron

of mass ms 5 the regulated Green's function is then defined through

GReg = Z a; G(m,) I (2.20)

i
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where the coefficientsxai are .chosen such that

2
Zai Zaimi = 0

n

and

]

K-}

4 1 " m; = m . . (2.21)

With .G replaced by GRe' in eq. (2.6), the 1imit x' - x exists,

g
the integral over 2z converges, and.thére.is no ambiguity associgted
withvthe'interchange-of those operatiohs.b-Fufthermore, the steps
leﬁding to the subsequent equations of sectionLZA, which include the
changing of the original contour of integratipn C to the imaginary
axis I‘ and expanding pVP in terms of pkvwand nTkl; are permissible
with GReg‘ After renormalization of the nuclear charge, the limits
na.+ o,  i > 2, are taken and the unamhiguous, gauge invariant fesult
for pyp is thus obtained to all orders in- Za.'énd for eaéh partial
wave contribution.

| On the other hand, if we consider the Feynman graphs for Pyp
in the field of finite radius nuclei, it will_be clear that regulariza-
tion isbneeded only for the contributions frdm\the first féw orders in
Zs. The graph corresponding to the term linear in Za (Fig. 2a) is
well known to be quadratically divergent. It is also well known that
the electron loop integral for orders (Za)#, 'n > 5, is finite. The
third order graph is a borderline case and will be considered in detail
later. Of course, in addition to the electron looé integral, the
graphs in Fig. 2 also involve integrals for each ' external poten—b
tial, For bounded potentials, such as those due to nuclei of finite

extent, these integrals are finite and, . hence, do not introduce new

singularities, This is most easily seen by considering the integrations
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in momentum space, where the rapid decrease of the nuclear charge form
factor insﬁres the éonvergence of the integrals, Héwever, for the
point nucleus (constant form factor) considered by Wichmann and Kroll
'[8], additional singularities appear due to the singularity of the
potential at X = 0. Thus, while regularization will always be_neededb
for first order, for orders (Za)n, n 2_5, regularization will not
be needed as long as nuclei of finite extent are considered.

Considering the contribution from order (Za)3, the electron
loop integral in Fig. 2b is seen to diverge logarithmically. It is
well known, however, that this divergence is elimigated if gauge
invariance is imposed on the Feynman amplitude or, alternately, if the
graph is regulated with one auxiliary mass (15). ‘Therefore, aﬁ
ambiguity is expected in the calculation of p3 with eq. (2.6) if
some regularization is not performed. To see how this ambiguity
arises in eq. (2.6), consider the calculation of p3 for the case of
a constant external potential V. This calculation is carried out in
Appendix I. The results show that if the 1limit x' -» X is taken first
and then the contour integral is performed in eq. (2.6), then a non-
gauge invariant result, p3 = V3/3w2, is obtained.* On the other hand,
if the contour integral is performed first and then the limit 5' > X
is taken, then the gauge invariant result, p3 = 0, is obtained. Thus,
the ambiguity expected from the third order Feynman graph shows up in
eq. (2.6) as an ambiguity associated with the interchange of a limit
and integral. This ambigui£y is of course eliminated if the regulator

condition, eq. (2.21), with one auxiliary mass is applied to the

See also Ref. (3) for a discussion of this point, and note that gauge
3

invariance requires that p” - 0 as V -+ constant,
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" Green's function. Note, by the way, that the calculation of the
contribution from higher than third order is found in Appendix Ito
be free from this ambiguity, as-it must be since}the corresponding
Feynman graphs are finite and unambiguous.

3 in eq. (2.6) suffers from the

Although the caleulation of p
above-mentioned ambiguity, the caiculation of the contribution from
each partial wave pfkl ﬁith eq. (2.19) is free from ambiguity. This
is‘because the radial Green's function is much léss‘singular than the
full Green's function G. In particular, the limit [x'] » |x] exists
for Gk
for the example of a constant external field considered in Appendix I

while the limit x' - x does not exist for G. The results

confirm that p?kl is indeed free from ambiguity and thus automatically
satisfies gauge invariance. Note, on the other hand, that the calcula-
tion of the first order density p%k| is ambiguous with eq. (2;19)_
since different results are obtained if the limit r' =+ r and the
contour integral are interchanged. For third order, though, thg cal-
culation of p3 by summing pfkl gives the unambiguous, gauge invar-
iant result, p3 = 0, for the case of a constant external potential.
This study of 93 in a constant potential suggests that for

3

bounded potentials, regularization of p is achieved by calculating

p3 as a sum over the partial wave contributions ‘pfkl' In particular,
each pfk' is expected to be well defined and gauge invariant,

Therefore, the total charge contained in each partial wave density is

*
expected to vanish. Provided that the sum over k converges

For undercritical potentials (Z < Zcr)'
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fast enqugh; the sum of ‘p?kl should then give the regularized result

for pB;

The convergehce of the sum over Xk has been discussed in ﬁef.

" (1) based on the results of Wichmann and Kroll (8).° It was found that
the lowest partial wave, |k| = 1, contains already 93% of the contri-
bution to 'p3 from all partial waves. Thus the sum over k is
expected to converée very rapidly. In fact, for the VP density p5+,
for orders five and higher, the contribution from |k} =1 amounts to
more than 99% of the contribution from all k. Therefore, one expects

3+

that a good approximation for o is obtained by_calculating:only the

lowest partial wave contribution p?;l, x| = 1, where

+ T |
oTg () = l-}}}‘l /. g, ()12

k=+|X| -m_<E<0

(-]

+ Be dy Tr [Gk(Za; r,r; iy) - Gk(-Za; r,r; iy)

0

-2 Za.le(r,r; iy)} ) (2.22)

. This equation follows from removing the first order contribution, eq.
(2.19), from pIk' in eq. (2.14). As it stands, eq. (2.22) is

expected to require no further regularization for bounded potentials.
Indeed, the explicit calculation of pf;l, k] = 1, reported in Refs.

(1,2) for finite radius nuclei confirms this expectation.

See also Ref. (16).
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For the first order (Uehling) contribution, the regulated VP »
density in an arbitrary potential is known.'(17,18),' Tﬁe energy shifts
due to the Uehling potential have been worked out in detail for muoniec
atoms (3,19) and for superheavy electronic atoms (6,20) and, thus, need
no furthef considerafion here. |
| We now turn to the construction of Tr Gk,.‘Tr le, and Tr G 3,

necessary for the caleulation of the energy shifts quoted in Ref. (1,2)

due to higher order VP.

3. Consttuction of 1Ir G

The power of the Wichmann-Kroll formalism is that the radial
Green's functions needed in eq. (2.22) can be readily constructed in
terms of two particular solutions of the radial Dirac: equation.* Let
wR be the solution regular at r =_0 and wI ‘be the solution regular
at r = (i,e., Yy >0 as r = ), Then for an eigenvalue k and

energy z, these two component wavefunctions satisfy

1+ V() - 2 S ARG
. , =0, (3.1)
%‘&%’r‘L% -1+ V(r) -2 wz(r) ‘
- o

where the radius and energy have been scaled by the electron mass.

Then in terms of these solutions the radial Green's function is given

by,

X I R AR N CORMCIO I TNCITRES )T},

(3.2)

See also Ref. (21).
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with the Wronskian J(z) given by

3(z) =-rz{“’az(r)wn(f)-wnl(r)‘sz(ﬂ} , (33

and where T stands for transpose and the subscripts 1 and 2 refer
to the upper and lower components. It is easy to verify from eq. (3.1)
that J(z) is independent of r and that G, does satisfy eq. (2.9)
for m_ =1,
e ]
From eq. (3.2), we get
T
Yrlr, )" vglr,)
Tr G (r,r*; z) = , (3.4)
J(z) :

where T, (r<) is the greater (lesser) of r and r'. The potential

due to a nucleus of finite egtent is of the form

. f(1'/R)/H ) r <R
Wr) = -Zo { . (3.5)
1/r , r>R
Two models of the nuclear charge distribution Will be considered in
PNuc = 8(r - R)/AnRz,
1; Model II, a uniform density, Paue = o(R - r)/(4ﬂR3/3),

G - (z/R)P)/2.
The solutions of eq. (3.1) for the potential of eq. (3.5) are

this paper: Mbdel I, a shell density,
f(r/R)
f(r/R)

constructed by matching the interior solutions (r < R) to the exterior
solutions (r > R) with a continuity condition at r = R.

The exterior solutions satisfy eq. (3.1) for the case of a pure
Coulomb potential (R = 0). ' These solutions are well known (8,12).
Letting 742 denote ihe solution regular at r =0 and QQJf‘ denote

the solution regular at r = «, then
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(Mm, - _1:3.,7;[(3 - v) Ng)_%’s(z'c-r') ~ (k = ¥/c) M\”%,S(Zcr)}

~

9%5 _535 [(s -v) Mb_% s(2cr) + (k -~ v/e) M&;é s(2cr)]
\ r - T

( Qb{ 3;§>£3 [(k +_Y/c) Wv_%’s(Zcr) + Wv+%,s(20r)l

- r

W, = = [(k +y/e) W,y o(2er) - ww%,s(zcr)} ’ (3.6)

r

where

c = Vi-2, vo-vyZ . G

The branch of the square root for ¢ 1is taken such that Re[c]”:_o.
The functions NE,B and Wd’B in eq. (3.6) are the Whittaker
(confluent hypergeometric) functions as defined in Ref.;(22).

To obtain the interior solutions, the nuclear charge density
must be specified. The simplest case for which the interior solutions
are knowniis the shell distribution of model I. In that case, the
interior potential is a constant VO = ~y/R. The solutions of eq. (3.1)
for a constant potential Vo' are obtained from the solutions of eq.
(3.1) with V=0 'simply by shifting the energy from z to 2z - V-
Denoting the solution regular at r =0 by u and the solution regular

at r =® by v for the case V = 0, we find (12)
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) ul = (1 + Z) J|k+%|‘_%(icr)

and

= ¢ h(l) (icr)

N1 |k+3|-2

- s x (1) . o

V2 = l(Z - l) T-l-{-l-hlk_%|_%(lcr) P (3-8)
where jv "and h(l) are the sphefical Bessel and Hankel functions as

\Y
defined in Ref. (23 . The solutions of eq. (3.1) with V = -y/R are

then given by

A = u(z + y/R)
and
v = v(z +vy/R) . (3.9)
Thus, the solutions of eq. (3.1) for a model I nucleus are
given by o
by = &R - o)+ r - D[P s b2 ]
by = o(R-m)fEE+ 67 ] ve(r-R)W . (3.10)

where the coefficients a, b, a, and b are determined by the con-
tinuity condition at r = R. As in eq. (3.3), we define the bracket-

expression for two arbitrary wavefunctions as
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[#¢]g

The coefficients in eq. (3.9) can then be expressed as

sl

B - ‘p1¢2-)lr=R_

. -
o - Imalfmad,
i o= [welyfas)
- fuwlfos o Gan)

This form for the coefficients is.partiuclarlyruseful because the
different brackets are related to the Wronskians for different poten-
tials. 1In particular, the Wronskian Jcoul for a pﬁre Coulomb poten-
tial is given by (see Appendii 11)

Teu® = (M) - s vl L g

5

The Wronskian JV for a constant potential is given by

0

Wy (2) - 89y = 1 | (3.13)

.=y

as may be verified with eq. (10.1.31) of Ref. (23).
Finally, the Wronskian for the potential of eq. (3.5) as com-
puted via inserting eq. (3.10) into eq. (3.3) is given by

Hz) = [ﬁ,‘bf]R = Rz(ﬁzﬂ{_ﬁl‘hg) L (3.14)
| e _
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The zeroes of J(z) determine the location of the poles of Tr Gk
corresponding to bound states of the radial Hamiltonian with the
potential of eq. (3.5). Note that the condition Jcoul(z) = 0 gives
thé usual Sommerfeldl!s flne structure formula for a point nucleus.

ihe radial Green's function for severél potentials of interest

can now be constructed via eq. (3.2). The free. radial Green's

function Gko referred to in eq. (2.15) is given by

6, Xr,x's 2) = e(r'~ r)u(r) v(z") +6(r - x') W(r) o)
(3.15)
in terms of the solutions in eq. (3.8). The pure Coulomb Green's
function »Cioul is given by (8,12) |

6 Mr,ets 2) = (o' - 1) MCe) ket )T

Cor = =) WM g0 () (3.16)

in terms of egs. (3.6) and (3.12). Finally, for the case of a finite
radius nucleus, Gk is given by substituting eq. (3.10) into eq.
(3.2). The trace of G, for r'=r, appearing in eq. (2.22), can

be written conveniently for the case of a model I nucleus as

(
Tr Gko(r,r; z + Y/R) + Tr AGk<, r <R

Tr Gk(r,r ; é) = <

Tr G;OUl(r,r; z) + Tr AGk> , r>R ,
\ . '
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where the finite size corrections AGk are given by

tr 06, (rr; 2) = & ) Wr)/3(a)
and

a6 (r,r; 2) = W Wiz . ()
In this form, the éxpected properties of Tr Gk -that

’Ir Gk‘ + Tr Gko as R » o

and that for y <1, 1i.e., 2 < 137,

- 1
T G -~ Trc;ff“ as R + 0 (3.19)

are easily derived from the asymptotic behavior of & as R > o and
of b as R+ 0 (see Appendix II). Nofe, however, that for 'y > 1,
the limit R »> O does not exist, confirming the result that for
superheavy nuclei (Z > 137), nuclear size effects must be taken into
acbount'(é];

Furthermore, the nuclear size correqtion to the VP denéity is
computed directly from Tr AGk> in eq. (3.18). This calculation is
discussed in séction 5. |

The bound state wave functions appearing in eq. (2.22) are
computed from the residues of Tr Gk for poles in the energy range
-m,, < E < 0. As noted before,the location of these poles is deter-
mined by the condition J(z) = 0 for the Wronskian in eq. (3.14). The
residues at those poles are seen from egs. (3.17, 3.18) to come only

_ : >(< :
from the finite size corrections, Tr AGk( ). These residues are
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proportional to e 2 for r <R and to I‘lu'(r)lz for t >R,
This is expected since the bound state wavefunctions must be gégular
“both at r =0 and r =, Furthermore, the continuity of ihe wave-
functions at r = R is insured by the choice of a and b and may
easily be verified with egs. (3.11, 3.14, 3.18). Note that thé
construction of G, in eq. (3.2) aléo guarantees that these wave-
functions are normalized to unity. See section 6 fér further discus-
sionvon the calculation of the 181/2 and 2P1/2 ﬁavefungtions;

4. Construction of Tr le and Tr Gk3
In this section the trace of the radial Green's function to

first and third order in vy = Za are constructed from eq. (2.16).

The TIr le is of course necessary for the calculation of p?zl in
eq. (2.22), The trace Tr Gk3, for k = -1, is calculated (1) to
provide a check on the numerical calculation of pl3+ to third order,

3+

(2) to estimate the dependence of - N on different models of the

nuclear charge density, and (3) to determine the size of the contri-

3 to p3. The ratio of the |k| =1 contribution to

bution of p
the |x| > 2 contribution for the third order term is considered in
order to estimate the accuracy of the approximation used in Refs.
(1,2) fér calgulating the nﬁclear size effect by including only the
k] =1 contribution to A |

The coﬁs{rucfion of Tr le and Tr GkB will be carried out
first generally for all k and then specifically for |kx| = 1. To

simplify the notation, define
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(), = u()T u(e)

(w), = ur) vr) = o) u(x)

(w)r = v(r) w(r) . ) (4.1)
| from ea. (2,26), Tr G 1is seen to involve the trace of a

product of two free radial Green's functions Gko. This trace is

easily calculated from eq. (3.15) to be

Tr(Gko(r,rl) Gko(rl,r)) = (vv)% (uu)r< ’ | (4.2)
where T_ (ry) is the lesser (greater) of r and ry. Thus,
_
Tr le(r,r; z) = (vv)r‘[’ dry rl2 V(rl)'(uu)r
. _ 0 1
clw), |any V) (W), (4.3)
T ' :

To third order, Tr Gk3 involves the trace of a brodﬁct of
four free Green's functions. Let T4(r,r1,r2,r3) denote this trace;
The explicit analytic expression for T4 derends on the relative
ordering of the four radii. Consider, for example, the ordering in
eq. (2.16) with r > r, >r, > T From eq. (3.15),

T4(r > ry >‘r2 > r3) = (vv)r (uv)rl (uv)r2 (uu)r3 . (4.4)
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Similar expressions may be written for the other 23 orderings, The
contribution from the particular ordering in eq. (4.4) to Tr Gk3 will
then be

T _ 1 T

dr. 7.2 V(r, ) ar. r.2 V(r.) ar, .2 V(r.)

T 171 1 272 2 373 3
0 - 0 . 0

(vv)

< (w), (uv)r2 () . )

The contributions from other orderings will have analogous forms.
However, three other orderings, (r > Ty > r3 >.r2),
(r >r

>r) > r2), (r >r, > r, > rl), give rise to the same

3 3
contribution as eq. (4.5). 1In fact, there are only eight different

k

contributions to Tr G 3 out of the possible 24.
From the following simple property, |

b x f b 12
| dx f(x) dy f{y) = %-\f dx f(x) i (4.6)
a a i a J '
all the occurring three dimensional integrals can be reduced to two
dimensional ones and some two dimensional integrals reduce to one

dimensional ones. Defining three fundamental integrals by

b
Jl(a,b) = dr r° V(r) (uu)r
a
b
Jz(a,b) = dr r? V(r) (u.v)r
a
b
Iy(a,p) = ar t° V(r) (vw), (4.7)
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the eight different contributions to Tr Gk3 can be expressed in -

terms of the above integrals and the following six irit»egrals

'r .
Il = f dr1 r12 V(ri) (uu)r:L %-(JZ(.rl’r))Z'
0 . ,
T . N
12 = J’ dr1 r12 v(rl) (vv)rl %(?1(0,rli)2
0
r
1, = f ar, r,° W(r,) COREACE®
0
I, = f ar, r12 V(r,) (uv)rl I (r) )
r
I, = f dri r12 V(r,) (w)r1 %{Jz(r,rl )il
T
I6 = f drl r12 V(rl) (uu)rl %(J3(rl’°°)>2 - : (4.8)
. | | ,

Then Tr Gk3 is given by
TrGB(rr' z) = (vv) LI, + 2T, + [J (Or)éJ(rw>‘B
K \EoT5 r {*1 2 1\ ] 3107
+ 4(uv)r _{JB(r,w) I3 + Jl(O,r) 14}

+ (uu), {415 + 21, + Jl(o,r)[:B(r,m)}z} : (4.9)



-5),-~

Note that in this notation eq. (4.3) can be written as

Tr G (s 2) = (vw), 3(0,r) + (wa), Ty(me) . (4.10)

The reason that this notation is convenient is that anélytic expressions
may be obtalned for the Ji’ and thus, the calculation of Tr Gk3
in#olves only one dimensional numerical iptegratiohs. Also, Tr'le
can then be evaluated without any numerical integrations.

To ﬁroceed further, only the k = -1 radial Green's functions
will be considered. Note that Tr Gkn for k ? +1 1is related to'.the
trace for k = -1 by eq. (2.18). From eq. (3.8), we get the

following products for k = -1:

. 12 2
(U.\l)r = .(1 + z)2 _S.l_n..h_?g.l.‘_-i- 1 [Sinh er . cosh CI‘] ,
(er) cr
c e °T
(uv)r = (1 + 2) sinh er -
(cr)
Y = I
-2cr 2 2 ‘
_ e (1 - 2) 1 ;
(W)r = "—r'g"' 1+ --—-;—2-—-(1 + E-I-;) . (4.11‘)

The fundamental integrals Ji may now be calculated for the two
different models of the nuclear charge distribution considered in
comnection with eq. (3.5). Since the potenfial in eq. (3.5) has
different forms for r <R and r > R, it is natural to define the

indefinite integrals Ji< and Ji> such that
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where f(r/R) =1
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a@r_ Jl‘(r) = 12 £(x/R) (uﬁ)r/n'
a‘-i: 1, (x) - 22 e (uv), /R
'é%-JBf(r) - 2 £(z/R) (vv) /R
é%-Jl>(r) = 1 (uu),
afll-,-J;(r) = r (uv),
%J;(r) = r(w), , (4.12)

for a model I nucleus and .f(r/l.%_) = (3 - (-r/R)2 )/2

for a model IT nucleus. Thus , for example,

Ifa <BRb>R) = (T,R) - L,%@)) + (5, 7(0) - 3,7(R)) . (4.13)

From eqs. (4.11, 41.2), the integrals for the case k = -1 and

for a model I nucleus are easily verified to be

J1<(r)

J2<(r) =

J3<(r)_

L 1 1 sinh 2er - 2 er - ---————--stnhZ er
cR 11-252 (1 - 2z) cr .

-2cr -Ccr
1 e l-2ze . 2z - 1 \
'c:_fi'{zr+ 2c ¢ or— Sinh er - —5 } ’
_-_1_e2°r 1+l-—z
cR (1 + z) er ?

Equation (4.14) continued next page
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Equation (4.14) continﬁed.

3, (x) = 13}§;37-<;hi(2cr).* fn(2er) - vy

i

1 /sinh 2cr sinh2 er :
+§' er - 2 -1 ’
(er)

<y
N
\'
~~
Lo ]
N’
|

%-{%l(Zcr) + n(2cr) + YE.}

. -2cr
+_1" e <1+....._.1 - 1 +.];. ,
c 2cr 2cr (20r)2 2 _

N

J>( ) = | 2z E. (2cr) '____l-zg:ff:(l:;__l_ (4.14)
3 r‘ _ “"{T+z)1 T} = I ¥z or - 201 ’ -14

vhere Yg is Eu}er‘s constant, E1 is the exponential integral and

Chi is the hyperbolic cosine integral defined in Ref. [23). In this

Ji<(>)

form the integrals can be easily evaluated numericélly

(see section 7).
For model II nuclei, -the interior integrals J£< have a
different form. These are related to J.° in eq. (4.14) by

< 1 2Y < 1 2z (or)?
Im*) = 3 (3 - () )Jl (r) - 2ery ) ey 1)

20r(1 - 2cer) - e—2cr(1 + 20ri> + %-sinh 2cr

Equation (4.15) continued next page
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Equation (4,15) continued

< ) 1 2 1 J1-a 25 (er)?

-2cr v | : _
= (r-z”)aa«-%w<er>'2.2z;1 :

H3(r) - 3G-& )>J3 (=) 2(c1R)7 (T 3627 Gr -203) -

(4.15)
The integrals Ij may then be computed numerically for either
nuclear model. - .

In order to estimate the ratio of the J|k| =1 contribution
to the higher partial wave contribution for the third order VP density,
the total VP charge accumulated at the origin for a point nucleus has
to be calculated for |k| = 1. This charge is calculated through eq.
(2) of Ref, (1). For that calculation, pfkl for |k| =1 is needed
in the limit m_ > 0. To get the m, =0 limit for Tr Gk3, recall
that in eqs. (4.11, 4.14, 4.15) the energy and radiﬁs have been scaled
by the electron mass. In those equations the mg = O 1limit is
obtained by replacing z +1 by z and ¢ by -iz in the upper half
z plane and ¢ by +iz in the lower half i plane. With these

substitutions, Tr Gk3 is computed as for the m, # 0 case with

eq. (4.9).

5. Finite Size Effects in Muonic Atoms

Having constructed all the relevant Green's functions for the
I+

, we turn to a more

3+

calculation of the higher order VP density p

detailed discussion of the effect of finite nuclear size on o]
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In particular, this section elaborates upon the calculations reported
in Ref(»(]) for muonic .Pb,

For the region r > R, the correction to the trace of the
Coulomb Green's function is given by Tr AG-k> in eq. (3;18); In this
region, the difference, Apk, between the VP ch;rge density for a
finite radius nucleus and the density fof a point nucleus is then
given by eq. (2.11) with G, replaced by AG >, In the discussion of
section 2B, it was noted that the first order contribution has to be
subtracted from G, as in eq. (2.22), to eliminate an ambiguity
present in the calculation of the first order éontribution to Py
However, thé calculation of the first order contribution to the
difference Ap, for r > R is free from ambiguity. To sée this,
consider the difference, Tr Ale(r,r'), between Tr le(r,r‘) for
a finite radius and point nucleus. From eqs. (2.16, 3.15, 4.12),

we get for r,r' > R

Tr Ale(r,r‘) = v(z)T v(r') <J1<(R) - Jl>(_R)) , (5.1)

where it was noted that J1<(O) = J1>(0) = 0. It is easy to verify
from eq. (3.8) that as a function of gz, &r Ale(r,r') decreases
exponentially as exp(}[y[(r +r' - 2R)) for z =iy, |y| + =.
For r,f' > R, then, this exponential decrease insures the uniform
convergence of the contour integral in eq. (2.19) for /r' in.the
neighborhood of r and thus eliminates the ambiguity associated with
the r' + r 1limit. For r,r' < R, though the ambiguity in the cal-

L .

is still present because Tr Ale decreases

exponentially only as exp(-|y(r - r')]) for that region and the

culation of Apk
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contour integral does not converge'uniformly for r' in the neighbor-

"hood of 'r. . Thus regularization is required for the calculation of

1
k

Lp in the region r < R,

Beéause we are interested in transitions in muonic.atoms
between states of high angular momeninm, the calculation of Apk for
r < R may be avoided and we can restrict oui attention to the calecula-
tion of Apk for r > R, where no regularization is required This
is due to the observation by Arafune (4) and Brown et al. (5) that the
~ mean radii of the muonic states involved in high angular momentum
transitions are much larger than R. Thus, the'energy shifts due tob

Ap, should be quite insensitive to the actual distribution of the

k
VP density inside the nucleus, r < R. Since'after regularization th;
total charge AQ< contained in fhe region r < R_”muét cancelithe
charge, - AQ”, in the region r > R, the approximation of setting
Apk(r) = —AQ> G(r)/r2 for r < R, will generate only sméll‘errofs in.
the calculation of energy shifts for high angularnmmmnxum-ﬁuonic

states. "Therefore, the energy shifts due to the nuclear size correc-

tions to the VP density are calculated from the den31ty Ap'k' given

*
by
( |e[]k|
dy Tr( AG (,1y)—AG (-Y, ly r>R
(21r) ( Y )
Aplk[ %-_<
- dr :2 Aplkl §£§l. s, T <R , (5.2)
\ n 2

Note that this procedure is applicable only for Yy < 1, so that

Pyp for a pure Coulomb fleld is still defined.
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where .AGk> is evaluated with either k = |k| or Xk = -|k|, The
contribution Ap}kl, linear in vy, is calculated from eq. (5.2) by
replacing' Tr AGk> with the first order correction Tr Ale(r,r) in
eq. (5.1). |

'Thé primary purpose of calculating Aplkl in Ref, (1] was to
check the accuracy of the approximations in Refs. (4,5] of setting
m, = 0 and expanding Aplkl in powers of the radius R. These
- approximations are implemented by setting m, = 0 in eq.(3.18) and
expanding b in powers of R. Note that the function f(R,z,me)
defined in Ref. (1) is related to b in eq. (3.18) by
f(R,z,me) = b/J(z).*

The m, = 0 approximation réquires the ' m, > 0 limit of
eqs. (3.6, 3.8). The 97 and W fﬁnctions for m, = 0 are obtained
from eq. (3.6) by making the following éubstitutidns: z+1~> 2z,
¢ > ¥z (-1 for Imz >0; +#1 for Imz < 0), and k + y/c + k.

The u and v functions for m = O are obtained from eq. (3.8)
by making the first two of the above substitutions. With these new
functions,‘ Tr AGk> (me = 0) is calculated as in eq.(3.18). 

The further approximation of retaining inyithe lowest power
of R in an expansion of f(R,z,me = 0) is obtained by calculating
the small R 1limit of b/J(z) in eq. (3.18). For the case of a model
I nucleus with radius R, the leading term ipn an expansion of

f(R,z,mé = 0) in powers of R is given by (see Appendix II)

Note a misprint in Ref. (1), p. 1395, line 30: f(R,z,m ) = O
should read f‘(R,z,m.e = Q). .
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14 - Y/(s - k) 25 ;.. \28=3
[1--1Ay/(s-k)]R ()™

(s -1 (s - iy) _' |
x <S = Y)( S(ZS)Y> (5.3)

where iA ='4ﬁ2/31, evaluated in the limit m - O and R-+>0 from

f(R,iy,me = Q) = .

eqs. (3.8 and 3.9). With this formula, the integrals in eq. (5.2)
may be evaluated analytically (4, 5).

The nuclear size corrections Ap|k| to the VP density for
k| =1 are listed in Table I for Pb (2 = 82, model I, R=5,5fm)
as a function of the radial coordinate r. The range of r covered
in the first column is R < r < 500R. Thebnext three columns 1i§t

for the following cases: (1) m, #0 ineq. (5.2), (2) m_ =0,

Ap e

1
and (3) both m, = 0 and lowest power in R/r. The first order
density Apl1 is then listed in the last column. The energy level
shifts due to these corrections have been discussed in Ref. (1). Here
we want to discuss the differences in Apl as calculated within the
different approximations. For r/Xé <<‘1, Apl.szpl(me =0) toa

. high degree of accuracy, In fact, the assertion in Ref. [4) that
corrections to Apl(m.e = 0) appear to order (mef)2 is supported by
our numerical results. On the other hand, the approximétion of

retaining only the lowest power of R as in eq. (5.3) is not

particularly accurate for r = R. In fact, Apl(?e = 0,0(R/ri) is
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smaller than Apl(m.e # 0) by roughly a factor of 2 in that region.
For 0;1 s r/X; < 0.5; all three approximations are seen to give the
same value of Ap; to within 10%, For r/%é > 1; the relative accuracy
of the m, = 0 approximation decreases,.élthough the relative
accuracy of the O(R/r) approximation increases, i.e., |
Apl(me =0) = Apl(@e = 0,0(R/rX) but Ap'l(me # O) f Apl(me = 0).

The inadequacy of the O(R/r) approximation in the region
r & R for éomputing the charge density does not affect the accuracy
of the energy shifts computed from Apl(@e = 0, O(R/ri) in Ref.: (1)
very much, beéause,as noted before, the overlap of the muonig wave-
funcfions with the region r <R is very small for the high angular
momentum states (e.g., 5g9/2,4f7/2). The inadequacy of the m, =0
appfoximation for computing Apl in the region r >j1; ‘does. not
affect the computed energy shifts very much because Apl is very
small in that region and only a small fraction of the charge contained
in Apl in the region r > R is contained in the region r >gﬁ;;
this can also be seen by comparing AQ1,2 in Table III of Ref. (1).
The region that determines the accuracy of the computed energy shifts
is thus the intermediate region; where all three approximations give
the same Apl to within 10%. |

‘Note that a test on the numerical integrations required for
the construction of Table I is given by a comparison of the values for
Apl(@e = 0,0(R/r))' in Table I to the values determined from the
analytic formula (eq. (3)}of Ref, (5). These values were found to

agree to better than four places throughout the range R < r < 500R.
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In connection with Tables I and II of Ref.'(l),* thé VP
densities ‘pfkl and ,pfil for |kx| =1 from eqs; (2,19, 2,22)
are needed; These are listed in Table IT here. As disﬁcssed in'Ref.‘
' (1}, pfkl and p?;| are expected to agree to.within 107 for: Pb.
It is indeed reassuring that the values of p?kl énd p?;I are in
such close agreement, then, cohsidefing that they were obtained with
totally differeﬁt computational techniques. A moré demanding test of
the numerical.accuracy of each VP density in Table II is given by the
degree of cancellation between the charges Q cbﬁtained in the
region where that density is negative (r < 60 fm) and‘ihe §ha£ge
Q+ contained in the region where the density is positive “(r 2 6Q>fm)..
As repbrted in Ref. (l], these charges were found to cancel to béfter

3 and p13+.- See section 7 for

than five decimal places for both Py
further discussion of the numerical techniques employed in calcu;gting"

these densitieé.

6, Vacuum Polarization in Heavy Ion Collisions

In this section some of the results reported in Ref.,(2) for
the case of' Zd > 1 are elaborated upon. Consider a nucleus of type
I with a radius R = 10 fm. The evgluation of prl in eq. (2.22)
réquires; for large Z, the determination of bound state wavefunctions
with gnergies E' between —me\K E < 0. The energy eigenvalues
determined from eq. (3.14) for this type of nucleus are plotted in
Fig. 3 as a function of Z for the 181/2 and '2P1/2 electronic

states. The curves for R =0 and 0.1 fm are also shown for

Note that in the last line of Table I in Ref. (1), the second

colum should read |k| > 1 rather than |k| = 1.
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comparison, - Figure 3 is included here to exhibit the range of Za

for which the lSl/Z and 2P1/2 state are present in eq. (2.22) for

the particular model of the nucleus chosen here. Also the slopes of
the curves in Fig. 3 provide a measure of the accuracy of thevcomputed

wavefunctions (2]. We note that the energy eigen-

1S, ,, and 2P

1/2
values in Fig. 3 are in general agreement with the results of calcula-

1/2

tions using more réalisticvmodels of the nucleus (6,20), and that the
values of Zcr and of the slope dE/dZ at Zcr compare favorably |
with those obtained in other calculations (2). It can be seen that
the 131/2 state is present in eq. (2.22) for range

1.275 > Za > 1.086, and that the 2P state is present for the

1/2
range 1.383 > Za > 1.254.

The critical value of the nuclear charge Zcr, where
El 12 = W, has been determined in two different ways. First
. the zeroces of J(z) in eq. (3.14) have been determined as a function
‘of Za for 2z =-m +e€ with e/me = 0.05, 0.01, 0;001, 0.0001.
Then (Zcx)cr is determined from the extrapolation to € = 0. This
method gave the value (Za)cr = 1,274587. The second method of éal-
culating (Zd)cr is based on deriving the asymptotic form of J(z)
for z = -me (e + 0, v ) and determining the zeroes of J(z) in
that limit (24). From the relation between the upper and lower

components of the radial wavefunctions obtained from eq. (3.1), it

is easy to see that the condition J(z) = O is equivalent to

Wl ﬁl :
q’—'} = :}- » E (6.1)
1 Y |
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where onlj the upper components: of the inner and outer wavefunctions
entef; and the prime denotes the derivative, This eqﬁations is con-
venient because the asymptotic.limit (z »~ —mé) of the left—hand
side is calcuiable from the relation (24]

1im,r(a+1)w_a’6(§.) = 2Vx KZB(zxff) , - (6.2)

Q<

valid for 28 # integer and for real x > 0. Thus

' 41 AT
W, ra'i“(}'xzs 8“)}

(6.3)
w. .
1 z-*—me . . KZB('V 8-Yr )

where the modified Bessel function K26 and its derivative are

calculable from the relations (22)

3
Kp(2Vx ) = fﬁ‘) Wy, 26(4Vx )

and

d o1 1
ot wo,zs(") = 'é‘wo,zs(x)'sc‘wl,zs(x) . (6.4)

The solution of eq. (6.1) in the Imit 2z = ;me ﬁith eqs. (6.3 and
6.4) gives the value (Za)cr = 1,274,588 in very.good agreement with
the value determined from extrapolation. In addition to providing a
check on the calculation of (Za)cr, this agreement shows that the
nontrivial relations eqs. (6.2, 6.4) are sa{isfied by the computed
WVhittaker fﬁnctions to a high degree of accuracy. The comparison of

(Zot)cr from the two methods therefore provides one important test on
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the accuracy of the numerical techniques for computing the Wa 8
. : ; y

functions (see section 7).

The calculation of the 1S bound state wavefunction in the

1/2
range 1,275 Z_Zd > 1,086 is necessary not only for the calculation
of p13+- in eq. (2.22) but also for the calculatidn of the 181/2
energy shift due to the VP potential.* Figure 4 has 4nr2|¢ls' |2
plotted for several values of Zo 1in that range for the case %fgthe
model I nucleus with R = 10 fm under consideration here. As notéd
in Ref, (2), one test of the accuracy of the computed wavefunctions
(computed f:om the residues of the radial Green's function as discussed
- In Sectioh 3) is given by the value of their norm. As reported there,
and 2P

all 1S wavefunctions so computed were found to be

1/2 1/2
normalized to better than one part per 105. Another, more qualitative
test of the accuracy of these wavefunctions is giveh by the comparison
of the slope dE/dZ obtaineé from Fig. 3 to the approximation
dE/4Z = -om,, (1J&*>, where the expectation value (l/r) is
evaluated from the computed wavefunctions. Table III lists the values
of the slope d4E/dZ obtéined in the two ways. The good agreement in
Table III gives further assurance that the 181/2. and 2P1/2 wave-
functions were corrgctly calculated. Finally, we note that thev 181/2
wavefunctions in Fig. 4 are in good qualitative agreement with those
calculated using more realistic models of the nucleus (20).

For the study of the stability and localization of the helium-

like density PHe 85 & function of Z in the neighborhood of Zcr’

See Table 1 of Ref. (2}.



Q@i)@é%éﬁi?@iﬁﬁ@

-67-
we note that for Z < zcr'
Phe = —2|ellwls (r)'z * Pyp
1/2 :
= alellvg (@)% ee a0, (6.5)
1/2 '

where pVP has been divided into two parts: 013f, which includes the
contribution from higher orders for "k! =1, and P, which inéludes

the first order (Uehling) and the higher order, k| > 2 densities.

~ *
It is clear that P is a continuous function of 2 for around Zcr'

Furthermore, the Uehling contribution is known (17), and the ratio of

Df;' for |k| > 2 to .3 is small (2). Thus, for the study of -

1
the continuity of pHe around Zcr we may neglect B in eq. (6.5).

The curves for 0 given in Fig. 2a of Ref. (2] for 2 < Zcr are

He
thus obtained by adding to -2|ell¥ ¢ (£)1° in Fig. 4 the VP
1/2 ‘
density 013+ as computed from eq. (2.22). These VP densities are

plotted in Fig. 5 for several values of Z0 approaching
(Zd)cr = 1,27459. Note that these densities were also used in connec-

tion with Table I of Ref, (2]. For Z > Zcr’ the 1S wavefunction

1/2

in eq. (6.5) is no longer present and pHe is computed directly from

eq. (2.22) by setting P, = 913+. The continuity of P as a

He He

function of Z around Zcr may be seen from Table IV, where pHe
for several values of the radial coordinate are listed as a function
of Z. This table is intended to supplement Figs. 2a and 2b in Ref,

(2). The continuity of P has been expected on the basis of

He

The first discontinuity of P occurs for Z = Zcr(ZPB/Z)’ where the

2P state reaches the lbwer continuum, This value of Z is

3/2

much large than Z_ (1S, ) though (6) .

1/2
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 general arguments presented by Muller et al, (7).‘ What we have

presented here are precise calculations demonstrating this fact,

7. Numerical Techniques
This section describes the numerical techniques that were used
to evaluaté the Green's func%ions constructed in sgctions 3 and 4.
The calculation of Tr Gk in eq. (3.17) requires the calcula-
tion of the Whittaker functions M&)B é

techniques employed to calculate these functions are those discussed

and W . in eq. (3.6). The
extensively in Ref.'(13). With those techniqués an accuracy of better
than ld decimal places is achieved for the range of the arguments |
needed in the present study. Tests on the accuracy of the subroutines
for calculating these functions include verifigation.that those
functions satisfy particular recursion relations* and that they also
satisfy eq., (3.12) to more than 10 decimal places fér a large range
of the arguments. Anofher test is described in section 6.

For the calculation of Tr le and Tr sz’ the integrals

Ji> in eq. (4.14) require the evaluation of exponential integrals
El(x) and Chi(x). These functions are computed from the power

series representations eq. (5.1.11) and eq. (5.2.18) of Ref. (23)

for x <1 and from the techniques described in Ref. (25) for x> 1.
The subroutines for these functions were tested agginst tabulated
values in Ref. (26).- Again, better than 10 place accuracy was achieved.
The calculation of the integrals Ij in eq. (4.8) requires a

numerical integration. All numerical integrations were done with a

Gauss-Legendre quadrature method (27]. This method is

See p. 303 and 304 of Ref. (22},
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,particulérly suited for the integration of functions that are well
approximatéd by polyﬁomials of relatively low degree on a given
interval, This is Dbecause an n point énadrature formula is designed
to give the correct value of the integral for a polynomial of degree
2n - 1, The accuracj of the numerical integration with an n point
formula for an arbitrary function is custoﬁarily estimated from the
variation of the value of that integral as n is varied. This pro-
cedure was followed in the present work. Thus, if the value of an
integral changes only in the eleventh decimal place as n 1is increased
to n+ 10 or n + 20, then the numerical integration is considered
to be accurate to ten places with the n point formula.

For the integrals required in eq. (4.8), modification of the
integrands is required in order to achieve ten place accuracy with 16w
n, This is because many of the integrands contain terms such as |
inverse powefs or logarithms that are not directly suited for integra-
tion by Gauss-lLegendre quadrature. However, thse térms are easy to
isolate in each integrand, and the integral over those terms may be
done analytically, The remainder of the integrand will contain only
terms such as r" or rm'log r for m i_l, for which Gauss-Legendre
quadrature converges fast. To illustrate this_procedure,‘consider the

integral
b

I7(a®) = [ @y (w)l 3,0, (7.1)
. |

which is needed in the evaluation of I5 in eq. (4.8). As y -+ 0,

the integrand is of the form
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B V=R - 2 -

l-2 2 ra y C ' . .

Graf [Zeeny-aensE| o, @2
as is easiiy seen from eqs. (4.11, 4.14). While Gauss-Legendre
~ quadrature is not suitable for the terms exhibited in eq. (7,2), their
integral is trivial to do analytically. Thus, 15 is computed for
b <1/c by

b .
2z +1 2 . 1-2z1

> >
'1.7(a,b) = dy {y(vv) 3. (y) - ==
> y2 (1+ z)2 3y° c 2

a

+££:t%§§[§.-%.} -1;Z}§zn(b/a) . (7.3)
V4

With eq. (7.3), the number of quadrature points n found necessary to
>

achieve ten place accuracy for 15 in the range 0 <a <Db < 1/c
was n = 20, For large values of the argument (cyv> 1), the integrand
in eq. (7.1) behaves as

2(1 - 2)z e ™20y

3 y

¢n(2cy) . (7.4)

However, because the exponential dominates this term, the pfesence of
the logarithm and inverse power do not effect the_convergence of the
numerical integration very much. In fact, ten place accuracy is
achieved for I5>(a,W) when a > 1/¢ with a 30 point quadrature
formula applied to I5>(a,a + 20/c). Therefbre, I; (a,») for any

a > 0 may be computed to ten place accuracy with a maximum of 50
evaluations of the integrand. This numerical integration is then very

rapidly performed. There are altogether 19 integrals of this type that
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dre required for the calculation of the Ij in eq. (4.8). All-integ—
rals are handled in the manner of the above example.
A critical test of the accuracy of the so computed Tr Gk’

Tr G 1, and Tr G 3 with the techniques described above is given by

k k
the comparison of the right- and left-hand sides of the equatioh

| Tr(ﬁk(y;‘f,rs z) - G (=y; 7,75 2))

= Tr le(r,r; z) + 2Y3 Tr GkB(r,r; z) + O(YS) . (7.5)

For a model I nucleus with R = IQ fm, the right- and left-hand sides
were computed for Y = 20 = 0,001 and r = aR with-r{a = 0,01, 0.1,
0.3, 0.7, 1.0, 1.05, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0, 1000.0} and
z = iy with {y = 0.0, 0.5, 1.0, 2.0, 4.0, 10.0, 20.0, 40.0, 100.0,
500.0, 1000.0}. Better than ten place agreement was found between
the two sides for the rangé of variables considered.

The contour integral along the imaginary axis, which is
required for the calcualtion of pfkl and p?;l in egqs. (2.19,
2.,22), is performed by dividing the interval (0,i®) into two or
three segments and applying a 30 point quadrature formula on each
interval. The integrands fall off roughly as l/z5 rather than
exponentially, and consequently, the 30 point formulas were found to
give five plaée accuracy. Of course, such accuracy is still quite
adequaté f¢r the applications described in Sections 5 and 6. The
charge densitieé p?kl and p?;' were calculated for 60 values of

the radial coordinate in each of the intervals O <r<30R and

30R < r < 500 R. The 60 values in each interval were chosen to
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coincide with Gauss—Legendre quadrature points so that iﬁtegrations
involving fhe'charge dénSities (in the calculation of energy shifts
due to VP) could be done immediately.

Finally, we note that all numerical calcﬁlations were done

with the CDC 7600 at the Lawrence Berkeley Laboratory.
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Appendix I

The calculation of the VP density for the case of a constant
external potential V is discussed here in detail. The purpose of
this calculation is to supplement section 2B by illustrating the
properties of the Green's function G that makes regularization of
eq. (2.6) necessary. |

The Green's function Gv for a constant potential V is
obtained from the free Green's functién GO simply by shifting the

0 :

energy 2 to 2z -V, where G~ is given by

' AcA- .
x,x'5 2) = (av +p+2) e (1.1)

1 .
where A = |§ - 5'] and ¢ = (1 - 22)2, Re(c) > O. Then

¢'(x,x's 2) = 6Xxx'sz-V) . (1.2)
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From eq. (I.1), it is clear that the limit A -+ O does not exist,

v

However, consider the'Taylor series expansion of Tr G' in powers of

V:
v -cA 2
‘ V2 3z - z3 -cA
+ =+ (L +ch) Je
Z\c ;3'

» 3' 2 A ' 4,
v 3 Z Z L pR 2 -cA

From this éxpansion, the singularity of Tr Gv as A -+ 0 is seen to
be confined to the terms of order zero a#d one in V. Note also that
the contour iﬁtegral along the imaginary axis does not converge
absolutely until third order for A = O.

Consider now the caldulation.of the third order density p3

as in eq. (2.8). Then in units of -|e|, 0> is given by

3 [ 3
3 v a 0 .
( = . TG()'; i
il f_m‘“’m{r SE m}

12m “E'ﬁx

~

]

3 [ 3
'-Y7(—i) 1im 1im { '§+-23(1+0A) e ch
6m z*ie A0 1 ¢

(I.4)
From eq. (I.4), it is clear that depending on which order the limits
are taken, p3 = V3/31T2 or 0. For higher orders, though, a similar
calculation shows that pn =0 for n >4 independently of the ordef

of the limits,
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To calculate the contribution plkl to pv? consider eq.
(2,14). The trace Tr G,' is obtained from Tr G0 in eq. (3.15)
again by shifting z to z -V, With reference to eqs. (3.4, 3.8,

3,13), we define

D?kl ‘TrCGkO(r,r'; z) + G_ko(r,:_r'; zD

~22e(§, (1or ) n{1N1er,) + §_(ter,) hSl)(icr>i)‘ , (1.5)

where + stand for |k + %4 - %5 Then DY£' = D?kl(z - V). Again a

power series in V may be obtained by taking successive derivati#es

0
of lel

absent for each |k| to any order in V. However, the calculation of

with respect to z. Note that the A > O singularity is

the first order density p}kl in eq. (2,17) gives

1 k|V o] 0 1. 3iv)
‘p|k|(r) = -(Lg-;]]-_)_z- /; dym {lel(r,r; 1y)]

rlop

%El%é-(-Zi) lim lim D?kl(r,r'; z)‘ . (1.6)
2w . gzrie plor _

If the limit »r' > r is taken first, then from the high 2z 1limit of

i

|x[V/(7r)%. On the other hand,

1

eq.(I.5) for r  =r,, we get p}kl
if r' # r, then since the product j(ier ) and hs'

)(icr>)
decreases exponentially for gz - iw,,we get p}kl = 0, Thus therevis
an ambiguity associated with the calculation of p}kl, and hence,
regularization is required for first order, For higher orders, though,
it is easy to verify that terms of even orders vanish because even

derivatives of D? are odd functions of 2z and that terms of odd

k|
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orders vanish because the.even derivatives vanish at .z = t ie, Also
there is nQ ambiguity assoclated with the interchange of limits for

the terms of higher orders,

Appendix II
| The properties of Tr G éiven in eq. (3.19) as well as the
asymptotic form of b/J(z) in eq. (5.3) are derived here.
First, from egs, (3.11, 3.13), & = ﬁk},%]R. Since both -
W&,B(z) and hil)(iz) in eqs. (3.6, 3.9) decrease exponentially forA
Re (z) =+ (23), it follows at once that a+ 0 as R~ ®,
The .calculation of b in eq. (3.11) in the small R limit

is obtained from relations (22,23)

M (x) = £+ ox)

Ta,B
- r'(28) -B+3
') = + 0
e ws l D
R DU 1+ o(x)) , (II.1)
(-8 + %-- a) ( )

for x+ 0. Note that eq. (3.12) follows from the calculation of
f7ﬂ,?ﬂ]R with these relations. Restricting now to the case Y < 1|
(s is real), the ratio b/J(z) in the small R 1limit may be written

from eqs. (3.11, 3.12, 3.14, and II.1) as
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. (T SR 7o J U
Y C N - e e LS
(ﬁlfk/é - ﬁthyi) cout'?

Ay J(s-v-k+y/c)A-(s-v+k-y/e)
R0

e (-s+v+k +vy/c)-(8-v+k+y/c)h

(s - v+1) 1

x (2cR)28 T(2s) Jcoul(z) s (I1.2)

where A = (ﬁz/ﬁl)(l + z)/c. Note that corrections to the small R
form in eq, (II.2) appear in orders R*S and R°°*l. For e model I
nucleus, the small R 1limit of A is found from egs. (3.8, 3.9) to

be

A 1l + 3z k J-(Y)-

RO c 3 j+(Y) ’ (11.3)

where ji stand for Jlki%l-%'

From eq. (II.2), the second property of Tr G, in eq. (3.19)
follows, since Tr AG-k> + O(st) +0 as R~ 0. .Note, however, that
for Y >1, (2 >137), s is purely imaginary for |k| =1, and,
thus, the limit R =+ 0 does not exist.

Finglly, eq. (5.3) is obtained by taking the m, > 0 1limit in
eq. (II.2). As described in section 5, this limit is taken by making
the followihg substitutions: for =z =iy, ¥y >0, z+1~iy,

¢c+y, v=+1iy, Xk + y/ec + k,
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Table I. The finite size correction to the |k| = 1 vacuum polariza-

tion density for Pb, R = 5,5 fm = 1.42 X 10‘? Xy Ap is given

for three approximations: (1) m, £0, (2) m, = 0 and

(3) m, = 0, O(R/r). The first order correction: Apl is also

listed for m, # 0., The radius is measured in «e and the quan-

tities rzApv are given in units of -4u|e| /Ry

r2Ap I‘2Ap ( m_=0 ) r2Ap (me =0,0(R/T )) r2Ap 1
1.51 x 1072} 8.15 x 1° | 8.15 x 10° 4.35 x10° | 8.05 x 10°
4.56 x 10721 3.16 x 1071 | 3.16 x 1071 |  2.45 x 107 | 2.74 x 107
1.14 x 107} 2.56 x 107 2,55 x 102| 2.28x102 1.7 x 1072
2.99 10‘1;'1.92 102 {1.92 x 203! 1.83% 107 {9.55 x 107
4.27 10‘12 7.39 x 1041 7.51 x 1074 |  7.26 x 107 | 3.23 x 107
6.95 x 10711 1.91 x 1004 12.00 x 1074 | 2.05 x 107% | 6.99 x 107
1,03 x10° | 571 x 107 {743 x107° | 7.33x107° {1.82 x 107
2,50 x 10° | 1.34 x 100 |7.33 x 20| 7.29 x 10 | 3.15 x 1077
4.55 '100,‘ 1.63 1078 11,55 x 107 1.54 x 1070 3.13 X 107?
7.02 x 10° | 9.80 x 1074 4.99 x 2077 | 4.98 x 1077 {1.64 x 107
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Table II, The |k| =1 vacuum polarization density times 2 for Pb
(model I, R = 5.5 fm) in the range 0 < r < 500 R:“ The contributions
from third order and orders n _>_ 3 are listed '_‘separately in units

of-'--41r|;glﬁ(e as functions of r (in units of fe-),-_ _

r r2p13 . r2p13+
1.6875 x 1074 | -1.8351 x .10 ~1.9439 % 107
2.1817 x 1072 ~3.0541 x 1073 -3.2450 x 107>
6.4730 x 107> -2.5196 x 1072 -2.6746 % 1072
1.2997 x 1072 ~7.7206 x 1072 -8.1857 x 1072
1.7075 x 1072 | -9.2082 x 1072 -9.7962 x 1072
2.6808 x 10°2 “7.4151 x 1072 -8.0434 x 1072
3.8554 x 107 ~4.6475 X 1072 | -5.1769 x 107
6.7561 x 1072 -1.5718 x 1072 -1.8589 x 1072
1.0285 x 10°Y | 44931 x 1073 | -5.7939 x 107
1.4200 x 1070 | -7.5815 x 107 -5.2797 x 1074
1.6417 x 1071 g 1.0772 % 107> 8.8277 x 1074
2,0810 x 107% % 2.3900 X 1072 % 2.5152 X 1073
2.8439 x 107 | 3.2348 x 1073 | 3.5907 x 107
3.6762 x 1071 3.4147 x 1073 | 3.8399 x 1073 |
4.2081 x 10°Y  : 3.3712 x 107> 3.8013 x 1072 §
6.9479 x 107 2.6325 1072 | 2.9663 x 107 §
1.0313 x 10° 1.7118 x 107> 1.9183 % 107 g
2.0386 x 10° | 3.8784 X107} 42928 x 107 %
soms x10° | 16036 x10° | 1.7329 x 107 '
5,510 x 10° § 1,6088 x 1070 : 1.6946 x 107°

| 7,0200 10° % 1.9882 x1077 | 2.0379 x 1077
e
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Table III, Slope dE/dz of curves in Fig. 3
_f.‘or lSi /2 and 2Pl /2 states for
R =10 fm compared to approximation

-&me <l/r) in units of keV.:

. Za . -dE/dz dme(1/r> state
0.95 , 8 8 181/2
1.12 15 16

1,205 21 22

1.27445 27 28

1.27445 25 26 2P ),
1,28 25 26

1.295 27 28

1,38 35 37
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. Table IV, Computed valueslof 4ﬂrzpﬁé(r) Jin units .-
of -lel/ﬁé as a function of Za for different
values of r (in units of k;); These values
show the continuity of PHe around

.(Zd)crbf‘lj27459.

Q\ga 1.2732 | 1.27445 | 1.27545 1.28

0.0036 | 0,1082 | 0,091 | 0.1097 | o0.1124
0.0261 | 3.8384 | 3.8671 | 3.890L | 3.9959
0.068L | 6.4124 | 6.4495 | 6.4791 | 6.6144
0.1505 { 5.0467 | 5.0600 | 5.0705 | 5.1160
0.4035 | 1.6789 | 1.6726 | 1.6676 | 1.6448
1.0330 | 0.1852 | 0.1831 | o.1815 | 0.1742
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FIGURE CAPTIONS
Singularities of the Green's function in the complex energy
Plane and contours Cd, cHe; and I giving the VP and

helium-like charge densities in units of |e].

" Feynman graphé corresponding to pVP- to lowest order (a)

and higher orders (b) in Zd, where X denotes the nuclear
charge form factor,

Eggrgy eigepvglues for the 131/2 and 2P1/2 §tates as a

function of Za for a model I nucleus with R = 0.0, 0.1,

and 10,0 fm.

The 131/2 wavefunctions for several values of Y = Zo
approaching (Za)cr = 1.27459 for a model I, 10 fm nucleus.
Tﬁe || = 1 VP density for orders (2Za)", n.i_B, for

several values of Yy = Za corresponding to Fig. 4.
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