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Abstract 

The vanadium metallocene, <M.e5C5)2 V, reacts with N 20 ( 4 atm, room 

temperature) to give (Me5C5)2VO (vVO = 855 cm-1, vv18o = 820 cm-1) as green-brown 

crystals from hexane. The vanadyl is monomeric in the gas phase (M+ in the mass 

spectrum) and paramagnetic with llB = 1.95 (9 = 0.49 K from 5-300 K). An isotropic 

EPR spectrum is observed in methylcyclohexane at room temperature which consists of 

eight-lines with giso = 1.9844 and Aiso = 25 G. Similarly, reaction of (Me5C5)2 Ti(C2H4) 

with N20.in a mixture ofpyridine-tetrahydrofuran yields monomeric, diamagnetic 

(Me5C5)2Ti(O)(py) as orange crystals (vTiO = 852 cm-1, vTi18o = 818 cm-1). The 

derivative, (Me5C5)2 Ti(0)(4-phenylpyridine), crystallizes as a toluene solvate in the 

triclinic space group Pl with a= 10.407(2)A, b = 12.998(4)A, c = 13.2597(2)A, a= 

79.90(2)0
, f3 = 67.42(1)0

, y= 83.02(2)0
• The geometry about the titanium is pseudo­

tetrahedral with Ti-0 = 1.665(3)A. Both oxo-metallocenes decompose (M =Vat room 

temperature, M = Ti with gentle warming) to the known tetranuclear compounds 

(Me5C5)4M4 (jl-0)6, M = V, Ti.. Mass spectroscopic studies on the 180-labelled 

.compounds show that all of the label in the tetranuclear compounds are derived from the 

monomeric precursors in a complex net reaction that results in the MO unit going to the 

M 40 6 unit. 
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Nitrous oxide is a convenient source of oxygen atoms for the synthesis of oxo­

metallocenes (and the products derived therefrom) as well as the insertion of oxygen into 

metal-hydrogen or -carbon bonds. 1•2 Reaction of nitrous oxide with either Cp2 Ti or 

Cp2 V gives (Cp2 Ti)2(JJ.-0)3 or Cp5 V 5(JJ.-0)~,4 respectively. On the other hand, the 

pentamethylcyclopentadienyl analogues give (Me5C5)2 Ti2 (CH2C5Me4)(JJ.-0)2
5 or 

(Me5C5)4 V 4(JJ.-0)6,6 respectively. Monomeric oxo-metallocenes, Cp2MO ~r 

(Me5C5)2MO where M is Ti or V, were neither observed nor isolated, an observation we 

thought curious since (RC5H4)2MO (M = Moor W) 7 and (Me5C5)2 W08 have been 

isolated and (Me5C5)2Z:rO has been generated and trapped by reactions with acetylenes? 

In this communication we show that (Me5C5)2 YO and (Me5C5)2 Ti(O)(L), where Lis 

pyridine or a substituted pyridine, can be isolated in reactions between nitrous oxide and 

the metallocenes and that they decompose to the known tetranuclear materials, 

(Me5C5)4 v 4(JJ.-0)6
6 and (Me5Cs)4 Ti4(JJ.-0)6.10 

Exposing a red hexane solution of (Me5C5)2 V to nitrous oxide (4 atm.) yields a 

green-brown solution and a black precipitate. Green-brown crystals of (Me5C5h V011 

may be isolated from the solution in 45% yield oncooling. The black precipitate was 
/ 

shown to be (Me5C5)4 V 4(JJ.-0)6 by infrared and mass spectroscopy.6 Paramagnetic 

(Me5C5)2 YO is a monomer in the mass spectrum, and the solid state IR shows vV = 0 at 

855 cm-1 which shifts to 820 cm-1 on isotopic substitution(180). In the solid state, the 

compound follows Curie behavior since a plot of XM-l is a linear function of temperature 

(5-300 K) with J.l.B = 1.95 B.M. and 8 = -0.49 K. The EPR spectrum at. room temperature 

in methylcyclohexane (ca. 0.1 M) consists of an eight-line pattern with giso = 1.9844 ar:td 

Aiso = 250. Both data are in the range expected for bent metallocenes with a 3d 1 

electron structure. 12 

Similarly, exposure of (Me5C5)2 Ti, l3a or better (Me5C5~ Ti(C2H4), l3b to N20 ( 4, 

atm.) in pentane yields a green insoluble material whose 1H NMR spectrum in C6D6 

indicates a mixture of compounds; resonances for (Me5C5)2 Ti(CH2C5Me4)(JJ.-0)2 and 
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(Me5C5)2 TiiJ..L-0)6 can be identified. Since the hypothetical (Me5C5)2 TiO has a vacant 

metal based orbital of a1-symmeny (half-occupied in the case of (Me5C5)2 YO), we 

postulated that this vacancy was the source of instability of the monomeric species. If 

true, doing the reaction in presence of a two-electron donor should give 

(Me5C5)2 Ti(O)(L). Addition of nitrous oxide (1 atm.) to a solution of (Me5C5)2 Ti(C2H4) 

dissolved in a 1:10 solution ofpyridine:tetrahydrofuran results in an instantaneous color 

change from green to orange and production of orange crystals of (Me5C5)2 Ti(O)(py) 14a 

on cooling the solution to -80°C in 59% yield. The titanium compound is diamagnetic 

and vTi = 0 is observed at 852 cm-1 which shifts to 818 cm-1 in the 0 18-labelled 

isotopomer. The mass spectrum shows a monomeric [M-pyt ion in the gas phase, see 

below. Using 4-phenylpyridine rather than pyridine gave orange crystals of 

(Me5C5)2 Ti(0)(4-phenylpyridine) upon crystallization from toluene that'":'ere suitable for 

an X-ray crystallographic study. 14b An ORTEP diagram is shown in Figure I for the 

toluene solvate. 15 The geometry at the titanium center is similar to that found in 

(Me5C5)2 TiC12, 16 the principal difference being that the averaged Ti-C distances in the 

titanyl are longer (2.51 ± o.osA vs; 2.44 ± o.o2A). The spread in the individual distances 

is wider, presumably reflecting greater steric congestion about the titanyl center. The Ti-

0 bond distance-of 1.665(3)A is in the range (1.61 to 1.68A) found in six structures of 

titanyl groups with vastly different ligands. 17 

The decomposition of the monomeric oxo-metallocenes is not necessarily a 

simple event since four (M = 0) units generate the M40 6 units with loss of four Me5C5 

groups; the extra two oxygen atoms could arise from two additional M = 0 units as 

illustrated in eq. 1 and 2 or from advantitious water or oxygen, Cp2 *Mo being replaced 

by "0" in eq. 2. 

* 4 Cp2 MO ~ (Cp*M0)4 + 4 Cp* 

2 Cp2 *Mo + (Cp*M0)4 ~ Cp4 *M40 6 + 2 Cp2 *M 
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In order to address this question we isolated the 180-1abelled compounds 

(Me5Cs)2 V(180) or (Me5C5)2 Ti( 180)(py) and allowed them to decompose to 

(Me5C5)4 V 4(180)xci6o)6_x at room temperature or (Me5C5)4Ti4ci8b)x(160)6_x at higher 

temperature. The tetranuclear compounds were analyzed by electron-ionization mass . 

spectroscopy as the unlabelled compounds yield molecular ions. Figure Ila shows the 

mass spectrum ofunlabelled (Me5C5)4 Ti4(0)6. The bar graphs represent the 

experimental intensities (shaded) and the calculated intensities (unshaded). Inspection 

shows that the calculated spectrum matches the experimental spectrum closely. The mass 

spectrum of (Me5C5)2 Ti( 180)( 160)(py) shows a molecular ion for 

[(Me5C5hTi(180)(160)]+ from which the isotopic ratio of 180:160 was determined to be 

0.6Q:0.40. The decomposition of this mixed isotopomer gives the tetranuclear species . '" 

whose experimental and calculated mass spectra are illustrated in Figure llb. The 

calculated spectrum was derived by assuming that all of the oxygen atoms are exclusively 

derived from the monomer of isotopic composition 180:160 = 0.60:0.40, rather than from 

some other source of 160 atoms. 18 Inspection shows that, under this assumption, the 

experimental and calculated mass spectra match very well. This is consistent with, but ·· 

does not prove, our assumption that the assembly of the (Me5C5)4 Ti4(0)6 occurs 

predominantly from (Me5C5)2 TiO. A similar conclusion can be reached for the 

decomposition of (Me5C5)2 V( 18o0.76)(16o0.24) to (Me5C5)4 V 4[(18o0:?6)(16o0.24)]6.18 

We conclude that the prolonged incubation times used by Bottomley6 precludes isolation 

of monomeric (Me5C5)2 VO and that the titanyl analogue can be stabilized by use of a 

two-electron, sigma-donor Lewis base~ 

Acknowledgment We thank the Miller Institute for a post-doctoral fellowship (MRS), 

Ms. Sheri Ogden for her help with the mass spectra, and Dr. F.J. Hollander for his help 

with X-ray crystal structure. This work was supported by the Director, Office ofEnergy 

Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. 

Department of Energy under Contract No. DE-AC03-76SF00098. 
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Supplementary Material Available. Tables of positional parameters, thermal 

parameters, bond lengths and bond angles, and crystal data (13 pages). Details for the 

mass spectral simulation ofthe molecular ions derived from (Me5C5)4 V 4(180:160)6 and 

(Me5C5)4 Ti4(18o:160)6 (5 pages). Ordering information is given on any current 

masthead page. 
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Figure Captions 

Figure 1: ORTEP diagram of (Me5C5)2 Ti(0)(4-phenylpyridine) (Toluene), solvate 

toluene is not .shown. Ti-C (ave.) = 2.51 ± O.O?A (rms deviation), Ti-Cp 

(centroid) = 2.20A, TiO = 1.665(3)A, TiN ,;, 2.215(4)A, Cp (centroid)-Ti-Cp 

(centroid)= 135°, Cp (centroid)-Ti-0 = 108°, Cp (centroid)-Ti-N = 103°, and 0-

Ti-N = 90.8(1)0
• 

Figure II: (a) The upper spectrum is for (Me5C5)4Ti4(0)6; the vertical bars that are 

shaded are the experimental intensities and the unshaded bars are the calculated 

inte~sities. (b) The lower spectrum is for (Me5C5)4Ti4 (
180:160 = 0.60:0.40)6. 
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