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THE ROTATING, CHARGED OR GF.AVITATING LIQUID DROP, 

. * 
.AND PROBLEMS IN NUCLEAR PHYSICS AND ASTRONOMY 

W. J. Swiatecki 
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 

ABSTRACT 

A survey is presented of the equilibrium configurations of a rotating 
charged or gravitating liquid mass in a way that unifies the treatment of 
idealized rotating heavenly bodies, rotating drops in a weightless environ
ment, and idealized rotating nuclei. A number of applications, especially 
to nuclear phy',sics, is described. 

I. INTRODUCTION 

Figure 1 is a photograph of the planet Jupiter. The slightly flat
tened appearance is caused by rotation. 

Figure 2 is a glass droplet from the lunar soil returned by the 
Apollo 11 mission (length about 1 rom). - Presumably it was ejected from a 
meteorite impact en the moon as a molten, rotating blob, which solidified 
in flight. 

Figure 3 is a picture of a series of sketches made by Niels Bohr on 
November 7, 1950 (his 65th birthday), durine a ~onv~rsa·U.on on the liq'lid 
d:::-cp them,:; of nuclear fission. On the right :is a. sequence of shapes of 
a fissioning nucleus of Np237, calculated in 1968 by J. R. Nix using that 
theory. (Ref. 1) 

These figures illustrate three fields in which the theory of rotating, 
charged or gravitating masses has found an application: astronomy, hydro
dyuamics in a weightless environment and nuclear physics. 

Historically the theory of rotating homogeneous masses as idealized 
representations of pla.nets, stars and nebulae goes back to Newtonls 
investigations on the figure of the earth. In the past two and a half 
ce!1turies the theory has been developed by many illustrious mathematicians, 
among them Ivfacl[tul'in, Jacobi,·Riemann, Poincare, Liapunov, Jeans, Darwin, 
Carten, l~ppell, and Lyttelton. In the last decade the subject was taken 
up anr:v! by S. Chandrasckhar and N. Lebovitz and brought to a rare degree 
of perfection in ChC'.ndrasekhar' s monumental work on '!Ellipsoidal Figures 
of Equilibrium. n (Ref. 2) 

The theory of a rotating liquid mass enc10wed with a surface tension 
but no gl'avi taticnal forces ~vas stimulated by Plateau's experiments 100 
years ago with globes of oil suspended in a liquid of the same density. 
The experiments Vlere discussed in cOrLl'lection with Laplace's nebular hypo
thesis of the origi!1 of the solar system. f..n aCCCllmt of the earlier 
investigations is given in Appell's n!,(ecanique Rationnelle li • (Ref. J, 
VO 1. 4, Ch. IX) 

The the.ory of rotating liquid masses wit.h a surface tension ,and a 
uniformelect:::-ic charge arose in nuclear physics i:1 connection witFt'he 
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study of nuclei endowed with large angular momenta. The major part of the 
binding energy of a nucleus is well represented by the model of a uniformlY 
charged liquid drop with a surface tension, and the addition of a rotational 
energy to the conventional volume, surface, and electrostatic energies of 
the liquid drop model constitutes an interesting generalization. A number 
of authors, among them Pik-Pichak, Beringer and Knox, Hiskes, Sperber, 
Carlson and Pau Lu, Cohen, Plasil and Swiatecki, Chandrasekhar, Rosenkilde, 
Mollenauer and Wheeler have addressed themselves to this problem in the 
past 15 years. (See list of references in Ref. 4. ) 

It was soon realized that the astronomical problem, Plateau's problem 
and the nuclear problem are formally special cases of a single mathematical 
structure. They can in fact be discussed in a unified way by varying 
continuously a single parameter in the equations, the parameter being the 
relative intensity of the inverse-distance (gravitational or electrostatic) 
energy. In this way a problem of irresistible scope presents itself: to 
discuss in a unified manner the equilibrium shapes of rotating masses repre
senting at one extreme idealized atomic nuclei, at the other idealized 
heavenly bodies, and covering in between engineering applications in weight
less space laboratories. In this talk r would like to give you a survey of 
the problem from this unified point of view. 

2. STATEMENT OF THE PROBLEM 

Let me first state the idealized mathematical problem precisely. We 
consider a given volume of an incompressible fluid with a sharp boundary 
(which mayor may not be simply connected--it may be in two or more pieces). 
The fluid may be gravitating and/or uniformly charged, it is endowed with a 
surface tension, and is rotating with a given angular momentum about its 
center of mass. The question is; what are the shapes of gyrostatic equilib
rium of the fluid, i.e., shapes in which the only motion of all fluid ele
ments is a uniform rotation with a cornmon angular velocity? 

The way one answers such a problem in gyrostatics is by writing down 
an effective potential energy and making it stationary with respect to all 
infinitesimal variations of the fluid boundary. This effective potential 
energy E is the ordinary potential energy augmented by a rotational energy. 
Thus in our case 

(1) 

Here ES is the surface energy,equal to the surface area of the configura
tion in question times the surface energy coefficient y; 

The quantity Er is the inverse-dist~~ce energy, the sum of inter
actions between pairs of vollli~e elementsdT1 and dT2 interacting accord
ing to an inverse-distance potential: 

• .i. 
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is the uniform density of electric charge, p is the mass 
is the constant of gravitation. (In most cases of practical 
the two quantities Pe2 , GP2 is negligible compared to the 

The rotational energy is the square of the angular momentllln L divided 
by twice the moment of inertia of the configuration in question: 

(la) 

Here r is the perpendicular distance of the volume element dT from the 
axis orrotation (passing through the center of mass of the whole system). 

For a spherical configuration with radius R these energies reduce to 

= 

= 

2 
41TR Y 

1 
2' 

2 }yffi2 ., 
where Q is the total charge and M the total mass of the system. The 
above energies provide convenient units in which to express the three 
quantities ES' El , ER, and we may then rewrite the effective potential 
energy in a dimensionress way that is (e~peciallY sui ted for a unified 
discussion of the problem. Picking ESO) as the unit for the effective 
potential energy we may write 

e: 
E 

- ECOT 
s 

= (2) 

Here ~S' a function of the shape of the configuration in question, is 
the surface eltergy in units of the surface energy of the spherical shape. 
(Thus ~S( sphere) = 1.) Similarly ~I is the inverse-distance energy in 
units of'its value for the sphere, ana ~R is the rotational energy, given 
by Eq. Cla), in units of what it would be for a sphere. 
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This way of writing the energy brings out the fact that since there 
are three energies in the problem (surface, inverse distance, rotational) 
there are two dimensionless ratios, which may be taken as the parameters of 
the unified theory. These ratios are often denoted by x and y, and defined 
as follows: 

E(O} 
1 I (Charge)2 _ G(Mass)2 (Ja) x - 270T = lO(Volume)(Surface Tension Coeff.) 

S 

y 

iO) 
& R = 5 (Angular Momentum)2 

70T 12 (Volume)(1'ass)(Radius)(Surface Tension Coeff.) 
S (Jb) 

The parameter y is a measure of the square of the angular momentum, 
and thus of the size of the disruptive centrifugal forces compared to the 
cohesive surface tension forces. When GM2 is negligible the parameter x 
reduces to the conventional 'fissility parameter' of nuclear physics, a 
measure of the disruptive electrostatic forces compared to the surface 
tension forces. 

The dimensionless effective potential energy now reads 

E = ~S(Shape) + + 2x ~I(Shape) +y ~R(Shape) (4) 

The ~'s are dimensionless functions of the 
for spheroidal shapes specified by semi-axes a,c 
axis of symmetry) one finds the following formulae 
tricity e (equal to \/1 - a2/c2 ): 

~ (1 _ e2 )1/J [1 + -1 J ~S = sin e 
2 1/2 

eel - e ) 

~I = ! (I _ e2 )l/J ! R.n 1 + e 
2 e 1 - e 

shape only. For example, 
(where c is along the 
in terms of the eccen-

(5a) 

(5b) 

(;c) 

For configurations specified by several shape parameters the ~'s are func
tions of several variables. In any case the important thing is that the 
Q's can be calculated and tabulated once and for all, independently of the 

.. .. 



.. 

I . ~.r' 

. . 

• 

-5-

particular physica.l system that is being investigated. Imagine that such a 
tabulation of the ~'s has been carried out. Then to find the configura
tions of gyrostatic equilibrium for a given system we first calculate the 
values of . x and 'y that specify that system (using Eqs. 3a, 3b), insert 
the.se in Eq. (4), and vary the shape until e: is stationary. For a different 
system we will have another pair of x,y values. To cover all possible 
systems we would vary both x and y in the full range from _00 to ~ 
and file away the results in a two-parameter filing cabinet illustrated in 
Fig. 4. This figure brings out the relations to one another of various physi
cal systems. To orient ourselves: y Q 0 means no rotation, so along the 
positive x-axis we have the domain of nonrotating idealized nuclei, from 
light to heavy with increasing x. For negative x we have gravitating 
globes. The classic case of astronomical masses for which surface tension' 
is negligible corresponds to x ~~, indicated on the left. Plateaus 
rotating globes, with no charge and negligible gravitation, correspond to 
the positive y-axis. Rotating nuclei and rotating gravitating masses with 
surface tension fill the upper half-plane. 

What about negative values of y? At first this sounds silly (a 
negative centrifugal force--an imaginary angular momentum?). In fact, how
ever, systems with negative y-values are quite possible. Thus the negative 
y-axis corresponds to a bubble in a rotating container filled with a liquid. 
The bubble is an object with negative intertial mass relative to the surround
ing liquid, ~~d experiences a negative centrifugal force which, instead of 
flattening the bubble tends to elongate it along the axis of rotation. 
(Similarly a bubble in a container filled with gravitating matter belongs in 
the lower right-hand quadrant and a bubble in rotating, uniformly charged 
nuclear matter belongs in the lower left-hand quadrant. ) 

So now we have a filing system in which results on idealized stars 
and planets, weightless globes, idealized nuclei and bubbles may be dis
played in a unified way. Let us remind ourselves what it is that we will be 
displaying in the filing cabinet. Take a rotating system with a given 
value of x,Y. You might think at first that there will be just one entry, 
the equilibrium shape of that system. In fact there will be several entries 
because a given system with a given angular momentum has, in general, many 
configurations of equilibrium. Thus the effective potential energy for-a
given system, plotted as a function of, say, two shape degrees of freedom, 
might look something like Fig. 5. This shows a metastable minimum A, as 
well as an absolute minimum C, separated by a saddle~point B. Off to the 
side there is a mountain topD. All such points A, B, C, Dare equilibrium 
shapes, although only some are stable whilst others are unstable, with 
different degrees of instability. Some of the unstable shapes are of great 
interest--for example a saddle-point shape of the type B is of crucial 
importance in the theory of nuclear fission and must be calculated in ord'er 
to estimate fission barrier heights and spontaneous fission lifetimes of 
nuclei in situations of practical relevance. 

Here let me make an important qualification of the words stable and 
unstable. In Fig. 5 one would be tempted to call A and B stable and 
C and D unstable configurations of equilibrium. For truly static, non
rotating systems (y = 0) that is indeed the case and that's all there is to 
it. But for gyrostatic systems it is not so, and it is possible--sometimes--
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to have a system oscillating around a mountain top with bounded oscillations-
rather than sliding down. This is an effect of corioUs (gyroscopic) forces, 
which are not contained in the effective potential energy E: the effective 
pOtential energy does not have in it the information about the full dynamical 
problem. This makes it obviously extremely dangerous to jump to conclusions 
about the stability or instability of the dynamical motion on the basis of 
the appearance of the effective potential energy landscape. There is, 
however, a mitigating circumstance which partly restores to the effective 
potential energy its role as a guide to the stability or instability of 
equilibrium points. Thus if there are dissipative effects present in the 
system (friction, viscosity), then, if one waits long enough so that these 
effects can assert themselves, saddles and mountain tops will, after all, 
behave in an unstable way, as one would have expected to begin with. This 
kind of instability, which requires that you wait long enough for dissipation 
to assert itself, is called secular instability. 

In what follows when I say 'unstable' I shall always mean 'secularly 
unstable' . 

Coming back to our x-y filing cabinet we see that the full problem 
of discussing the shapes of gyrostatic equilibrium of rotating masses consists 
of calculating all the important shapes, stable and unstable, for a given pair 
of x,y values, and then tracing out the behavior of these shapes as func
tions of x and y in the full x-y plane. 

How much of this complete picture is known today? I will try to give 
you an impression of that in my talk, but let me say at once that the problem 
has been only partly explored, and there remains a beautiful project for 
mathematicians, physicists and astronomers to work on. 

Let me first give you a bare-bones summary of what happens in various 
regions of the x-y plane, and then let me fill in some of the details. 

3. SUMMARY OF STABILITY REGIONS 

By piecing together old results in the three familiar regions in the 
x-y plane (astronomical masses, Plateau globes, nonrotating nuclei) and 
adding calculations and estimates in the other portions, one arrives at the 
following picture, summarized in Fig. 6. 

For small amounts of rotation the originally spherical drop is flattened 
by the centrifugal force into an oblate spheroid, independently of the value 
of x, i.e., independently of whether we discuss a gravitating liquid mass 
with or without surface. tension, or a charged nuclear droplet. For finite 
values ·of y the equilibrium configurations are no longer exaCt spheroids 
and we shall refer to these shapes as pseudospheroids or Hiskes shapes. In 
the astronomical limit of zero surface tension the oblate shapes of eqliilib
rium do happen to be exact spheroids: they are the Maclaurin spheroids. The 
spheroids or pseudospheroids continue to flatten with increasing rotation and 
they remain stable until a certain critical value of y, denoted by .. YI' which 
is a function of x. (Fig. 6) At this point the pseudospheroids become 
secularly unstable and a qualitative change takes place. The nature of the 
change depends on whether x is beloVi or above a certain critical value xc' 

\ . ' .. 
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which is today not yet deterrr~ned exactly, but appears to be in the neighbor
hood of Xc = 0.81. This corresponds to he~vY nuclei towards the end of the 
periodic table. 

If x > Xc the flat pseudospheroids become secularly unstable towards 
disintegration, by way of a triaxial deformation. 

If x < xc' and this includes the rest of the periodic table as well as 
uncharged droplets, molten asteroids and astronomical gravitating masses, the 
flat pseudospheroid becomes' secularly unstable towards conversion into a 
nonaxially symmetric configuration of equilibrium, which branches off the 
pseudospheroids at the critical value YI' This new configuration has the 
symmetry of an ellipsoid with three unequal axes and rotates about its 
shol'test axis. The other two axes are at first almost equal (when y 
exceeds the critical value by an infinitesimal amount and the equilibrium 
configuration is almost axially symmetric). Later these two axes become 
rapidly unequal, one of them becoming longer and longer as y increases, 
.and the other tending to approximate equality with the shortest axis about 
which the rotation is taking place. The general appearance of these con- . 
figurations is that of flattened cylinders with rounded ends and a somewhat 
elliptic cross section. In the astronomical limit of large negative x 
these configurations are exact ellipsoids (the Jacobi ellipsoids): otherwise 
the tips of the figure are more rounded. For certain values of x (in the 
neighborhood of 0) there is even a suggestion of a dumb-bell or hourglass 
shape. We shall refer to these configurations as pseudo-ellipsoids, or as 
Beringer-Knox shapes. 

As the angular momentwn is increased beyond the first 'critical value 
YI the pseudo-ellipsoids which exist for x < Xc become more and more 
elongated under the influence of the centrifugal force until a second criti
cal value of y is reached, denoted by Yn' At this value of y the fami:t,r 
of triaxial pseudo-ellipsoids comes to an end by way of loss of equilibrium 
towards a reflection symmetric disintegration mode. If x is greater than 
a second critical value of x, denoted by xcc (and equal to about -0.4), 
the pseudo-ellipsoids are stable shapes up to the critical value YII, when 
they cease to exist. If, however, x < xcc , the pseudo-ellipsoids lose 
stability against a reflection asymmetric disintegration mode along the 
critical curve denoted by YIII in Fig. 6. This occurs before the dis
appearance of the pseudo-ellipsoids at Y11, so that in the case of x < x 
the pseudo-ellipsoids exist but are unstable against asymmetry in the regigg 
between YIIIand YII. 

We may summarize the situation as follows: A sufficient amount of 
rotation will always disintegrate a fluid mass, be it gravitating or charged. 
The critical amount of rotation is, naturally, a decreasing function of x, 
being given by the curve YI(x) for 0.81 S x < 1, by Yrr(x) for 
-0.4 ~ x ~ 0.81 and by Y1I1(x) for ~ < x ~ -0.4. 

The disintegration occurs by way of a loss of stability against a 
triaxial mode in the first case, by way of a loss of equilibrium against a 
reflection symmetric mode in the second case, and byway of 1088 of stability 
against a reflection asymmetric mode in the third case. Note the distinction 
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between loss of stability and loss of equilibrium, Loss of sta.bility in a. 
family of equilibrium shapes means that for a parameter (e.g., y) in 
excess of a critical value an equilibrium shape exists but has changed from 
stable to unstable, i.e., the second derivative of the energy has changed 
sign. Loss of equilibrium means that the family of equilibrium shapes has 
ceased to exist: with the parameter in excess of the critical value the 
condition for equilibrium, oE:: 0, cannot be satisfied, i.e., the condition 
of the vanishing of the first derivative of the energy has no (real) solu
tions. As noted before, when we say "unstable" we mean "secularly unstable". 

-1 Finally a note about the astronomical limit x = -~, or x = O. The 
situation is similar to the case of ~ < x < xcc in that increasing 
angular momentwn leads to a loss of stability against a reflection asymmetric 
mode. Nevertheless the case of zero surface tension (x-l = 0) is a special 
case, different from the case of a finite surface tension, however small, 
in that for x-I = 0 the Jacobi ellipsoids are shapes of equilibrium for 
any value of y, even exceeding YIlt In this (astronomical) case YII does 
not mark the end of the ellipsoids ta loss of equilibrium) but merely a 
loss of stability against a reflection symmetric disintegration mode. MOre 
about this later. 

Now let me amplify this summary by discussing more fully various 
regions in the x-y diagram. 

4. NONROTATING NUCLEI, Y = 0, x > 0 

Let me start with the simplest example, the case of a nonrotating 
idealized nucleus. If one is asked what are the configurations of equilib
rium of a nonrotating, uniformly charged drop, the obvious answer is: a 
sphere. A sphere is a shape of equilibrium for any amount of charge on the 
drop, i.e., for any value of x. This isn't the complete answer, however, 
since n equal spherical fragments dispersed to infinity are also equilib
rium configurations. It follows that in the many-dimensional configuration 
space of the system there will be many potential energy hollows, one for 
each n. (You may verify triviallYfrom the definitions of <t>S and 411 
that for n equal fragments at infinity ¢s:: nl/3 , <t>r:: n-2/3, so the 
energy of the nth potential energy hollow is given by 

e: :: 

This simple equation tells interesting. things about the relative 
depths 9f the hollows. For example one learns the important fact that the 
absolute minimwn (the lowest hollow) for any given x is the one corres
ponding to approximately n ~ 4x. 

The realization that the potential-energy landscape has many hollows 
leads to an important discovery. Thus it is a simple topological require
ment that if you have several hollows in a landscape then there must be 
saddle-point passes between them. The simplest case is a one-dimensional 
landscape: if a continuous curve has two minima there must be a maximum--a 
barrier--between them. (Essentially Rolle's theorem.) For example let us 
focus attention on a sequence of deformations leading from a single charged 
spherical drop to two equal fragrr,ents at infininte separation. Figure 7 

I 
.. ..J 

{ 



.) 

-9-

indicates how the two minima must be separated by a maximum, corresponding 
to the so-called Bohr-\Vhee1er saddle-point shape for nuclear fission. To 
be specific, the configuration of a Lead nucleus at the Bohr-Wheeler saddle 
point is a. somewhat necked-in cylinder with rounded ends--a little like an 
hour-glass figure with two equal bulbs. The energy of this shape is a maxi
mum with respect to the division coordinate, but a minimum with respect to 
other shape coordinates (e.g., an asymmetry coordinate, which changes ,the 
relative sizes of the two bulbs of the hour-glass figure). Figure 7 illus
trates further that even though the saddle shape is stable with respect to 
small changes in the relative sizes of the bulbs, a sufficiently large 
asymmetry makes the energy decrease again, after passage over a mountain 
top. The mountain-top configuration of a nucleus--an asymmetric hour-glass 
figure with unequal bulbs--is called the Businaro-Gallone shape and is of 
importance for the question of "fission asymmetry"--Le., whether an ideal
ized nucleus would divide into equal or unequal pieces. Thus a central 
problem in the early years of the theory of nuclear fission wa~ first, the 
tracing out of the Bohr-\Vheeler saddle-point shape (and the associated 
barrier height) as a function of the fissility parameter x and, second, 
the tracing out of the Businaro-Gallone mountain tops. Many authors have 
contributed to the solution of this problem. Figure 8 shows some calcula
tions of saddle-point shapes from Ref. 5. The shapes range from tangent 
spheres for x = 0, through hour-glass figures, to spheroids and finally a 
sphere at x = 1. As x tends to 1 and the saddle shape approaches the 
sphere the height of the potential energy barrier against fission decreases 
and finally vanishes at x = 1. This is illustrated in Fig. 9, taken from 
Ref. 1. You may veryify by using Eqs. (5a) and (5b), expanded to the 
leading power of the eccentricity, that the loss of stability of a charged 
sphere does indeed occur at x = 1. With a little more trouble, by expanding 
to the next power in e2, you may also calcula}e )fron these expressions t.hat 
the barrier height for fission, in units of E~O, is given by 

Barrier 
E(O) 

S 

98 3 =135 (1 - x) + higher powers of (1 - x) (6) 

When 1 - x is not small this formula is not applicable and numerical 
methods have to be resorted to in order to calculate the barrier heights in 
their dependence on x. Numerical methods, using digital computers, were 
also necessary to trace out the behavior of the Businaro-Gallone mountain 
tops, and to establish the important result that they exist only if x is 
greater than 0.396. (A consequence of this is that the Bohr-Wheeler 
saddle shapes are stable against reflection asymmetric deformations for 
x > 0.396 and unstable for x < 0.396.) 

It would be too cumbersome for me to display all these symmetric and 
asymmetric shapes in detail, so let me show you a condensed summary of the 
behavior of the Bohr-Wheeler and Businaro-Gallone equilibrium shapes as 
functions of x. 

Figure 10 shows just the ma,ior and minor semi-axes, essentially the 
tip.-to-center-of-mass distance and. the neck radius of these elongated 
figures. In the upper part of the figure you see the major semiaxis 
of the Bohr-Wneeler shnpe as it increases at first with lncreasing x ru1d 
then, rather s·uddenly, begins to decrease around x::: 2/3, finally tending 
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to 1 (the sphere) at x:; 1~ The Businaro-Ga11one shapes,. being reflec
tion asymmetric, have two unequal tip distances, indicated by the dashed 
curve which branches off (bifurcates from) the solid curve at x;:: 0.396. 
The lower part of the figure shows the behavior of the neck radius, 

Through such numerical studies the properties of the Bohr-Wheeler 
shapes are noV[ mown adequately. But the story of the Businaro-Ga110ne dumb
bells is not completely cleared ~p even today, It is only relatively 
recently that one realized that they probably disappear again for x 
greater than about 0.8, so we have the peculiar result .that a charged drop 
possesses a Businaro-Gallone asymmetric shape of (unstable) equilibrium only 
if its fissility parameter is between about 0.4 and 0.8 (in round numbers). 

Let me now give you a few examples of the relevance of this theory of 
the equilibrium shapes of an idealized charged liquid drop to nuclear 
physics. To begin with, Fig. 11 illustrates how the sum of a volume energy, 
a surface energy and ~~ electrostatic energy of the stable spherical equilib
rium configuration of an idealized liquid drop reprod1lces the principal 
features Of the nuclear binding energies. (The quantity plotted in Fig. 11 
is the "mass decrement", closely related to the nuclear binding energy.) The 
curve is a liquid drop model fit to the experimental data. The deviations, 
up to - 12 MeV, are caused by nuclear "shell effects", which set a limit to 
the applicability of the liquid drop model. The total binding energy of a 
heavy nucleus is almost 2000 MeV, so on a gross scale the fit is satisfactor~ 
On a finer scale one has to worry about the shell-effect deviations. This 
is illustrated in the 10Vler part of Fig. 12, where the deviations from the 
liquid-drop model fit to nuclear masses are shown for some heavy nuclei. 
The largest deviation Js at the "doubly magic ll nucleus Pb208 ., where the 
shells at N;:: 126 and Z;:: 82 give an additional binding of some 12 MeV. 

The upper part of Fig. 12 compares the experimental and calculated 
masses for the same set of nuclei, but when their shapes are the deformed 
Bohr-Wheeler configurations instead of the near-spherical ground states. 
As expected (from the theory of shell effects) the deformation seems to have 
destroyed the extra shell-effect binding, and the liquid drop theory now 
reproduces the masses to within a couple of MeV. The increase of the 
saddle-point masses with decreasing x is essentially that predicted by the 
barrier formula, Eq. (6). 

It is from such fits to nuclear ground state and saddle-point masses 
that one estimates that the surface energy coefficient of nuclei is about 
1 MeV/fm2 or, equivalently, that the surface energy of a nucleus with mass 
number A is about (18 M.eV)A2/3. Knowing this fact we may calculate the· 
fissility parameter of a nucleus with mass number A' and charge Ze as 
follows: 

~O) = 

;:: 

3 (Ze)2 
5" -R-

(the electrostatic energy of a uniformly charged 

sphere of radius R) 

18 A2/3 -w..eV. 

·11 . .1 

, 
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Remembering that R ~ 1,2 Al!3 fro and e2 ~ 1,44 MeV fm (1 fro ~ 10-13 em) 
we find 

x in round numbers. 

As we saw, the barrier against nuclear fissio~ vanishes at x = 1, which we 
can now translate into the statement that (2 !A) ~ 50 for stability 
against fission. This is a most fundamental prediction of the liquid drop 
theory of nuclei, for it provides an interpretation of the termination of 
the periodic system of chemical elements somewhere in the vicinity of atomic 
number 100. The basic reason why there are only some 100 elements found 
in nature is that (even after stability against alpha and beta decay has been 
assured) the intensity of electrification for heavier nuclei begins to 
violate the liquid drop stability criterion x < 1. 

I have given you only a few specific examples of the application of 
the liquid drop theory to nuclei. To get a broader perspective let me say 
that in the last 10 years we have learned how to calculate the potential 
energies of nuclei, in their dependence on N, 2 and the nuclear shape, with 
an accuracy of about l·in 1000. This has been possible in virtue of a two
part approach, where shell corrections of about 10 MeV are added to a smooth 
background of hundreds of MeV. This smooth background, an indispensable 
part of the nuclear energy, is provided by the model of a charged liquid 
drop. 

5. ROTATING NUCLEI AND THE PLATEAU CASE, x ~ 0, y > 0 
. . 

If an uncharged globe with surface tension is rotated, it flattens 
at first into an oblate pseudospheroid which, with increasing angular momen
tum (increasing y), eventually goes over into a torus. ,(See Fig. 13.) 
Well before this happens, at the critical value YI equal to 0.2829, the 
oblate shape becomes secularly unstable towards conversion into a triaxial 
pseudo-ellipsoid rotating about its shortest axis, analogous to the Jacobi 
ellipsoid. In contrast to the Jacobi ellipsoids, the family of pseudo
ellipsoids comes to an end at the critical value YII' equal approximately 
to 0.785 for x = O. (See Fig. 6.) For uniformly charged (nuclear) drops 
the critical values YI and YII decrease with x. Figure 14 gives some 
details of the case x = 0.3, corresponding to nuclei in the general 
vicinity of atomlc numbers 2 ~ 35. The major semiaxis ~ax/Rfor the 
pseudo-spheroidal (Hiskes) shapes increases gradually with y. At Y = 0.18 
the pseudo-ellipsoidal (Beringer-Knox) shapes bifurcate. The curve for the 
semiJnajor axis of this family continues to increase with y up to the 
critical turning point YII' where it goes around a bend. After the bend 
the curve describes the semimajor axis of the triaxial saddle-point shape 
(the Pik-Pichaksaddle) for fission. This shape is the generalization to 
the case with angular momentum of the hour-glass Bohr-\'i'heeler saddle. The 
y = 0 member of this family of Pik-Pichak saddles is in fact a Bohr-Wheeler 
shape. 

Figure 15 gives an indication of the actual appearance of these shapes 
For example, in the upper right-hand part the sphere labeled H (for Hiskes) 
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is the equilibrium shape and the hOUT.'-gla,ss figure PP (for Pik-Pichak) is 
the saddle-point shape for y = O. At Y = 0.16 the Hiskes shape has flat
tened into a pseudo-spheroid and the neck of the Pik-Pichak shape has thick
ened. At y = 0,24 the stable ground state is now a Beringer-Knox psuedo
ellipsoid. For y = 0.4 the Beringer-Knox shape shows some necking and is 
about to coalesce with the Pik-Pichak saddle shape. All the Beringer-KnOx 
shapes and all the Pik-Pichak shapes (except the one for y = 0) are slightly 
triaxial. In the figure only tne mean section of these triaxial shapes is 
indicated. 

A practical application of these calculations is the prediction of 
the existence of "super-deformed" nuclei, elongated into cylinder-like 
shapes with a ratio of axes of about 2:1 by the centrifugal forces arising 
from the collision of two nuclei. As an example the bombardment of a Si 
target with .Ax ions of about 170 MeV energy might lead in a fraction of 
the collisions to super-deformed compound nuclei. 

The discovery of such nuclei, stretched out by the centrifugal force 
into triaxial shapes, so closely analogous to the classic Jacobi ellipsoids, 
would be an exciting event. So far insufficient effort has been devoted 
to the identification of such nuclei and they have not been seen eA~eri
mentally. 

6. ASTRONOMICAL LIMIT x + _ex>, y > 0 

Let me now review the left-hand edge of our filing cabinet: the 
classic problem of a rotating gravitating mass (without surface tension). 

First a small chf8~e in notation. Since there is now no surface 
energy the ratio of ER to the gravitational energy of a sphere is a 
natural parameter. Thus we introduce 

t = 

This parameter is a measure of the disruptive centrifugal force 
compared to the gravitational cohesion. (It is half the tangent of the 
angle to a point x,y in the x - y plane, measured clockwise from the 
negative x-axis.) 

As you know a gravitating mass with small angular momentum (small t) 
assumes the shape of an oblate spheroid (the Maclaurin spheroid)~ Such 
a spheroid remains a shape of equilibrium for all values of t, flattening 
more and more towards a thin disc as t tends to infinity. In 1834 Jacobi 
made the startling discovery that if the angular momentum exceeds a certain 
critical value Ct > 0.192) a triaxial ellipsoid is also a configuration 
of equilibrium, and in fact secular stability passes from the Maclaurin 
to the Jacobi shapes. Towards the end of the last century Poincare showed 
that as one moves along the Jacobi sequence of ellipsoids, other distinct 
families of equilibriuJIl shapes bifurcate at definite values of the angular 
momentum. The first such crossing occurs at t = 0.316. For values of t 

. '" 
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less than 0.]16 there exist l in addition to the Mac1~urin and Jacobi 
ellipsoids, also reflection-asymmetric ("pear-shaped") figures of equilibrium. 
At t = 0.486 another crossing occurs, this time by a reflection symmetric 
family. For t >0.486 these shapes have the appearance of a Jacobi 
ellipsoid modified by a necking or waist in the middle, and for t < 0.486 
they look like a Jacobi ellipsoid vnth a bulge in the middle and two neckings 
on either side. (One !!light give Paul Appell's name to this family. ) 
Further such crossings at t = 0.903, 1.161, etc. correspond to higher 
ellipsoidal harmonic ripples on the basic Jacobi figure. (I have called 
them Humbert and Orlov families, respectively, after two mathematicians who 
contributed to locating their bifurcation points). 

Figure 16 summarizes the behavior of these families in the usual way· 
by plotting the semi-major axis as a function of . t. Also snown in Fig. 16 
is a further family of equilibrium shapes, the system of two equal fragments 
rotating about their common center of mass (Darwin's binary "star" system). 
In this configuration of equilibrium each half has to a good approximation 
the shape of a triaxial ellipsoid. The length of the whole figure goes to 
infinity with increasing angular momentum. With decreasing angular momentum 
the two "stars" approach each other and, finally, as the centrifugal force 
becomes too weak to support the increasing gravitational attraction, the 
family of Darwin's binaries comes to an end around t = 0.484. Combining 
some of Jeans' early speculations with our own more recent studies, I have 
sketched in (as a dashed curve) the probable fate of this family. After 
bending out at t = 0.484 it probably bends back again at t ~ 0.65 
(this value is not knO\VTI accuratelY), to join the dumb-bell-like Appell 
family of shapes! We anticipate a similar connection between the Orlov 
family and a three-star family (a system of three colinear frabJJlents with 
refle~tion symmetry rotating about the common center of mass). 

1be most important feature of Fig. 16 is the critical value t = 0.316, 
where the Poincare pears bifurcate. Its physical significance is that 
beyond this value the Jacobi ellipsoids are unstable and any additional 
angular momentum would rnake them disintegrate. A lot has been written in the 
.past 100 years about the question what a Jacobi shape would disintegrate 
into, and the question remains unanswered. There are two aspects of the 
problem that have not been stressed, as far as I know, but which seem 
obvious when you exploit the analogy of this problem to the phenomenon of 
nuclear fission. The first is that the Poincare pears are saddle-point 
shapes in the same sense that the Bohr-Wheeler dumb-bells are saddle-point 
shapes, i.e., they both determine the barrier against disintegration for a 
system that has not yet reached the limit of stability (Which limit is given 
by x = 1 in the nuclear case and t = 0.316 in the gravitating case). 
From this point of view it is strange that the Poincare pears have received 
so little attention once it was found they were unstable. In the nuclear 
case, you will remember, the tracing out of the unstable Bohr-Wheeler 
saddles was the outstanding problem of fission theory. By contrast, in the 
gravitational case, we still don't y~oW what happens to the Poincare pears 
as t is decreased below 0.316! This is a fascinating riddle. It seems 
rather certain that for t = 0 the Poincare pears no longer exist, so 
where and how did they disappear? . 
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The second neglected aspect of the question how the Jacobi ellipsoids 
might disintegrate is what lies beyond the Poincare saddle-point pass? In 
particular, what is the absolute minimum in the effective potential energy 
towards which the disintegrating Jacobi ellipsoid is presumably drawn after 
overcoming the saddle pass in the barrier against disintegration? In the 
nuclear case the absolute minimum in the energy is n equal fragments at 
infinity, the optimum value of n depending on the value of x (approxi
mately nopt Z 4x). In the gravitational case it does not seem ever to have 
been statea clearly what the absolute minimum in the effective potential 
corresponds to. The answer is pathological but instructive. Thus in order 
to reduce E in Eq. (1) to its lowest possible value (in the case of 
negative x) one should divide the total mass into one large spherical part 
and one very small part (a "satellite"), and place the small part so far 
away that, despite its smallness, the moment of inertia of the whole figure 
is very large. By making the size of the satellite tend to zero but its 
distance tend to infinity sufficiently rapidly one can make the moment of 
inertia tend to infinity, and thus make the rotational energy vanish. One 
thus arrives at a configuration whose gravitational and surface energies 
are no greater than those of a single sphere, but whose rotational energy 
has been reduced to zero by the artifice of making the satellite carryall 
the angular momentum at a vanishingly small rate of rotation. 

This simple observation, that the absolute minimum in the effective 
potential corresponds to a very asymmetric configuration of a small satellite 
at infinity, may be the bRsic reason why the Jacobi ellipsoid becomes 
unstable with respect to an asymmetric (pear-shaped) deformation. This 
asymmetry, which makes one tip of the ellipsoid more pointed (and the other 
less) may be an expression of the underlying urge of the rotating figure to 
emit a small satellite and send it off to infinity. This speculation also 
suggests a solution to the riddle of what happens to the Poincare pear as 
t is decreased below 0.316. My guess is that as the tip of the Pear 
becomes more elongated with decreasing t it eventually reaches out to the 
"neutral point" in the potential i.surrounding the pear (the neutral point in 
the sum of the gravitational and centrifugal potentials). Such neutral 
points are always outside the surface of a ~Aaclaurin or Jacobi ellipsoid, 
but for the Pear there is no reason why the elongating tip should not touch 
the neutral point. Physically this means that at the tip the centrifugal 
force has overcome the gravitational attraotion and matter begins to stream 
out from it. (An analogous streaming occurs when a dielectric drop is put 
between the plates of a condenser, and the electric field increased. The 
drop stretches at first into an elpngated pseudospheroid, but at a critical 
field the tips sharpen up and begin to emit a stream of droplets. See 
also Ref. 6.) 

A further thought which is suggested by these considerations is that, 
in general, the configuration of an infinitesimal satellite placed at the 
neutral point (or the lowest neutral point, if there are several) i.e~, a 
satellite in synchronous orbit around the central body, is a configuration of 
equilibrium whose formal significance is that of a saddle-point pass that 
must be overcome when converting a given rotating configuration of equilib
rium into the absolute minimum configuration of a sphere and a satellite at 
infinity. Thus, in addition to all the families of equilibrium mentioned 
so far, there is a matching set of "Ghost Families", identical to the 
basic set but with an infinitesimal satellite (or satellites) in a synchro
nous orbit. 

• # 
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Figure 17 is an attem~t to summarize these speculations, The maximum 
radius vector (tip-distance) of the Ghost Families is the radius of the 
synchronous orbit and thus the Waclaurin and Jacobi Ghosts are shown as 
dashed curves above the conventional families. In the C3se of the Poincare 
pear the elongating tip meets its Ghost ina typical limiting point (when 
the tip touches the s~~chronous satellite), with the result that no Poincare 
pears exist below some critical value of t, yet to be determined. Similar 
turning points probably mark the 1imi ts, on the left, of the Appell, 
Humbert and Orlov families as their tips touch the relevant neutral point's. 

7. THE LDlIT 
-1 x -+ O. THE BROKEN SYMMETRY HYPOTHESIS 

A puzzle arose in trying to fit together the case of large negative x 
and the astronomical case of x-I = O. Thus for large but finite negative 
x values our calculations indicated that the rotating triaxial Beringer
Knox pseudo-ellipsoids come to an end at a finite value of the angular 
momentum, given by YII' which corresponds to a limiting t of about 
0.6-0.7. But in the astronomical case the Jacobi ellipsoids are known to 
continue on to infinite values of t. \TJhat then happens between x-I 
small, and x-I zero, 1. e., what is the difference between the case of a 
finite surface energy, however small, and no surface energy? I think the 
answer is as sketched in Fig. 18. In the case of no surface energy the 
Jacobi and Appell families cross (at t = 0.486), as discussed in Sec. 5. 
When the surface energy is switched on the crossing is, I believe, broken, 
and the Jacobi-like shapes continue on to become the Appell symmetric dumb
bells, whereas the double-waisted Appell figures merge into what used to be 
the Jacobi shapes beyond the crossing. Formally such a breaking of the 
crossing between f&uilies of solutions is well-knowTI, for example in atomic 
or nuclear spectroscopy. Crossings (of eigenvalues) are in fact the excep
tion rather than the rule and are only possible if special symmetries are 
satisfied. I believe the analogy carries through to the present situation. 
(In both cases the formal problem is the diagonalization of a secular . 
determinant.) It is only because of the special symmetry (in a generalized 
sense) of the pure inverse-distance problem (which also results in pure 

. ellipsoids being exact solutions) that a crossing between two families like 
the Appell ~~d Jacobi shapes is possible. The addition of the slightest 
amount of surface energy breaks this symmetry and the families no longer 
cross. From this point of view the astronomical case, which had been 
studied for centuries, is an atypical situation, and a study of the case 
with surface tension is important, among other things, in restoring the 
proper perspective on the general problem. 

With the above hJ~othesis it is possible to connect the case with 
surface tension with the astronomical case in a way indicated in Fig. 19. 
The continuation to minus infinity of the critical curveYn(x) in Fig. 6, 
where the Beringer-Knox shapes bend back into the Pik-Pichak shapes (see 
Fig. 14) corresponds to the critical value t ~ 0.65, where the Appell shapes 
bend down to become the Darwin-Jeans shapes. (Fig. 16) The second bend 
in Fig. 16 at t = 0.484, where the Darwin-Jeans shapes become the Darwin 
binaries, may be traced to finite values of x and is indicated as the 
critical curve YIV in Fig. 6. 
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The continu~tion to minus infinity of the dashed part of the curve 
Yrrr(x) in Fig. 6, where the Beringer-Knox shapes lose stability against 
asyrrnnetry, corresponds to the critical value t = 0.316 , whe:re the Jacobi 
shapes lose stability against a pear-shaped deformation. According to our 
broken symmetry hypothesis there is no critical curve for finite values of 
x corresponding to the crossing at t = 0.486 of the Jacobi and Appell 
families. On the other hand, one is led to the prediction (quite unexpected 
unless one is aware of the astronomical limit) that in the case of finite 
(negative) x there must exist further families of equilibrium shapes 
beyond the limiting angular momentum Yrr. These families would correspond 
to the astronomical Jacobi family and its bifurcations, but with the cross
ings at even harmonic bifurcations (Appell, Orlov etc. ) broken according to 
the scheme of Fig. 18. The fate of these families as the surface tension 
increases is completely unknown. 

8. LOOSE ENDS 

r have already mentioned several questions and puzzles that have not 
been answered satisfactorily. r should also say that many of the results 
r quoted are only approximate and in some cases quite uncertain. In addi
tion there is a whole list of families of equilibrium shapes that I have 
not even mentioned, some of which have been studied to a limited extent. 
Let me make a partial list: 

1. Equilibrium shapes for y < O. 
2. Equilibrium shapes in the form of spherical harmonic distoritions 

of a sphere, which cross the spherical family asx increased beyond 1. 
(These crossings are like the infinitely many Poincare crossings of the Jacobi 
ellipsoids. ) 

3. Families of multiply-necked cylinders which for y = 0, x ~ 0 
tend to strings of equal spheres in contact. Branchings from these families 
that occur as x increases. 

4. Families v/hich for y = 0, x-+-O tend to other arrangements of 
equal spheres (triangular, tetrahedral, etc.). 

5. Tilick-walled spherical shells (nuclear bubbles); a pair of such 
.configurations appears when x exceeds 2.0216. 

6. Unequal spherical fragments ~t infinity. 

The list could be extended indefinitely. 

CONCLUSION 

I hope that I have succeeded in giving you an impression of the rich
ness of the problem defined so in.T1ocent1y as the search for equilibrium 
shapes of a rotating mass. Even in the nuclear case with no rotation one is 
drawn by stages from thinking of a single sphere as the solution, to the 
inclusion of many equal fragments at infinity as formal solutions, and then 
through topological arguments to the realization that there must also be 
dumb-bells with equal or unequal bulbs and many other families as well. 
With rotation included the mathematical structure acquires baroque ramifica
tions. One of the joys of disentangling this structure has been the unifica
tion of the astronomical, hydrostatic and nuclear problems, and the insights 
gained by confronting the different fields. 

, 
.! 
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Let me end by stressing that the problem of the equilibrium configura
tions of a rotating drop or bubble with inverse-distance interactions 
defines a beautiful mathematical structure which ha,s been only partially 
explored, Even gross qualitative questions remain unanswered~ and there is 
a serious lack of quantitative results, 
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FIGURE CAPTIONS 

1. The planet Jupiter. 

2. A solidified glass droplet, abou~ 1 mm in length, from the lunar soil. 

3. Sketches made by Niels Bohr during a conversation on the liquid drop 
theory of nuclear fission and (on the right) shapes of a fissioning' 
Np237 nucleus calculated by J. R. Nix according to that model. 

4. Various physical systems arranged according to the x and y parameters 
specifying the intensities of inverse-distance and rotational energies 
relative to the surface energy. 

5. A schematic potential energy surface illustrating a metastable hollow A, 
the absolute minimum C, a saddle-point B and a mountain top D. 

6. Stability properties of various systems in the x-y parameter plane. 

7. Schematic potential energy map for a nucleus, showing the spherical 
equilibriu..TIl hollow, the two- and three-fragment valleys, the Bohr
Wheeler saddle pass and the Businaro-Gal10ne mountain tops. 

8. Nuclear saddle-point shapes in their dependence on the fissility' 
parameter x. 

9. The deforJ!!8.tion energ'J of three he9.VY nuclei with fissili ty parameters 
0.6, 0.8, and 1.0. At x = 1.0 the fission barrier vanishes. 

10. The major and minor serrJ-axes of the Bohr-Vfueeler saddle shapes in their 
dependence on the fissility parameter x. The dashed curves give the 
semi-axes of the Businaro-Gullone shapes. 
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11, The mass decrements (related to binding energies) of nuclei and the fit 
obtained by means of the liquid drop model, 

12. The lower part shows the deviations of the ground state masses of heavy 
nuclei from a liquid drop model fit, The upper part compares the 
experimental and calculated masses for the same nuclei deformed into 
their saddle-point configurations. 

13. Axially symmetric equilibrium shapes for uncharged (Plateau) globes as 
function of the rotation parameter y. (The axis of symmetry is 
vertical. ) 

14. Y~jor semi-axis for Hiskes oblate shapes, Beringer-Knox triaxial shapes, 
and Pik-Pichak saddles as functions of y, for x = 0.3. 

15. Ground states (heavier lines) and saddle shapes (lighter lines) for 
x = 0 and x ~ 0.3 and various values of y. In all figures H 
refers to "Hiskes", BK to "Beringer-Knox" and PP to "Pik-Pichak". 
Hiskes shapes have axial symmetry about the axis of rotation (vertical 
axis). The Beringer-Knox and Pik-Pichak shapes shown have approximate 
symmetry about the horizontal axis and only a mean transverse section 
is displayed for these shapes. (For x = 0, y = 0 the saddle shape 
is two spheres in contact. ) 

16. Major semi-axis for astronomical families of shapes. 

17. Speculathpe (and schematic) extension of Fig. 16 to indicate the 
probable relation of the known equilibrium. families to their "ghosts" 
(configurations with an infinitesimal satellite in synchronous orbit). 

18, Illustration of the breaking of crossings between equilibrium families 
associated with a symmetry-breaking force, such as 'the surface tension. 

19. The fitting together of the nuclear and astronomical domains in the 
x-y plane. 

v 
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r------------------LEGALNOTICE--------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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