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Abstract 

A simple, efficient, spectrally-accurate numerical method for solving variable­
coefficient elliptic partial differenti~l equations in periodic geometry is described. 
Numerical results show that the method is efficient and accurate even for dif­
ficult problems including convection-diffusion equations. Generalizations and 
applications to phase field models of crystal growth are discussed. 



.1 Introduction 

This paper presents a new numerical method for solving the variable-coefficient 
second-order elliptic partial differential equa:tion 

d d d 

.Cu(x) := L L a;j(x)8;8ju(x) + Lb;(x)o;u(x) + c(x)u(x) = f(x) (1.1) 
i=l i=l i=l 

in a box B = [0, 1Jd in Rd, with periodic boundary conditions imposed on the 
boundary 8B of the box. We assume that the coefficients are smooth and 
periodic, with c( x) 2:: 0, and we assume uniform ellipticity 

d 

Ml~l 2 2:: L a;j(:r:)~i~j 2:: ml~l 2 (1.2) . 
i,j=l 

for all~ E Rd and some constants M, m > 0. We do not require self-adjointness. 
The method is based on representing u as a volume potential 

u(x) = l G(x, x1)(1'(x')dx' = _c-I(1'(x) (1.3) 

formed with the Green function G for the constant-coefficient averaged operator 

d d d 

C := L L ii;j8;8i + L b;o; +c. (1.4) 
i=l i=l . i=l 

Here g = fn g(x)dx. The. operator A:= .c.C- 1 is a bounded invertible operator 
on L2(B), and the equation A(1' = f is equivalent to (1.1) but easier to solve. The 
solution u of (1.1) can be recovered from (1' by evaluating the volume potential. 

This method is simple, but appears to have been unaccountably overlooked 
by previous researchers. It. is spectrally accurate in the· sense that the error 
decreases faster than any power of the grid size h as h,_.O, because convolu­
tion with the Green function G can be applied with spectral accuracy. It is 
efficient because A is a bounded invertible operator on L 2(B), so reasonable 
discretizations of A have bou:nded condition numbers :independent of mesh size, 
and iterative methods then converge (according to folklore) in an asymptotically 
bounded number of iterations. The method is extremely simple to program and 
trivial to parallelize, since most of the computational effort is spent performing 
the fast Fourier transform. It works well even for convection-diffusion problems 
where the operator is far from self-adjoint; we note that the coefficients change 
sign frequently in our numerical examples, but the accuracy obtained depends 
only on the smoothness of the solution. The solution time grows as the com­
plexity of the problem increases, but for a fixed problem it remains bounded as 

. the mesh size decreases, once the solution is resolved. 
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We discuss generalizations in §5~ the most important is efficient high-order 
accurate schemes for variable-coefficient problems in arbitrary smooth domains. 
The method also can be used to solve higher-order elliptic problems and systems; 
an example of the latter is the application to BDF discretizations of phase field 
models for crystal growth which we discuss in §4. 

2 The method 

Consider the equation (1.1), and average the coefficients over B to produce the 
constant-coefficient operator 1:, given by (1.4). By uniform ellipticity (1.2) and 
the linearity of averaging, 1:, is elliptic with the same m, M as C. If c is strictly 
positive, then 1:, is invertible; otherwise, c = 0 and we work with the subspace 
of L2 (B) consisting of functions with mean zero, where C is invertible. For 
simplicity of exposition, we assume from now on that c > 0. 

Since 1:, has constant coefficients and the geometry is periodic, we use Fourier 
series. For convenience, we use mult.iindex notation. Thus zd is the space of 
d-dimensional integer sequences k = (k1 , k2, ... , kd) where each k; is a positive 
or negativ~ integer, and we set lkl =max jk;j. We take our Fourier series in the 
form 

u(x) = 2:: e2"tk·xa-(k) 
kEZ• 

where t = A and the Fourier coefficients iT( k) are defined by 

iT(k) = l e- 21ftk·."'u(x)dx. 

Then we can apply A explicitly: 

(2.1) 

(2.2) 

. "' 'Lf1.=1 a;;(x)27rtk;2nki + 'L1=l b;(x)2nk; + c(x) 2 k· , 
Au(x) = ~ ' d _ d _ _ e 1ft xu(k). 

kEZd Li,i=l a;;27rtk;27rtk; + Li=l b;27rtk; + c 
(2.3) 

The hypothesis (1.2) implies that the denominator can vanish only at k = 0 
and then only if c = 0, and if this happens we simply work only with functions 
having zero mean and ignore the k = 0 component. From the elementary theory 
of psudodifferential operators [SR91], it is clear that A is a bounded operator 
on L2 (B). Also, A is invertible (assuming c > 0) since C maps L2 one-to-one 
and onto the Sobolev space H-2(B), while 1:, maps s-2 (B) back onto L2 (B). 
The equation Au= f therefore has a unique solution iff E L2 (B), and we can 
recover u from u by applying the Green function u = £- 1 u. 

The numerical method now has three independent components; first, we need 
an iteration for solving Au = /, second, we need to approximate A·= c£-1 

accurately, and third, we need to apply £ to u to get u. 
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We expect that almost any standard iterative method {such as GMRES 
[SS86], QMR [FN91) or BI-CGSTAB [vdV92)) for nonsymmetric problems will 
work here, because A is bounded and invertible, so reasonable discretizations 
will produce a linear system with a condition number which is bounded indepen­
dent of the mesh size. It is widely believed that iterative methods converge at 
a rate which depends primarily on the condition of the system being solved, al­
though such theorems have been proved only for simpler iterations (Richardson, 
conjugate gradient, Schulz) and mostly for symmetric positive definite systems. 

Our method can be seen as an analytic preconditioning of the differential 
operator, rather than a matrix preconditioning of a discretized problem. Ma-. 
trix preconditioning helps solve a discrete problem even when it is not a good 
approximation to the continuous problem, but then the value of the computa­
tion is unclear. Our method can also be seen as an extension of the iteration 
presented in [CG73) to more general operators. 

We now approximate Au in the natural way by evaluating the Fourier co­
efficients of (r numerically, mult.iplying by the appropriate factors, and trun­
cating the Fourier series. Thus we lay down a uniform gri<J of Nd points 
Xj = (j 1 h,Hh, ... ,jdh), where h = 1/N and each j; runs from 1 toN. Since 
the problem is periodic we identify:~:; = 0 with :~:; = 1. We approximate a(k) 
for lk I :::; N /2 by the trapezoidal rule 

'N 

a(k) ~ n/,(k) := hd 2:: e- 21r'bin(xj) 
j;=l 

with an error which is spectrally small, in other words 

(2.4) 

(2.5) 

as h~O. for every fixed k and every p ;:=: 1. (Alternatively, by postprocess­
ing the trapezoidal rule by attenuation factors depending on k [SB80), we can 
approximate a(k) to O(hP) accuracy 1tniformly ink.) 

These approximate Fourier coefficients can be evaluated by the FFT [SB80), 
which requires O(Nd log N) operations, and multiplied by 

~· . 1 
£ ( k) := d - . d - - (2.6) 

. Li,j=l a;j27rtk;21rtkj + Li=l b;21rtk; + c 

to obt~in ?cih(k). The averages aii are approximated by trapezoidal sums 
over the mesh points; since this is also an average, it preserves ellipticity just as 
well as integrating. Then we approximate Au by 

d -2: a;j(x) 2:: 21rtk;27rtkje21rlk·x c-l (h(k) (2.7) 
i,j=l lki$N/2 
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J 

d 

+ L b;(x) L 21Ttk;e 2"'k·x ?ci,.(k) 
i=l jkj:5N/2 

+ c(x) L e2"'k·x 0 ci,.(k) 

jkj:5N/2 . 

(2.8) 

(2.9) 

We have to extract the x-dependence from the sums in order to evaluate them on 
the mesh with the FFT. If we take advantage of the equality of mixed partials,· 
we need 1+(d+ 1)(d+2)/2 FFT's and (ll+ 1)(d+2)Nd/2 multiplications and 
additions to evaluate A,.u, assuming that the ( d+ 1 )( d+2)/2 distinct coefficients 
of .C have already been evaluated at the mesh points. 

Thus each application of A 11 costs O(Nd log N) operations, even though the 
matrix has N2ll elements. If we can solve A,.u,. = f in a number of iterations 
independent of the mesh size, then the total cost will be O(Nd log N), only 
'a constant factor times the cost of solving a constant-coefficient problem and 
much smaller than the cost of solving .Cu = f by standard iterative or direct 
methods or even the cost of a standard multiplication by A,.. Our experiments 
show that in fact, once the solution is resolved, the number of iterations does 
not increase as the mesh is refined. 

Once we solve AJ.O'Jo = f, we have O'J., so we compute an approximate solution 

tth in the natural way. We multiply the Fourier coefficients rf,, by f=l and 
evaluate the resulting truncated Fourier series tti, ori the mesh. Usually u,. is 
more accurate than u,., since the higher modes are damped by £- 1

. 

It may be worthwhile to compare our method with some of the many other 
techniques available for this problem. The advantage of our method over multi­
grid methods [Bri87] (which are equally efficient for a given grid size but less 
accurate) is its spectral accuracy, while the advantage over standard spectral 
methods [CHQZ87] (which are equally accurate but less efficient for a given grid 
size) is its efficiency. 

3· Nu1nerical results 

Our numerical results use d = 2 dimensions and a solution tt given by 

(3.1) 

We calculated CT and f from u by applying £ and .C exact.ly, then solved the 
problem numerically and calculated the error in CT and u. 

The variable coefficients of .C were constructed from six (M +1)2-term Fourier 
cos1ne senes 

M M 

F,(x) = L L Fk cos(27rklxl) cos(21rk2x2) (3.2) 
k,=O k2=0 
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with coefficients F~ generated randomly on [-1,1] for each s = 1 through 6. 
Since we want .C elliptic, we generated a 2 by 2 upper triangular matrix F with 
entries F1, F2 and F3 , and set ( a;j) = I + FT F where I is the 2 by 2 identity 
matrix. Thus a11 = 1 + F{, a12 = 2F1F2, a21 = 0, and a22 = 1 + Fi + Fj. 
The hypothesis of uniform ellipticity is satisfied with m = 1. The first-order 
coefficients b; were given by random Fourier series F4 and F5 ,~ multiplied by a 
convection coefficient f3 which was varied to increase the convective terms. The 
zero-order coefficient c was formed by setting c = ~Fl, to ensure c(x) :::; 0. 
Note that the second-order and zero-order coefficients can vary on scales twice 
as small as the first-order terms, since they are quadratic functions of the F;'s. 

The choice of starting values is important in iterative methods; we experi­
Inented with four starting strategies of increasing accuracy. First CT = 0, second, 
CT randomly generated, third, CT = f; and fourth, CT constructed recursively by 
solving the problem on a coarser grid and using trigonometric interpolation. 
The first three methods.required more time than the last, so we present results 
only for the last strategy, with the solution initialized on the coarsest grid by 
setting CT = f. We display results in Figure 1 in the form of log-log plots of 
maximum error in u divided. by maximum of u, versus total CPU timeT on a 
Cray-2 in seconds; the time plotted is the cumulative time required for all the · 
solves on smaller grids as well as the current grid. GMRES was used, with a 
10-dimensional Krylov space and a stopping tolerance of 10- 12 for the norm of 
the residual. We present result.s for solution wavenumbers k1 = k2 = 1, 5 and 
9, with coefficient wavenumbers M = 1, 5 and 9 and f3 = 10. More detailed 
infor111ation is presented in Table 1. The number of iterations required to solve 
these problems depended strongly on the regularity of the solut!on, weakly on 
the variation in the coefficients, and not at all on the mesh size. ·This is ex­
tremely encouraging since one of the main applications of this type of solver is 
to nonlinear problems, where the coefficients are no smoother than the solution. 

The numerical results clearly display the specti"al accuracy and efficiency of 
the method over a wide range of solution and coefficient parameters, and reveal 
another interesting feature of the method; it informs the user when the solution 
is sufficient.ly resolved on the current. grid by requiring zero iterations to satisfy 
the stopping criterion. If the solution on the previous grid is already accurate to 
the desired tolerance, then the iteration is satisfied on the current grid as well 
and only one matrix-vector multiplication is required, to compute the residual. 
Thus if one computes the solution on a sequence of grids, the method will 
become extremely inexpensive as the desired resolution is approached. 

4 Application to crystal growth 

One of our motivations in developing the elliptic solvers presented above is the 
phase field model of crystal growth, a continuum problem requiring the solu­
tion of 2 by 2 second-orde! parabolic systems in two or three space dimensions 
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Figure 1: Graphs of maximum error in u versus Cray-2 CPU time for our 
method, with I< = 1, 5 and 9 (left to right) and M = 1, 5 and 9(top to 
bottom), with (J = 10. For each plot, N = 16 through 256 in steps of 16. The 
st(l,rting value was constructed by trigonometric interpolation of the solution on 
the previous mesh, except for N = 16 where we set u =f. 
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k1 = k2 = 5, /o,,f = 5, f = 10 ·U k1 = k2 = 9, M = 9, c = 10 ·u 

N I T E N I T E 
16 84 0.80 0.84E+OO 16 152 1.43 0.10E+01 
32 112 3.44 . 0.:35E+OO 32 171 5.33 0.10E+01 
48 111 6.72 0.14E-01 48 242 14.81 0.72E+00 
64 105 10.37 0.13E-03 64 276 27.48 0.19E+00 
80 82 12.49 0.33E-06 80. 298 44.92 0.12E-01 
96 64 14.31 0.12E-08 96 297 65.54 0.19E-02 
112 39 17.09 0.39E-10 112 276 117.72 0.61E-04 
128 11 4.48 0.79E-ll 128 239 89.58 . 0.64E-05 
144 3 1.87 0.73E-11 144 199 96.35 0.12E-06 
160 1 1.09 0.50E-11 160 169 93.74 0.50E-07 
176 0 1.03 0.47E-11 176 134 142.05 0.56E-08 
192 0 0.79 0.49E-11 192 97 81.28 0.71E-09 
208 0 1.48 0.42E-11 208 53 80.72 O.llE-09 
224 0 1.57 0.45E-ll 224 18 30.34 0.46E-10 
240 0 1.21 0.42E-ll 240 5 7.34 0.36E-10 
256 0 1.41 0.44E-ll 256 1 2.86 0.42E-10 

Table 1: Maximum error E in u, divided by the maximum of u, versus the 
mesh size N, the number of GMRES iterations required I and the CPU time 
required T per mesh. 
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[Cag89]. The boundary conditions are simple, since the interest is in fundamen­
tal physics rather than engineering, and periodic boundary conditions are thus 
appropriate. The phase field equations can be put in the form 

Ut = .6.AU + F(U) (4.1) 

where U = ( u1 , u2)t, .6. is the Laplacian, A is a· 2 by 2 matrix of contants, and 
F(U) is a cubically nonlinear function. This system is stiff, and therefore should 
be discretized in time by implicit backward difference formulae [HNW91]. At 
each time step, one needs to solve a nonlinear elliptic system with a good initial 
guess available from the previous time step. The system is linearized with a 
damped Newton method, giving a seque1ice of linear variable-coefficient elliptic 
systems which are ideal applications for the technique developed in this paper. 
The extension of our method to solve these systems in periodic geometry is 
straightforward; since the principal part is constant-coefficient already, it need 
not be averaged. 

5 Generalizations 

The method employed in this paper admits generalizations to elliptic systems, to 
other boundary conditions, and to arbitrary domains. Elliptic systems appear 
trivial once single equations can be solved. 

When we have a square with Dirichlet or Neumann boundary conditions, 
spectral accuracy tequires the use of orthogonal polynomial basis functions 
rather than trigonometric functions [CHQZ87]. These bases do not diagonal­
ize constant-coefficient operators, so other operators should be used to form 
more appropriate potentials. In each case, the averaged operator should be con­
structed with a weighted average and a structure which is diagonalized by the 
basis used. Thus the method generalizes to any domain which admits spectrally 
accurate methods for classes of operators produced by averaging. 

The method also generalizes to arbitrary domains, using fast Helmholtz 
solvers. The basic idea is the same: given a linear variable-coefficient.· ellip­
tic equation .Ctt = f with homogeneous boundary conditions, we convert it to 
an integral equation A11 = f with the averaged constant-coefficient operator £ 
with the same boundary conditions. It.eration of A (using GMRES, QMR or BI­
CGSTAB) converges in a number of steps independent of the mesh size since A is 
invertible and bounded on L 2 . The operator £- 1 can no longer be approximated 
with the FFT, since the problem is not periodic; but £ can be transformed to. 
the Helmholtz operator .6. + I< by change of variable. The Helmholtz operator 
can be inverted efficient.ly with a fast Helmholtz solver [Rok90, PW78]. 
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6 Conclusions 

We have presented a· simple fast spectrally-accurate solver for second-order 
variable-coefficient elliptic equations in periodic geometry. The method requires 
O(Nd log N) operations to compute the solution of such a problem on a Nd­
point grid, where N is determined by the smoothness of the solution and by 
the accuracy desired. Numerical results show the method to be highly accurate, 
efficient, and easy to program. It. is trivial to parallelize. Our approach gener­
alizes to systems of equations and to arbitrary domains, using fast Helmholtz 
solvers. 
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