
• !

LBL-33706
UC-405

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

Presented at the DEXA Conference, Prague, Czech Republic,
September 6-8, 1993, and to be published in the Proceedings

Data Management Tools for Genomic Applications:
A Progress Report

V.M. Markowitz and I.-M.A. Chen

September 1993

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

::0
1"1'1

(') ...,
~- 0 1"1'1 ,o::o
oCDm
CIIIZ (')
QJZI'T1
r+O
cor+(')

0
"'0

Ill -<
Q.---
10 .
IJ1
lSI

r
~-

0' (')

"1 0
llJ "0
"1 '<
'<

I
Ill
I
I

w
w
~
lSI
0\

DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. Neither the United States Government
nor any agency thereof, nor The Regents of the University of Califor
nia, nor any of their employees, makes any warranty, express or im
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe pri
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufac
turer, or otherwise, does not necessarily constitute or imply its en
dorsement, recommendation, or favoring by the United States Gov
ernment or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur
poses.

Lawrence Berkeley Laboratory is an equal opportunity employer.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

DISCLAIMER

Titis document was prepared u an account of wodc sponsored by the United States
GovcmmcnL Neither the United States Government nor any agency thereof, nor The
Regents of the University of California, nor any of their employees, makes any
warranty, expresS or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any informatiOn, apparatus, pmduct, or
process disclosed, or represents that its usc would not infringe privately owned
rights. Reference herein to any specific commercial pmduct, pmccss, or service by its
trade name, tradcmarl<, manufacturer, or otherwise, docs not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, CIT The Regents of the University of California.
The views and. opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or The Regents
of the University of California and shall not be used for advertising or product
endorsement purposes.

· Lawrence Berkeley Laboratory is an equal opportunity employer.

Data Management Tools for Genomic Applications:
A Progress Report

Victor M. Markowitz and I-Min A. Chen

Information and Computing Sciences Division
Lawrence Berkeley Laboratory

UniversitY of California
Berkeley, CA 94720

September 1993

LBL-33706

This work was supported by the Office of Health and Environmental Research Program of the Office of Energy
Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.

Data Management Tools for Genomic

Applications: A Progress Report *

Victor M. Markowitz and 1-Min A. Chen

Information and Computing Sciences Division
Lawrence Berkeley Laboratory, Berkeley, CA 94720

Abstract

We report in this Paper on the development of data management tools
that allow scientists to construct and manipulate genomic databases in
terms o{ application-specific objects and protocols. We are developing
tools for specifying genomic database structures, as well as. {or entering,
changing, maintaining, browsing and querying data in genomic databases.
These tools are based on the Object-Protocol Model (OPM) developed
by us and target commercial relational database management systems
which are widely used in molecular biology laboratories. OPM allows
scientists to interact with genomic databases in terms of their own frame
ofre{erence, nantely genomicobjects and protocols. Databases developed
using tre data ntanag.:ment tools are Wier to use, manage, and adapt.

1 Introduction

The information controlling the development of biological organisms is encoded
in their genome in the form of polymeric molecules known as DNA. DNA in
formation is encoded as a sequence of nucleotides. Regions of the DNA called
genes specify the information for protein molecules. In higher organisms (yeast,
plants, animals, humans) the DNA is organized into several linear chromosomes.

Several projects are attempting to determine the complete DNA sequence
of various organisms. These projects require databases for managing DNA data
and related information. TYpically, the structure of a genomic database can be
modeled in terms of objects characterized by (having) attributes that take val
ues from a domain (set of values); objects that share common attributes can be
organized (classified) into homogeneous sets of objects. For example, consider
the contig maps used in determining the complete DNA sequence of various

•Issued as Technical Report LBL-33706. This work is supported by the Office of Health
and Environmental Research Program of the Office of Energy Reseai-ch., U.S. Department of
Energy under Contract DE-AC03-76SF00098.

l

organisms, and consisting of ordered DNA fragments1 • Contig maps can be
modeled as objects that have attributes such as contig..id, ovner (representing
owners of contig maps), and (tra.gment, position) {representing component
fragments and their positions in contig maps); similarly, fragments can be mod
eled as objects that have attributes such as tragment..id and ovner.

Genomic databases also contain data on protocols representing experimental
laboratory procedures. Given an input, a protocol instance (i.e., an elementary
experiment} results in an output. Protocols often involve a series of subprotocol
steps. The recursive specification of protocols in terms of component subpro
tocols is called protocol upansion. Protocol expansion reveals the composition
of component subprotocols and/or alternative ways of performing the protocol.
For example, consider a construct protocol for constructing contig maps of or
dered DNA fragments: such a protocol is applied on DNA fragments (input) and
result in contig maps (output). Protocol construct can be expanded into two
alternative protocols, overlap and constraint, both followed by protocol assem
ble: protocol overlap compares two DNA fragments using a computer program,
protocol constraint compares manually two DNA fragments according to certain
constraints, and protocol assemble assembles DNA fragments into a contig map
according to information in the connection tables regarding possible connecting
positions of two DNA fragments.

Most genomic databases developed in the past few years use commercial
relational database management systems (DBMSs). Relational DBMSs do not
provide constructs for representing directly genomic-specific objects and proto
cols. These objects and protocols are usually represented in relational databases
by several disconnected tuples scattered among multiple tables, logically tied t'l
gether by primary key-foreign key references. Such representations are not only
hard to comprehend, but also entail the development of large procedures for
assembling data on application-specific objects from (i.e., by joining) several
relations. Furthermore, because of the complexity of the relational representa
tions for objects and protocols, the development, maintenance, and modification
of such databases are tedious, error-prone, and time-consuming processes.

Data models such as the E%1.ended Entity-Relationship Model (EERM} (10]
and the Semantic Data Model (SDM) (4] provide constructs for modeling ob
jects, sets of objects, and object associations, and therefore are better suited
than relational DBMSs for specifying the structure of genomic databases. For
example, in EERM atomic objects called entities are classified into entity-sets,

· and are qualified by attributes that take values from value-sets. Associations of
entities are modeled as relationships classified in relationship-sets. EERM has a
generalization mechanism that allows viewing similar (specialization) entity-sets
as a single generic entity-set.

We have explored using EERM for describing genomic databases (9], and
found that it is too restricted for specifying accurately their object structure.
Such restrictions can be overcome by using auxiliary entity-sets and relationship-

1 Since existing technology permits sequencing only fragments of a few hundred nucleotides,
chromosomal DNA is cut into smaller fragments, the fragments are propagated as clones, and
then assembled into cont.ig maps.

2

sets. For example, contig maps, fragments and their owners can be represented
by three EERM entity-sets called COITIG...KAP, FRAGKEIT, and PERSON, respec
tively. However, representing that contig maps and fragments can be owned by
persons requires an auxiliary entity-set generalizing COITIG...KAP and FRAGMEIT,
OVIED_DBJECT, together with an auxiliary relationship-set, OWIED..BY, associating
OWIED_DBJECT with PERSOI. Auxiliary constructs do not represent application-

- specific objects and. therefore unnecessarily increase the complexity and obscure
the semantiC& cif databases. -

The need to employ a diversity of continuously evolving mapping and se
quencing strategies require facilities for efficiently constructing genomic databases
that are easy to use and change. In order to attain the desired level of flexibil
ity and adaptability, we decided to develop data management tools that allow
scientists to rapidly construct and manipulate genomic databases in terms of
genomic objects and protocols. The underlying data model for these tools is
provided by the Object-Protocol Model (OPM) developed by us.

OPM has similarities with other object data models (cf. [5]), especially with
SDM [4). Similar to SDM, in. OPM objects are cla.sSified into object classes and
are qualified by attributes that take values from value classes. Unlike SDM,
however, in OPM attributes can be composite, that is, consisting of multiple
component simple attributes, and can be associated not only with single value
classes, but also with unions of value classes. These constructs allow avoiding
the creation of object classes that do not have an application-specific counter
part. Furthermore, unlike other data models (e.g., such as those reviewed in [5)
or [6]), OPM provides a protocol class construct for modeling laboratory exper
iments. A protocol dass in OPM can be associated with reg•1lar attributes as
well as input and output attributes used for specifying input-output protocol
connections. OPM also supports a protocol expansion mechanism for specifying
a protocol class in terms of component subprotocol classes.

The data: management tools we develop will benefit several molecular biology
laboratories and genome centers. In particular, our project supports directly the
large-scale sequencing project at University of Washington, Seattle, for charac
terizing up to six million bases of the human and mouse T-cell receptor loci and
the development of the Integrated Genomic Database at the German Cancer
Research Center, at Heildelberg.

The rest of the paper is organized as follows. Our approach to developing
data management tools is described in section 2. The status of our work is
reviewed in section 3. Section 4 briefly discusses future plans.

2 Approach

The data management tools are based on a data model developed by us, the
Object-Protocol Model (OPM). OPM is briefly reviewed below. A complete
description of OPM is provided in [1).

3

2.1 The Object-Protocol Model

OPM allows describing database structures in terms of objects characterized by
attributes taking values from value classes, and classified into object classes. For
example, the contig maps mentioned in the previous section can be represented
in OPM by object class COHTIG..MAP having attributes contig_id, ovner, and
(fragment, position). Similarly, fragments can be represented by object class
FRAGKEIT having attributes fragment_id, sequence, length, and ovner; and
owners can be represented by object class PERSON having attributes person..id,
name and ovns (see figure 1).

Object classes can have subclass-superclass relationships. For example, one
can specify a class SCIEITIST as a subclass of PERSON.

Attributes in OPM can be:

1. atomic, such as attribute contig_id of object class COITIG..MAP, or com
posite, that is, consisting of aggregations of atomic attributes, such as
attribute {fragment, position) of CONTIG...KAP;

2. single-valued, such as attribute person..id of object class PERSON, or multi
valued, such as attribute ovns of PERSON;

3. local, such as attribute sequence of object class FRAGMENT, or referential,
that is, representing references to other objects, such as attribute ovner
of FRAGKEIT, representing references to PERSON;

4. associated with a single domain, such as attribute name of object class
PERSON, or with a union of different domains, such as ovns of PERSON
whose domain is the union of object classes CONTIG..MAP and FRAGKEIT;

5. derived, that is, attributes that have values derived from the values of
other attributes using a derivation expression, such as attribute compo
sition, arithmetic expressions, aggregate functions, or attribute inversion;
for example, attribute ovner of CONTIG..MAP in figure 1 is specified as the
inverse of attribute ovns of PERSON (i.e., the value of ovner for a given
contig map m is the person whose ovns value contains m).

In addition to objects, OPM supports modeling laboratory protocols. Pro
tocols are classified in protocol classes and can be qualified by both regular and
special, input and output, attributes. For example, protocols construct, overlap,
constraint, and assemble mentioned in the previous section can be described in
OPM by the protocol classes shown in figure 2, where their inputs and outputs
are modeled by the object classes shown in figure 1. Thus, the experiments for
constructing contig maps of ordered DNA fragments can be represented by the
instances of protocol class CONSTRUCT having an output attribute contig.map
representing the result of construct protocols applied on fragments, where frag
ments are represented by input attribute fragments.

OPM has a protocol expansion mechanism for the recursive specification
of protocols in terms of alternative protocols, sequences of protocols, and op
tional protocols; "or", ",", and "[]" are used to denote alternative, sequences

4

OBJECT CLASS FRAGMENT
DESCRIPTION: DNA fragment
ID: fragment_id
ATTRIBUTE fragment_id: INTEGER
ATTRIBUTE sequence: VARCHAR(750)
ATTRIBUTE length: INTEGER
ATTRIBUTE ovner: PERSON

not null

DERIVATION: inverse of PERSON.ovns
OBJECT CLASS CONNECTION_TABLE

DESCRIPTION: connection table
ID: table_id
ATTRIBUTE table_id: INTEGER
ATTRIBUTE left_entry: FRAGMENT
ATTRIBUTE right_entry: FRAGMENT
ATTRIBUTE distance: INTEGER

OBJECT CLASS CONTIG_MAP
DESCRIPTION: contig map
ID: contig_id

not null

ATTRIBUTE contig_id: INTEGER not null
ATTRIBUTE (fragment, position): (FRAGMENT, INTEGER)
ATTRIBUTE ovner: PERSON

DERIVATION: inverse of PERSON.ovns
OBJECT CLASS PERSON

DESCRIPTION: person
ID: person_id
ATTRIBUTE person_id: INTEGER not null
ATTRIBUTE name: CHAR(80)
ATTRIBUTE ovns: CONTIG_MAP or FRAGMENT

single-valued
single-valued
single-valued
single-valued

single-valued

single-valued
multi-valued
single-valued

single-valued

multi-valued

.Figure 1: Object Classes Representing the Input and Output for Protocols

of, and optional protocols, respectively, and parentheses are used for speci
fying complex protocol compositions. For example, consider protocol classes
CONSTRUCT, OVERLAP, CONSTRAINT, and ASSEMBLE shown in figure 2. The expan
sion of CONSTRUCT in terms of OVERLAP, COISTRAINT, and ASSEMBLE is expressed
as follows (see figure 2): EXPANSIOI: (OVERLAP or COISTRAIIT), ASSEMBLE.

Input and output attributes associated with protocols represent the input
and output of protocols, respectively, and can be used to express the inher
itance of input or output attributes by component subprotocols from their
generic protocols and the input-output connection of directly related proto
cols. Input-output attribute inheritance is expressed using 'input is-a .. .'
statements (e.g., see attribute :fragments of OVERLAP in figure 2) and 'output
is-a .. .' statements (e.g., see attribute contig.lllap of ASSEMBLE in figure 2) in
the specification ·Of the input and output attributes associated with subproto
cols. If a protocol is followed directly by another protocol, then the input of the
latter may include some or all of the output of the former. Such input-output

5

PROTOCOL CLASS CONSTRUCT
DESCRIPTION: construct a contig map
ID: construct_id
EXPANSION: (OVERLAP or CONSTRAINT), ASSEMBLE
ATTRIBUTE construct_id: INTEGER
ATTRIBUTE fragments: FRAGMENT
ATTRIBUTE contig_map: CONTIG_KAP

PROTOCOL CLASS OVERLAP

not null single-valued
not null multi-valued input
not null single-valued output

DESCRIPTION: compare fragments using computer programs
ID: overlap_id
ATTRIBUTE overlap_id: INTEGER not null single-v~ued
ATTRIBUTE fragments: FRAGMENT not null multi-valued

input isa CONSTRUCT.fragaents
ATTRIBUTE connect_table: CONNECTION_TABLE not null output
ATTRIBUTE (program_name, program_version): (CHAR(40), CHAR(6))

PROTOCOL CLASS CONSTRAINT
DESCRIPTION: manually compare fragments using constraints
ID: constraint_id
ATTRIBUTE constraint_id: INTEGER not null single-valued

·ATTRIBUTE fragments: FRAGMENT not null multi-valued
input isa CONSTRUCT.fragments

ATTRIBUTE connect_table: CONNECTION_TABLE not null output
ATTRIBUTE con8traint_type: CHAR(BO) single-valued

PROTOCOL CLASS ASSEMBLE
DESCRIPTION: assemble contigs
ID: assemble_id
ATTRIBUTE assemble_id: INTEGER not null single-valued
ATTRIBUTE connect_table: CONNECTION_TABLE not null

input from OVERLAP via connect_table
or CONSTRAINT via connect_table

ATTRIBUTE contig_map: CONTIG_MAP not null single-valued
output isa CONSTRUCT.contig_map

Figure 2: Protocol Classes Representing Protocol Construct and its Components

attribute connections are expressed using 'input from ... via .. .'statements (e.g.,
see attribute connect_table of ASSEMBLE in figure 2) in the specification of input
attributes associated with protocols taking their input from other protocols.

2.2 Data Management Tool Development

Developing data management tools based on OPM and targeting relational
DBMSs, involves mapping OPM constructs and data manipulation operations
(retrievals and updates) into relational DBMS constructs and SQL queries. This
mapping is very complex because of the discrepancy between the OPM andre
lational DBMS constructs, but can be simplified by introducing an intermediate
EERM level that allows decomposing the OPM to relational DBMS mapping

6

into simpler mappings between OPM and EERM, and between EERM and re
lational DBMS, respectively. The OPM to EERM mapping is easier to develop
than the direct OPM to relational DBMS mapping because EERM schemas
and queries are specified in terms of objects and object associations, and there
fore are inherently more concise and simpler to specify than relational DBMS
schemas and queries. Furthermore, EERM schemas and queries are independent
of a specific DBMS, and therefore can be used across different DBMS platforms.
The EERM version we use is the EERM described in {10], extended with two
constructs (unary relationship-sets and a new form of directly associating entity
sets) described in [2].

We have developed a mapping of OPM schemas that generates EERM
schemas together with queries for constructing OPM objects and protocols from
entities and relationships. These queries are expressed in the Concise Object
Query Language (COQL) [11], and involve associating a (primary) entity-set
with attributes of other (auxiliary) entity-sets and relationship-sets, where the
primary entity-set is associated with the auxiliary entity-sets and relationship
sets either directly or via other entity-sets and relationship-sets. Thus, a primary
entity-set, its local and inherited attributes as well as the attributes of auxiliary.
entity-sets and relationship-sets can be specified in COQL using an OUTPUT
statement, while the association of a primary entity-set with auxiliary entity
sets and relationship-sets can be expressed using CONNECTIONS statements.
COQL also allows setting conditions on entity-sets and relationship-sets. Sup
pose that the contig maps and their owners mentioned above are represented by
entity-sets CONTIGJfAP (with attribute contig..id) and PERSON, connected by
relationship-set OWNED-BY. Then the following COQL query expresses the asso
ciation of contig maps with their owners:

OUTPUT CONTIG.HAP: contig..id, PERSON;
CONNECTIONS CONTIG..MAP OWNED..BY PERSON; END

In the COQL query above, PERSON is an auxiliary entity-set whose attributes
are associated with CONTIG..MAP via relationship-set OWNED..BY.

Regarding the mapping of EERM schemas and queries into relational DBMS
schemas and queries, we have developed tools that can automatically carry out
the EERM to relational DBMS schema and query mapping. The EERM schema
to relational schema mapping is presented in [10] and. has been implemented as
part of an EERM schema translation tool called SDT [8]. SOT automatically
translates EER schemas into schema definitions for several relational DBMSs:
Sybase, lngres, Informix, and Oracle. The DBMS database definitions generated
by SOT include procedures (e.g., triggers in Sybase) necessary for maintaining.
referential integrity and value constraints. The information about schemas and
their mapping is subsequently stored in a metadatabase.

The COQL to SQL mapping is described in [11], and has been implemented
as part of a COQL translation tool. Based on the metadatabase generated by
SOT, the COQL translator maps a COQL query into one or several queries
in the SQL dialect of the underlying relational DBMS. The COQL translator
has been implemented for Sybase and will be implemented for other relational
DBMSs as well.

7

3 Development Status

In this section we briefly review the status of the OPM data management tools.

3.1 The OPM Schema Editor

We have developed a graphical schema editor for interactively specifying, dis
playing, modifying, merging, and browsing OPM schemas.

The OPM schema editor allows specifying incrementally complex object and
protocol structures by providing facilities for defining new schemas, modifying
existing schemas, and merging schemas. A schema can be browsed using an
Object Classes Listbox that lists in the main window th-e object classes of the
schema (see figure 3). This listbox can be switched into a Protocol Classes
Listbox or a Controlled Value Classes Listbox for browsing protocol classes and
controlled value classes, respectively.

For an object class selected in the Object Classes List box, its connections to
other classes (via attributes), and its superclasses and subclasses are displayed
in the drawing area of the main window. This graphical display can be also
used for browsing a schema by recursively expanding value classes associated
with displayed attributes.

An object class can be defined or modified by double clicking on the name
of an object class in the listbox or in the drawing area, or by selecting the OPM
Object Class option of the Define menu item in the main window. The Object
Class Definition window shown in figure 3 illustrates the definition of object
class CONTIG..MAP. The Define Attribute option in this window allows defining or
modifying attributes of the current class.

The Composite Attribute Definition and Component Attribute Definition
windows shown in figure 3 illustrate the definition of a composite attribute,
namely attribute (fragment, position) of CONTIG..MAP. The Attribute Inverse
Definition window shown in the same figure allows specifying object cross ref
erencing by defining attributes as inverses of other attributes.

Protocol classes can be browsed, defined or modified in a similar way. For a
protocol class selected in the Protocol Classes Listbox, its connections to other
classes via attributes, as well as the graphical representation (in a DFD like
notation) of its expansion (if any) are displayed in the main window drawing
area. A protocol object class can be defined or modified by double clicking on
the name of a protocol class in the list box or in the drawing area, or by selecting
the OPM Protocol Class option of the Define menu item in the main window.
Figure 4 illustrates the definition of a protocol class (CONSTRUCT) and its sub
protocols. The Input/Output Attribute Definition window allows specifying the
input and output attributes of protocols. Protocol expansion can be defined or
modified using the Protocol Expansion window. The Input From Definition
window allows specifying 'input from ... via' connections. For example, in fig
ure 4) attribute connect_table of protocol class ASSEMBLE is specified as: from
OVERLAP via eonnect_table or from CONSTRAINT via conneet_table

A schema can be saved in a text file by selecting Generate OPM option of the

8

---!<1-!!,loolq~ ll• I
OII~Outa -'I

-c~-C-enCI(.. TAIL(

~
~·-/ .!!!!!f- ca•c•m

FUai(JIT

COHTIO MAP! !!!!!!f--PDSOH!-E..., --£ COI<TIO MAP! PUSOH

=f FkAOMEHT!

~~--fU.OM!HT!

.!!!!!!!!- """"-AnrtluU .__a.~ OO.jc4Cku H...: I COHTIO_IJU.P A-

-N-=1 - Coucr. , ~~-- cont1L1d:

-~ ot~nCr: <ra ClonN-.:1 COHTICI_kAI

r~r
ltw.: N• _.,

-..c~: _. ...

r~ I
. I

~ ---
--·1

~~~ 
.._ ......... 

-1 a-1~ D.- -A-H....: I•..___ -"·-'1 - -- Qui Name: I COHTIO_WAP ¥...., .. _ ... 1 

~-- ·~= 
...._, -'I CclpocalA~NCI!t! lb•tmc= 

Hldc:2!!....:.J 
Ylb.aeO&Ir. -- -"""" r~·T I fU.OMEIIT----

"-""' 
f r•,.cnt: ( FUGN[NT) 

ijl position: UNT£G[l) 

Sdoa'l)'pc: A- -'1 lldac~~ 

-- ....... 1 
-~1 ....... c ... ~ 

~~~ u.o.l a.-1 a-1 ~ 
I~ MoAtfl -1-1~1 a. .. j~

Figure 3: Specifying Object Classes using the OPM Schema Editor

Schema menu item in the main window. This. file contains the schema definition
in the OPM data definition language, and can be passed to the OPM schema
translator described below, for generating the corresponding EER schema and
COQL queries.

The OPM schema editor has been implemented on Sun SPARCstations using
C++ and the X 11 Motif graphical user interface toolkit and is described in [3].

3.2. The OPM Schema Translator

Since scientists in most molecular biology laboratories use commercial relational
DBMSs (mainly Sybase), the tools we develop target relational DBMSs. Con
sequently, these tools involve mapping OPM schemas into relational schema
d_efinitions and SQL queries that express basic manipulations (retrievals and
updates) of OPM objects and protocols.

9

-a.. ...
ASSOCU
COCStuiJO'
N,\i!@i

cont1~: ((
Q~!~!~Q~'j.-~,y,; ~

r0YDJ.AP01COHST1AINT),I.SSEM8U ~ =!~liT ,:=NsnAIHT),ASSEMOU fl

I·~ .2...1 _!j _!__] _.:j __:._] ~ ~ ~- , ~ l

-~

I
~ lr=~= .. =~~-~~~=::::J=_=~===~=I

-"-.:(-....- v-.: .. _ ... (

,__
ASSO.L£
CCHSnAINT
CIY(lLN'

--
""I---

au. N...: r1 ASSUI"=c:-:eu~--- .,..,, .,_. ""'

~~

v a..r. c-.-: loou< ... (

r.~«M~£~c=r~=~~T~M~L~[------ ln.nw.wnr,•a At*i·'·'.!Ja•
froe CCIHSTL\IHT ¥1• COCWM

-1)pc:- ... ,

Figure 4: Specifying Protocol Classes using the OPM Schema Editor

As already mentioned above, our approach to mapping OPM schemas into
relational definitions and queries is to use an intermediate EERM level, so that
OPM schemas are mapped first into EERM schemas and queries, and then
EERM schemas and queries are mapped into relational database schema defini
tions and queries. This approach allows reducing the development of a complex
OPM to relational DBMS mapping to a simpler OPM to EERM mapping, while
taking advantage of the existing EERM to relational DBMS translation tools
[8, 11] for generating relational database definitions and queries from EERM
schemas and queries.

The complete specification of the OPM schema mapping procedure and ex..:
amples can be found in [2]. Informally, mapping OPM into EERM consists of
mapping every OPM object or protocol class into an entity-set, and of incremen
tally constructing COQL queries associated with these entity-sets, that express
the construction (retrieval) of OPM objects and protocols from EERM entities

10

and relationships. Depending on their type (primitive, abstract, simple, compos
ite, etc.), non-derived attributes of object or protocol classes are mapped into
EERM attributes, direct entity-set associations, or relationship-sets. Derived
attributes are not mapped into EERM schema components (with the exception
of some inverse attributes) and entail only modifying COQL queries. For each
(object or protocol) class, the mapping generates a COQL query for retrieving
the instances in this class, including the values for all their non-derived, derived,
and inherited attributes. The mapping also generates a metadatabase that con
tains information on the correspondence between the components of the OPM
schema and the components of the generated EER schema and COQL queries.
The OPM browsing and query tools we plan to develop will be based on this
metadatabase.

The OPM schema translator has been developed on Sun SPARCstations in
C++ using Lex++ and Yacc++.

4 Summary and Future Plans

We have briefly discussed the development of data management tools that al
low specifying genomic database structures. These tools are based on the
Object-Protocol Model (OPM) developed by us and target commercial rela
tional database management systems. These tools have been applied to the
development of a genomic database supporting the sequencing project at Uni
versity of Washington, Seattle.

We are currently developing OPM data entry and browsing tools. These
tools will provide facilities for: (i) inserting, deleting, and updating objects
and protocols; (ii) selecting and displaying objects and protocols that satisfy
certain conditions; (iii) browsing through selected sets of objects and protocols;
(iv) recursively displaying, for a given object or protocol, related objects or
protocols.

We also plan to develop a more complex OPM query language and a query
tool based on this language. This tool will allow querying genomic databases
in terms of objects and protocols, and will consist of two main components:
(i) an OPM-based graphical interface will allow users to browse through OPM
schema specifications and incrementally specify queries in terms of object and
protocols; and (ii) a translator will map OPM queries into COQL queries, and
subsequently into SQL queries.

The data management tools we develop are currently targeting the Sybase
DBMS, mainly because Sybase is widely used in molecular biology laboratories
and centers worldwide. We recognize that relational databases are cumber
some for implementing genomic databases. Since object-oriented DBMSs are
more amenable to represent complex protocols and DNA sequences and provide
mechanisms for incorporating application-specific (e.g., sequence alignment) op
erators, we plan to use such DBMSs for genomic databases. We will experiment
with one of the C++ based object-oriented DBMSs, such as Object Store, and
will extend our tools in order to ensure an easy transfer of genomic databases

11

to these DBMSs.

Acknowledgements. The OPM schema editor was implemented by Ofer Ben
Shachar, Francis Pang, and Carol Jean Smith. SDT was implemented by Weip
ing Fang and Jun Wang. The COQL translator has been implemented by Ernest
Szeto. We greatly appreciate their excellent work.·

References

[1] Chen, LA., and Markowitz, V.M., The Object-Protocol Model, Lawrence
Berkeley Laboratory Technical Report LBL-32738, 1993.

[2] Chen, I.A., and Markowitz, V.M., Mapping .Object-Protocol Schemas into
Extended Entity-Relationship Schemas and Queries, Lawrence Berkeley
Laboratory Technical Report LBL-33048, 1993.

[3] Chen, I.A., Markowitz, V.M., Ben-Shachar, 0., and Pang, F., OPM Schema
Editor 1.1: A Graphical Editor for Object-Protocol Schemas, Lawrence
Berkeley Laboratory Technical Report LBL-33410, 1993.

[4] · Hammer, M., and McLeod, D., Database Description with SDM: A Seman
tic Database Model, ACM Transactions on Database Systems, 6, 3, (1981),
pp. 351-386.

[5] Hull, R., and King, R., Semantic Database Modeling: Survey, Applications,
and Research Issues, Computing Surveys 19, 3 (1987), pp. 201-260.

[6] Joannidis, Y.E., and Livny, M., MOOSE: Modeling Objects in a Simulation
Environment, Information Processing 89, G.X. Ritter (ed), Elsevier Science
Publishers B.V., 1989, pp. 821-826.

[8] Markowitz, V.M., Fang, W., and Wang, J., SDT 6.0. A Schema Definition
and Translation Tool for Extended Entity-Relationship Schemas, Lawrence
Berkeley Laboratory technical Report LBL-27843, 1993.

[9] Markowitz, V.M., Lewis, S.; McCarthy, J., Olken, F., and Zorn, M., Data
Management for Genomic Mapping Applications: A Case Study, Proc.
of the 6th Intemational Conference on Scientific and Statistical Database
Management, 1992, pp. 45-57.

[10] Markowitz, V.M., and Shoshani, A., Representing Extended Entity
Relationship Structures in Relational Databases: A Modular Approach,
ACM Transactions on Database Systems, 17, 3, (1992), pp. 423-464.

[11] Markowitz, V.M., and Shoshani, A., Object Queries over Relational
Databases: Language, Implementation, and Applications, Proc. of the 9th
International Conference on Data Engineering, 1993, pp. 71-80.

12

~'

LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
TECHNICAL INFORMATION DEPARTMENT

BERKELEY, CALIFORNIA 94720

...;.____ -__ ..,.

