
•'
i

LBL-33746
UC-405
Preprint

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division
Mathematics Department

To be submitted for publication

Fast Triangulated Vortex Methods for
the 2-D Euler Equations

G. Russo and J.A. Strain

March 1993

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

Ul
l9

r
r tx1 ..,.. r
tr n •
"'S 0 (.J
Ill "0 (.J
"'S '< '-l
'< ~
• (J"'

DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. Neither the United States Government
nor any agency thereof, nor The Regents of the University of Califor­
nia, nor any of their employees, makes any warranty, express or im­
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe pri­
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufac­
turer, or otherwise, does not necessarily constitute or imply its en­
dorsement, recommendation, or favoring by the United States Gov­
ernment or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur­
poses.

Lawrence Berkeley Laboratory is an equal opportunity employer.

' .
,

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

- LBL-33746

FAST TRIANGULATED VORTEX METHODS
FOR THE 2-D EULER EQUATIONS

GIOVANNI Russo
Universita dell'Aquila

Dipartimento di Matematica
Via Vetoio, Loc Coppito

67010 L'Aquila, Italy

and

JOHN A. STRAIN 1

Department of Mathematics
and

Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94 720 USA

March 1993

1Research supported by NSF Grant DMS-9114308 at the Institute for Advanced Study,
and by a NSF Mathematical Sciences Postdoctoral Research Fellowship, by AFOSR Grant
AFOSR-92-0165, a,nd by the Applied Mathematical Sciences Subprogram of the Office of
Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098, at
the University of California., Berkeley. r

'•

Abstract

Vortex methods for inviscid incompressible two-dimensional fluid flow are usually
based on blob approximations. This paper presents a vortex method in which the
vorticity is approximated by a piecewise polynomial interpolant on a Delaunay
triangulation of the vortices. An efficient reconstruction of the Delaunay trian­
gulation at each step makes the method accurate for long times. The vertices of
the triangulation move with the fluid velocity, which is reconstructed from the~
vorticity via a simplified fast multipole method for the Biot-Savart law with a
continuous source distribution. The initial distribution of vortices is constructed
from the initial vorticity field by an adaptive approximation method which pro­
duces good accuracy even for discontinuous initial data.

Numerical results show that the method is highly accurate over long time
intervals. Experiments with single and multiple circular and elliptical rotating
patches of both piecewise constant and smooth vorticity indicate that the method
produces much smaller errors than blob methods with the same number of degrees
of freedom, at little additional cost.

Generalizations to domains with boundaries, viscous flow and three space
dimensions are discussed.

Contents

1 Introduction 2

2 Vortex methods 3

'l 3 Formal description of the algorithm 7

4 Delaunay triangulation 9
4.1 Triangulation and interpolation 9
4.2 Definitions and data structures 9
4.3 McLain's method 11
4.4 A uniform cell method . . 13
4.5 An adaptive cell method . 16
4.6 Numerical results . . . 20

5 Fast velocity evaluation 22
5.1 Splitting 23
5.2 Laurent expansion of up .• -. 23
5.3 An O(N312 log£) algorithm 26
5.4 An O(N413 logf) algorithm 26
5.5 Refinements . . . 27
5.6 Numerical results 29

6 lnitia,l triangulation 29

7 Numerical results 31
7.1 Comparison with vo:rtex-blob methods 33
7.2 Reconnection versus fixed topology 38
7.3 The adaptive method 38
7.4 Kirchhoff's elliptical vortex 38
7.5 Interacting vortex patches .. 46

8 Generalizations 49
8.1 Boundary conditions for the 2-D Euler equations 49
8.2 The Navier-Stokes equations 50
8.3 Boundary conditions for the N a vier-Stokes equations 53
8.4 Higher order methods 54
8.5 Extension to three dimensions . 56

9 Conclusions 58

A The Kirchhoff elliptical vortex 59

'·'

1

1 Introduction

Vortex methods simulate fluid :flow by moving a collection of markers carrying
vortiCity. They are grid-free, with little or no numerical diffusion, and naturally
adaptive, and they preserve moments of the vorticity. They have been generalized
in many directions and applied to complex high-Reynolds-number :flow [15, 16,
29, 14, 3, 1, 36, 18, 40, 42].

The classical vortex-blob method due to Chorin [15] is based on smoothing
point vortices [39] into smooth blobs of vorticity, to obtain higher accuracy and
a more robust method. Various high-order methods have been constructed [5, 6],
but numerical tests show that the order of accuracy decreases sharply when
the :flow becomes disorganized. This paper presents an efficient and accurate
new vortex method which maintains second-orde! accuracy during lorig time
integrations.

Different approximations of the vorticity within the same Lagrangian frame­
work lead to other vortex methods. Piecewise constant approximation of the
vorticity has been used to study the evolution of vortex patches [11, 50]. Piece­
wise ~near approximation has been used Jor smooth :flows in [2, 13]. In these
methods, the velocity is computed from a piecewise polynomial approximate
vorticity field, either from the Biot-Savart law or by solving a Poisson problem.
At each time step, the vertices of the triangulation are moved according to the
computed velocity and the vorticity at the vertices is passively advected. At the
next time step the vorticity is again approximated by a piecewise linear function
on the triangulation and the process is repeated. These methods converge as the
size Of the triangles goes to zero. We briefly recall this background material in
Section 2.

In this paper we present a vortex method based on the piecewise linear ap­
proximation of vorticity on a triangulation. We introduce three important new
features which make the method far more accurate, efficient and robust: De­
launay triangulation, fast velocity evaluation, and adaptive initial triangulation.
Our algorithm is summarized in Section 3.

We update a Delaunay triangulation of the vortices at each time step. A
Delaunay triangulation is locally equiangular, so it maintains a uniform accuracy
over long times. This triangulation can be constructed in 0(N log N) operations,
using a fast method described in Section 4.

The second riew feature is the fast evaluation of the velocity field. The veloc­
ity field due to a piecewise linear vorticity on a triangulation can be evaluated
exactly. A straightforward evaluation method, however, results in. an O(N2)

computational cost. The complexity can be reduced by using a fast multipo~e
method; we implemented a simplified O(N413

) version: For N = 51200 the fast
method is 200 times faster than direct evaluation, and the breakeven point is
about N = 100. Our fast velocity evaluation method is described in Section 5.

A triangulation allows more flexibility than equal-size blobs in approximat­
ing the initial vorticity. We take advantage of this :flexibility to construct the

2

"'

initial triangulation adaptively, to resolve the initial vorticity with few degrees
of freedom. As a result, our method can be used to model discontinuous vortex
patches as well as smooth vorticity fields. Our adaptive triangulation method is
discussed in Section 6.

In Section 7 we present numerical results for smooth and non-smooth initial
data. We compute the evolution of single and multiple circular and elliptical
patches of smooth and constant vorticity, and compare with the exact solution
when available. Convergence studies for multiple patches are performed by dif­
ferencing. We compare our method with vortex-blob and Lagrangian finite ele­
ment methods and show the long-time accuracy, efficiency and robustness of our
method.

In Section 8 we discuss generalizations of the method. We consider viscos­
ity, boundary conditions, three-dimensional problems, higher-order methods. In
Section 9 we discuss our conclusions.

2 Vortex methods

In this section we review the vorticity formulation of the 2-D Euler equations,
the vortex blob method and the Lagrangian finite element method on which the
present method is based. .

The Euler equations of two-dimensional incompressible inviscid flow are

au
-+(u·V')u at

1
--Vp,

p

V'·u = 0,

(2.1)

(2.2)

where p is the (constant} density of the fluid, u = (Uz, uy) is the velocity and p
the pressure. Both u and p are functions of z =i (x, y) and t. (We will find it
convenient on several occasions to use complex notation, in which z = (x, y) =
x + iy identifies a point in JR2 , thought of as the complex plane.) ,

The curl of (2.1) gives the vort_icity equation

where

aw -a + (u . V)w = o,
t '

(2.3)

w := azuy - ayuz (2.4)

is the vorticity. Thus the vorticity is transported passively along streamlines. By
(2.2), u is the curl of a vector field; in two dimensions the vector field has only
one non-zero component, the stream function '1/J. Then

a 'I/;
Uz = ay'

a 'I/;
Uy =-ax • ' (2.5)

and (2.4) becomes a Poisson equation for the stream function:

-!::..'1/J = w.

3

In unbounded flow with zero velocity far from the origin, this equation can. be
solved with the boundary condition \7 1/J-+0 at oo to get the "Biot-Savart law"

where

u(z, t) = f K(z- z')w(z', t) dz',
JJR2

K---1 (-y)
- 21l"lzl2 x .

Flow in a domain with boundary will be considered in Section 8.

(2.7) ..

The flow can also be described by the flow map z: JR2 x [0, T]-+ JR2 defined
so that z((, t) is· the position of the fluid particle which at timet = 0 is a~ the
position(.

By (2.6), z((, t) satisfies

dz 1 -d ((, t) = K(z((, t)- z')w(z', t) dz'.
t JR2

Putting z' = z((', t) inside the integralgives

dz
dt ((, t) = f K(z((, t)- z((', t))w(z((', t), t) d('

JJR2

= l K(z((,t)- z((',t))wo((')d('
JJR2

since the Jacobian of z((, t) is unity.

(2.8)

(2.9)

Vortex methods are based on various recipes for evaluating the Biot-Savart
integral with a quadrature formula. Discretizations based on the formulation
(2.9) give Lagrangian methods, where the space variable is the initial location
of the fluid marker (. The convergence study of vortex-blob methods is often
based on this formulation, which has the weakness common to most Lagrangian
met4.-ods: they become inaccurate as the grid is greatly distorted. A "Free­
Lagrangian" method based on approximation of the vorticity at time t in (2.8)
overcomes this difficulty and helps provide a more accurate approximation of the
velocity.

The "point-vortex method" [39] approximates (2.9) by

dzi ~) () 2 dt = L- K (Zi - z; w0 (; h ;
#i

(2.10)

it is very physical since it moves N point vortices with circulations ri = w0((i)h2
•

Although the method converges [22], it presents some difficulties. If two vortices
come too close together, the velocity approximation becomes unbounded. Also,
a distribution of point vortices is usually a poor approximation to a smooth ·
vorticity distribution.

4

..

'"

Chorin [15] observed that the singularity can be mollified by convolving the
kernel with a blob function 96(z) to get a smo<?thed kernel

K6 = K * 96, 96(z) = 6
1
2 9 (I)·

The resulting "vortex-blob" method is

(2.11)

Convergence results for this method are given in [24, 4, 5, 1, 25]. The numerical
behavior of this method has been studied in [34, 42]; it has been very widely
used in practice and generalized to model three-dimensional turbulent flows with
boundaries and combustion [29, 14, 16].

Lagrangian finite element methods, on the other hand, approximate win (2.8)
by a piecewise linear function on a triangulation. For each t let T,.(t) = { ri(t)}fd'1

be a triangulation covering the support of w with N vertices {zi(t)}f=1, and let

Vh = {v(z) E C0(IR?): vir, is linear for each i}

be the space of continuous piecewise linear functions over T,.(t). At each timet the
vorticity w(z, t) is approximated by.the piecewise linear interpolant wh(z, t) E Vh.
The velocity is approximated by

c2.12)

in [13] and by solving a Poisson problem in [2]. A natural algorithm is then
obtained by transporting the vertices of the triangulation along the streamlines
defined by

dz·
dt• = uh(zi, t)

and leaving the topology of the triangulation unchanged.
In this paper, we use (2.12) to approximate the velocity. Each term

1 K(z- z')wh(z', t) dz' (2.13)

in the sum (2.12) can be evaluated exactly, so the evaluation of the velocity at one
vertex costs O(N) operations and the cost of the velocity evaluation is O(N2

).

To evaluate (2.13), we fix a triangle T and a vertex z, and take a coordinate
system with origin at z. Then we can write

wh(x, y, t) =a+ bx + cy

on T. For each i and j, let

(2.14)

5

Then 1 K(z- z')wh(z') dz' = aF00 + bF10 + cF01
•

Let z17 z2 , z3 be the vertices of T, as in Figure 1, and set z4 = zb z5 = z2

for convenience. We compute the three integrals Fii by splitting T into three
triangles with vertex z, as in Figure 1, and writing

1;: tCTj 1
T j=l Tj

where CTi = 1 if point z is to the left of zi+1zi+2 and CTi = -1 otherwise.

za

Figure 1: Splitting up the computation of the Biot-Savart integral.

On each subtriangle Tk, each term can be expressed in polar coordinates and
evaluated:

poo = (- d:t: log r. + dye)
. -d"'e- dylogr

F 10 = (Asinf3cosf3 + Hd;- d;)logr- d:cdyO)
A cos2 (3 + t(d; - d;)e + d:cdy log r

FOl =

6

..

••

where (see Figure 2), d:z: = x2- xh dy = y2 - y1, r = lz- z1l/lz- z2l, fJ is the
angle z?z1 , (3 is the angle that z - z forms with the x-axis and A is the area of
triangle r 3 •

y

zl

z X

Figure 2: Triangle r 3 •

3 Formal description of the algorithm

In this section we summarize our algorithm in a procedural form. The next three
sections will be devoted to a detailed description of the new features we have
added.

Algorithm

Step 1 - Input.

Read the initial data from a file. The initial file contains:
• time integration parameters

final time, time step, order of Runge-Kutta method
• output control parameters
• triangulation parameters

frequency of retriangulation
type of triangulation method (McLain, uniform, adaptive)

• fast velocity evaluation parameters
number. of terms in expansions
number of neighbor cells
cutoff for refinement

• type of initial data
vorticity profile (smooth or discontinuous)
number of vortex patches

7

• parameters for the adaptive initial grid
error tolerance
maximum level of refinement

Step 2 - Initial conditions.

Generate the initial distribution of vertices { z~, i = 1 ... N} according to the initial
vorticity. The following options are available:

• read the initial triangulation from a file
• uniform or randomly generated vertices
• adaptive triangulation to resolve w [described in Section 6]

Assign the initial values of the vorticity Wi = wi(z~).

Step 3 - Main loop.

don= l ... M
Compute the velocity associated tow and z [see Velocity evaluation below]:

un-1 = F(w, zn-1)

Store the output [every Ns ·time steps]
if the exact solution is known then
evaluate L1 and Loo relative error by comparison with the exact solution
end if
Write output [errors, timing, triangulation, and so on] to files.

Move the points
if [Euler's method] then

zn = zn-1 + un-1at
else if [second-order R~nge-Kutta] then

z = zn-1 + un- 1at
u=F(w,z)
zn = zn-1 + (un-1+ u)atj2

else [fourth order Runge-Kutta]
z = zn- 1 + un- 1atj2
u1 = F(w, z)
z = zn- 1 + u1atj2
u2 = F(w, z)
z = zn- 1 + u2atj2
u3 = F(w,z)
zn = zn-1 + (un-1 + 2u1 + 2u2 + u3)atj6

end if
end do

Velocity evaluation.

u=F(w,z)

• construct a Delaunay triangulation of {zi} [described in Section 4]
• evaluate the velocity u at each point Zi' i = 1 ... N

with the fast summation metho~ [described in Section 5]

8

4 Delaunay triangulation -

4.1 Triangulation and interpolation

Given a set Z of N points z; in JR2 , there are many ways to connect the po!nts
into a mesh T of triangles covering the convex hull C z of Z. If function values
!; = f(z;) are given at the vertices, each triangulation T produces a piecewise
linear interpolant T(z), the unique function which is linear on e~ch triangle of
T, continuous and has T(z;) = h for each j. The error

e7(f) =max lf(z)- T(z)!.
zECz

(4.1)

in such an interpolant can be bounded in terms of the second derivatives of f,
the longest edge length ofT, and the "condition number" ofT, a measure of the
angles occurring in T [51].

We cannot control the second derivatives of f, but we can minimize the error
in linear interpolation given Z by choosing the best triangulation for a class of
f. Bad triangulations, for most ·classes have long thin triangles and long edges.
Good triangulations have short edges and very few long thin triangles. A simple

_example is shown in Figure 3. The best triangulation for a given f can be very
expensive to find.

Bad Good

Figure 3: Good and bad triangulations of a simple point set Z.

An affordable alternative is provided by the "Delaunay triangulation". It is
almost optimal for error bounds, yet can be constructed in O(NlogN) time.
Indeed, [51] shows that no other triangulation can reduce the error bounds by
more than a factor of two, while many fast methods for constructing'the Delau­
nay triangulation have ,been proposed [9, 19, 21, 23, 27, 28, 30, 33, 43, 45]. In
this section, we describe the Delaunay triangulation and a fast method for its
construction, following [45].

4.2 Definitions and data structures

The Delaunay triangulation can be (and historically has been) defined in many
ways. Currently one popular definition is in terms of the Voronoi diagram. ·

Suppose Z = {zi : j = 1, 2, ... , N} is a set of N points in a:, set n c JR2
; for

convenience we assume n has a polygonal boundary. The Voronoi diagram of Z

9

is the set of polygons P; defined by

(4.2)

Thus P; is the set of points in n which are closer to z; than to any other point z;
in Z. See Figure 4 for an example. The Voronoi diagram of Z is a useful tool for
identifying nearest neighbors, because the nearest neighbors of z; are precisely
those points z; whose Voronoi polygons P; share an edge with P;. The Voronoi
diagram is used to solve closest point problems in computational geometry, for
precisely this reason, in [9] and [35].

Figure 4: Voronoi diagram associated with a set of points.

The dual of the Voronoi diagram is the Delaunay triangulation, obtained by
connecting two points with a triangle edge iff their Voronoi polygons share an
edge. In the exceptional case when four points of Z lie on a circle, some edges
of their Voronoi polygons have zero length, and one can triangulate the cocir-.
cular points in any nondegenerate way, so the resulting Delaunay triangulation
is not unique. This possibility requires careful treatment, because the Delaunay
triangulation changes by passing through such a case [48].

Another definition, which leads to our method of construction, is through
the circumcircle criterion; the circumcircle of any triangle contains no other
point of Z in its interior. This determines the Delaunay triangulation up to the
nonuniqueness caused by cocircular points. ·

Before discussing the construction of the Delaunay triangulation, we must
specify how it is to be stored. We store a triangulation by giving two integer
arrays, itt and itv, in addition to the two real arrays needed to store the
coordinates x; and y; of the points in Z. Let NT be the number of triangles in
the Delaunay triangulation. (By Euler's formula, NT ~ 2N, which simplifies the
assignment of storage considerably.) Then k = itv(i,j) is the index of the ith

10

/

l

..

vertex zk of triangle Ti, fori= 1 to 3 and j = 1 to NT. Also, k = itt(i,j) is
the index of the triangle Tk which lies across edge i of triangle Ti. If edge i of
triangle Tj lies on the convex hull of Z, we set itt(i, j) = 0. See Figure 5 for an
example of itt and itv .

J 1 2 3 4 J 1 2 3 4
itv(1,j) 2 1 1 1 itt(1,j) 0 3 4 0
itv(2,j) 1 4 5 6 itt(2,j) 2 0 0 0
itv(3,j) 3 3 4 5 itt(3,j) 0 1 2 3

(

Figure 5: A small triangulation and the corresponding triangle to triangle and
vertex pointers itt and i tv.

4.3 McLain's method

Next we describe an algorithm due to McLain [31], which starts with a triangle
belonging to the Delaunay triangulation and adds triangles one at a time until
done, using the circumcircle criterion.

To construct the first triangle T1, we choose a vertex, z; say, at random from
· Z. Then the second vertex, say zi , is chosen as a closest point to z;. The third
vertex zk ofT1 is chosen by the circumcircle criterion, applied to each side of z;zi.

This criterion says that we select the next vertex zk so that a) zk lies outside z;zi

and b) no other point of Z lies in the interior of the circumcircle of the resulting
triangle; see Figure 6. This means that zk minimizes the signed distance t(z) of
the circumcircle center from the line through z; and zi

t (Z - Z;) • (Z - Zj)

(z) = 2(z - m) · n

11

where z,.; is the midpoint of zizi, n is the unit normal to zizi, and · is the dot
product. Any minimizer oft(z) may be chosen as the third vertex of T1:

t(z)- • Z = Zk

Figure 6: Geometry of McLain's method.

We now have the first triangle T1 • We store the indices of zi, zi and z~.: in the
array i tv(m, 1), and set itt(m, n) = -1 initially for 1 :::; m :::; 3 and 1 :::; n :::; 2N.
We also swap two vertices if necessary to orient zizizk counterclockwise.

The triangulation is now built one triangle at a time-each triangle belongs
to the final Delaunay triangulation. We loop through the indices n of existing
triangles, adding a triangle (if possible) to each edge m of triangle n which is not
already occupied. It may be that it is impossible to add a triangle to edge m,
because there are no points of Z outside the. line extending that edge. In that
case, we mark m as an edge of the convex hull of Z by setting itt(m, n) = 0,
and proceed to the next edge. If possible, however, we find the third vertex of
the new triangle by the circumcircle criterion, as a minimizer of t(z) over Z.
If the minimizer is unique, it is taken as the third vertex of the new triangle.
Otherwise, there are four or more co circular points in Z; the two vertices of m
and the minimizers of t(z). We then triangulate all cocircular vertices in any
nondegenerate way.

We now add the new triangle to itt and add its vertices to the next empty
location in i tv .. The new triangle may also be a neighbor of some previously con­
structed triangle which we have not yet accounted for, and if so the appropriate
entries must be made in itt.

We now proceed to the next edge and repeat. When we run out of unoccupied
edges, the Delaunay triangulation will be complet; ..

12

4.4 A uniform cell method

McLain's method is robust and easy to program, but can be quite slow when
N is large. To speed it up, we introduce a cell structure and vertex-to-triangle
pointers. Cells were also used in [9, 30, 33] to speed up Voronoi di~gram calcu­
lations. The basic idea is that only nearby vertices can affect the addition of a
new triangle, if the vertices are reasonably uniform. Thus we can organize the
vertices into a spatial data structure [41] and search only nearby vertices. The
circumcircle criterion allows us to check that we have included all the vertices
which matter. Let C be the circle produced by minimizing t(z) over a subset
of Z. Then no point outside C can be a global minimizer of t(z). Thus any
candidate for a new vertex excludes all vertices of Z outside C.

' .l
There are two stages of the triangle addition process which require O(N)

work. First, we have to find the minimizer of t(z) over Z. Second, we have to
check all previously found triangles to find those sharing an edge with the new
triangle.

We reduce the cost of the minimization step by organizing the vertices Z
into a data structure according to their spatial location. We first put Z in· a
rectangle C with sides parallel to the coordinate axes. Then we subdivide C into
Nc = 0(ffi) X 0(ffi) rectangular cells and store each Zi in the cell where it
lies. To do this, we u~e an array icv of length N. whieh contains the index of
each vertex and an array icv1 of length N c which ~:ontains, in its jth location,
the location in icv where storage for the vertices in cell j begins. Thus the
points zi in cell i have their indices j stored in icv between addresses icv1(i)
and icv1(i+ 1) -1 inclusive; we set icvt(Nc + 1) = N + 1 for convenience. This
data structure can be constructed in O(N) work. An example is shown in Figure
7.

Now we reduce the cost of minimizing t(z) as follows. Say we are finding
minimizers oft(z) outside zizi. Find the cells i 1 and i 2 which contain zi and zi
(usually i 1 = i 2) and construct the smallest rectangular union R of cells in the
cell structure. which contains both i 1 and i 2 • Rather than minimizing t(z) over
all points, we now find only those minimizers of t(z) which lie in R.

If R contains no points outside zizil we revert to McLain's procedure for this
edge. If there is a point in R on the correct side of zizi, then we will find a
minimizer z~c of t(z) over Z n R. This point may not be the global minimizer,
because R may not contain the latter. But any minimizer oft(z) over all N points
of Z will lie inside the circumcircle C of zi z; z~c. In practice, the minimizer oft(z)
over R will be the global minimizer almost all the time, if the point distribution
is reasonably uniform.

Hence if C C R, we have already found the minimizer of t(i) over Z. Other­
wise, we expand R until it contains C, and search the new R. This produces all .
the global minimizers of t(z).

If more than one minimizer is found, we must check previous triangles to
avoid degeneracy. The new triangle can cross only triangles which have all three

13

-
'

• zs

• zl

c3 Cs c9

• zs

• Z3

• z4
• z2

• zs
c2 Cs Cs

• z9

-
~

'

•Z1o
• Z7

c1 c4 c1

I icvil(i) I ~ 2 3 4 5 6 7 8 9 ~~I 2 2 3 3 6 6 8 10

I ict(j) I ~ 2 3 4 5 6 7 8 9
110 I

5 2 3 8 9 10 4 6

Figure 7: Ten points in a uniform cell data structure.

..
14

vertices on C. To check these triangles efficiently, we need pointers from the
points of Z to triangles having them as vertices. This requires 3NT :$ 6N integer
locations, but each point belongs to six triangles only on the average. Hence the
storage method must allow for variations in the length of triangle storage from
point to point, and this structure must be constructed simultageously with the
triangulation rather than all at once.

This situation is ideal for the use of a a linked list. This is a single array
i vt(i, j), vrhere i = 1 to 2 and j = 1 to 3NT, with the triangle indices for
a given point stored in a chain of non-contiguous locations, with each triangle
index stored in ivt(1,j) and ivt(2,j) occupied by a pointer to the next triangle
index. To get started, a triangle T~c: to which z; belongs is stored in ivt(1,j) for
1 :$ j :$ N; then ivt(2,j) points to the location in ivt where the index of the
last triangle (in order of creation) to which z; belongs is stored. If this location is
k and 1 = ivt(1,k) then T1 is the lasttriangle to which z; belongs and ivt(2,k)
is .the location in ivt where the next to last triangle index for z; is stored. The
storage proceeds backwards in this way until the end of the triangle list for the
jth point is signaled by a -1 in ivt(2, n) for some n. We add a triangle to the
list of z; simply by resetting the end link ivt(2,j) and adding the triangle to the
next empty location at the end ofivt. See Figure 8 for an example of the linked
list. ·

j 1 2 3 4 5 6 7 8 9 10 11 12
i-Yt(1,j) 1 1 "1 2 3 4 2 2 3 3 4 4
ivt(2,j) 11 -1 8 10 12 I -1 -1 -1 7 -1 9 -1

Figure 8: A small triangulation and the corresponding linked list of vertex-to­
triangle pointers.

15

Given this storage arrangement, we can easily look up all triangles having
z~c as a vertex, check if all three vertices lie on the circumcircle, and check for
degeneracy if necessary.

The linked list also speeds up the second O(N) stage of the triangle addi­
tion process; check all previously constructed triangles and find those sharing a
common edge with the new triangle, to add to itt. This is easy to speed up,
because itt points from vertices to triangles containing them; hence we can find
all the desired triangles immediately in time proportional to their number and
independent of N.

Finally, we update the pointers and proceed to the next edge of the growing
. triangulation. When there are no more edges to be augmented, the triangulation
is concluded.

4.5 An adaptive cell method

The uniform cell method is highly efficient when the points are reasonably uni­
form. Unfortunately, in applications, we do not have uniform points. Even for
interpolation of a function, we want more data points where the function varies
more rapidly [37]. Practical situations often lead to highly nonuniform point
distributions, for which both numerical experiments and theory indicate that the
uniform cell method requires close to its worst-case O(N2

) time. Even worse, the
uniform method can be fooled simply by adding a few outlying points at a large
distance from the rest of the points; it will then construct a cell structure which
is much too coarse, and the only remedy for this is adaptivity.

In this section, we present an adaptive cell method which runs niuch faster
than· the uniform method on nonuniform point distributions. The idea is to sort
points into cells of varying size, with no more than s points per cell. This is
done by recursively subdividing the rectangle C until no cell contains· more than
spoints.

At the end of 'the construction, we have partitioned C into N c sub cells of
varying sizes, as shown in Figure 9 for a small example with s = 3 and N c = 22.
For each cell i, we store a) data on its spatial location and b) the indices j of
the points z; lying in cell i. Part a) is achieved by storing three pointers per
cell, arranged in a 3 x Nc array icxy(n, i); L = icxy(3, i) is the level of i in the
sense that cell i is 2-L times smaller in each dimension than the original cell C.
Two more pointers nz = icxy(l, i) and ny = icxy(2, i) give the spatial location
of the cell, as if it were part of a regular grid ·on C composed entirely of cells of
level L; its lower left corner is at the point (x = az + nz · hz, y = ay + ny · hy)·
Here C = [az,bz] x [ay,by] while the sides of i have lengths hz = 2-L(bz- az)
and hy = 2-L(by- ay) respectively. Part b) is achieved by storing a list icv of
points lying in each cell. Additional pointers icvl and icv2 give the addresses
in icv of the beginning and end of the list of points in cell i. Thus cell i contains
(x;, Y;), where j = icv(k) fork= icvl(i), ... , icv2(i).

The cells are sorted lexicographically within each level, and arranged by level.

16

'•

0
0

:

Figure 9: 1 Adaptive cell structure with no more than three points per cell.

17

Thus we use also pointers ilc1 such that all the cells on level L are given by
i = ilcl(L), ilcl(L) + 1, ... , ilcl(L + 1) - 1. The purpose of lexicographic
ordering on each level is to speed up the operation of searching for a cell with
given values of n.,, ny and L; we simply carry out a binary search of icxy(1, i)
and icxy(2, i) for i between ilcl(L) and ilcl(L + 1)- 1. This operation is
important when we construct the list of neighbors of a given cell or when we find
all cells which intersect a given geometric object. This data structure is similar
to that used in [12, 49].

Next we describe the construction of the adaptive cell structure. We begin
with the rectangle C and subdivide it into four cells by bisecting each coordinate.
We assign each point z; to the cell in which it lies. These cells constitute level1
of the structure. To construct level 2, we run through cells created at level 1 and
bisect any which contain more than s points, reassigning points to the subcells
in which they lie. The resulting cells are added to the end of icxy, icv, icv1
and icv2 in the order in which they were formed. Cells which are subdivided
are marked for deletion, and when the level 2 cells have all been created, the
subdivided cells from level 1 are deleted and storage is reassigned. Thus empty
cells are kept but subdivided cells are eliminated; the result is a partition of C
into cells with disjoint interiors. After deletion, pointers ilc1 are made. The
algorithm now proceeds recursively one level at a time. At each level, the cells
created in the previous level are subdivided where necessary, and the new cells
assigned numbers icxy and storage in icv1 and icv2. Subdivided cells are
deleted and storage moved up.

When this process terminates, either because the maximum number of levels
is reached or because no cell has more than s points in it, the cells on each level
are sorted and rearranged in lexicographic order. Finally we make pointers i vc
from points to cells, showing which cell a point lies in; and we are done.

We need to carry out two primitive operations on this data structure. First,
we have to find the nearest neighbor cells of a given cell i, all cells having a point
in common with i. If all the cells were the same size, the spatial location numbers
oft he desired cells would be obtained from icxy(n, i) by adding 0, -1 or + 1 to
icxy(1, i) and icxy(2, i). A search through the cells on level L = icxy(3, i)
would produce them. The cells are not all the same size, so we must look on all
levels for neighbors.

For example, suppose we are looking for the lower left corner neighbor of i. We
begin on the same level as i by setting n., = icxy(1, i) -1 and ny = icxy(2, i) -1.
These are the values icxy(1,j) and icxy(2,j) would have if a cell j of the same
size as i occupied the lower left corner position. Thus we search through cells on
level L = icxy(3, i) for a cell with numbers n., and ny. If the search succeeds,
we are done. If it. fails, we must look for a larger or smaller cell. A larger cell is
easier to find in general, so we set n., - Ln., /2 J, ny - L ny /2 J and L - L - 1.
and search level L for the cell (n.,, ny). This procedure is repeated until. either
we find the cell or we reach the top level. If the latter occurs, we need a smaller
cell. The corners and sides differ here because on the corners we are looking for

18

a single cell, while on the sides we are looking for several smaller cells. On the
lower left corner, for example, we seek a smaller cell by putting n:c +- 2 · n:c + 1,
ny +- 2·ny+l, L +- L+l, and searching on level L, then repeating this procedure
as needed until the cell is found. ·

On the sides, the search for smaller neighbors is slightly mQre complicated.
We begin, say on the left side, with n:c +- n:c - 1 and ny +- ny. If no .cell on
level L with numbers (n:c, ,;,Y) exists, then we look for smaller neighbors, possibly
several of them. First, we subdivide (n:c, ny) into four cells and stack the right­
hand two cells. The left two cells are discarded. We now run through the stack,
searching for each cell on the level where it should exist. If found, it is added
to the neighbor list and we continue with the next stack entry. If no such cell
exists, it is subdivided, the right-hand two cells are stacked and the left-hand
ones discarded, and we continue with the next stack entry. When this· process
terminates, we have the list of neighbors.

Another operation we need to carry out with this data structure is to find
all cells which intersect a given geometrical object n such as a square or the
intersection of a circle with a half-space. A fast method uses recursion: Stack
the four top-level cells. Examine each for existence and intersection; if it exists
and intersects nit is added to our list, if it does not intersect it is discarded, and
if it does not exist but intersects, then it is subdivided, its subcells are stacked,
and we proceed.

An adaptive cell method for Delaunay triangulation is now a straightforward ·
. extension of the uniform method. Only the search strategy changes, as follows.

The first step is to search the cell or the two cells containing the vertices zi
and zi of the current edge. If z~c minimizes t(z) over this search area, we compute
the circumcircle of zizizk and test whether it is contained in the search area. If
it is, we have found the global minimizer and can proceed. Otherwise, we must
enlarge the search area.

Our next step is then to find· the nearest neighbor cells of the one or two
cells of the first search area and take their union as the second search area. We

·expect a single layer of nearest neighbors to be sufficient in most cases because
they will "screen" the current edg~ from further points. The second search can
again have three outcomes. First suppose no point has yet been found when
the second search terminates. Then it is quite likely but not certain that zizi is
on the boundary of the convex hull of Z; thus we find all cells intersecting the
half-space outside zizi and take their union as the third search area. If, on the
other hand, we have a local minimizer z~c, let C be the circumcircle of zi, z; and
z~c. If the interior of C is contained in the second search area, we have found the
global minimizer and can proceed.

Otherwise, we must enlarge our scope to the third and final search area, com­
prising all cells which intersect C. After searching the third search area, we have
either found all global minimizers of t(z) which lie outside z;z;, or determined
that zizi lies on the boundary of the convex hull of Z, and can proceed.

A considerable speedup is obtained by precomputing all neighbors of nonempty

19

cells and storing them. This eliminates the necessity of repeatedly finding the
neighbors of cells, a considerable savings when sis large.

4.6 Numerical results

We have implemented the three algorithms described in this section in Fortran
and tested their performance on many sets of data points. Results from only
one set of test data will be reported here. The data consists of four sets of N /4
normally distributed points, centered at four points in [0, 1]2 and with variances
given by u = 0.15, 0.15/7,0.15/72, 0.15/73• An example with N = 800 is shown
in Figure 10, where the fourth set of points is inside the third set and therefore
invisible. '

Table 1 reports the results of triangulating this set of data points, with N
ranging from 100 to 51,200. The column headings have the following meanings;

N is the number of data points.

Nr is the number of triangles produced.

Tq is the CPU time in seconds required by our implementation of McLain's
method, estimated by extrapolation for N > 10, 000.

Tu is the CPU time required by the uniform cell method, with N c = (L v'N'J)2

cells, estimated by extrapolation for N > 20,000.

Ta is the CPU time required by the adaptive cell method, using s = 25.

N c is the number of cells created by the adaptive method.

Cr = 104 ·Ta/N1og N is the scaled CPU time constant for the adaptive method.

L is the highest level used in construction of the adaptive cell st~ucture.

We can draw the following conclusions from this table; first, both the uniform
and adaptive methods are faster than. the quadratic method as soon as N ;:::
200. Thus. they are to be preferred for large problems if sufficient memory is
available. The uniform method requires about 26N integer memory in addition
to 2N real storage for x and y; about 12N of the integer storage is used just
to store the triangulation. Thus the uniform method uses only about twice the
minimum amount of memory. The adaptive method typically has similar storage
requirements, despite the larger amount of information it stores, because we
take bigger cells and hence have fewer of them. It is difficult to give a tight
upper bound for its memory usage, especially when the number of points per cell
is chosen very small. However, on this example, with neighbor lists stored, it
required about 4N additional integer locations for large N.

Second, on these nonuniformly distributed points, the uniform method runs
quickly when N is small, but degenerates to O(N2) performance when N gets
large. This is to be expected. The adaptive method, on the other hand, displays

20

Figure 10: Sample Delaunay triangulation of N = 800 nonuniform points.

21

a gratifyingly regular 0(N log N) performance throughout the whole range of N.
It beats the uniform method consistently when N ;?: 400, and outperforms the
quadratic method as soon as N;?: 200. The constancy (and even slight decrease)
of CT indicates that the adaptive cell method is O(NlogN) or better, even on
these extremely nonuniform point distributions.

N Tq T .. Ta CT Nc L
100 0.14 0.11 0.20 4.3 28 8
200 0.54 0.32 0.44 4.2 40 10
400 2.1 1.1 0.97 4.0 58 10
800 8.8 3.9 2.1 3.9 109 11
1600 38 13.3 4.4 3.7 178 12
3200 136 51 9.2 3.6 319 13

·6400 . 566 198 19.6 3.5 583 14
12800 2267* 779 41 3.4 . 1144 14
25600 . 9068* 3118* 82 3.2 2275 15
51200 36274* 12475* 169 3.1 4426 16

Table 1: Timings for constructing the Delaunay triangulation of N non uniformly .
distributed points, using the quadratic, uniform and adaptive ceU methods. As-
terisks denote timings obtained by extrapolation for the quadratic and uniform
methods.

5 Fast velocity evaluation

We now consider the most expensive part of our method, the velocity evaluation.
Given w piecewise linear on the triangulation T, we need to evaluate the velocity

u(z) = j K(z- z')f(z')dz' (5.1)

at each vertex z; ofT. Here we omit a constant factor and ignore conjugation
for simplicity, so K(z) = 1/z, and we integrate overT, the support of w, with
respect to dz' = dx' dy'.

Directly evaluating u at theN vertices ofT via (2.12) costs O(N2) work with a
large constant. We now·present a fast algorithm which requires O(N413 log£) time
to evaluate N values of u within an error tolerance E, when Tis quasi-uniform
(when there are upper and lower bounds proportional to N on the number of
triangles in any fixed area). Our algorithm is based on the fast multipole method
[12], but differs in forming moments of a continuous source rather than point
~~. '

22

5.1 Splitting

Our first step is to split the velocity u at each vertex into local and far-field parts .
iLL and uF. To do this, let Co be a rectangle containing T and divide Co into Nc
square cells C of equal side length, say 2h. Fix a vertex z = zi. Then

u(z) = 2: f K(z- z')w(z')dz'
c lc .

= uL(z) + uF(z) (5.2)

where U£ is the sum of those terms due to cells C within r cells of z, and uF is
the remainder (see Figure 11). Thus

uF(z) = L . 1 K(z- z')w(z')dz'
d(z,C)>(2r+l)h C

(5.3)

where the distance from a cell C (with center c) to the point z is defined by

d(z, C)= max(l~(z- c)l, l~(z- c)l). (5A)

Note that w(z') is piecewise linear on the triangulation T; thus the integral
over each cell C is a sum of integrals over subtriangles of triangles intersecting C.
The most efficient way to evaluate these integrals is to carry out a preliminary
step in which the triangulation is refined wherever necessary to make each triangle
lie completely within a single cell C. This refinement is implemented recursively;
we st~ck all triangles, then cut each one which crosses ~ cell boundary and put
the resulting pair of triangles back on: the stack. When the stack is exhausted,
no triangle crosses a cell boundary.

5.2 Laurent expansion of uF

Now consider the far-field. Let C be a given cell (with center c) contributing to
the far-field velocity evaluated at point z. Then for each z' E C, we can expand
K about c in a Laurent series:

K(z- z')
1

z -·z'

1
00

(I)n
z-cL :~;

n=O

(5.5)

How well does this series converge? By elementary geometry, we have

l

z'- cl v'2 -- <--=p.
z- c - 2r + 1

(5.6)

(Typically r = 1 and p = 0.4714.) Hence the error (relative to 1/(z- c)) in
truncating the Laurent series of K after the pth term is bounded by

I oo (z' c)"l pP+l Ep = L __::_ $; -- $; pP
z-c 1-p

n=p+l

(5.7)

23

Near Field Far Field

B c
• b • c

• z

l
2h

!
(2r + 1) · 2h

Figure 11: Cells and centers for fast velocity evaluation, with r = 1.

since p :$ 1/2. If r = 1, for example, we can guarantee Ep ::; 10-k with p ,..,., 3k
since p3 ::; 0.105. In any case, we now assume an error tolerance £ has been
speCified, and r, h and p are chosen to make Ep :::::; £.

Then we have, within error Ejwjl = £ f lwl,

L [t -1-· (z'- c)nw(z')dz'
d(z;C)>(2r+l)h Jc n=O Z- C Z- C

p

= L LCn(z-ctn-l
d(z,C)>(2r+l)h n=O

where the coefficients Cn forcell Care defined by

Cn = L (z'- c)"w(z')dz'.

(5.8)

(5.9)

Since w is piecewise linear and we subdivided the triangulation where necessary
to make it compatible with the cell structure, we have

(5.10)

where

(5.11)

24

is the moment of a linear function over a single triangle T. Clearly we need only
evaluate the modified moments

(5.12)

where a+ f3 :5 1, and we have added a factor of n! to simplify later formulas.
Let's write z- c = ax+ by- c for the time being, where a and bare arbitrary.

Then after evaluating T~0 , we can get the rest by differentiation:

a{j _ (8) a (iJ) {j Too .
Tn - 8a 8b n+a+.B' (5.13)

To evaluate T~0 , we apply the Divergence Theorem to get

T~0 = f V. Fdxdy·= f F · vds.
}T JaT .

(5.14)

Here

(5.15) .

and
(5.16)

if zk = xk + iyk are the three vertices ofT. Here a is the forward difference
operator afk = fk+ 1 - fk with respect to the index k = l, 2, 3 and we put
z4 = z1 • It follows that

3 a (n+2) Too = L~a zk (5.17) n
k=l aazk . (n + 2)! 1)

=
L- Xk zk. 3 a (n+2)

k=l bazk a (n + 2)!
(5.18)

To simplify the calculation of T~0 and T~1 , we differentiate (5.17) with respect
to band (5.18) with respect to a. Finally, we set a = 1 and b = ito get

(5.19)

(5.20)

(5.21)

Note as. a check that T~0 + iT~1 = (n + 1)T~~ 1 • Note also that this calculation
works for any polygon, not just a triangle.

25

5.3 An O(N312 log t:) algorithm

Separation of local interactions from the far-field and Laurent expansion of the
latter leads already to algorithms which cost O(N312 Iog €) time with N quasi­
uniformly distributed triangles and an error tolerance €. To construct such an
algorithm, divide T into N c cells C of side length 2h, each containing 0 (N J N c)
triangles (we can ignore preliminary subdivision as it only affects the constant)
and choose parameters r and p = O(logE) to make Ep $ €. The number Nc
will be chosen later to achieve maximal efficiency. Then evaluate uL(z;), for each
vertex z;, directly in O(N/Nc) time per vertex or O(N2 /Nc) total time. For
the far-field, form Laurent coefficients for each cell in O(pN) time (since each
triangle contributes top coefficients) and evaluate 0(N c) p-term Laurent series at
N points in O(pN Nc) time. Choosing Nc = O(N112) minimizes the total.time
which is then O(N312p) where p = O(logE). Thus this gives an O(N312 logE)
algorithm with N quasi-uniformly distributed triangles.

5.4 ·An O(N413 log t:) algorithm

We next add a further observation which reduces the time to O(N413 logE) with
N quasi-uniformly distributed triangles. The observation is that the far-field is
smooth, hence well approximated by a Taylor series in each cell. The Taylor series
can be computed by summing over the far-field contributions from each far-field
cell, then evaluated once and for all at each vertex. This further decoupling of
sources from points of evaluation leads to an O(N413 logE) algorithm.

Thus consider a cell B, with center b, containing triangle vertices z; where we
wish to evaluate up(z). Each term in each Laurent series has a Taylor expansion

1 . = ~ (n + m) (b _ c)-n-m-1(b _ z)m
(z - c)"+1 L.J m · m=O ·

(5.22)

about the cell center b. Thus,
00

(5.23)
m=O

where the Taylor coefficient Bm in cell B is given by

1 p c
Bm = -

1
L(b- ctm L(n + m)!(b- c)-"-1-f.

m. C n=O n.
(5.24)

The error in truncating the Taylor series after p terms is bounded by

Ep = I f: Bm (b - z r I
m=p+l

(5.25)

00

< L 2lwh(2(r + 1)htm-l(J2h)m (5.26)

< (5.27)

26

with p = 1/(v'2(r + 1)). Clearly this can be made ::; f. by choice of ponce rand
hare fixed, and p = O(logE).

This transformation leads to an O(N413 log E) algorithm as follows. As before,·
we divide T into Nc cells each with O(N/Nc) triangles. The local part costs
O(N2 /Nc) as before. The far-field part costs O(pN) to form Laurent coefficients,
O(Nl;p2

) to convert Laurent to Taylor series and O(Np) to evaluate Taylor series.
Hence Nc = O(N213

) gives the miniinum time and it is O(N413 log €).

5.5 Refinements

There are three or four refinements to the final algorithm which collectively pro­
duce a factor of three or four speedup for large N, and one which makes the
algorithm 0 (N log N log f.) for large N.

First and most trivially, empty cells containing zero vorticity should be ig­
nored in forming moments, and the powers of vertices required· to form and ·
transform the moments should be precomputed and stored.

Somewhat less trivially, we observe that the far-field becomes smoother at
longer distances. Thus more distant cells need contribute to fewer terms in
Laurent or Taylor series. If we need p0 terms for the nearest far-field cells to
get error €, then a cell at distance (2ih, 2j h) from the evaluation cell need only
contribute to p coefficients where

p = Polog(((2i- 1)2 + (2j- 1)2)h2 /2) ·
(5.28)

This refinement usually speeds up large computations by a factor of 2.
Another refinement concerns the preliminary subdivision of triangles to make

them lie precisely in cells. Clearly we want to cut as few triangles as possible,
since the cost of the ~ocal part increases with the number of triangles. Also,
it is not necessary to have triangles completely contained in cells if they are
nearly contained. Thus we specify a distance q by which a triangle may extend .
outside a cell boundary, so a triangle must go 2qh outside to be cut. Typical cut
triangulations for various values of q are shown in Figure 12. The error bounds
will be affected by q since the far-field can come nearer, but in practice even such
large values as q = 0.32 produce little or no change in the error. This is because
most triangles are far away, where q is irrelevant. The CPU time, however, can
be drastically reduced by taking q large, because many fewer local interactions
need be computed. For example, the number of triangles is cut in half by taking
q = 0.32 instead of q = 0.02, with no increase in the error. This leads to a factor
of two speedup in the local interactions.

The algorithm requires a choice of cell size, and its speed depends on the
choice. Such a parameter is difficult to estimate a priori; cells too small require
too many subdivisions, and too many Laurent-Taylor conversions, while cells too
large require too much local work. The real remedy for this is adaptivity, as.
used in our Delaunay triangulation method or [12, 49], but this complicates the

27

Figure 12: The original and (alternate cells of the) subdivided triangulation
with N = 500 and q = 0.02, 0.08 and 0.32. The subdivided triangulations have
1146, 750 and 507 vertices respectively.

28

,.

' handling of Taylor expansions. We implemented instead a simple method for
choosing cell sizes, based on minimizing the CPU ti~e at each step. We keep
an increment i = ±1, and don., +-- n., + i at each step, where n., is the number
of cells in the x-direction. The number of cells in the y-direction is chosen to
keep the cells approximately square. The increment i changes sign whenever
the CPU time required for the current fast velocity evaluation exceeds the CPU
time required for the last one. This choice of parameter, keeps us within one
cell of a local minimum ofCPU time, even if we start the computation with the
wrong number of cells. It also adapts automatically to odd-shaped. distributions
of vorticity.

We also observe that the algorithm can easily be made to run in 0(N log N log €)
time on quasi-uniform triangulations. To do this, we simply observe that the for­
mula (5.24) which converts Laurent to Taylor coefficients at a cost of O(N't:p2)

is a correlation which can be computed in O(NclogNcplogp) with the FFT.
Then choosing Nc = O(N) gives an O(NlogNlogE) algorithm. However, we
believe the overhead of this approach would be large enough that little speedup
would result in practical problems; hence we have not implemented it. It would
be important in three-dimensional problems.

Finally, the restriction to quasi-uniform triangulations can be removed by
making the algorithm adaptive, exactly as in [12]. In our computations, however,
we did not implement an adaptive method because of its complexity.

5.6 Numerical results

We now present numerical results which show that our algorithm achieves con­
siderable speedups over direct evaluation. Table 2 gives the result of fast and
direct velocity evaluations for uniformly distributed random vortices in [-1, 1]2

with random w values uniformly distributed on [-1, 1]. We take q = 0.2 and
. € = 10-a, which requires p = 10 with r = 1. The other numerical parameters are

given in the table along with the times Td and T1 for· direct and fast evaluation
and the maximum relative error E1 in fast evaluation. Here N is the number of
vertices, NT the number of triangles, and N!r is the number of triangles after the
subdivision of the triangulation required to put each triangles within q of lying
in a single cell.

We observe that the fast method breaks even for about N = 100 and achieves
a speedup of about 200 when N = 51200. For N ;:::: 1000, we get a tenfold
speedup. The fast velocity evaluation is slightly faster than O(N413) in practice,
and the error is much smaller than the error bound.

6 Initial triangulation

We must address one more computational issue, in order to have a robust method:
where do we put the vertices initially? Say we are given an initial vorticity
field; smooth, discontinuous, or worse. Then we should place the vertices z;

29

N NT Td T, 100T1/N473 E, Nc N' T
100 183 2.31 2.36 0.51 0.48 X 10-6 4 243
200 378 9.63 4.88 0.42 0.72 X 10-6 6 493
400 773 39.5 10.9 0.37 0.11 X 10-5 9 1053
800 1566 161 24.3 0.33 0.90 X 10-6 12 2020
1600 3161 658 55.5 0.30 0.48 X 10-6 15 3840
3200 6352 2655 122 0.26 0.54 X 10-6 20 7377
6400 12744 10683 271 0.23 0.77 X 10-6 27 14405
12800 25529 42732* 627 0.21 0.14 X 10-5 34 27576
25600 51115 170928* 1453 0.19 0.92 X 10-6 45 54197
51200 102295 683712* 3431 0.18 0.93 X 10-6 59 106686

Table 2: Timings for fast and direct velocity evaluation methods with NT trian-
gles. Asterisks denote timings obtained by extrapolation for the direct method.

to minimize the error in representing w by a piecewise linear function on the
Delaunay triangulation of the vertices. To do this, we use adaptive refinement of
a coarse initial triangulation.

Thus we begin with a uniform square mesh covering the support of w, and
cut each square into a pair of isosceles right triangles. This is our coarse ini­
tial triangulation, which we now refine as follows. We put all the triangles on
a stack, and sweep through the stack, testing whether each triangle needs to be
subdivided. To test a triangle, we first evaluate w at the node which would be
produced by subdividing the triangle. We also evaluate the linear interpolant
at the same node, and compute the difference between the two values. If w is
within a tolerance € (relative to the maximum value of w so far encountered) of
the interpolant at the new node, the triangle is accepted. Otherwise, the trian­
gle is subdivided by Mitchell's newest-node bisection method [32], maintaining
compatibility by subdividing neighbors as necessary, and the new triangles are
stacked. We then repeat the procedure with the next triangle in the stack, until
the stack is finished. Using the maximum value of lwl so far encountered produces
a triangulation on which the erroris likely to be smaller than Elwloo rather than
larger, though of course any method can be fooled into accepting a substandard
triangle with errors which are actually too large.

Mitchell's subdivision procedure begins by assigning one vertex of each trian­
gle in the initial triangulation as a "peak," and the side opposite the peak as the
base. (In our case, the initial triangulation consists of isosceles right triangles
and the peak is the vertex at the right angle, opposite the hypotenuse.) Then it
subdivides triangles by dividing the base and the neighboring triangle opposite
the peak, with the new vertex being assigned as the peak of each of the four
new triangles created by the subdivision. Compatibility is maintained by always
subdividing compatible pairs of triangles; if the neighbor opposite the peak is

30

not compatibly subdivisible, it is itself divided recursively until compatibility is
maintained: See Figure 13. Because we begin with isosceles right triangles, the
recursion is always finite. The fact that we subdivide triangles compatibly gives
a slight safety factor, because even if a triangle is wrongly accepted, it will still
be subdivided if o.ne of its neighbors with peak opposite it is subdivided.

7 Numerical results

In this section we present numerical results that show the accuracy, efficiency
and robustness of the method. Our results show that the method maintains its
accuracy for very long periods of time, oil simple and complex test cases. It
is flexible and robust, and can compute even discontinuous solutions, ,with no
numerical parameters except the' resolution and time step, and little numerical
diffusion.

First, we discuss the norms and conser~ed quantities we plan to measure.
There are six reasonable quantities to measure, the £ 1, L 2 and £oo errors in the
velocity and the vorticity, an~ for smooth solutions the results are essentially
independent of the choice of norm. Since we present numerical results with
nonsmooth as well as smooth vorticity fields, we prefer the errors in velocity, a
smoother quantity and a primitive variable with direct physical meaning. The
error in velocity is appropriate for comparing our method to other methods, since
the representation of the vorticity in other methods is quite different. The L00

norm seems more appropriate than £ 1 or L2
, since the velocity field of a single

vortex blob is not in L1 or £2, so these norms depend on the support of the grid,
and not only on h, even if the vorticity has compact support. Thus our main
measure of error is the relative L 00 norm of the velocity error

E = maxz iu(z, t)- uh(z, t)i
u- maxi iu(z, t)i

where u is the exact and uh the computed velocity field. The maximum over z is
approximated by the larger ofthe maximum over the vertices and the maximum
error in the linear interpolant of uh at one random point per triangle.

There are also two useful conserved quantities which we check, the circulation

r := f w(z,t)dz
JJR2

and the second moment of the vorticity

(7.1)

(7.2)

Conservation of circulation follows from conservation of vorticity along the stream-
lines;

f w(z, t) dz = 1 w(z((, t), t) d(= f w0 (() d(. J JR2 JR2 . J JR2 .

31

(a)

(b)

(c)

(d)

Figure 13: An example of Mitchell's recursive newest-node bisection. Triangle
T1 is flagged for subdivision, but the peak (circle) of its neighbor T2 does not
lie opposite T1• Hence we must refine· T2 and its neighbor T3 • 'Similarly, the
peak of T3 does not lie opposite T2 , so we must refine T4 and T3 • The peak
of T4 lies opposite T3 , so the recursion stops here .. We then divide 'triangles
backwards in pairs as shown in (b) through (d), until we have divided T1• The
final triangulation is shown in (d).

32

,.

The Jacobian !8zj8(! = 1 because the flow is incompressible. To show the second.
moment is conserved, we differentiate it to get

M2 = r lzl 2wt(Z, t) dz I JJR2
= ...,. { !z! 2u · Vw(z, t) dz JJR2

= - JIR
2

!zl2\7 · (wu) dz

- { \7 · (lz! 2wu) dz + { wu · Vjzj 2 dz JJR2 JJR2 .
The first integral vanishes if w decays fast enough at infinity. The second integral
becomes

{ wu · Vjzj 2 dz = JJR2
2 r wu. zdz

JJR2

Therefore

2 { w(z)z. f K(z- z')w(z') dz' dz JJR2 JJR2
= 2 { { w(z)w(z')K(z- z') · (z- z' + z') dz' dz JJR2 JJR.2 .

. 2 r r w(z)w(z')K(z- z'). (z- z') dz' dz- M2
JJR.2 JJR.2

M2 = r r w(z)w(z')K(z- z'). (z- z')dz' dz = 0 JJR.2 JJR2
since K(z) · z = 0. The second moment is a good measure of numerical diffusion.

7.1. Comparison with vortex-blob methods

In a vort~x~blob method the velocity field is computed using (2.11). The con­
vergence properties of such a method depend on the blob function. Several con­
vergence results for vortex~blob methods are given in [1]. Here we briefly recall
some ofthe main results. Let u(z, t) be the exact velocity field at position z and
timet, and uh,6(z, t) the velocity field produced by a vortex-blob method of grid
size hand blob size 6. The discrete L2 error, or "consistency error" is defined by

{ }

1/2

e2(t) = ~ !u(z;, t)- u11,6(z;, tWh2
,

where z;(t) is the exact position of the i-th particle of fluid at time t. It can
be shown that, for a finite time interval T and for smooth initial conditions, the
following estimate holds:

33

Here the constant C depends on the initial condition and on T, and the constants
p and L are determined by the blob function. For Gaussian blob functions,
L = oo, so with c = hq, the error estimate becomes

where p is the order of the blob function. In theory it is possible to obtain an
arbitrarily high order of convergence by choosing p large and q close to one. Ex­
perience shows, however, that for p large and q close to one there is a considerable
loss of accuracy after a short time. We used the Gaussian blob function of order
p=4~~ .

() 1 (2 -r2 . 1 -r2/2) g r =; e - 2e ,

where r = lzl.
. As a test problem we consider Perlman's test case [34] with vorticity

The corresponding velocity field is given by

lzl-s 1
lzl > 1

u(z) = f(lzl) (!x) ,

· where

r$1

r > 1

(7.3)

(7.4)

The flow is radially symmetric and rotates about the origin. The particles near
the origin complete one rotation at time t = 41r, while the particles on lzl = 1
complete one rotation at t = 327r.

At time t = 0 we place the particles on a regular square grid of size h = 0.4,
0.2, 0.1 or 0.05, inside a circle of radius R = 1.2, and set wi = w(zi) where w is
defined by (7.3). The system of ODEs

is integrated up tot = 327r by a Runge-Kutta method of order 4, with time step
t::..t = 0.05. The results reported in Figure 14 show that large q gives a higher
order of convergence for short times, but for smaller q the accuracy is maintained
for longer times.

We repeated the calculations with our algorithm, using the same initial con­
ditions, and solving the system of ODEs by a Runge-Kutta method of order 4,
with n = 64, 96, 128 and 192 time steps up to T = 327r. Figure 15 plots the rel­
ative L00 error in velocity and the moment errors versus time. It is evident that

34

our method is more accurate than the vortex-blob method for a given number of
degrees of freedom. The errors are not smooth functions of time, because of the
reconnection, but remain uniformly small.

The computation of the velocity field with a fast multipole-based vortex-blob
method is slightly faster than with our method; Figure 15 also plots the time­
averaged errors against the total CPU time. However, our m~thod achieves better
accuracy, so the average error decreases faster as CPU time increases. Note,
however, that we are comparing very simple versions of these algorithms; little
can be inferred about the relative performance of possible production versions of
these codes.

Vortex-blob methods preserve some conservation properties of the Euler equa­
tions. In a vortex-blob method, the discrete analogues of r andM2 are

N
r<N) .- L:wih2 (7.5)

i=l

N
M~N) .- L:wilzil2h2 (7.6)

i=l

and f(N) is obviously conserved. It is easy to show that M~N) is also conserved'
[40]. Conse_rvation of the second moment is important, since the rate of change
of the second moment is related to the numerical diffusion of the method. This is
one reason why vortex-blob methods are attractive for inviscid flow. They have
been used for slightly viscous flow in conjunction with random and deterministic
methods for the treatment of vorticity diffusion (15, 18, 40).

Our method does riot preserve the circulation and the second moment. Figure·
15 plots the relative errors in the circulation and second moment; with h = 0.05
the s~cond moment errors are less than 0.4% up to t = 327r. In view of the
extension of the method to the Navier-Stokes equations, we use this to estimate
the minimum viscosity that is possible to treat with such a method for a given
grid parameter h. For the N a vier-Stokes equations

Wt + u · \i'w = vD.w

the second moment of Perlman's test case evolves according to

Since M2(0) = 7r /72,

_ M2(t) _: M2(0) _ 288vt
m2 = M2(0) - -tr-.

At t = 32tr, m2 = 9216v. An error of 0.4% corresponds to v = 8 X 10-7
, a

fairly small viscosity. This suggests that our method can be combined with the
method of [40] to solve the Navier-Stokes equations for small Reynolds number
flows. Note, however, that we do not observe a linear growth of error with time.
Rather, the second moment is roughly constant, suggesting that our method may
be even less diffusive than this simple estimate would imply. .

35

0·~----~-------.

TUllO

0,--------------.

TU11e

•12/r-..,_ <;-•""t:-o""'lor-...,.,... •v'"'~'~<.,....,,':r"f.,6
Log2(CPU aeeonds)

01,-----~-------.

Tuuo

Figure 14: Errors versus time for the vortex blob method with h = 0.4, 0.2,
0.1 and 0.05 and tit = 0.05. Top row: Relative L00 errors in velocity versus
time. Second row: Time-averaged relative L00 errors in velocity versus SPARC-
2 CPU time in seconds. Left column: Supergaussian blob, q = 0.7. Center:
Supergaussian blob, variable q = 0.9, 0.8, 0.7 and 0.6. Right: Finite-core blob,
q = 0.4.

36

...

o.o.------------, o.o.------------,

b

i
·2.0

.s
~ ..

-8.0

....
:0;
"' ·10.0

~ .,
0 ..
>
.s
~ ..
E
~
=
~
"' .3

"
12

·
0o.o 20.1 40.2 60.3 80.4 100.5

Time
20.1 40.2 80.3 80.4 100.5

Time
20.1 40.2 60.3 80.4 100.5

Tune

0.0 0.0 0.0

•2.0

~
•2.0 ::0 ·2.0

I " I \ -4.0 -4.0

\
-4.0

i ~ .,
~ -6.0 .s -6.0 -6.0

~ .s
-8.0 ! -8.0 ~ -8.0 i ·10.0 .3 ·10.0 ·10.0

.3
·12.00.0 4.0 8.0 12.0 16.0 ·12.00.0 4.0 8.0 12.0 16.0

·12.0
0.0 4.0 8.0 12.0

Log2(CPU seconds) Log2(CPU sa-) Log2(CPU sa-)

Figure 15: Comparison with vortex-blob methods; relative L 00 velocity,drcula­
tion and moment errors (left to right) versus time (first row) and the correspond­
ing time-averaged errors versus SPARC-2 CPU time (second row) for our method.
The four runs plotted used the following parameters: Mesh sizes h = 0.4, 0.2,
0.2 and 0.1. N = 29, 113, 441 and 1793 vertices. n = 64, 96, 128 and 192 time
steps .

37

16.0

7.2 Reconnection versus fixed topology

We next reproduce the results presented in [13] and compare them with those
produced with our method, for Perlman's test case (7.3). The initial triangulation
was produced by the MODULEF library of finite element codes [10], with h =
1/6, 1/8, 1/12, 1/16 and 1/24. The system of ODEs is integrated by a Runge-

·, Kutta method of order 2, with fl.t = 1r /8. For each value of h we make two runs.
In the first we keep the topology of the triangulation unchanged and eval~ate
the velocity directly, as in [13]. In the second run we construct a Delaunay
triangulation at each time step, using the adaptive cell technique of Section
4, and use the fast velocity evaluation of Section 5. Figure 16 compares the
triangulations in the two cases, for h = 1/12 and t = 0, 2tr, 4tr, and also shows
the Delaunay triangulation for later times t = 81r, 16tr, 32tr. Clearly without
reconnection the grid becomes very distorted and degenerates after a certain
time, when triangles with negative area form, while the Delaunay triangulation
remains regular for long times. Figure 17 shows the velocity and moment errors
as a function of time up to T = 8tr. The distortion of the fixed grid causes
a dramatic increase in the error, while with a Delaunay triangulation the error
remains small. The time-averaged errors versus CPU times are reported in Figure
18. It is clear that the fast velocity evaluation method is essential for attaining
small errors in reasonable computation times.

7.3 The adaptive method

'We now test our method on Perlman's test case, without the handicap of a uni­
form initial grid. We first fix a grid refinement tolerance € = 0.064 and halve the
time step until the first two digits of the errors do not change for 0 :::; t :::; 32tr, us­
ing fourth-order Runge-Kutta. This gives us a time step fl.t = 1r /2 which makes
time discretization errors negligible in comparison with spatial discretization er­
rors for this €. Then we run three more cases, with € = 0.016, 0.004 and 0.001,
reducing fl.t each time. Figure 19 displays the resulting triangulations at t = 0,
t = 4tr and t = 32tr. Figure 20 plots the errors against time and CPU time;
they remain uniformly small over time and decrease very rapidly with increasing
computational effort.

7.4 Kirchhoff's ellipticai vortex

We now turn to a more challenging test case, a patch of piecewise constant
vorticity. An exact circular patch of constant vorticity is easy to construct, but
shares with Perlman's test case an unrealistic radial symmetry. We use a more
interesting test case, the Kirchhoff elliptical vortex, a uniformly rotating elliptical
patch of constant vorticity with exact velocity field given in Appendix A. The
Kirchhoff vortex is of considerable physical interest [7] as well as numerically
useful.

Resolving the elliptical vortex with an adaptive grid requires that we vary

-38

,·

Figure 16: Fixed (top row) and Delaunay (second row) triangulations at times
t = 0, 211" and 411" (left to right), and Delaunay triangulations at later times t = 81r,
1611" and 321!" (last row).

39

:2;
"tl
0

l
.s
g .
E
~
=
~ ..
.!!

0.0 0.0 0.0

•2.0 ·2.0 =- •2.0 c

I I -4.0 -4.0 -4.0

~ l "tl -6.0 .s
g .s

..a.o i g
·10.0 .!! i

.!!

·12.00.0 5.0 10.1 15.1 20.1 25.1 5.0 10.1 15.1 20.1 25.1

Tome Tome Time

0.0

=- ·2.0 c

I -4.0

1 -6.0 :
.s
g ..a.o
~
'ill. ·10.0 .!!

·12.o~.-_,____,._____._---~._...J

0.0 5.0 10.1 15.1 20.1 25.1
·12.0

0.0 5.0 10.1 15.1 20.1
Tome Time Tome

Figure 17: Comparison between fixed topology and Delaunay triangulation with
h = 1/6, 1/8, 1/12, 1/16, 1/24. First row: Relative Loo error in velocity, circula­
tion errors and second moment errors versus time, for Delaunay triangulation.
Second row: the same quantities for fixed topology.

40

25.1

1:
'II
0

l
.s
il .
E
.E

!
!l

1:
'II
0

l
.s
~
E
.E

!
!l

0.0 0.0 0.0

·2.0 -2.0 z ·2.0

i ~
-4.0 -4.0 ~ -4.0

\
e 1 -6.0 'II -6.0 -6.0 .s :
il .s

-6.0 i .a.o

\; 11 .a.o
~ .

·10.0 !l ·10.0 ~ ·10.0
!l

·12.00.0 4.0 8.0 12.0 16.0
·12.0

0.0 4.0 8.0 12.0 16.0 ·12.00.0 4.0 8.0 12.0

Log2(CPU seconds) Log2(CPU seconcis) Log2(CPU seconds}

0.0 0.0 0.0

·2.0

~
·2.0

~
z ·2.0

~ I
c
~

-4.0 .. -4.0 e -4.0 e '!!
-6.0

..,
-6.0 ~ -6.0 .s

il .s
-8.0 . -8.0 11 -8.0

i i ·10.0 !l ·10.0 ·10.0

·12.00.0 4.0 8.0 12.0 16.0
·12.0

0.0 4.0 8.0 12.0 16.0 ·12.00.0 4.0 8.0 12.0

Log2(CPU seconds) Log2(CPU seconds} Log2(CPU seconds)

Figure 18: Comparison between fixed topology and Delaunay triangulation
with h = 1/6, 1/8, 1/12, 1/16, 1/24. First row: Time-averaged relative L00 error
in velocity, circulation errors and second moment errors versus Cray-2 CPU time,
for Delaunay triangulation. Second row: the same quantities for fixed topology.

41

16.0

16.0

Figure 19: Adaptive triangulation of Perlman's test case at times t = 0, 41r and
327r (left to right), with € = 0.064 (top row), 0.016 (second row), and 0.004 (last
row). ·

42

.•

::;;
-g
J
.E
g ..
E

I
.3

~ ...
0

J
.E g ..
E
.E

I
~
.3

0.0 0.0 0.0

-2.0 ·2.0 .:- -2.0

~ I "1:: -4.0

i 1 ...
.E ~.0

g .E

i g -8.0 ..
.3 i ·10;0 .3

·12.00.0 20.1 40.2 60.3 80.4 100.5 20.1 40.2 60.3 80.4 100.5
·12.0

0.0 20.1 40.2 60.3 80.4

Tome Tune Tune

0.0 0.0 0.0

-2.0 -2.0 ::0 -2.0

I ~

~
-4.0 i -4.0 E -4.0

~ ~
1! ...
~ ~.0 .E ~.0 ~.0

g .E
-a.o .. -8.0 g -8.0

ii ! ·10.0 .3 -10.0 .. ·10.0
.3

·12.00.0 4.0 a.o 12.0 16.0 ·12.00.0 4.0 a.o 12.0 16.0 -12.00.0 4.0 a.o 12.0

Log2(CPU seconds) Log2(CPU seconds) Log2(CPU seconds)

Figure 20: Errors for Perlman's test case, with an adaptive grid reconnected
at every step. First row: Relative L 00 error in velocity, circulation errors and
second moment errors versus time. Second row: Time-averaged quantities versus
Cray-2 CPU time. The four runs plotted used the following parameters: Mesh
tolerances E = 0.064, 0.016, 0.004 and 0.001. N = 50, 205, 725 and 2709 vertices.
n = 64, 96, 128 and 192 time steps.

43

100.5

16.0

the number L of refinement levels allowed together with the tolerance £. We take
£ = 0.064, 0.016, 0.004 and 0.001, with L = 8, 10, 12 and 14 levels of refinement
of an initial uniform grid with h = 0.48, and n = 32, 48, 64 and 96 time steps,
using fourth-order Runge-Kutta.

I

Figure 21 shows the vorticity field at t = 0, T I 4 and T 12, where T = 9rr =
28.27 4334 is the rotational period of the Kirchhoff ellipse with aspect ratio 2,
and strength 1. The vorticity field is plotted by giving each triangle a gray-scale
value equal to wllwl00 , where w is the average over the triangle, 0 is lightest and
1 is darkest. In the more accurate calculations, the ellipse returns very closely to
its original position after one period. Note that the fluid inside the ellipse rotates
as a rigid body (since w is constant there); the fluid outside undergoes a more
complicated deformation.

Figure 22 plots the L1 and L 00 errors in velocity and vorticity and the moment
errors against time. Clearly the L 00 error in vorticity is 0(1), as one would expect,
while the L 00 error in velocity is uniformly small.

Figure 21: Grayscale plots of the Kirchhoff elliptical vortex at times t = 0, T I 4
and T 12 (left to right), with£= 0.016 (top row) and 0.004 (last row).

44

2> ..,
-e
0
>
.5
g .
.:;
i
.!l

2> -g ..
>
.5
g .
E
.E

' -'

0.0 0.0 0.0

·2.0 2> ·2.0 •2.0 ..,
2> -e

~ -4.0 -g -4.0 .5 ..
g >

.5 . -6.0

~ j -8.0 .:;
i .. ·10.0 .!l

.!l

·12.00.0 2.8 5.7 8.5 11.3 14.1 ·12.00.0 2.8 5.7 8.5 11.3 14.1 11.3

nme nme nme

0.0 0.0 0.0

·2.0 ·2.0 t ·2.0

~

~
-4.0 ~ -4.0

"l!
"0 -6.0 8
.5 : g ~
i ~

·10.0
.!l i

.!l

·12.0 .
0.0 2.8 5.7 8.5 11.3 14.1 2.8

Tune Tune Time

Figure 22: Errors for the Kirchhoff elliptical vortex. First row: Relative L1 and
L 00 errors in vorticity and L1 error in velocity versus time. Second row: Relative
L 00 error in v~locity, circulation and second moment errors versus time. The four
runs plotted used the following parameters: Mesh tolerances € = 0.064, 0.016,
0.004 and 0.001. N = 468, 1064, 2320 and 4700 vertices. n = 32, 48, 64 and 96
time steps.

45.

14.1

,.

7.5 Interacting vortex patches

Our final numerical examples are flows composed of several interacting vortex
patches. Since exact solutions are unavailable, we estimate the errors in vorticity
and velocity by differencing. We evaluate the vorticity and velocity fields, stored
on the triangulation, by linear interpolation to fixed uniform grid, then difference
successive calculations. This gives error estimates which agree well with the exact
errors when the latter are available.

Our first test case without an exact solution uses three randomly placed
patches, each a scaled version of Perlman's test case. The vorticity is plotted
in Figure 23, for € = 0.016 and 0.004, at times t = 0, 25 and 200. The errors
estimated by differencing are plotted in Figure 24, using € = 0.064, 0.016, 0.004
and 0.001 and fourth-order Runge-Kutta with n = 96, 128, 192 and 256 time
steps up tot= 200.

Our second test case is the interaction of circular patches of constant vorticity,
as studied in [11, 52, 50] by specialized methods. We do not expect great accuracy
from our general-purpose code; we are pushing the limits of adaptivity. Figure
25 shows the vorticity computed with € = 0.016, 0.004 and 0.001, at times t = 0,
10 and 40. The errors estimated by differencing are plotted in Figure 26, using
fourth-order Runge-Kutta with n = 64, 96 and 128 time steps up to t = 40.

46

Figure 23: Three interacting patches of smooth vorticity, at times t = 0, 25 and
200 (left to right), withE= 0.016 (top row) and 0.004 (second row).

o.o.----------, o.o.----------,

-6.0

-8.0

~0 .. - ·10.0

. "12"00.0 20.0 40.0 60.0

Tune
80.0 100.0

Time Time

Figure 24: . Errors for smooth patches of vorticity, estimated by differencing.
Relative £1 error in velocity, circulation errors and second moment errors vs
time.

47

2;
-g ...
>
.5

~ e
== 'II
::;
i
0 ...

Figure 25: Three interacting patches of constant vorticity, at times t = 0, 10
and 40 (left to right), with € = 0.004 {top row) and 0.001 (bottom row).

0.0 0.0 0.0

·2.0 "'" c: ·2.0

5 ..
E

i ~ ..,
c: ,
I .5

~ .5

~ ~
.9 i

0 ...
·12.0

0.0 8.0 16.0 24.0 32.0 40.0

Time Tome Tome

Figure 26: Errors for constant patches of vorticity, estimated by differencing.
Relative L1 error in velocity, circulation errors and second moment errors versus
time.

48

8 Generalizations

Our method can be extended to model more general flows. In this section we
. consider the following generalizations:

• Boundary conditions for the 2-D Euler equations.

• The Navier-Stokes equations in JR2 •

• Boundary conditions for the 2-D Navier-Stokes equations and vorticity gen­
eration at the boundaries.

• Higher order methods.

• Euler and N avier-Stokes equations in JR3 •

We have not implemented these generalizations; this is work in progress.

8.1 Boundary conditions for the 2-D Euler equations

Let n be the domain. containing the flow, an its boundary, and v the outward
unit normal (see Figure 27).

Figure 27: A domain n and its boundary an.

The no-flow boundary condition reads

U·V = 0 on an. (8.1)

In the vorticity formulation, this condition must be translated from the velocity
to the vorticity. This can be obtained in the following way. From equation (2.5)

49

it follows that the tangential derivative of '1/J along the boundary vanishes:

a'ljJ = 0
ar on an,

where T denotes the unit vector tangent to an. This means that '1/J is constant
along the boundary and, since the stream function is determined only. up to a
constant anyway, we can set it to be zero. The Poisson equation for '1/J is therefore

{

-tl.'I/J = w

'1/J = 0

inn

on an
(8.2)

This is a standard problem and there are many ways to solve it numerically. An
attractive method in this setting is to represent '1/J as the volume potential

Vw(x) = L G(x- y)w(y)dy

of w, with G(x) = (21!")-1 log lxl the free-space Green function of -tl., plus the
solution '1/Ja of

{

-tl.'I/Ja = 0

'1/Ja = -Vw

inn
(8.3)

on an
The velocity due to the volume potential is precisely what we evaluated in Section
5, using piecewise linear vorticity, while "\l'ljJ8 can be found by solving a second­
kind Fredholm integral equation on an [20]. The integral equation can be solved
very efficiently by iteration and the fast algorithms of [38, 12, 46], or by the
method of [44] .. These approaches are particularly attractive if n is m?ving as
time passes.

Alternatively, one could use a standard finite element Galerkin method with
piecewise linear elements to solve (8.2), then calculate u by numerical differenti­
ation.

If n is convex and simply connected, then the algorithm described in Section
4 can be used to construct the triangulation. For more general non-convex or
non-simply-connected domains, that algorithm should be modified to remove
triangles outside n.

8.2 The Navier-Stokes equations

We consider the 2-D N a vier-Stokes equations in R 2
• The equation for the vorticity

is
aw 8t + (u · "\l)w = ptl.w,

where p is the kinematic viscosity. The velocity can be reconstructed from the
vorticity using the Biot-Savart law (2.6). We can solve the Navier-Stokes equa­
tions numerically by a fractional step method. In the convection step we move

50

the vertices as above, and in the diffusion step we solve the diffusion equation
for w. Let wn(z) denote the piecewise linear vorticity distribution at time tn.
After the convection step for a time step D..t, we have a new vorticity distribution
wn(z), piecewise linear on a new triangulation. During the diffusion step we have
to solve the equation

' { ~~ =

w(z, tn) =

(8.4)
wn(z)

One way to compute wn+l(z) is to solve (8.4) exactly using the gaussian kernel
f(z, t) = (1/47rt) exp(-lzl 2 f4t). This would give

(8.5)

Then the piecewise linear function wn+1(z) is obtained by projecting wn into the
space of piecewise linear functions with the same values at the nodes:

i = l,; .. ,N.

This procedure, however, is not very accurate, because the projection onto piece­
wise linear functions introduces high frequency components in the vorticity distri­
bution, producing a spurious diffusion. A simple 1-D calculation shows that the
local truncation error is O(h2.Jjif5J). This makes the method inaccurate for small
time steps (orfor small viscosity). The Green's function approach requires the
computation of the integral (8.5). A naive implementation ofthis integral would
give a computational complexity O(N2). Fast algorithms can be constructed in
this case and the complexity can be reduced to O(N) [47]. One advantage of this
approach is that it does not suffer from any stability restriction, and therefore it
can be used with arbitrar~ly large values of JLD..t. In view of these considerations,
this approach seems interesting in the presence of large viscosities. For small val­
ues of the viscosity, alternative approaches can be considere4. We propose here
two possibilities, one based on the discretization of the Laplacian on a Voronoi
mesh, the other obtained by collocation.

The discrete Laplacian is defined in the following way. For any simply con­
nected bounded domain P C R2 with regular boundary oP, it is

f D..<f>dz = f ~4> ds]., Ja., uv
Discretizing this relation on a Voronoi polygon P; (see Figure 4),,one defines the ·
discrete Laplacian B by

B</>(z;) = ...!_ L </>(zi)-:- </>(z;) l;i
A; #i lzi- z;l

where A; is the area of the Voronoi polygon corresponding to z;, and l;) is the
length of the edge corresponding to points z; and zi.

51

The diffusion equation {8.4) for w becomes

i= 1, ... ,N {8.6)

with
1 lii

Ai lz;- zil

_ _.!._I: zik

Ai k"ti lzk - zd
j=i

The Voronoi diagram and the Delaunay triangulation are dual structures. It is
easy to obtain one, once the other is known.

The discrete Laplacian has been used for the solution of the N a vier-Stokes
equation in conjunction with the vortex-blob method for the computation of the
velocity [40). In that case the primary variables were the circulation associated
to each vortex. It was possible to prove several conservation properties for the
diffusion equation discretized on a Voronoi mesh. In our case, the vorticity
distribution is a piecewise linear function on the Delaunay triangulation and
such conservation properties no longer hold. It would be worthwhile to explore
the properties of the discretization of the heat equation on a Voronoi mesh.

An alternative approach,. which is more consistent with our framework, con­
sists in a collocation-Galerkin method. Multiplying both sides of {8.4) by a test
function <f>(z) with compact support and integrating, we obtain

:t j <f>(z)w(z, t) dz = -J.L j \7</>(z) · \7w(z, t) dz. (8.7)

We associate to a given triangulation a set of piecewise linear functions { <f>k(z), k =
1, ... , N} such that

<!>k(zi) = hik,

and consider the projection of equation {8.7) on the space of piecewise linear
functions on the. triangulation. We obtain: ·

(8.8)

where

The quantities Mii and Kii are easily computable from the triangulation. Mii is
the mass matrix and Kii is the stiffness matrix associated to the triangulation
[17). These matrices can be easily computed from the triangulation. System

52

(.

(8:8) could be discretized in time by a Crank-Nicolson method in order to avoid
the stability restriction on the time step:

w~+l - w~ w~+l + w~
~Mk; 3

p,D..t
3 +~J(ki 3

2
3

=0 (8.9)

It is not clear to the authors what is the best way to solve the large, sparse linear
system (8.9) for wn+l. ·The LU factorization does not seem to be convenient,
since the triangulation changes at every time step. Probably the best strategy
consists of an iterative method such as a preconditioned conjugate gradient or
GMRES.

8.3 Boundary conditions for the Navier-Stokes equations

We consider now the treatment of the boundary conditions for the N a vier-Stokes
equations in a bounded region n. The no-slip boundary condition for a boundary
at rest reads

u=O on an.
In order to enforce this condition on an we make use of Ch,orin's method, which
consists in placing a vortex sheet on the boundary to compensate for the tan­
gential component ofthe velocity induced by the vorticity distribution inside the
domain [15]. ·

We discretize the time and consider a fractional-step method for the semidis­
crete Navier-Stokes equations. Let wn(z) be the vorticity distribution at time tn.
The system is updated in the following way:

a) Solve Eq. (8.2) for 1/Jn(z) and compute the velocity field un = VJ..'I/Jn. This
velocity field satisfies the no~flow condition, but not the no-slip condition.

b) Consider the intermediate vorticity

where r is the unit vector tangent to the boundary. Solve the .diffusion
equation for w:

{
ow

D..w = at (8.10)

w(z, tn) = wn+t(z)

and determine wn+l(z).

c) Compute the velocity field corresponding to the vorticity distribution wn+l(z)
and solve the Euler equations in the time interval (tn, tnH)·

The new vorticity distribution will be denoted wn+1(z). The convergence of
this algorithm for the semidiscrete equations is proved in [8] in the case of the

53

half plane. We propose here the following discretization of the algorithm. Let
us suppose we know the vorticity distribution w~(z) which is aSsociated to a:
given triangulation yn at time tn. The first step consists in solving the Poisson
equation for 1/Jn with Dirichlet boundary conditions. Then, once the velocity un
is computed on the boundary, the diffusion step is discretized in the following
way. First, the triangulation is extended beyond an, by reflecting the triangles
with one side on an. If the size of the triangles is small compared to the radius of
curvature of an, the triangulation on the exterior of n reproduces a symmetric
copy ofthe first line oftriangles, with a small distortion (see Figure 28). After the
triangulation has been extended, the function 'lj;n(z) is extended symmetrically
beyond an. This will provide a discretization of the zero Neumann condition for
the diffusion equation.

Figure 28: Symmetric extension of the triangulation beyond aw.
Next we multiply (8.10) by 4>k and integrate:

:t j 4>k(z)w~(z) dz = J.L j 4>k~wn dz + 2 j 4>k(un · r)c5an dz, k = 1, ... , N

(8.11)
If zk is inside n then the second term on the right hand side is zero, and one
obtains an equation of the form (8.8). If Zk is on an then One obtains

I: ckiwi = J.L I: Mkiwi + 2wk
i i

where Wk is a line integral along the segments Zk-lZk and ZkZk+l•

SA Higher order methods

Our method introduces several approximations; space and time discretization,
and truncation of the series in the fast velocity evaluation. In Section 5 we saw

54

·' .

how to control the error in the fast velocity evaluation, and time discretization
error can be made small by using high order ODE solvers. Runge-Kutta or
multistep methods can be used for this purpose. The main cause of inaccuracy
lies in the spatial discretization. In this section we improve the spatial accuracy
of the method.

The spatial discretization error in our method is due to the approximation of
w by a piecewise linear function. Such an approximation is second order in the
size of the triangles. A better accuracy could be obtained by using basis functions
that are polynomials of degree greater than one. There are several possibilities
for obtaining higher order accuracy in the approximation of functions of two
variables, which are commonly used in the finite element method. Most of these
techniques, however, require values of the function at points that are not vertices
of a triangle [17]. Such techniques have an intrinsic difficulty in this setting.
Suppose we make use of the value of the function w at the niiddle. of the edge of
the triangles. If we move these points with the :flow, their vorticity is unchanged,
but at the next time step their location will not be in the middle of the edge
of a triangle. If we leave the point at the middle of the edge, then at the next
time step the value of the vorticity at this point will change. We may think of
correcting this effect by adding a term that takes into account the fact that the
middle ofthe edge is not a Lagrangian point (up to O(h2

)), but then topolc;>gical
difficulties arise.

For these reasons, it is more cpnvenient to use a higher-order approximation
formula based ~n-quantities defined at the vertices of the triangulation. We .
pro-pose to use the space of piecewise cubic polynomials on the triangulation,
with equal coefficients for the x 2y and xy2 terms.

On each triangle such a function <P(x, y) is defined by 9 parameters:

<P(x, y) =. a~+ a2x + asy + a4x2 + asXY + a6y2

+a1x3 + a8 (x 2y + xy2) + a9 y3
• (8.12)

The .nine parameters are uniquely defined by giving the value of the function and
its partial derivatives at the three nodes of the triangle.

Let us denote by u and v the x and y components of the velocity u, and by
~and"' the components of Vw:

ow
~=ox'

ow
"'= ay·

Then, by taking the x and y derivative .of the equation for w (Equation (2.3) in
Section 2) one obtains the transport equations for w, ~ and fJ:

I

dw
0, = dt

d~ (au ov) = - -~+-TJ ' dt ox ox

drJ (au · ov) = - -~+-TJ ' dt oy ay

55

where
d
dt =a,+ (u. V').

If we are able to compute u, v, u.,, v.,, u11 and v11 due to a piecewise cubic poly­
nomial of the form (8.12) then we can solve the system of differential equations

dx;
u(z;), = dt

dy;
v(z;), = dt

dei -(u.,(z;)e; + v.,(z;)7J;), = dt
d7];

-(u11 (zi)e; + v11 (z;)1Ji· = dt

It is possible to extend our velocity evaluation method to compute such quan­
tities. Indeed, u is split into a local term uL and a far field term uF. The first
involves terms of the form

1 K(z- z')w11 (z', t) dz'

where wh is a polynomial of the form (8.12). Such integrals can be computed ana­
lytically as shown in [13]. The derivative of the field can be computed analytically
as well;

1
aK ·
-(z- z')w,.(z') dz'

T ax
can be integrated exactly as a line integral along the boundaries of the tri­
angulation T, and the far field contribution is automatically provided by the
O(N413 log£) algorithm (see Section 5.4) which returns the first p terms of the
Taylor expansion of the field.

A last observation concerns the expected order of accuracy of such an al­
gorithm. Piecewise linear elements give O(h2), quadratic elements O(h3), and
cubic elements O(h4). However we are not using the full subspace of piecewise
cubic elements here, because each element has 9 free parameters instead of 10.
This degrades the accuracy of the approximation to O(h3

). For smooth flows
the higher accuracy should compensate for the extra work needed to compute
the derivative of the velocity field. We expect the computation·al time to be no
more than twice the time required for the piecewise linear method for the same
number of the points, because the far field terms are obtained for free. For very
smooth flows, it might even be more economical to use quartic polynomials to
get O(h5) accuracy, and evolve second.derivatives as well.

8.5 Extension to three dimensions

The method here presented could be extended, in principle, to the incompressible
Euler and N avier-Stokes equations in three dimensions. The extension, however,
is not a trivial one.

56

The hardest problem is the computation of the Biot-Savart integral on a
piecewise linear vorticity distribution. It is not clear whether a piecewise linear
function times the Biot-Savart kernel can be integrated analytically on a tetrahe­
dron in three dimensions. If it is not possible, then one should try to reduce the
computation of such integrals to combinations of integrals that depend on fewer
parameters. Then these new "special functions" could be tabulated and their
values computed by interpolation. The feasibility of such a procedure, however,
is questionable, since the next problem is the development of a fast algorithm for
the computation of the far field in three dimensions. The fast multipole method
in threerdimensions is not as efficient as it is in two dimensions. This would make
the velocity evaluation quite slow. Furthermore, the problem of .the· boundary
conditions in win three dimensions is more complicated than in 2-D.

In v!ew of these considerations, we think that a different approach could
be more effective. A finite element method could be used to solve the Poisson
equation for the vector velocity potential ;f(x, y, z, t):

-D..;f = w;

the velocity field is then
u = \1 X ;f. (8.13)

~ order to discretize this equation, we need to construct a 3D grid which is the
3D analogue of the Delaunay triangulation. This can be done by dividing the
space into Delaunay tetrahedra, that are defined in a way similar to the two
dimensional case. Then we consider a basis B of piecewise linear functions on
the triangulation, { </>i(x), i = 1, ... , N}. By going to a weak formulation and
projecting on the subspace B, the Poisson equation is discretized in the usual
form: ·

j i

where the matrices M and K ar~ the mass and stiffness matrix corresponding to
the given triangulation in space~ In order to obtain the values of ui ~ u(xi), we
multiply equation (8.13) by <Pi and integrate. We obtain for uf, i = 1, ... , N, a =
1, 2, 3, the following system:

LMijU'J = L (sf;'tf;J- s~'tf;n (8.14)
ij j

where (a,/3, i) is a cyclic permutation of (1, 2, 3), (x 1
, x2

, x3
) = (x, y, z), and

S?: =]""·()84>i(x) d
'J '+'' X {)xa X.

The Euler equations in three dimensions are

~~ + (u · \l)w = (w · \l)u

57

This equation can be written as

along the flUid lines dxfdt = u.

dW
-=(w·V')u
dt

Let 0 be the right hand side of Equation (8.15):

3 £l ,8

n.B = "'wa~.
L oxa
a=l

(8.15)

Then we can compute a piecewise linear approximation of fl.B at the nodes in the
usual way. We obtain the system for n~:

i i a=l

Once uf and flj are known, the position and vorticity at the nodes can be
updated by solving the equations

xi = U;

wi = 0;

Of course there is no guarantee that the natural invariants of the three di­
mensional Euler equations are conserved in this discrete method. In particular,
the total vorticity will not be conserved. One should check how well conservation
of these physical invariants is maintained.

The extension to the N avier-Stok_es equations could be done in a way similar
to the two dimensional case, i.e. with a splitting method. The diffusion step for
the vorticity vector could be treated by a Galerkin-Crank-Nicolson method.

9 Conclusions

We have presented an efficient and accurate new adaptive method for the 2-
D Euler equations. Our method resembles the vortex method, but differs in
approximating the vorticity by triangulation and interpolation rather than a sum
of blobs. This alteration produces a method which is more accurate for long-time
-computations.

The efficiency of our method is due to an efficient Delaunay triangulation
method, to a fast velocity evaluation technique related to the fast multipole
method, and to the construction of an adaptive initial grid. Our numerical re­
sults demonstrate that each of these techniques plays an essential role in making
our computations accurate and efficient. We present a wide spectrum of nu­
merical results, for simple classical test problems as well as complex problems
without known solutions. In all cases, our method exhibits long-time accuracy.

58

Even discontinuous initial data can be evolved accurately using our adaptive grid
technique.

The method generalizes in various ways, to three-dimensional problems, vis­
cous :fiow and domains with boundaries, and appears highly promising as a tool
for engineering analysis of complex :fiuid :fiows.

A The Kirchhoff elliptical vortex

A rotating elliptical patch of constant vorticity is an exact solution of the Euler
equations. A discussion of this topic can be found, for example, in [26]. We
summarize it here for completeness.

Let x'Oy' denote a fixed cartesian frame of reference in JR.2. Let us consider
the 2D Euler equations with the following initial condition for the vorticity:

where w1 is constant.
Let us make the ansatz that the solution for the vorticity distribution is an

elliptical patch of constant vorticity which rotates without changing shape with
an angular velocity w0 • We shall prove that this ·ansatz is consistent with the
Poisson equation for the stream function and we derive an expression for w0 •

Let us consider a frame of reference which is at rest with the rotating ellipse
and let us denote by x and y its coordinates. In this frame of reference the stream
function does not depend on time. Let n denote the region with vorti,city w1 . In
·the region outside n the stream function satisfies the equation

(A.l)

' .
The :fiuid lines can not cross the boundary an. The boundary condition on an
is therefore . ·

-U • V = WoT • T

where v and T are unit vectors respectively normal and tangent to the boundary,
and r = (x, y). The boundary condition for 'lj; is therefore

a'lj;
-- =w0r·T ar

It is convenient to make use of elliptical coordinates

x = c cosh ~ cos "7, y = c sinh ~ sin "7

59

(A.2)

(A.3)

where c2 = a2 - b2 • In these coordinates the Laplace equation for the stream
function becomes:

l
a2,p a2,p .

+ 0 in R2\n ae arp =

a,p 2 • !ll"'l
aTJ = -woe sm TJ cos TJ on v~'

(A.4)

This equation can be solved by separation of variables.
Let 1/J = X(~)R(TJ) +A~+ BTJ +C. By inserting this expression into (A.4)

and imposing that the velocity u vanishes at infinity, one finds

(A.5)

The constant A is obtained by imposing that the circulation is the integral of w:

1 u. dr ~ 1rabw, Jan
that is

This gives

f21r a'I/J
- Jo a~ dTJ = 7rabw.

- 1 A= -abw.
2

The stream function inside n is obtained by the Poisson equation

with boundary conditions

ux vy x y
--;;_2 + b2 = WoY a2 - WoX b2

(A.6)

equivalent to condition (A.2). Equation (A.6) is satisfied by a stream function
of the form

(A.7)

provided A+ B = -1 and Aa2
- Bb2 = -w0 (a2

- b2)fw. We have to check now
that there is no slip across an. For this purpose we compute u. T from (A.5) and
(A.7) and compare the two expressions. From (A.5),

a,pext Wo 2 ?e 1
u · T = -~ = 2 (a +b) e-- cos27]- 2abw

Suppose ~ = ~o defines an. Then

ccosh(~o) =a, csinh(~o) = b

60

and therefore (a + b) exp(-2~0) = c. It follows that

OtPext I 1 2 1
~ an = - 2w0 c cos 2TJ + 2abw

In order to compute u · T from (A.7), let us express 'lj; in terms of~ and TJ using
(A.3):

It is
O'I/Jint I W1 ab) {if" an= --2-(A + B +(A- B) cos 2TJ .

By equating the coefficients of cos 2TJ in the two expressions we obtain

w~ab (A- B)= ~w0c2 ,

which, together with equations for A and B gives

abw1

Wo = (a+ b)2"

The relation between the coordinates (x, y) and (x', y') is therefore

References

x' = x cos w0 t - y sin wot,

y' = x sin w0 t + y cos w0 t.

(1] C. Anderson and C. Greengard. On vortex methods. SIAM J. Math. Anal.,
22:413-440, 1985.

(2] C. Bardos, M. Bercovier, and 0. Pironneau. The vortex method with finite
elements .. Math. Comp., 36:119-136, 1981.

(3] J. T. Beale, A. Eydeland, and B. Turkington. Numerical tests of 3-D vortex
methods using a vortex ring with swirl. In C. Anderson and C. Greengard,
editors, Vortex Methods· and Vortex Dynamics. Springer~Verlag, NewYork,
1992.

(4] J. T. Beale and A. Majda. Vortex methods I: convergence in three dimen­
sions. Math. Comp., 39:1-27, 1982.

(5] J. T. Beale and A. Majda. Vortex methods II: high order accuracy in two
and three dimensions. Math. Comp., 39:29,.-52, 1982.

(6] J. T. Beale and A. Majda. High order accurate vortex methods with explicit
velocity kernels. J. Comp. Phys., 58:188-208, 1985.

61

[7) G. I. Bell. Vortex-induced radiation transported by a contour. Physica,
44D:203-228, 1990.

[8) G. Benfatto and M, Pulvirenti. Convergence of Chorin-Marsden product
formula in a half space. Comm. Math. Phys., 44D:203-228, 1986.

[9) J. L. Bentley, B. W. Weide, and A. C. Yao. Optimal expected-time algo­
rithms for closest-point problems. ACM Trans. Math. Softw., 6:563-580,
1980.

[10] M. Bernadou, P. L. George, A. Hassim, P. Joly, P. Laugh, A. Perronet,
E. Saltel, D. Steer, G. Vanderbrock, and M. Vidrascu. MODULEF: A mod­
ular library of finite elements. Publication, INRIA, 1986.

[11] T. F. Buttke. A fast adaptive vortex method for patches of constant vorticity
in two dimensions. J. Comp. Phys., 89:161-186, 1990.

[12] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multi pole method
for particle simulations. SIAM J. Sci. Stat. Comput., 9:669-686, 1988.

[13) T. Chacon Rebollo and T. Y. Hou. A Lagrangian finite element method for
' the 2-D Euler equations. Comm. Pure Appl. Math., XLIII:735-767, 1990.

[14) Y. Choi, J. A. C. Humphrey, and F. S. Sherman~ Random vortex simulation
of transient wall-driven flow in a rectangular enclosure. J. Comput. Phys.,
75:359-383, 1988.

[15) A. J. Chorin. Numerical study of slightly viscous flow. _J. Fluid Mech.,
57:785-796, 1973.

[16) A. J. Chorin. The evolution of a turbulent vortex. Commun. Math~ Phys.,
35:517-535, 1982.

[17) P. G. Ciarlet and J. L. Lions, editors. Finite Element Methods, Part 1,
volume II of Handbook of Numerical Analysis. Elsevier, 1992.

[18] G. H. Cottet, S. Mas-Gallic, and P. A. Raviart. Vortex methods for the in­
compressible Euler and N a vier-Stokes equations. In Proceeding of the work­
shop on computational fluid dynamics and reacting gas flow. Institute for
Mathematics and its Applications, 1986.

[19) R. A. Dwyer. A faster divide-and-conquer algorithm for constructing De­
launay triangulations. Algorithmica, 2:151, 1987.

[20) G. B. Folland. Introduction to Partial Differential Equations, volume 17 of
Mathematics Notes. Princeton University Press, 1976.

[21) S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica,
2:137, 1987.

62

[22] J. Goodman, T.Y. Hou, and J. Lowengrub. Convergence of the point vortex
method for the 2-d Euler equations. Comm. Pure Appl. Math., 43:415-430,
1990.

[23] P. J. Green and R. Sibson. Computing Dirichlet tesselations in the plane.
The Computer J., 21:168-173, 1978. ·

[24] 0. Hald. The convergence of vortex methods, II. SIAM J. Num. Anal.,
16:726-755, 1979.

[25] 0. H. Hald. Convergence of vortex methods for Euler's equations III. SIAM
J. Numer. Anal., 24:538-582, 1987.

[26] H. Lamb .. Hydrodynamics. Dover (New York), sixth edition, 1945.

[27] C. Lawson. Software for C1 surface interpolation. In J. Rice, editor, Math­
ematical Software III. Academic Press, New York, 1977.

[28] D. T. Lee and B. J. Schachter. Two algorithms for constructing a Delaunay
triangulation. Int. J. Comput. Inf. Sci., 9:219-242, 1980.

[29] A. Leonard. Computing three dimensional flows with vortex elements. Ann
Rev. Fluid Mech., 17:523-559, 1985.

[30] A. Malis. Delaunay triangulation and the convex hull of n points in expected
linear time. BIT, 24:151-163, 1984. '

[31] D. H. McLain. Two dimensional interpolation from random data. The
Computer J., 19:178-181, 1976.

[32] W. F. Mitchell. A comparison of adaptive refinement techniques for elliptic
problems. ACM Trans~ Math. Softw., 15:326-347, 1989.

[33] T. Ohya, M. Iri, and K. Murata. A fast Voronoi diagram algorithm with
quaternary tree bucketing. Inf. Process. Lett., 18:178-181, 1984.

[34] M. Perlman. On the accuracy of vortex methods. J. Comp. Phys., 59:200-
223, 1985.

[35] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduc­
tion. Springer-Verlag, New York, 1985.

. I

[36] E. G. Puckett. Vortex methods: an introduction and survey of selected
research topics. In R. A. Nicolaides and M.D. Gunzburger, editors, Incom­
pressible Fluid Dynamics - Trends and Advances. Cambridge University
Press, 1991.

[37] R. J. Renka and A. K. Cline. A triangle-based C 1 interpolation method.
Rocky Mountain J. Math., 14:119-139, 198~.

63

[38] V. Rokhlin. Rapid solution of integral equations of classical potential theory.
J. Comp. Phys., 60:187-207, 1985.

[39] L. Rosenhead. The formation of vortices from a surface of discontinuity.
Proc. R. Soc. Lon. A., 134:170-192, 1931. .

[40] G. Russo. A deterministic vortex method for the Navier-Stokes equations.
J. Comp. Phys., 1993.

[41] H. Samet. The design and analysis of spatial data structures. Addison­
Wesley, Reading, Massachusetts, 1990.

[42] J. A. Sethian and A. F. Ghoniem. Validation study of vortex methods. J.
Comp. Phys., 74:283-317, 1988.

(43] M. I. Shamos and D. Hoey. Closest-point problems. In Proceedings 16th
IEEE- Symposium on Foundations of Computer Science. IEEE, October
1975.

(44] H. P. Starr. Rapid solution of one-dimensional integral and differential equa­
tions. PhD thesis, Yale University Department of Computer Science, 1993.

[45] J. Strain. An adaptive cell method for Delaunay triangulation. Technical
report number LBL-32989, Lawrence Berkeley Laboratory, 1991.

[46] J. Strain. Fast potential theory II: Layer potentials and discrete sums. J.
Comput. Phys., 99:251-270, 1992.

(47] J. Strain. Fast adaptive methods for the free-space heat equation. SIAM J.
Sci. Stat. Comput., 1993.

[42] M. Tanemura, T. Ogawa, and N. Ogita. A new algorithm for three­
dimensional Voronoi tessellation. J. Comput. Phys., 51:191-207, 1983.

(49] L. van Dommelen and E. A. Rundensteiner. Fast adaptive summation of
point forces in the two-dimensional Poisson equation. J. Comput. Phys.,
83:126-147, 1989.

(50] H. Y. Wang. A high order vortex method for patches of constant vorticity
in two dimensions. Research Report PAM-534, Center for Pure and Applied
Mathematics, University of California, Berkeley, August 1991.

[51] F. W. Wilson, R. K. Goodrich, and W. Spratte. Lawson's algorithm is nearly
optimal for controlling error bounds. SIAM J. Numer. Anal., 27:190-197,
1990.

[52] N.J. Zabusky, M. H. Hughes, and K. V. Roberts. Contour dynamics for the
euler equations in two dimensions. J. Comput. Phys., 96:96-121, 1979.

64

LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
1ECHNICAL INFORMATION DEPARTMENT

BERKELEY, CALIFORNIA 94720

_........... --~~

