
LBL-33765 
UC-4i3 
Preprint 

ITll Lawrence Berkeley Laboratory 
ll;t UNIVERSITY OF CALIFORNIA 

Submitted to Physical Review E 

Energy Diffusion in a Chaotic Adiabatic Billiard Gas 

C. J arzynski 

March 1993 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

~ 
t<J n h:j 

..... t::1 t<J 
110~ 
orot<J 
t::fllZ: ....., n 
lliZ:t<J 
('1'0 
(1)('1'() 

0 
tU 

til >< 
1-' 
0.---
IQ . 

n 
0 ., 
'< 



DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. Neither the United States Government 
nor any agency thereof, nor The Regents of the University of Califor
nia, nor any of their employees, makes any warranty, express or im
plied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe pri
vately owned rights. Reference herein to any specific commercial 
product, process, or service by its trade name, trademark, manufac
turer, or otherwise, does not necessarily constitute or imply its en
dorsement, recommendation, or favoring by the United States Gov
ernment or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government 
or any agency thereof or The Regents of the University of California 
and shall not be used for advertising or product endorsement pur
poses. 

Lawrence Berkeley Laboratory is an equal opportunity employer. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
Califomia. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



LBL-33765 

Energy Diffusion in a Chaotic Adiabatic Billiard Gas* 

Christopher J arzynski 

University of California, Department of Physics 
and Lawrence Berkeley Laboratory 

Berkeley, CA 94720 

March 11, 1993 

Abstract 

A diffusion equation is derived for the energy distribution of a gas of non
interacting point particles following chaotic trajectories inside a slowly
time-dependent container. We discuss the relevance of this problem to 
results concerning ergodic adiabatic Hamiltonian systems, as well as to 
one-body dissipation in nuclear dynamics. 
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INTRODUCTION 

This paper considers the problem of a chaotic adiabatic billiard gas, a gas of noninter
acting point particles bouncing around chaotically inside a container whose shape changes 
slowly with time. (See Fig. 1.) Unlike an ordinary gas, where particle"particle collisions 
dominate, producing a Maxwell-Boltzmann distribution of energies, here the evolution of a 
particle's .energy is determined solely by its collisions with the slowly moving walls of the 
container. Let TJ(E, t) dE denote the number of particles with energy in a small interval dE 
around E, at time t. The main result of this paper is a diffusion equation governing the 
time evolution of rJ, the distribution of particle energies. We obtain such an equation for 
both the two- and three-dimensional versions of this problem. 

Sec. I of this paper specifies the problem precisely, and introduces notation. In Sec. II 
we argue that the distribution of particle energies of a chaotic adiabatic billiard gas evolves 
diffusively; this suggests a Fokker-Planck equation for the evolution of TJ(E, t). In Sec. III 
we derive explicit expressions for the drift and diffusion coefficients which determine this 
equation. These are given in terms of the dynamics of particles bouncing around inside time
independent containers, obtained by "freezing" the slowly-changing shape of the container 
at different instants in time. We show in Sec. IV that, under a certain approximation, our 
results may be further simplified so that the evolution of rJ is given entirely in terms of the 
changing shape of the container, without any reference to particle dynamics. 

Our interest in this problem is twofold. First, as discussed in Sec. V, our gas can be 
treated as an example of an ergodic adiabatic ensemble, an ensemble of noninteracting sys
tems evolving chaotically under a common, slowly time-varying Hamiltonian. Ott, Brown, 
and Grebogi [1-3] have used multiple time-scale analysis to study such systems. Their focus 
has been the goodness of the ergodic adiabatic invariant, i.e. the extent to which a cer
tain quantity, shown by Ott [1] to be conserved in the limit of an infinitely slowly evolving· 
Hamiltonian, remains conserved when the Hamiltonian evolves at a slow but finite rate. 
Recently [4], we have used an alternative approach to this problem to derive an evolution 
equation for the distribution of energies of an ergodic adiabatic ens~mble. Such an equation 
was previously derived by Wilkinson [5], using Ott's results; regrettably, we were unaware of 
Wilkinson's work, and failed to give him due credit. In Ref. [4], we compared the predictions 
that follow from this equation with Ott's predictions concerning the goodness of the ergodic 
adiabatic invariant, and found disagreement. The results of the present paper will allow us 
to study this discrepancy numerically. 

Our other motivation for studying this problem comes from the independent particle 
model of nuclear dynamics, in which a nucleus undergoing some dynamical process (e.g. 
fission, or collision with another nucleus) is imagined as a container, filled with a gas of 
independent point particles, whose shape is allowed to change with time. This simple model 
provides a mechanism, one-body dissipation, for friction in dynamical nuclear processes. A 
principal result of this approach to nuclear dynamics has been the wall formula [6,7], an 
expression for the rate at which one-body dissipation transfers energy from the collective 
degrees of freedom of one idealized nucleus to the individual nucleons. The results of the 
present paper, as discussed in Sec. VI, extend our understanding of one-body dissipation. 
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I. PRELIMINARIES 

We take the time-dependent shape of the container to be an externally imposed, rather 
than a dynamical, quantity: the shape evolves in a pre-determined way, independently of 
the gas of particles. Each bounce of a partickoff the moving walls of the container is taken 
to be specular (the angle of reflection is equal to the angle of incidence) in the instantaneous 
rest fraJ]le of the local piece of wall at which the collision occurs. Effectively, these bounces 
constitute elastic collisions in which the inertia of the wall is infinitely greater than that of 
the particle. . 

We are interested in observing our gas of noninteracting particles as the shape of the 
container changes slowly. To express "slow" shape evolution mathematically, we make the 
shape a function of d, where t is time and € is a slowness parameter, forrr1ally taken to be 
small. Thus, let Sh( d) denote the shape of the container at timet. We will be interested in 
observing our gas for times of order c 1 , over which the container changes by order unity. As 
the extreme limit of slow evolution, we will take the adiabatic limit to mean that in which 
we let € go to zero, holding di and d f fixed, ti and t f being the initial and final times over 
which we observe the system. In this limit, the container evolves infinitely slowly. from the 
initial shape Sh( di) to the final shape Sh( d f). 

We will frequently refer to the motion of particles inside a frozen container, by which we 
mean the time-independent container obtained by arresting ("freezing") the slowly evolving 
shape Sh( d) at some instant in time. Whenever discussing the dynamics of particles inside 
a frozen container, as opposed to the slowly changing one, we will emphasize the distinction 
by using Sha, with a= d, to denote the shape of the container frozen at Et. When discussing 
motion inside the time-dependent container, we will retain the notation Sh(d). The slow 
evolution of the container from Sh( di) to Sh( d 1) defines a continuous sequence of frozen 
shapes Sha, with a ranging from Eti to ct1 . 

. The motion of a particle bouncing around inside a frozen container is . represented in 
phase space by a 'trajectory ( q(t), p(t)) whose evolution is restricted to an energy shell, a 
surface of constant energy. We make the crucial assumption that, for any of the frozen 
shapes Sha, an arbitrary non-periodic trajectory will chaotically and ergodically explore the 
entire energy shell on which it is found. A consequence of this assumption is that the motion 
of particles in any of the frozen containers exhibits chaotic mixing over the energy shell: any 
distribution of initial particle positions and velocities will evolve into a uniform distribution 
of particles throughout the container, with an isotropic distribution of velocities. The time 
scale over which this mixing occurs is given by the Lyapunov time t L = 1/ >.., where >.. is· the 
Lyapunov exponent associated with the chaotic evolution of the trajectories. 

We now discuss the relevance of chaotic mixing to a gas of particles in a slowly time
dependent container. First, consider the motion of two particles sharing identical initial 
conditions at time t 0 , one subsequently evolving inside the time-dependent container Sh( d), 
the other inside the frozen container Sha, with a = d 0 • Let T be the length of time 
over which the paths followed by these two particles remain very close; after this time, 

·they will diverge rapidly. T can be made arbitrarily large by choosing € arbitrarily small, 
although, due to the assumed chaoticity, a value of T much larger than the Lyapunov time 
tL would require an extremely small €. (By treating motion inside the evolving container as 
a perturbed version of motion inside the frozen one, with the perturbations, proportional to 
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t, introduced at collisions with the wall, T can be shown to scale like tL ln(1/ t:), for small 
t:.) We will henceforth assume t: to be small enough that 

(1.1) 

Thus, motion inside the time-dependent container closely mimics that inside the frozen one 
over times on the order of the Lyapunov time. In this case, chaotic mixing occurs before the 
particles "realize" that the shape ischanging; as the container slowly evolves, the C<?ntinual 
process of chaotic mixing tends to maintain a uniform distribution of particles throughout 
the container, and an isotropic distribution of velocities. 

We will use the term chaotic adiabatic billiard gas to describe a gas of noninteracting 
particles inside of a container whose slowly evolving shape satisfies the assumptions discussed 
above. Our goal is an evolution equation for the distribution of particle energies, rJ(E, t). 

II. DIFFUSION OF ENERGIES 

The energy of a given particle changes in small, discrete amounts as the particle collides 
with the slowly moving walls of the container. We can think of this process in terms of the 
particle performing a "walk" along the energy axis, with steps determined by the underlying 
motion of the particle bouncing off the container's walls. Since this underlying motion is 
chaotic, correlations between these steps along the energy axis will exist only over a finite 
time, on the order of the Lyapunov time t£. This consideration suggests [4,8] that the 
distribution of energies of a gas of such particles will, on a time scale much longer than 
tL, evolve by a process of diffusion. We therefore postulate the following Fokker-Planck 
equation for the time-dependent distribution of energies, 'fJ(E, t): 

a'fJ . a 1 a2 

at = - aE(g1'fJ) + 2 aE2(g2rJ). (2.1) 

This is a generalized diffusion equation, in which the drift and diffusion coefficients g1 and 
g2 are functions of both energy and time. Specifically, we write g1(E, d) and g2(E, ~:t); we 
use explicit functions of tt rather than simply t because we expect the evolution of 'fJ at a 
given time t to be determined by the instantaneous shape of the container and the way in 
which it is changing, which depend explicitly on Et. . 

Since we are interested in slow evolution of the shape of the container, we can expand 
g1 and g2 in powers oft: (making the assumption that integral powers suffice). As discussed 
below, retaining only 0( t:1 ) terms gives an evolution equation for 'fJ that corresponds to 
the adiabatic limit (infinitely slow shape evolution). We are interested in slow but finite 
evolution of the shape of the container, and therefore want expressions for g1 and g2 valid 
to 0( t:2 ). 

In treating the evolution of 'fJ as a process of diffusion, we must keep in mind that this 
picture is valid only over times much longer than the Lyapunov time tL. Thus; for Eq. 2.1 to 
be applicable to our problem, there must exist a time scale which is long compared to tL, but 
short compared to that over which significant changes in the distribution of energies (as well 
as the shape of the container) occur. We will use the notation D.t to indicate a time on this 
scale, and will refer to this time as "short" or "long" depending on the context, i.e. whether 
we are discussing the evolution of rJ(E, t), or the motion of particles in the container. 
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III. DERIVATION OF DRIFT AND DIFFUSION COEFFICIENTS 

To derive expression for 91 and 92 , note that a distribution of energies described initially 
by a 8-function along the energy axis, 

ry(E, to) = 8(E- Eo), (3.1) 

will evolve under Eq. 2.1 so that, a short time D..t later, the average energy will have drifted 
away from E0 by an amount 91D..t, and the distribution will have acquired a variance 92D..t, 
with 91 and 92 evaluated at E0 , d 0 • The second moment ofthis new distribution of energies 
with respect to Eo is then 

M2(D..t) = j dE ry(E, to +b..t) (E- Eo? 

= (9tb..t) 2 + 92~t. (3.2) 

By considering a gas of particles sharing a common energy Eo at time t 0 (such a gas, with 
number of particles normalized to unity, is described by Eq. 3.1), then by solving, in terms of 
quantities characterizing the subsequent motion of these particles, for M 2(D..t), and finally 
by comparing the result with Eq. 3.2, we will obtain expressions for 91 and 92 • We will solve 
only for the leading term of M 2(D..t), which is O(t2 ). From this will immediately follow the 
leading terms of 91 and 92, which are 0( t 1

) and 0( t 2), respectively. To obtain the 0( t 2) 
term of 9b we will invoke a trick using Liouville's theorem. 

We therefore begin by considering, at time t0 , a gas of particles of energy E0 distributed 
uniformly with the container, with an isotropic distribution of velocities. Let us introduce 
the wall velocity field, n, a scalar field defined ove? the surface of the container: the value 
of n at a particular point on the surface gives the normal outward velocity of the moving 
wall at that point (see Fig. 1; a negative n indicates a portion of the wall which is moving 

_into the gas)._ This field contains all information about how the shape of the container is 
changing at a given instant in time. Since this field changes with time along with the shape -
of the container, we will write it as n( d) (suppressing the dependence on the position on 
the surface of the wall). We also introduce a frozen field ncx -defined over the surface of 
the frozen shape Shcr - which is simply the normal outward wall velocity at the moment of 
freezing; ncx "remembers" how the shape Sh( d) was changing at the instant in which it was 
frozen into Shcx. 

To lowest order in the wall velocity (proportional to t), the change in the energy of a 
particle as it bounces off the wall is -2mvnsin0, where m is the particle mass, vis its speed 
prior to collision, n is the value of the wall velocity field at the point of collision, and 0 is 
the angle between the incoming trajectory of the particle and a surface tangent to the wall. 
(See Figs. 2 and 3.) Between times t 0 and t0 + D..t the particle bounces many times off the 
walls of the .container, whose shape changes negligibly during that time. The number. of 
collisions, B, is approximated as 

B ~ D..tjr, (3.3) 

where r is the average time between bounces for a particle inside the container frozen at 
a = d 0 • The total change in the energy of the particle over this time is 
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B 

E- Eo = -2mv 2: nb sineb + 0(E2
), (3.4) 

b=l 

where the nb's are the normal outward wall velocities sampled by the sequence of bounces 
b = 1, 2, · · ·, B, and the Ob's are the corresponding angles of collision. We are justified in 
pulling v = (2E0 /m)112 outside this ~urn by the fact that, to lowest order in E, the speed of 
the particle remains constant over time ~t. To obtain M2(~t), we square the above sum, 
then average over all particles, i.e. over an ensemble of trajectories evolving from a uniform 
distribution of initial conditions on the energy shell Eo at time t 0 • Angular brackets will 
denote this average: 

B B . 

M2(~t) = 4m2v2 L L ( nb sinOb nb' sinOb') + 0(E3
). (3.5) 

b=l b'=l 

Now, suppose temporarily that, for any initial condition corresponding to energy Eo at 
time t 0 , two trajectories evolving from that initial condition, one inside the slowly changing 
container, the other inside the container frozen at a= d 0 , remain very close to one another 
for the entire length of time from t 0 to t 0 + ~t. (Since ~t ~ tL, this puts a drastic limit, 
which we later relax, on the magnitude of E.) If this condition holds, then, for puposes 
of evaluating the right hand side of Eq. 3.5, we may replace. the gas of particles evolving 
for time ~t inside the time-dependent container, with a gas evolving inside the frozen one. 
With this replacement, Eq. 3.5 becomes 

B B 
M2(~t) = 4m2v2 2: 2: (nob sinOb nob' sinOb') 0 + 0(E3

), 

. b=l b'=l 

(3.6) 

where the angular brackets ( · · · )o indicate an average over an ensemble of trajectories evolv
ing inside the frozen Sh0 , with a = do (as before, the ensemble is defined by a uniform 
distribution of initial conditions over the energy shell E0 ), and nob gives the value of the 
frozen field na at the b'th bounce of one such trajectory. 

We rewrite the quantity being summed in Eq. 3.6 as 

(3.7) 

where eb = (nob sin Ob)a· As discussed in Appendix A, it is good approximation to treat eb 
as independent of b, and so we write it simply as e. Furthermore the correlation function 
Cb,b' depends, within the same approxim~tion, only on the difference b' - b, and so may be 
written as Ctt.b, with ~b = b' - b. The double sum in Eq. 3.6 then becomes 

~ ~ ( 2) 2 2 ~ ( ·.l~bl) ~ ~ Ctt.b + e = B e + B ~ 1 - 13 CA,b· 
. b=l b'=l tt.b=-B 

(3.8) 

Now, Ctt.b "' 0 for l~bl > vL, where VL ~ tL/r (again, see Appendix A). Having assumed 
~t ~ tL, we have B ~ VL, and may therefore approximate the sum appearing on the right 
hand side of the above expression as L:~: CAb; this is the discrete version of a standard 
result from the theory of stationary stochastic processes (see Ref. [9], and also Eqs. 4.11 and 
4.12 of Ref. [4]). We assume that this sum converges. 'We now have, to 0(E2), 
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+oo 
M2(~t) = 4m2v2 (B2e + B E c~b) 

~b=-oo 

(3.9} 

Comparison with Eq. 3.2 yields 

(3.10) 

(3.11) 

where 

+oo 
D = L C~b· (3.12) 

~b=-oo 

We now relax the assumption made immediately after Eq. 3.5, and assert that as long as 
motion inside the frozen container closely mimics that inside the time-dependent one over 
times on the order of tL, rather than the much longer ~t, the steps leading to Eqs. 3.10 
and 3.11 will remain valid. (We have already assumed, in Sec. I, that this more relaxed 
condition holds.) The justification for this assertion is similar to that presented in Ref. 
[4] (see the paragraph following Eq. 4.14 therein); its essence is as follows. Due to chaotic 
mixing, appreciable correlations exist only between bounces separated by times on the order 
of, or shorter than, the Lyapunov timet£. However, since motion inside the frozen container 
closely resembles that inside the time-dependent one over times up to tL, the correlations that 
do exist are nearly identical for the two cases. Since it is these correlations that determine 
the diffusion of particle energies, we are justified in evaluating the right hand side of Eq. 3.5 
using particles inside the frozen rather than the time-dependent container. 

We henceforth drop the subscript 0 from E0 and t 0 • 

In Appendices A and B, we evaluate ~ and r for both two- and three-dimensional con
t_ainers. The results reduce Eq. 3.10 to 

where the factor {3( d) depends on the dimensionality: 

f3 = A/A 
2V/3V 

(2d container) 

(3d container), 

(3.13) 

(3.14a) 

(3.14b) 

where A and V denote the area or volume enclosed by the container, and the dot signifies 
differentiation with respect to time. (A, A, V, and V are evaluated at d.) The ambiguity 
in sign appearing in Eq. 3.10 has been removed by physical considerations: since there is a 
net positive amount of work done by a gas inside a container whose area (in the 2d case) 

_or volume (3d) is increasing, the energy drift g1 associated with A > 0 or V > 0 must be 
negative. 
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In Eq. 3.11, the quantity D is determined by the frozen shape S~a and the associated 
frozen wall velocity field na, and hence may be written as a function of the value of a, in 
this case d; thus, D = D(d). All dependence of 92 onE is in the factor 4m2v2 fr. Using 
the results for r from Appendix B, we get, to 0(E2), 

with 

1 = (81/tr A)(2m)112 D 

(2S/V) (2m)112 D 
"'(2d) 

(3d), 

(3.15) 

(3.16a) 

(3.16b) 

where l( t:t) is the perimeter of the 2d container, and S( d) is the surface area of the 3d one. 
It remains to obtain the 0 ( E2

) term of 91• The strategy for doing so invokes Liouville's 
theorem, and is detailed in Sec. IV of Ref. [4). There we find 

1 () 
91 = 9u + 2E aE(92E), (3.17) . 

where 9n is the leading term of 91 (given above by Eq. 3.13), and 

(3.18) 

where D.(E, Et) represents the volume of phase space enclosed by the energy shell Eat time 
t. For a two-dimensional billiard system; this volume is the product of the area of ordinary 
space enclosed by the container, with the area in momentum space of a circle of radius 
p = (2mE) 112

• Thus, 

f2 = 2trmAE (3.19) 

In three dimensions, we get 

n = ~ tr(2m )312V E312 , E = 2tr(2m )312V E112. (3.20) 

Using Eq. 3.17 we rewrite Eq. 2.1 as 

(3.21) 

Combining our results for 911 , 92 , and E with Eq. 3.21, we finally write the evolution equation 
for ry, to 0(E2

), as 

ary = f3 ~(E ) ']_ ~(E3f2 ary) 
at aE 17 + 2 aE aE 

(2d) (3.22a) 

or 

ary -{3~( ) 1~[ 2~(· -1/2')] 
at - aE Ery + 2 aE E aE E 1J (3d). (3.22b) 
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Eq. 3.22 represents the central result of this paper. The coefficients f3 and 1 are given 
(Eqs. 3.14 and 3.16) in terms of: the particle mass m, quantities associated with the changing 
shape of the container (A, A, and l; or V, V, and S), and the function D = E:!:~ CD..b· 

Only the last of these directly involves the dynamics of particles bouncing around inside a 
container, and is given in terms of motion inside the frozen container Sh<n a = f..i. Thus, 
the time-dependent problem (a gas of particles inside the slowly changing container Sh(tt)) 
is solved in terms of the solutions of a continuous sequence of time-independent problems 
(motion inside the frozen shapes Sha)· In the following section we show how, under a certain 
assumption (not always valid), the quantity D may be divested of any reference whatsoever 
to the dynamics of bouncing particles. In this case the evolution of TJ is given -directly in 
terms of the changing shape of the container. First, however, we discuss the adiabatic limit. 

The adiabatic limit, as defined in Sec. I, involves a timet 1- ti which approaches infinity 
like c 1• Over such a time, the term involving f3 ( ........ €) in Eq. 3.22 will make an 0(€0 ), 

i.e. finite, contribution to the change in TJ, while the term involving 1 ( I"V €2 ) will make an 
0( €1 ), i.e. vanishing, contribution. Thus, in the adiabatic limit, 

aTJ a ( ) 
8t = f3 8E ETJ ' (3.23) 

for both the 2d and the 3d case. This equation describes a distribution of particles moving 
along the energy axis under a "velocity" field -f3E. The energy £(t) of any one of these 
particles satisfies · 

~ £(t) - -f3(d) £(t) - -(A/A) £(t) 

- (2V /3V) £(t) 

(2d) 

(3d). 

(3.24a) 

(3.24b) 

From this, we get (djdt) D,(£(t), tt) = 0 (see Eqs. 3.19 and 3.20). Eq. 3.22 is therefore 
consistent with the adiabatic invariance of n, which was demonstrated by Ott [1] to hold 
generally for ergodic adiabatic Hamiltonian systems. 

IV. A SIMPLIFICATION OF THE CENTRAL RESULT 

It may sometimes be the case that the sum D = E:!:~ cD..b which appears in 1 is dominated 
by the term c0 : 

D ~co. (4.1) 

The validity of this approximation (which implies that correlations between the different 
bounces of a trajectory play a negligible role in the evolution of TJ) will depend· on the details 
of the shape Sha and the frozen wall velocity field na, and may be difficult to assess, a priori. 
Roughly speaking, it demands that the container's shape and its motion be sufficiently 
irregular. We do not pursue here the question of how to define "sufficiently irregular". 
Rather, for those systems for which Eq. 4.1 happens to be valid, we derive an evolution 
equation for TJ wholly in terms of the evolution of the shape Sh( d), without explicit mention 
of particle dynamics. (See also Sec. VII for a situation in which the results of the present 
section may apply, without Eq. 4.1 being valid.) 
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Take Eq. 4.1 to be valid. Using Eqs. A6 to AS from Appendix A, we get, in two 
dimensions, 

2 2 . 
2 f d [ . 2 311" ..,. 2] I. ( ) co= - · s n - -n = - 2 Et 
31 32 31 . 

(4.2) 

Here, n = (111) § ds n =All is the average value of n over the surface of the container. In 
three dimensions, using Eqs. All to A13, we obtain 

(4.3) 

with n = ( 1 IS) §da-n = vIs again being the average value of n over the surface of the 
container. (Since these expressions no longer explicitly involve the dynamics of particles 
inside a frozen container, we have dropped the subscript a; n now refers to n( d), the wall 
velocity field of the slowly-changing container.) Combining these results with Eqs. 3.14, 

· 3.16, and 3.22, we have the simplified results 

a11 = A. _i_(E ) · sv2m I _i_(E3f2 a,). 
at A aE 'f/ + 311" A 2 aE aE 

(2d) (4.4a) 

and 

a, 2v a ( v2m a [ 2 a ( -1/2 )] 
at - 3V 8E E'f/) + 2V 13 8E E 8E E 'f/ (3d). (4.4b) 

V. RELATION TO PREVIOUS RESULTS 

. In Ref. [4] we considered the general problem of systems evolving in phase space under 
an ergodic adiabatic Hamiltonian, a slowly time-varying Hamiltonian which, if frozen at 
any instant, gives rise to trajectories that ergodically and chaotically explore their energy 
shells. This problem has been studied by Ott and coworkers [1-3], using multiple-time-scale 
analysis; by Koonin and Randrup [10], using linear response theory;" and by Wilkinson [5], 
expanding on Ott's results. Let z = (q,p) represent a point in phase space, let H(z,d) 
denote the slowly-changing Hamiltonian, and let HOt(z), with a == d, denote the time
independent Hamiltonian obtained by freezing H(z, d) at time t. A central result of Ref. 
[4] is an evolution equation (previously derived by Wilkinson) for 1J(E, t), the distribution 
of energies of an ensemble of such systems, all governed by the same ergodic adiabatic , 
Hamiltonian, differing from one another only by their initial conditions in phase space; we 
call such an ensemble an ergodic adiabatic ensemble. This equation is identical to Eq. 2.1 of 
the present paper, with 

10 

(5.1) 

(5.2) 



where ~(E, €t) is defined as per Eq. 3.18, and the quantities u and C(s), both functions of E 
and d, are discus~ed below. (To avoid notational conflict with Sec. VI of the present paper, 
we use u to denote the quantity which in Ref. [4) is denoted by ii.) 

In this section we show that one can consistently treat a chaotic adiabatic billiard gas as 
an example of an ergodic adiabatic ensemble, by treating the container as the limiting case 
of a smooth potential well. Thus, Eqs. 5.1 and 5.2 will be shown to reduce, in this limit, to 
the corresponding expressions derived in Sec. III for the billiard gas. 

The quantities u and C(s) are defined as follows. Let H(z, d) be the slowly time
dependent function obtained by differentiating H(z, d) with respect tot; define H01(z), with 
a= d, as the time-independent function obtained by "freezing" H(z, €t) at timet. Then 

U - { H 01( Z)} 
C(s) _ { (Ifc,(z) - u) Oa(s) (ii01 (z) - u]}, 

(5.3) 

(5.4) 

where the curly brackets indicate an average over all points z on the energy shell E of H 01 , 

and 0 a( s) is a time evolution operator which acts to the right, evolving a point z for a time 
s under the frozen Hamiltonian H 01 • . 

For a particle moving inside a hard-walled container, it is intuitive to think of the con
tainer as a potential well V ( q) whose value is zero for q inside the container and infinite 
outside. This formulation, however, does not immediately lend itself to the calculation of 
u and C(s) as defined above. We therefore soften the walls of the container by letting the 
potential rise smoothly from 0 inside to infinity outside, over a wall skin of thickness h; we 
let h be arbitrarily small. 

The contours of V(q) in the vicinity of some point on the surface of the wall will have 
the appearance shown in Fig. 4. If the wall at this point is moving with normal outward 
velocity n, then, at a point q within the wall skin, we have 

ii = -nn · VV(q) = -n IVV(q)l, (5.5) 

where n is the unit vector pointing normally outward from the wall. The frozen value of if 
is then 

(5.6) 

By the assumed ergodicity of motion inside the hard~walled container (and by extension 
in the soft-walled container, for arbitrarily small h), the phase space average of H01 over a 
particular energy shell is equal to the time average of H01 (z(t)), where z(t) is any non-periodic 
trajectory of energy E: 

{ 
. } 1 fT . 

u = Ha = J~ T Jo dt H 01 (z(t) ). (5.7) 

Contributions to this integral occur only along the short segments of z(t) that constitute 
collisions with the wall. The contribution from one such b~unce, occurring bet~een times 
t 1 and t 2 as shown in Fig. 4, is, by Eq. 5.6, 

(5.8) 
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Since - \7V is the force acting on the particle, its integral gives the total change in momen
tum: 

-2mvna sin 0. (5.9) 

Thus, Eq. 5. 7 becomes 

2mv li 1 ~. . () u = --- m - L.,..nabsm b, 
T · N-+oo N b=l 

(5.10) 

the sum being over the bounces occurring between t = 0 and t = T. The quantity 
limN....;.oo (1/N) Ef:'::1 nab sin ()b is the average value of n 0 sin() sampl~d by a particle bouncing 
forever off the walls of the frozen container, which, as pointed out in Appendix A, is equal 
to the previously defined e. Thus, 

u = - 2mv e = -(3E. 
T 

( 5.11) 

To solve for J~;: ds C ( s), note that C ( s) may be written as 

( [ifa(z(t))- u] [ifa(z(t + s))- u]) a' (5.12) 

where z(t) is a trajectory of energy E evolving under Ha, and the angular brackets denote 
an average over all such trajectories, i.e. over a uniform distribution of initial conditions z(O) 
over the energy shell E in phase space. (Since such a distribution is unchanged by evolution 
in time, the above expression for C(s) is independent oft.) With some manipulation, this 
allows us to write / 

(5.13) 

Using Eqs. 5.9 and 5.11, we have 

N 

-2mv L(nabsin()b- e), (5.14) 
b=1 

where as before the sum is over the bounces of z(t) occurring between t = 0 and t = T. 
Thus, 

(5.15) 

(5.16) 

(5.17) 

where·the steps taken are similar to those ofSec. III. 
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By treating the hard-walled container as a limiting case of a potential well [11], we have 
shown that, in this limit, 

u ---+ -:- f3 E 

j_:oo ds C(s) ---+ 1E312
• 

(5.18) 

(5.19) 

When these expressions are plugged into Eqs. 5.1 and 5.2, they give an evolution equation 
for 77(E, t) identical to that obtained in Sec. III. This shows that a chaotic adiabatic billiard 
gas can be consistently treated as an example of an ergodic adiabatic ensemble, and so a 
numerical test of the results presented in the present paper would also stand as a test of the 
results of Ref. [4]. 

VI. ONE-BODY DISSIPATION IN NUCLEAR DYNAMICS 

As discussed in Refs. [6,7], it may be instructive to treat a nucleus undergoing some 
dynamical process (such as fission or heavy-ion collision) as a container, whose shape (but 
not volume) is allowed to change with time, filled with a gas of noninteracting point parti
cles. The container is an idealization pf the mean field created by the nucleons; the particles 
represent the individual nucleons moving within this mean field. (Residual nucleon-nucleon 
interactions are suppressed by Pauli blocking, and are disregarded in this simple approxi
mation.) The solution of this dynamical problem at the classical level is closely related to 
the problem considered in the present paper. 

In applications of this model, one is typically interested in following the shape of the 
nucleus through some dynamical process. This involves choosing a few reasonable variables 
to describe the changing shape, then deriving Euler-Lagrange-Rayleigh equations for the 
evolution of these variables [6,12]. As pointed out in Ref. [6]~ the particles behave as a source 
of friction: as they interact with the changing shape of the container (bouncing elastically 
off its moving walls), there occurs a net flow of energy from·the degrees of freedom of the 
shape, to the degrees of freedom of the gas of particles. This mechanism is known as one
body dissipation, and is an example (to our knowledge, the first) of deterministic friction, in 
which the energy of a few "slow" degrees of freedom is dissipated by their coupling to "fast" 
determii).istic chaotic motion. To incorporate this friction into the equations of motion for 
the shape of the container, one needs ·an expression for the rate of this flow of energy, as 
a function of the way in which the shape is instantaneously changing. In Ref. [6], the wall 
formula is derived for this rate: 

dEr jd ·2 -- = pv un. 
dt 

(6.1) 

Here, Er is the total energy of the gas (the sum of the kinetic energies of the individual 
particles), p is the total mass density of particles inside the container, v is the average speed 
of the particles, and §dun 2 is the surface integral of the square of the normal wall velocity. 

The wall formula is derived by treating each infinitesimal area element on the surface 
of the container as a tiny piston, moving either into or away from the gas of particles. By 
calculating the work done on the gas by one such piston, then summing over the entire 
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surface (and taking the volume of the container to stay constant), one obtains Eq. 6.1. We 
will refer to this derivation as the "piston approach" to one-body dissipation. [13) 

Two key assumptions that enter the derivation of the wall formula are, first, that the 
motion of the walls is slow compared to that of the partiCles, and second, that the gas is 
always distributed uniformly within the container, with an isotropic distribution of velocities. 
These assumptions are satisfied by a chaotic adiabatic billiard gas, and so the wall formula 
should be consistent with the results derived in the present paper. To show that this is the 
case, we first comment that the piston approach disregards any correlations that may exist 
between the bounces of a particle moving inside the container. Thus, in comparing the wall 
formula with our results, it is appropriate to use the simplified version of our central result 
given by Eq. 4.4b. The total energy of the gas may be expressed as ET(t) =I dE TJ(E, t) E, 
where 77 is the time-dependent distribution of energies. Differentiating with respect to time, 
then applying Eq. 4.4b (with V ~ 0), we have 

dET. = ~I /dE ~[E2~(E-1/2 )] E 
dt 2 V 3 8 E 8 E 77 ' 

(6.2) 

where 13 = § n2 da. After twice integrating by parts, this becomes 

(6.3) 

The average speed of the particles is given by 

v = ~ j dE 77 (2E/m)112
, (6.4) 

where N =I dE 'TJ is the total number of particles. This enables ·us to rewrite Eq. 6.3 as 

dET = m.N v fn2du 
dt v ' (6.5) 

which is the wall formula. . 
Having demonstrated that the results of the present paper (in the simplified form of 

Sec. IV) agree with the wall formula, we now consider the factor v which appears in the 
latter. Differentiating both sides of Eq. 6.4 with respect to time, then applying Eq. 4.4b, 
then integrating by parts twice, we obtain 

(6.6) 

Eqs. 6.5 and 6.6 constitute a closed set of equations, in the sen.se that, if we know how 
the shape of the container evolves with time, then Eq. 6.6 may be integrated to yield v(t), 
which may then be inserted into the wall formula, which in turn is integrated to give ET(t). 
Without Eq. 6.6, some assumption must be made about the evolution of v in order for the 
wall formula to be integrated over any finite length of time. The added understanding of 
one-body dissipation which one gains from the second wall formula is discussed in greater 
detail in Ref. [14]. 

We now consider a generalization of Eqs. 6.5 and 6.6. First, note that Eq. 6.5 may be 
rewritten as 
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(6.7) 

where v2 is the average value of particle speed squared. Let vn denote the average value of 
the nth power of particle speed: 

vn(t) = j dE 'TJ(E,t) (2E/mt12
• (6.8) 

Differentiating both sides with respect to time, applying Eq. 4.4b, and integrating twice by 
parts yields 

d- n( n + 2) -=-t j d . 2 -vn = vn O"n • 
dt 4V . ' (6.9) 

Eqs. 6.6 and 6.7 are specific examples of this general Jormula. 
In Ref. [14], Eq. 6.9 is obtained using a generalization of the piston approach described 

above. A consequence of Eq. 6.9, as shown in Ref. [14], and supported by numerical simu
lations [15], is that, asymptotically with time, a chaotic adial:>atic billiard gas will achieve a 
distribution of particle velocities which has a universal form: 

f(v) oc exp(-v/c), (6.10) 

where f(v) d3v gives the number of particles with velocity in a small region d3v around v, 
and the quantity c is a velocity scale that grows with time. This exponential distribution of 
veloci~.ies stands in contrast to the Maxwell-Boltzmann distribution that occurs when the 
particles interact with one another. 

VII. BRIEF DISCUSSION 

We conclude with a brief discussion concerning one of the assumptions underlying our 
analysis. We assumed in Sec. I that the container's shape changed slowly enough that the 
evolution of a trajectory inside the slowly-evolving container resembled that inside the frozen 
one over times on the order of the Lyapunov time tL; see Eq. 1.1. This allowed us in Sec. III 
to replace the correlations that exist between bounces in the time-dependent container, with 
correlations calculated in the frozen container. Now, for somewhat greater values oft, Eq. 1.1 
will no longer hold, and the two sets of correlations will. differ significantly, although it rriay 
still be the case that the evolution of 7J will be well described as a process of diffusion. In 
such a case, we expect Eq. 3.22, our central result, to stand, only the factor D entering the 
coefficient 1 will differ from that presented above; the new D will be a sum over correlations 
which must be calculated inside the time-dependent container. We have numerical evidence 
suggesting that, when t isincreased beyond the validity of Eq. 1.1, correlations between the 
different bounces of a trajectory in the time-dependent container tend to become "wiped 
out"; only c0 remains significantly different from zero. In this case, the~ simplified results 
given by Eq. 4.4 work well, not because Eq. 4.1 (with D evaluated for motion inside the 
frozen container) is valid, but because we are within a range of values of t in which we 
must evaluate correlations using trajectories inside the time-dependent container, and these · 
correlations are dominated by c0 • 
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APPENDIX A 

In Sec. III, we considered the quantities 

eb ( E, Et) - (nab sin lh l a 

Cb,b'(E,Et) - ((nabsinlh.,... eb)(nab'sinBb'- eb•)la, 

(A1) 

(A2) 

where nab sin fh is the value 'of 1ia sin(} at the bth bounce of a trajectory of energy E moving 
inside the container frozen at a =d. One specifies such a trajectory by its initial conditions 
on the energy shell E; the angular brackets denote an average over a uniform distribution 
of initial conditions over this energy shell. 

The function cb,b' ( E, €t) measures correlations (in the value of na sin B) between the bth 
and the b'th bounce, for trajectories of energy E inside Sha. Due to chaotic mixing, we 
expect such correlations to exist only on the order of the Lyapunov timet£. Let V£ denote 
the number of bounces over which significant correlations exist ( VL will be on the order of 
t L/r, where r is the average time between bounces.) Then for lb' - bl > VL we get 

(A3) 

Plotted on the b-b' grid, then, cb,b' is non-zero only in the diagonal band lb' - bl S V£. 

In this Appendix we show that, outside the small region b, b' < VL, the function eb is 
independent of b, and the correlation function cb,b' depends on b and b' only through their 
difference Ab = b'- b (see Fig. 5). This justifies approximating the sum 2:r=1 2:r,=1 (cb,b; + 
6eb') where B ~ VL, by Er=l Ef,=l ( C~b +e), as per Eq. 3.8. We obtain explicit expression~ 
for C~b and e, in both two. and three dimensions. 

Begin by considering the motion of a particle inside a two-dimensiomi.l frozen container. 
[17) This motion consists of straight line segments joining one bounce off the walls of the 
container to the next. Each bounce is completely specified by the point s at which it occurs 
(where s measures the distance along the perimeter from an arbitrarily chosen origin 0), 
and by the angle () of the collision. The value of s ranges. from 0 to l, the perimeter of 
the container; () ranges from 0 to 1r. Let J( denote this finite region of the s-B plane. The 
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dynamics of the motion of the particle can be reduced to a mapping M : K ~ I<; a given 
trajectory reduces to a sequence of points in I<: 

(A4) 

with (sb+ 1 ,(h+I) = M (sb, fh). The angular brackets in the definitions of 6 and Cb,b' now 
denote an average over such sequences, where the distribution of initial points (sb 01) in K 
is obtained by uniformly filling the energy ~hellE with particles, then evolving each particle 
to its first collision with the wall. 

Since chaotic mixing exists. in the full phase space, it also exists in I<: any smooth 
distribution of initial conditions in /{ will, with repeated iterations of the mapping M, 
approach the distribution f(s, 0) which is invariant under M (within the coarse-graining 
approximation). This process of mixing occurs over ""' VL iterations of M. Thus, whatever 
the distribution of first bounces (sll 01 ) obtained as per the last sentence of the previous 
paragraph, this distribution will evolve after approximately VL iterations into a distribution · 
f(s, 0) which then remains unchanged by successive applications of M. 

Given these considerations, the quantity eb, for b > liL, becomes 

. rl r e = lo ds Jo dO f(s,O) na(s) sinO (A5) 

where no( s) is the value of nOt. at the point s on the container wall. Si'milarly, for b, b' > liL, 

cb,b' depends only on b..b = b' - b, and is given by 

I w . . 

CAb= 1 ds L dOf(s,O) [na(s)sinO- e] MAb [no(s)sinO- e], (A6) 

where MAb operates to the right, mapping the point (s,O) forward by b..b bounces. 
It remains to obtain f(s,O). Consider the sequence of points {(sb,Ob);b = 1,···,N} 

corresponding to N consecutive bounces of a sample trajectory (assumed non-periodic) in 
the frozen container. In the limit N ~ oo, the distribution of these points in J( is invariant 
under M, and hence when normalized give~ f( s, 0). The distribution thus reached will not 
depend on the initial conditions of the trajectory, land so the same distribution may be 
obtained by using a large number of particles (instead of only one) inside the container; 
consider such a "sample gas" of particles. f(s, 0) ds dO then gives the density of bounces, 
due to all the particles in our sample gas, which have accumulated after an infinite time in 
the small region ds dO around (s, 0) in K. This density is, in turn, proportional to the rate 
at which the particles of this gas strike the small segment between s and s+ds along the 
wall, coming from an angle between 0 and 0 +dO. Since the distribution of particles and 
their velocities is uniform and isotropic throughout the container (by chaotic mixing), this 
rate is independent of s, but contains the flux factor sinO. Thus, with normalization (so 
that J ds f dO f = 1), we get 

f(s, 0) 

from which it follows that 

1 . 0 
21 sm ' 
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with A evaluated at d =a. 
From the discussion of the previous paragraph, it should be clear that e, in addition to 

being equal to (nab sin fh) for b > VL, is also equal to the average value of na sin 0 sampled 
by a single particle bouncing around chaotically inside the frozen container: 

c 1. 1 ~ . . 0 
~ = tm N L.....J nab sm b· 

N-.oo b=l 
(A9) 

We use this result in Sec. V. 
In the three-dimensional case, as in two dimensions, each bounce is specified by its 

location on the surface of the container, along with the direction of its velocity just prior to 
collision. We denote the former by a vectors with respect to some fixed origin inspace; na(s) 
gives the value of the frozen wall velocity field at this point s. We have already defined the 
angle of collision 0 as the angle which the incoming velocity v makes with a plane tangent 
to the surface of the container at s. To completely specify the direction of v, we also need 
an azimuthal angle </> which gives the. direction of the projection of v onto this plane. (The 
direction corresponding to </> = 0. is arbitrary.) Thus the dynamics of a particle moving 
inside a three-dimensional container may be reduced to a mapping M : I< --t I<, where I< is 
now the space of all possible bounces (s, 0, </>), with s ranging over the entire surface of the 
container, 0 from 0 to 1r /2, and </>from 0 to 27r. (The set of all possible incoming velocities v 
forms, in velocity space, the surface of a hemisphere whose polar direction is normal to the 
wall at s, and points outward; note that 0 is not the ordinary polar angle on this hemisphere, 
but rather its complement.) The measure which we use on I< is dp = du cos 0 dOd</>, where 
du denotes ordinary surface area on the walls of the container, and cos 0 dOd</> gives the solid 
angle in velocity space. 

The arguments concerning chaotic mixing in the two-dimensional case apply in three 
dimensions as well. Thus, letting f(s, 0, </>) denote the distribution in I< which is invariant 
under M, we have (forb, b' > vL): 

.eb --t e = J dpf(s,O,</>)Jna(s) sinO 

cb,b' --t cAb= j dpf(s,O,</>) [na(s)sino-e] MAb [na(s)sino-e]. 

(AlO) 

(All) 

Here, J dp = f du J;/ 2 cos 0 dO J~-rr d</> denotes integration over I< (f du denotes integration 
over the surfaces of the container), and MAb operates to the right, mapping (s, 0, </>)forward 

. by ./:).b bounces. (For purposes of this mapping, the factor to the right of MAb in Eq. All 
is treated as a function of all of the variables of integration, which just happens to be 
independent of </>.) 

To obtain the invariant distribution f(s, 0, </>) we use the same strategy as before, filling 
the container with a large number of particles, and asking for the rate at which a small area 
du around s is struck by particles coming from a solid angle cos 0 dO d</> around ( 0, </>). As 
before, this rate is proportional simply to sin 0. With normalization (J dp f = 1), we get 

. 1 
f(s, 0, </>) = 1rS sin 0, (A12) 

and so 
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APPENDIX B 

In this Appendix we solve for T, the average time between the bounces of a particle 
of energy E moving chaotically inside a time-independent container .. Let v = (2E/m)112 

denote the speed of the particle. If we fill the container with a large number .N of such 
(noninteracting) particles, then the total rate R at which the walls of the box are being 
struck is 

N 
R= -. 

T 
(Bl) 

We now obtain an alternate expression for R, without the appearance of r. 
First, the two-dimensional case. Consider a small segment ds of the wall. The rate at 

which this segment is being struck by particles making an angle of collision between () and 
() + d() is given by 

j(O, d()) ds sin(), (B2) 

where j is the current density of particles bombarding ds from this range of angles, and sin() 
is a flux factor. Now, 

dON 
J - 27r Av. (B3) 

Plugging this into Eq. B2, and integrating over() from 0 to 7r we get 

.Nv ds 
?rA 

(B4) 

as the total rate at which ds is being bombarded by particles. Integrating over the entire 
wall, we get 

R = .Nvl 
?rA' 

which, upon comparison with Eq. Bl, yields 

?rA 
T = -. 

lv 

(B5) 

(B6) 

In the three-dimensional case, consider a small patch du on the surface of the container. 
The rate at which this patch is being struck by particles coming from a solid angle dn around 
the dir~ction ( (), ¢>) (as defined in Appendix A) is 

j ( (), ¢>, dD.) du sin(), (B7) 

where j, the current density of such particles, is 
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dO.N 
J ---v = 

47r v 
cos o dO d¢ N 

47r v v. (BS) 

Integrating Eq. B7 over () (0 to 7r/2) and ¢ (0 to 27r) to obtain the total rate of particles 
hitting dO", then integrating over the entire wall of the container, we get 

Thus, 

R = Nvs. 
4V 

4V 
T-- Sv' 
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FIGURES 

FIG. 1. Two-dimensional version of a chaotic adiabatic billiard gas. The scalar field n gives 
the rate at which the wall is moving normally outward, as a function of position s along the wall. 
It is assumed that "freezing" the shape at any instant will produce a time-independent billiard in 
which all particle trajectories are chaotic. 

FIG. 2. Particle bouncing off a small segment of wall in a two-dimensional billiard. The value 
of () ranges from 0 to 1r. 

FIG. 3. Particle bouncing off a small patch of wall in a three-dimensional billiard. The dashed 
line represents the normal projection of the trajectory onto the wall. The value of () ranges from 0 . 
to 1r /2; </> ranges from 0 to 211". (The line representing </> = 0 is arbitrary.) 

FIG. 4. The trajectory of a particle bouncing off a wall of finite 'skin depth. The parallel lines 
represent the contours of the potential V( q) in the vicinity of the bounce. 

FIG. 5. The b-b' plane. The correlation function Cb,b' is negligible for lb'- bl > VL, i.e. outside 
of the shaded regions. Furthermore, we show that, except in the darkly-shaded region given by 
b, b' < V£, this function depends on b and b' only through their difference .6.b = b' - b, and the 
function ~b (~b') is independent of b (b'). 
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