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ABSTRACT

‘The development of new combustion devices that combine
both high efficiency and low emission relies heavily on
our understanding of the interactions between turbulence
and chemical reactions during the combustion process.
One approach, used for studying turbulent non premixed

jet flames, is the Monte Carlo solution of the joint

probability density function (PDF) in turbulent flows.
The integration of stiff chemical kinetics and their
interaction with the turbulence model greatly increases the
computational requirements and accoumts for over 98% of
the total CPU time. As a resuit, the models quickly
become compute bound and generally have been limited to

~ reduced mechanisms and simple systems. Parallel

computing offers a solution to these limitations by
allowing the mdependent chemical kinetic calculations for
each statistical sample in the Monte Carlo simulation to

‘be dlslnbuted across many processors.

A hybrid moment-PDF model has been adapted to run -
under the newly developed Parallel Object-orieated
Environment and Toolkit (POET). POET is the result of
a collaboration between computational and physical
scientists to develop MIMD applications for distributed
and massively parallel systems. POET provides a

“mechanism that permits the computational and

physical scientist to contribute their expertise to an
integrated scalable application through the use of a well
defined object-oriented interface. ‘

INTRODUCTION

In the last decade scientists in all disciplines have seen an
enormous increase in available computing technology.
However, along with these resources came complex and
sophisticated computing techniques necessary to’
optimally access them. As such, the computationally
naive scientist has been faced with either leaming

an entirely new discipline or continued use of
technologically outdated models and techniques.
Complicating the matter further is the inherent
complexity of computational models in the physical

sciences. Managing the model development and reliability
of the subsequent computational codes is also a difficult
task. In order to effectively develop and utilize these
models and also take advantage of high performance
computing systems, a well planned approach to the
computauonalsaencebeoomaa'ucnal pmof

the development.

POE'I‘ispanofalargereffonmlledtheAdvanced

. Combustion Modeling Environment (ACME)

{Kozsykowski ét al 1992]. The goal of ACME is to
provide a computational modeling environment for the
combustion scientist that (a) enables and manages the
development of complex combustion models (b) accesses
high performance next-generation computing systems and
(c) allows simultaneous development of both the

-computational and modeling sciences. The purpose of

POET is to provide a transparent link to the power of

. parallel distributed oomputingl.

Our approach is similar in design methodology to that
employed by the developers of the X toolkit. We bave
designed a high level object-oriented framework that .
isolates the physical model description from the code that
implements the parallel algorithm and data flow. As
such, the: combustion scientist need only be concerned
with application specific code.

In the coming decades, 'the.z u.s. 1s challenged to achieve -
from combustion devices such as appliances, furnaces,
boilers, gas turbines, and internal combustion engines.
Computational combustion modeling ¢an provide industry

. with design tools to address this challenge. To date, much

progress has been made. Further progress is impeded by
several obstacles imposed by limitations in computing
capabilities,

A goal of ACME is to develop a suite of models with
significant improvements that will benefit industry in the
design of modern combustion devices. Improved
combustion modeling is necessary for U. S. industry to
design combustors with high combustion efficiency and



reduced pollutant emissions. Currently, the combustion
process is modeled by coupling turbuleat flow models
with simple chemical kinetics models. Industry must
have significantly more advanced models in order to
predict combustion propettics in turbulent flows with
sufficient chemistry to evaluate environmeatal conoems.

Presently, one of the most important problems in

turbulent combustion modeling is comrectly approximating
the coupling between reactive and diffusive processes on
the smallest scales. Future progress in combustor design
is very promising if modeling capabilities are further
extended so that detail at a finer level of structure can be
predicted. To be sufficiently accurate to be used as design
tools, these models and their comesponding computational
codes must include both chemistry, fluid mechanics, and
their intecactions over a broad range of time and length

scales. ' .

‘While fluid-mechanical turbulence models and detailed- -
chemistry flame models in simple flows are solvable on
standard vectoc supercompaters, the combination of
turbuleat flow and detailed chemistry in the same model
requires the next generation supercomputer: the massively
parallel machine. As an initial demonstration of POET,
we have investigated a probability deasity function (PDF)
code for a jet flame diffusion problem. The PDF
algorithm involves mostly Monte Carlo calculations and -
is highly amenable to an efficient parallel
implementation. POET is used to partition the
algorithmic portions of the code (e.g. gquation solver,
Monte Carlo simulation) from the application specific
code. :

POET ARCHITECTURE

Existing tools for parallel software development generally
fall into two categories: 1) high-level tools and compilers
that hide the parallelization details, making them easy to -
use but also hiding the pitfalls that lead to bottlenecks;
or, 2) low-level tools for message passing that create
scalable code, but require such detailed knowledge of
algorithms and software that they are difficult for the non-
systems programmer to use. The purpose of POET is to
allow a physical scientist to create an integrated and
scalable application code that transparently accesses
parallel computing resources and avoids the traditional
pitfalls associated with parallel computing. POET is a
high-level object-oriented framework for parallel
computing that is designed for direct integration of
existing application codes. Itis written in C++ in an
extensible manner that guarantees scalable code.

Because the paradigm for object-oriented (OO)
programming and the physical structure of MIMD pamllel
computing are so similar, the parallel processing
community is becoming increasingly aware of the benefits

of OO computing to MIMD processing. Most common

MIMD computers have the CPU and memory together on
a single unit and computations proceed by message-
passing between collections of these units. The OQ
design methodology is based on collecting processing
methods and the data to be processed into single objects,

_mdlcomputanonspmoeedmgbypassmgmmg&

between objects. As such, the OO paradigm is a natural
fit for MIMD architectures.

WetefertoPOEI‘asatooll&tbemnsei_tismomthana
collection of objects that simply provide computational

prommgapabmm Figures 1 through 3 indicate three

appmadmltopamlldsoftwaredevdopnmt. .
The first approach, Figure 1, is the traditional approach
often embodied when porting existing code from vector
machines to parallel machines. Most often, the user is
responsible for all aspects of the code: the application
specific code, the parallel algorithm, and the data flow,
‘This approach requires a specialist in parallel code
development in order to achieve an effective speed up.

Figure 1. 'fmditional Approach to Parallel Computing

The second approach, Figure 2, consists of providing an
object-oriented class library that has already been designed
for a parallel implementation. However, typical C4++
class libraries require the user to write the main routine
that drives the objects instantiated from the library. The
user is made responsible for the highest level portion of
the application and consequently he/she must be aware of
the environment in which the application is to run. As
such, the user has control and must control the highest’

level of the application. With unsophisticated users this

I'This list is not meant to be complete. These examples

are provided in order to highlight the difference between a
twolkit approach and other approaches.

[

C

I



can lead to highly complicated structures that will cancel
a!lthcbeneﬁtsgamedfromtthOdmshbmty Asan
example, consider the X windows programming
environment. X windows requires constant arbitration
‘between the Server and the application’s window event
Toop. It would be disastrous to hand over the top level of
an X program to a naive user and trust that the main event
loop would be coasulted at the right time and oftea
a:oughtoavoidpoorbehaviororonuightd&dlock. InXt

the top level is handled by an object called top level shell.
‘The user’s main program exists caly to configure objects,
called widgets, by adding callback routines or modifying
attributes under the top level shell. Then the widgets are
realized by calling the main-loop function for the top
lcvd.ﬁmnwhndloonuolwﬂlnotmmunul(he
applicationends.

Figure 2. Object-oriented Class Library Approach.

As we define it, a toolkit is a library of objects that also
includes a top-level control object. The POET approach,
Figure 3, secks to provide a similar mechanism for
MIMD parallel computations. POET separates the
physics specific to a problem from the parallel algorithm
needed for solution. Our goal is to embed as much of the
computational control as possible into the toolkit. The

~ physics specific to the users particular application

problem is handled as user add-ons. For our first
implemeatation, these add-ons take the form of callbacks
that specialize a general algorithm embodied in an object
selected from the toolkit. Taking into account the object
the user has requested, the toolkit decomposes the problem
across multiple processors. The provided callbacks,
however, need not be aware of this decomposition nor the
architecture of the parallel environment, because the
physics that specialized the problem ar¢ independent from
the object chosen for the solution. A detailed FORTRAN

example for a wrbuleat reacting PDF code is givea in our
example.

R BT NN T TN RO RN T IN 120 b ¢

Figure 3. Toolkit Approach to Parallel Computing

For this first implementation, we have provideda . .
FORTRAN interface because users in the computational
physics community that are most likely to benefit from
this toolkit are either solely or mostly familiar with ,
FORTRAN. Special limitations imposed by integrating
FORTRAN required the use of callbacks rather than .
inheritance, which would be more appropriate to the
native language of POET: C++. The top level of the

toolkit is initialized by the FORTRAN subroutine:
~ PTINITIALIZE. POET objects, called pidgetsZ, are seat

messages through a FORTRAN subroutine:
PTSNDMSG. It is only through these two functions that
the toolkit is acoessed from FORTRAN. Our current _

- FORTRAN interface is somewhat cambersome and

inefficient. However, as was previously mentioned, our

most likely user has developed FORTRAN modelsas
applnmhons

Currently the user is required to configure and message the
pidgets necessary to implement a solution, A high-level
intelligent user interface is under development that will
completely isolate the user from the details of pidget
creation. This will be developed as a frame based interface
that provides abstracted representations for standard
combustion models. The user will be provided with a
graphical user interface in which to customize their
particular problem. - Automatic code generation will

~ provide the link between the pidgets and the users problem

representation. In addition, we expect to eventually

2We have named our objects pidger as analogous to the
w1dgct in the X toolkit.



incorporate automatic code generation for chemical
mechanisms.

The frame based user interface will provide the mechanism
for managing the complexity of the models. As users
customize each application to include mare detailed
chemistry and turbulence models, the models will become
increasingly difficult to manage and verify. In addition to
providing an cavironment that is natural foc the user to
use, high-level algorithms that provide constraints on

model development will force the user to create code that
:scomputanonallycons:stentandlscons:stmtwmmme
modeling algorithms,

CHEMICALLY REACTING FLOW PROBLEM

‘We present an example application that models a turbulent
reacting jet flame {Chen e al. 1990). A cylindrical jet
injects a premixed fuel and is ignited. The model is
composed of three parts: the turbuleat motion model, the
. chemical reaction model and the coupling between
chemical reactions and turbulence. The downstream
exhanst is computed using an advancing grid beginning
from the inlet and advancing downstream until chemical:
activity is complete, Figure 4. Symmetry allows this
problem to be modeled using a one dimensional grid that
effectively represents a radial slice of the cylindrical
nozzle. The model is based on the probability density
function (PDF) approximation [Pope 1976).

TTTT]
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Figure 4 (a) Schematic of the turbulent reacting jet. Itis
computed by advancing a one-dimensional grid along the
flow direction from the inlet outward. The -
computationally intensive chemistry and turbulent
diffusion calculation is done in parallel using FORTRAN
callbacks in the manner of Figure 4 (b).
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Figure 4 (b) The advancing one-dimensional grid is
spatially domain decomposed on the distributed
processors. Three callbacks are provided by the user that
encapsuiate the physics of the reacting jet. .

The algorithm is a piece wise Monte Carlo method in
which the Monte-Carlo aspect of the problem comes from
the tansport (or mixing) of particles to and from nearest-
neighbor cells. This mixing is a result of flnid-
mechanical arbulence and Fickian diffusion. The
chemistry that accounts for most of the computation, is

local to each cell in which particles from one node cell are -

mqun'edtocommumwtewxmonlv the right and left
neighbor cells.

The POET implementation builds upon a piece wise
Monte Carlo (PMC) object. The first step is to spatially-
domain decompose the linear grid. The PMC object then
exploits the nearest-neighbor dependence of the physics of
this problem and defines three types of cells: left
boundary, right boundary, and interior. The data necessary
to compute an interior cell is the cell itself and its right
andleftnenghbors ‘We define a callback around this called
Inside. Itreceives three objects called Data Racks that
hold all of the data relevant to the cell and its neighbors. °
The callback will recover the data necessary to do its
computation by sending messages to the Data Racks and,
once the computation is accomplished, the callback will
send a message updating the relevant data in the Data -
Racks. The two leftmost cell's Data Racks will be seat to
another caliback (LBndry) to bandle the left boundary

- condition. The rightmost two cell's Data Racks will be

sent to a third caliback (RBndry) to handle the right
boundary condition. These three routines are sufficient to
accomplish the PDF calculation.

bt 4



The PMC object takes care of processor-to-processor

: commmimtionsuchasupdaﬁngmeghostnodm(nod&s‘

that are overlap processors) and returning the resuits to 2
host processor. Independeat callback routines fill out
stubs on the PMC object to provide the physics particular
to the PDF problem.

Actnal excerpts from the FORTRAN source can give a -
better idea for how the toolkit is accessed. First, the top
lcvelptdget‘ is instantiated and initialized.

C .

call Pﬁniﬁalize(’mp)

C..

" Here itop is an integer that is a Iabel for the topLevel
_ pidget. Omerpndgetsmbemsmuatedbysendmgmp

messages, such as:

€ ... :

call ptsndmsg(itop,.PtTopInstantiate,
PtMeshlD,ncells, mesh) .

c ... .

" Here a mesh pidget is instantiated. Identifiers that begin

with "Pt" are defined in an include file and replaced by
integers by CPP at compile time. The mesh pidget
identifies the problem specific portion of the code. In this

~ case the problem is one dimensional and has ncells cells.

The call returns another integer identifier, mesh,
identifying the instantiated mesh pidget. Now mesh can
be sent messages of its own. Now that the problem space
has been identified, an indication of the machine
environment is needed.

c ...

call ptsndmsg(itop, PtTopInstantiate,
PtMachine, 3, PVM, mach, *h2jet\0‘) .
C ecoe .

‘Ihisinstantiatesamadﬁnepidgetandre&xrnsmaéhaéits-

identifier. The arguments indicate that there are to be
three processors, the communications environment is to
use PVM (Beguelin et al. 1991] for message passing and
the component name to be used by PVM is h2jet. The

-configuration is the problem environment is complete and

we may now create a PMC pidget.

C ... .
call ptsndmsg7(itop, PtTopInstantiate,
PtPMC, mesh, mach, 1bexec, rbexec, mcexec,

“ipmce)

C ...

To instantiate ipmc we need a mesh and mach pidget and
the three callbacks lbexec, rbexec, and mcexec. The first
two handle the left and right boundaries respectively and’

the last handles the interior cells. mcexec for example is

" declared as:

c ..
subroutine mcexec(idrl, idrc, idrr)

integer idrl, 1drc, idrr |
C ...

idrl, idrc, and idrr are the left, current and right cell's data

. embodied as Data Rack objects. The Data Racks are

pidgets and the data necessary to do the computation is
recovered by messaging the Data Racks. Only the idrc,

- the current Data Rack, is expected to be modified with

updated data. Data associated the cell may be easily
accessed by the FORTRAN routine through a simple
message. For example, the number of particles in the
current cell can be obtained by:

‘€ e

call ptsndmsg2(idrc,
‘ PtDRGetDataByString,np, ‘np\0°*)
C ...

Here np is the FORTRAN variable that will take on the
value of the number of particles in the cell and np\0°is a
null-terminated string identifying that quantity to the idrc
pidget. A similar message allows the results of the
mlaxlauondonebymcexectobecommummtedbackto
the Data Rack.

RESULTS ,
The entire one~dimensional grid of cells plus boundary

conditions for the two cells on left and right ends of the
grid compose the Monte Carlo portion of the problem and
accounts for 99.3% of the computer time, even with

- minimal chemistry. At the appropriate time, statistics

computed from the particles distributed over the cells
contribute to an update of the flow field, either as an
iteration converging on a steady state or as a time stepin
a non steady problem. The addition of realistic chemistry
increases the computation required by 10 to 100 fold.

Figures § - 7 show the results of this calculation. Figure
5 indicates the temperature profile of the jet flame, where
the oolor is graded from blue that identifies low
temperature and red that identifies high temperature.
Figures 6 and 7 indicate the NO and OH concentrations,

" with the color graded as blue for low concentration and red

for high concentration. The ability to predict poliutant
concentrations, such as NO, as well as intermediate
species, such as OH is critical if we are to make an impact
on the combustion community. Species such as OH and
NO can be measured experimentally to verify models.

The model was implemented on a distributed network of

- 25 IBM RS6000 workstations. The figures were

generated using the Advanced Visualization System. The
combustion scientist responsible for the physics modeling
associated with the PDF model was J-Y Chen of UC
Berkeley Mechanical Engineering Department. Dr. Chen

was intimately involved in the development of the model



and modified his existing FORTRAN code to integrate
with the POET implementation.

Figure 5. Tanpdahne Profile for Diffusion Simulation

Figure 6. The NO concentration for the same jet flame
allows the combustion scientist to predict the formation
of pollutants

Figure 7. Intermediate species concentrations, such as
“OH, can be compared with experiment to verify models.

The parallel versioa of the PDF code utilizing POET is
capable of doing an H) jet calculation with teas of
chemical species and reactions in less than a day on our
collection of IBM workstations. We plan to implement
the code on a massively parallel computer, an Intel
Parragon, and expect to produce the results in minutes.

Through POET, the power necessary to compute PDF
chemically reacting flow problems with realistic
chemistry on massively parallel and distributed systems
has been provided. Moreover, by encapsulating the PMC
algorithm in an autonomous object and thus insulating
the specific physics of a PDF problem from the
algorithm, we produce reusable code that can be used on
other chemically reacting flow problems. Ultimately, the
update of the flow field will require an equation solver;
however, in this early implementation we anticipate

_avoiding this issue by solving the eatire flow field on

every processor. Since this step requires little

- computation and the communication of very few averaged

numbers to each processor, it is expected that the lack of
scalability in this step will have little impact on the
speed-up necessary for this application.

SUMMARY

The results of interfacing the PDF jet flame diffusion
model with POET have generated the first investigation

‘of a turbulent non premixed flame with a full chemical

mechanism. This benchmark calculation provides an
opportunity for examining the limitations of various
reduced chemical mechanisms. The described design
methodology in concert with the use of an object-oriented
language has allowed the development of code that can be
continually evolved by both computational scientists and
physical scientists. POET has been designed in a modular
form that allows a physical scientist to easily modify
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their current model for both the fluid mechanics and the
chemistry without affecting the code that

actually distributes the pmblcm to the various processing
clements.

Future extensions of POET to support higher
dimeasionality and applications requiring efficient
equation solvers are planned. Advanced computing
techniques, such as automatic code generation

for chemical mechanisms, will impose the partitioning
necessary to handle the models as their complexity
increases. This will create a well defined path foc .
combustion modelers and other computational scieatists
to formulate and access high performance models
mslomizedtod:eirpatﬁaﬂarappliaﬁon.

‘This approach to software development i is vital to next-
generation systems. It is particularly important in -

computational physics where you have state of the

art techniques being applied in both the physical science
and the computer science. The partitioning that we are
introducing allows development to occur in both
scientific areas and allows easy access to distributed
resources otherwise untapped by the naive. user.
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