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Abstract 

We re-examine the multiple-time-scale method as applied to ergodic adi
abatic Hamiltonian systems. Solving for the evolution of the phase space 
density to first order in the slowness parameter, we find a term previously 
overlooked. The inclusion of this term resolves a standing discrepancy be
tween the multiple-time-scale approach to this problem, and an approach 
using a Fokker-Planck equation. We apply our solution to the dynamics 
of a "slow" system coupled to an ensemble of "fast" systems following 
chaotic trajectories. 
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This Letter re-examines the multiple-time-scale approach to the study of ergodic adi
abatic systems, i.e. systems evolving chaotically and ergodically under a slowly time
dependent Hamiltonian, H. The .relevance of this problem to plasma physics, heavy-ion · 
dynamics (both fission and fusion), cosmic ray acceleration, and microscopic models of dis
sipation has been discussed in Refs. [1-4] .. Ott [1] first used multiple-time-scale analysis 
in this context to demonstrate the adiabatic invariance of a certain quantity, the ergodic 
adiabatic invariant, and also to study the "goodness" of this quantity as an invariant (the 
extent to which it is violated when the evolution of His not 'perfectly adiabatic). Recently, 
taking a different approach, we have found disagreement with Ott's results concerning the 
goodness of this adiabatic invariant [2]. The present Letter is an attempt both to resolve 
this discrepancy, and to find a solution to the central problem - the evolution in phase 
space of an ensemble of systems under an ergodic adiabatic Hamiltonian - which we then 
apply to a dynamical problem recently considered by Berry and Robbins [7]. 

An ergodic adiabatic Hamiltonian H(z, t), where z = (q, p) denotes a point in phase space 
and t denotes time, is characterized by two conditions. First, it evolves slowly with time; 
we express this condition mathematically as H(z, t) = h(z, d), where tis a formally small 
dimensionless parameter. (This defines two time scales: a fast scale over which t changes 

. by order unity, and a slow scale over which d changes by order unity.) Second, if the slow 
evolution of His "frozen" at any instant in time, the resulting time-independent Hamiltonian 
produces trajectories which ergodically and chaotically explore their energy shells (phase 
space surfaces of constant H)~ Ott has shown that, for trajectories z(t) evolving under an 
ergodic adiabatiC Hamiltonian, the volume of phase space enclosed by the instantaneous 
energy shell on which the trajectory is found, is an adiabatic invariant. That is, let 

O(E, tt) = j dz B[E- h(z, d)] (1) 

[where O(x) is the unit step function] denote the volume, assumed finite, enclosed by the 
energy shell E of h(z, d); then the quantity fl(H, d~, with H evaluated along z(t), will 
remain constant in the limit e; ---+ 0, over times that scale like c 1 ("slow" times of order 
unity). n is the ergodic adiabatic invariant. 

Ott, Brown, and Grebogi [1,3] have pursued the qu~stion, To what extent is the invariance 
of n violated for slow but finite evolution of the Hamiltonian (small but finite t)? Consider 
an ensemble of trajectories specified by a uniform distribution of initial conditions over the 
energy shell Eo at timet= 0, then allowed to evolve under H(z, t). After a time t of order 
c 1 (over which H changes by order unity), we expect to find these systems near the energy 
shell £ (d), where n( £, d) = 0( E0, 0). The "error" in n may be measured by the moments 

Mn(t) = J dzF(z,t) [H(z,t) -£(tt)r, · (2) 

n = 1, 2, · ... , where F(z, t) is the phase space density representing the ensemble. With 
multiple-time-scale analysis, Ott [1] has obtained lO'~est-order. expressions for dMtfdt and 
dM2 / dt. These rates scale like t 2 , and so over times of 0( C 1 ) these two moments will scale 
like t 1• [Higher moments grow at rates which are O(t3 ) or smaller, and will henceforth be 
ignored.] c 

·Wilkinson [4] has used Ott's results to write down a Fokker-Planck equation ·governing 
the distribution of energies of an ensemble of systems evolving under an ergodic adiabatic 
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Hamiltonian. Using a different approach, and unaware at the time of Wilkinson's work, we 
have obtained the same equation [2], and furthermore have shown this equation to be in 
conflict with Ott's results for dM11 dt and dM21 dt. Specifically, the expressions for these rates 
which follow from the Fokker-Planck equation contain terms not found in Ott's expressions. 

We now re-examine the multiple-time-scale method as applied to this problem. Our 
strategy is as follows. We consider an initial phase space density which is a function of 
energy shell alone, F(z, 0) = f00(h(z, 0)), with f 00 an arbitrary function of its argument. 
Using multiple-time-scale analysis and working to first order in t:, we obtain a solution for 
F(z, t) valid for times of O(c1). Applying our results to the specific case considered in 
Refs. [1,3], where the initial density is restricted to a single energy shell, we find expressions 
for dMifdt and dM21dt in agreement with those derived from the·Fokker-Planck equation. 
Finally, we discuss the application of our results to a particular dynamical problem. 

To apply the multiple-time-scale method [5], we follow Ott's expansion ofF: 

(3) 

where r 1 = t and r 2 = d are the "fast" and "slow" times. The initial conditions are: 
F0 = f 00(h), F1 = F 2 = · · · = 0, at r 1 = r2 = 0. Plugging Eq. 3 into the Liouville equation 
oF I ot + { F, H} = 0, and ordering by powers of €, we get, to 0( t: 2

): 

where h = h(z, r2). 
The solution of Eq. 4a is: 

( 4a) 

(4b) 

( 4c) 

(5) 

where, aside from the initial condition fo(E, 0) = foo(E), the function fo is so far arbitrary. 
This ambiguity is a feature of the multiple-time-scale method; we remove it by insisting 
that F0 remain valid for times of 0( t:-1 ), i.e. by removing terms at next order which grow 
secularly with time. 

Following Ott, we multiply Eq. 4'b by an arbitrary function g(h) and integrate over phase 
space, obtaining 

0: 1 
f dzg(h)FI =- J dzg(h)~::. . (6) 

Since the right side of this equation is independent of r11 J dzg(h)F1 will grow secularly 
unless the term on the right is zero. We therefore set 

f [8fo 8h 8fo ] 
0 =- dzg(h) f)E(h,r2) 

072 
+ 

072 
(h,r2) , (7) 

where 8f0 18E and 8f018r2 refer to the derivatives of fo with respect to its first and second 
arguments, respectively. (In what follows, the arguments of h and oh I 8r2 are taken to be 
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(z, 72), if not specified otherwise; those of J0 , and of the functions E, u, ft, and G2 introduced 
below, are taken to be (E, 7 2), if not specified.) 

Now define E(E,72) = fdz8(E-h) = (fJjfJE)O(E,72 ). Letting (···)E,72 denote the 
phase space average of ( · · ·) over the energy shell E of h(z, 7 2), we have 

(- ·-) = (1/E) jdz8(E- h)···, 
E,T2 . 

(8) 

from. which 

J dz · · · = j dE E (- · -) . 
E,72 

(9) 

With this result, Eq. 7, which holds for arbitrary g, yields 

(
8fo . 8fo) a a 

0 . E fJE u + {)T
2 

= 
872 

(Efo) + fJE ( uEfo), (10) 

where u(E,72) = (fJhjfJ72)E,72 , and we have used the identity fJE/872 + (fJjfJE)(Eu) = 0. 
Fo( z, 72) = fo( h, 7 2 ) is now· completely specified by the initial conditions, along with 

Eq. 10. Using Eqs. 5 and 10, we further obtain 

8Fo · 8fo [ fJh ) 
072 

(z, 72) = fJE (h, 7 2 ) {)
72 

- u(h, 7 2 ) , (11) 

which will be of use below. 
We proceed to the evaluation of F1 • The solution of Eq. 4b contains both an inhomoge

neous and a homogeneous term: 

(12) 

where Z = Z(z, 7t, 7~, 7 2 ) is the point in phase space reached by starting at z at time 7t, 

the!l evolving a trajectory backward in time to 7~, under the "frozen" (time-independent) 
Hamiltonian h(z, 72)· So far, the homogeneous term f 1 is arbitrary apart from initial con
ditions (!1 = 0 at 7 2 = 0); to determine it completely, we remove secularities at 0(E2 ). We 
proceed as before, multiplying both sides of Eq. 4c by arbitrary g(h), and integrating: 

a J J oF {)
71 

dzg(h)F2 =- dzg(h) {)
7

: 

=- 8~2 J dzg(h)F1 + j dzg'(h) :~ F1. 

(13) 

(14) 

(g' denotes the derivative of g with respect to its argument.) With manipulation, the right 
side becomes 

(15) 

The quantity C(s) (whose dependence onE and 7 2 has been suppressed) is an autocorrelation 
function, 
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c ( s) = ( ( aa h - u) 0 1'2 ( s) ( aa h - u) ) ' 
72 72 E,T2 

(16) 

where 07'2(s) is a time-evolution operator which acts to the right, evolving a point z for a 
times under the frozen Hamiltonian h. Note that C(s) = C( -s ). For times 7 1 of 0( E- 1), the 
integral J~Tl ds C(s) becomes G2 = (1/2) r~: ds C(s). (We make the assumption that this 
.integral converges; for an example where this assumption fails, see Ref. [3].) The condition 
for removing secularities at 0( E2

) then becomes 

(17) 

which, along with the initial conditions, specifies / 1• 

We now have our central result, valid to 0(E1 ) for times of O(E-1): 

. (18) 

where fo and f 1 satisfy Eqs. 10 and 17, respectively. Ott's solution for F does not contain a 
term corresponding to our F1h = f 1 ; we believe this to be the source ofthe above-mentione9. 
conflict with the Fokker-Planck equation. 

Let us now consider the case when the initial conditions are distributed over a sin
gle energy shell: f 0 (E, 0) = 8(E - E0)/'E(E, 0). [The factor 1/'E provides normalization: 
f dz F(z, 0) = 1.] The solution of Eq. 10 consistent with these initial conditions is 

(19) 

where £ = £( 7 2) is defined by n(£, 72) = f!(E0, 0). [To demonstrate by inspection that 
Eq. 19 is a solution of Eq. 10, one needs the identity 

(20) 

which follows from the definitions of £, u, 'E, and n.] Eq. 19 shows that, to lowest or
der, F(z, t) remains distributed uniformly over the energy shell prescribed by the adiabatic 
invariance of n. 

Continuing with these initial conditions, we now consider the moments Mn(t) = 
fdzF(z,t)(h- £)n which measure the error in the ergodic adiabatic invariant. Of the 
terms on the right side of Eq. 18, the first and third do not contribute to Mn (the latter 
because the average of [8hj 872(Z, 72) - u( h, t 2)] over any energy shell is zero), leaving 

Differentiating with respect to time, one obtains (using Eqs. 17 and 20), 

d::l = E
2 J dE 'E_ft [u - u( £' 72)] + E

2 [ 2~ a~ ('EG2)] E=£ 

d::2 
- 2E2 j dE 'Ef1(E- £)[u- u(£, 72)] + t

2G2(£, 72)· 
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(22a) 

(22b) 



Expanding u(E, r2 ) in a Taylor series around E = £, and disregarding moments higher 
than the second (6], these equations become, to O(e:2

), 

(23a) 

(23b) 

(Since Mb M 2 "' e: fort"' c\ all terms on the right scale like e:2 .) These expressions agree 
with those derived from the Fokker-Planck equation (see Ref. (2], Eqs. 5.13 and 5.14), which 
resolves the discrepancy mentioned earlier. 

Note that Eq. 18 directly leads to an evolution equation for the distribution of energies, 
7J(E, t), of an ensemble of systems evolving under an ergodic adiabatic Hamiltonian. We see 
this by writing 7J(E, t) = ~(E, r2)(F(z, t))E,'T2 = ~(fo + e:ft). Eqs. 10 and 17 then combine 
to give, to 0( e:2 ), 

07] a ( ) 1 2 a [ a ( 7J )] 
8t = -E fJE U7] + 2E f)E G2~ fJE ~ ' (24) 

which is exactly the Fokker-Planck equation of Refs. (2] and (4]. 
Finally, Eq. 18 has significance for dynamical problems in which the motion of a "slow" 

(or "large") system is coupled to an ensemble of noninteracting "fast" systems following 
chaotic trajectories. Such problems have been considered by Wilkinson (4], Berry and Rob
bins [7], and, earlier, in the context of nuclear processes, by Blocki, Swi<}tecki, and coworkers 
[8], and by Koonin and Randrup (9]. In the formulation of Ref. (7], the fast ensemble is de
scribed by a density p(z, t) evolving under the Hamiltonian h(z, R(t)),~where R denotes the 
configuration space coordinates of the slow system. (In this formulation, the slowly evolving 
variable R becomes a parameter of h, taking the place of the slow time r 2.) The slow system 
is subject to a force 

F(t) =- j dzp\lh · (25) 

(where V = ojfJR) due to its coupling to the fast ensemble [10]. To evaluate this force, 
we in turn need the respo~se of p to the slow evolution of R; this response is precisely the 
content of Eq. 18. 

Taking the fast ensemble to be initially distributed over a single energy shell £ 0 of 
h(z, R(O)), the leading contribution to F(t) is obtained by averaging - \lh over the energy 
shell E(R(t)) determined by the ergodic adiabatic invariant. This term is dubbed the "adi
abatic" force in Ref. [7]. Following an evaluation of p similar to Ott's, Berry and Robbins 

· find, at next order in the rate of change of R, two contributions to F which they label "deter
ministic friction" (previously discussed by Wilkinson (4]) and "geometric magnetism"; both. 
follow from a term in p corresponding to the term F1i in Eq. 12 above. How~ver, we claim 
that there also exists at this order a contribution to F following from a term corresponding 
to F1h = fi.. This contribution can be understood as a correction to the adiabatic force. The 
latter was determined by assuming that, as the slow system evolves in time, the fast ensem
ble clings to the energy shell prescribed by the ergodic adiabatic invariant. This is true only 
at lowest order. At next order, we find p distributed over a narrow range of energy shells 

. I 
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near £(R); the true adiabatic force at timet is then a weighted sum of contributions (Vh) 
from each of the shells to which the fast ensemble has diffused. This leads to a correction 
to the adiabatic force given by 

(26) 

which represents a contribution to F on the same order as geometric magnetism and deter
ministic friction. 
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