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ABSTRACT

Using arguments based directly on the dislbcation processes
iﬁvolved, we derive a set of constitutive equations for polycrys- -
talline plasticity that is fully consistent with thermodynamic re-
quirements. The idea of fandomly distributed glide plane orienta;
tions and Burger's vector directions is introduced to facilitate
handling of the polycrystalline structure. This yields equations
involving probability distributions for variables which are direct-
ly related to measurable dislocation quantitiés.

When the motion of the diélocations is isochoric, the tensor-
ial character of the plastic strain rate is shown to be entirely |
determined by a second rank symmetric tensor directly related to
ordinary elements of crystallographic glide.: Thisvsame tensor is
also shown to determine to shear stress acting on a dislocation.

Characteristic yield conditions are calculated for severél_
sample materials in which the dependence of the dislocation velocity
on stress is given by an empirical power function. The shape of
tﬁe yield surfaces for these materials is shown to vary from that
of von,Miées when the exponent is small to that of Tresca when the
exponént is large. Additional examples illustrate the ability of
the proposed theory to model such phenomena as the development»of
anisotropy during plastic deformation, material har&ening and
softening, the occurrence of»upper and lower yield points, and

Bauschinger effect.
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5.Y

I INTRODUCTION

1.1 Historical Perspective

In.the pést decade, the theory of plasticity in crystalline |
materials has undergone extensiverdevelopment. Using the frame-
work of modern continuum mechanics [1], very general three-di-
mensional theories have been proposea on the basis of thermody-
namical arguments. By direct generalization of classical theory,
Green and Naghdi [2, 3] developed a generalltheory of elastic;
plastié materials of the rate independent type. A siﬁilar dévelopment
was présented by Lee and Liu [4]. Pipkin and Rivlin [5] have
devéloped the constitutive equations for rate independent materials
with memory. They have shown that é general theory of elastic-plastic
materials arises as a special case of the theory of rate—indepéndent
materiais.

The'formulation of the thermodynamic theory of rate-sensitive
plastic material within the framework of thermodynamics of a material
with internal state variables has been given by Perzyna and Wojno [6]
and by Kratochvil and ﬁillon [7]. Similar work with particular
attention to identifying the internal variables with dislocation
quantities has been presented by Tseng [8], by'Hahn and Jaunzemis [9],’
by Bhandari and Oden [10], and by Kelly and Gillis [11]; In addition,

Bhandari and Oden have given a detailed comparison of the existing

‘mathematical theories and have shown the equivalence of approaches

using evolutionary equations and memory functionals.
In contrast to the mathematical theories just mentioned, physical
theories of crystalline plasticity, that is, those in which the

constitutive equations are derived by modeling thexphysical dis-



location processes directly, have been developed by Taylor [12],
by Lin and Tto [13], by Lin [14]; by Mura [15], and by Gilman[i6].
Equations obtained in this manner have been identified with those
_obtained on the basis of thermodynamics by Kelly and Gillis [11].

In this work, we utilize results from both mathematical and
physical theories. Our emphasis, however, is on diréct physiéalf
arguments. ' We begin our discussion with a review of thermodynamic
results obtained élong the lines of Kelly and Gillis' [17]
arguments. The constitutive equations for tﬁe plastic strain rate
and the rate of change of the dislocation density are then derived
using arguments based difectly on the dislocation processes involved.
Random variables and associated probability distributions are
introduced to facilitate handling of the polycrystalline structure.
The resulting equations are shown to be consisfent,With the forms
obtained using thermodynamics. Finally, the behavior of the model

is illustrated with several examples.

1.2 Basic Assumptions and Thermodynamic Results

It is our intention in this dissertation to construct a theory
of plasticity for polycrystalline materials based on the use of
internal variables. Following Coleman and Guitin_[iS], the evolution
of these internal variables is described by a set of differential
equations which are of first order in time. In contrast to their
work however, we develop our equations in the material rather than
the spatial description and make use of a different set of state
variables. In the derivation that follows we use symbolic notétion
for tensors and vectors, for example, E,'§} where possible and use

index notation, €1js Xi» for manipulations.

by
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We conéider a body B acted on by a body force and a sym-

metric stress field. Although the presence of dislocations can,

. according to some geometric analyses, lead to body couples and

couple stresses, these are assumed to be absent at the macro-
scopic level. Similarly, diffusion of mass in B is neglected as
being of only microscopic importance. We refer the motion of B.
to a fixed system of rectangular cartesian axes and designate the
position of a typical particle at time t by a cdlumn vector ;,
where‘ |

x = x(X,1), ' @

>

and X denotes a reference position of the particle, here taken to
+

be the initial position. The vector mapping function x is assumed

to be sufficiently smooth that its gradient,

b d > >
E = Grad x = 3x/93X, (1.2)

is continuous and such that det(ﬁ) > 0 for all t.

In a plasticity theory, the initial annealed condition of the
material has a special significance and it is convénient to develop
the theory with respect to the initial configufation. A suitable

measure of deformation under these circumstances is

£=(/2)(¢ - D . (1.3)
and ¢ = FIDF, ' (1-4)
NN oA ,

where I is the identity tensor, C is the right Cauchy-Green tensor
4" 4 .

C = FIF | (1.5)
4"

[ VY]

and 2 is the rate of deformation tensor,



D= /2 GEY + GFYHT = w/2lerad X + (erad DT (16)
Here,cas-in what follows, a superposed dot denofes differentiation
with respect to time holding X fixed and grad'denofés the spatial
grédient operator. |

Let h denote the heat flux.vector ﬁeasured per unit tune

and ﬁer unit area in the reference configuration, p, the masg deﬁgity
in the reference configuration, and g the symmetric Piola-Kircthff.
>stress tensor. From the integral form of the principle of balancé'

of energy we can deduce the local rate of work equation:
. . . -> : ’
Po€E = tr(gg)-— Div h + p,r, (1.7)

where € is the internal energy per unit mass, r is the heat supply
per unit mass, and Div denotes the divergence operator with respect
> ’ '

to X. In a similar manner the integral form of the Clausids-Duhem

ineduality leads to the relation
' >
PN + Div(h/T) - py(r/T) 2 O, (1.8)

wheré T is the temperature and n is the entropy per unit mass.
>
If we consider h/T as an entropy flux and r/T as an entropy
supply, the inequality (1.8) defines a specific internal entropy
production rate 8:
. . > +> > .
poT6 = pyTn + Div h -p,r - (1/T)h~g = 0, (1.9)
where g denotes the temperature gradient in the reference state,
Grad T. Alterﬁatifely, equation (1.7) can be used to eliminate r

and Div K yielding
- ] - . . + _>
poTG = poTn -pye *+tr(oe) - (1/T)h - g (1.10)
’W .

for the dissipation equation.



Following Kelly and Gillis [11], we introducé'the Gibb's thermo-

dynamic potential defined by
p°¢ = po(nT-e) + #r(gi). | (1.11)

Differentiating this expression with respect to time and sub-

stituting the result into (1.10) we have
T = p ¢ - tr(o T - (1/Dh - 3 1.12
p,Té = 0, - tr(oe) - p nT - (1/T) " 8. (1.12)

Assume that the Gibb's potential has the form
o= 0(s, T, &) | (1.13)
: N

. . > .

‘and the internal variables, o, are governed by the evolutionary
equations

-+ >

a o

=4, T, 8 3. (1.14)

The function % is taken to be continuously differentiable at least
4twice with respect to g and T and once with respect to Z, whil¢ E
is taken to be continuously differentiable at least once with
respect to g, T, E, and 3. With ¢ defined as in equation (1.13),

the dissipation equation becomes

2 . . 3 > >
o T6 = tr[(poé, - E)SJ + 0, (8 ;-mT + o 2>0a - (1/Th-g,

£ (1.15)

where we have used subscripts to indicate partial derivatives of

the potential function with respect to the subscripted quantity,

for example, Q,T = 3¢/3T. /
The Clausius-Duhem inequality asserts that 5210 for every

thermodynamic process in B. Since the values of'é and T can be

prescribed arbitrarily for each time t, this inequality cannot be



satisfied independent of the signs of o and T'unless their co-
. ’ N
~efficients in equation (1.15) vanish identically. -Consequently,

we obtain the relations

=p ¢ e . (1.16)

and n=¢ T k ‘ (1.17)
' ’

and the dissipation equation reduces to

= > .
pOT(S pOQ,G

L]
->
o3

- (1/Dh - g. (1.18)

This last result can then be combined with equation (1.9) to yield

the form

. >
Tn = p r - Di + > e
p,In = p iv h Po¢,a

R

(1.19)

for the Gibb's eQuation.
Taking the time derivative of equation (1.16), we obtain the

following expression for the rate of strain:

. > v .
&= poé,oc ST poQ,gT T.Fpoé,gg ¢ (1'?0)

[

At normal temperatures, the most significant feature of plastic
deformation in crystalline materials is that it alters the crystal
positions without destroying the basic crystalline structure [19].
As a result, the thermoglastic response of crystalline solids is
essentially unaffected by plastic deformation. This implies that
the instantaneous thermoelastic compliances po?oc and poﬁoT

Sy N
are independent of the internal state and hence independent of a.

The most general form for ¢ that satisfies these restrictions

is the following:



st

- &€ ' >
¢‘- ® (g,T) + (1/po)tr(g¥) + G(T,0), (1.21)
where H must be a second order tensor fﬁnction_of Z only. Thus,
iy ,

equation'(1§20) can be rewritten in the form

(1.22)

and it appears reasonable to identify the elastic, thermal, . and

plastic strain rates as

ce _ e ¢ . o -
E = po¢,00 g | (1.23)
39 .
-T _ e [ . :
i = po¢',0T T, (1.24)
o
and P v (1.25)
L Ny, 0O
respectively.

When crystalline solid is deformed plastically, not all of the
plastic work is lost in heat. Some of this energy is stored in the
crystal lattice, associated with the elastic strain field of

newly created dislocations [20]. This energy is not released on

unloading but can usually be recovered by annealing, a process

which will remove dislocations. If we identify this stored energy

with the function G as follows:

w=-pG2>-a | | (1.26)
3 .

then. the equation for internal dissipation becomes
p T8 = wF-wT) - (1/D)h - g, (1.27)

P ..
where w¥ denotes the plastic work rate tr(gs ). In a similar manner

we can combine this notation with equation (1;19)’and_the time



derivative of (1.17) to obtain

e . - _ . > _ ) ' e .
poT(Q,TT + G,TT)T P T Div h poT tr(¢’ng)
' ' . (1.28)

— -+ ' p._r
pOT G’Tg o+ (w w )

for the equation governing chahgéé in tempérafure.

Using the Gibb's'potential in the form given in (1.21) has led
to an expression relating the plastic strain rate to the fafe of
cﬁange of the internal variables. In addition, it gives thé_
additivity of elastic and plastic strain rates as a consequence.
This is in contrast to most other theories where it is:an additional
assumption. It only remains to identify Z, g(g), and G(T,Z) with
known dislocation parameters in a manner consistent‘with equations

(1.25) and (1.26). This will be investigated in the next section.

L
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II. DISLOCATION MECHANICS AND POLYCRYSTALLINE PLASTICITY

2.1 Introduction

There are several known sources of irreversible or plastic
defermation in solids. These include void growth, crack.propagation,
grain boundary sliding, twinning, diffusional.processes, and the.
generation and motion of dislocations. In cfystalline m#terials,
however, it is well established that dislocation‘processes‘play
the dominant role. Since the known properties of dislocations
seem capable of explaining most features of polycrystalline
plasticity, we base our constitutive development on dislocation
mechanics.

Contemporary work in plasticity based on dislocation behavior
extends across a broad range of mathematical sophistication. Oh
one hand are general three-dimensional theories. These have beén
fdrmulated based largely on either the theory of continuously
distributed dislocations, as developed by Bilby [21] and Mura [22],
or the use of statistical'dislocation arrangement tensors, as

advanced by Kriner [23] and Kratochvil and Dillon [7]. On the

other hand, there are simple one-dimensional theories, such as

those of Gilman [24], which seem to have had greater success in
relating observed dislocation ﬁehavior to material properties.

The chief disadvantage of the three—dimensibnal theories lies in
their use 6f awkward variables that are difficult to relate direcfly
td measurable dislocation quantities. We, therefore, attempt in ouf
developmentAto makevuse of the kinds of variables employed in the
successful one-dimensional theories, generalized to three-dimensions.

Using direct.physical arguments, we suggest a general three-
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7

dimensional plastic strain rate eQuation‘relating this macro-
scopic‘quantity to microstrUctural parameterg. _Specializing

‘this result to the case of pure glide, we show that the tensorial
character of the plastic strain:rate can be attributed to a second
rank symmetric tensor directly related to ordinary elements of
crystallographic glide. |

To apply our results to arbitrary pblycrystalliné sampies,v
we introduce the glide plane orientations and Burger's vector :
directions as continuously distributed random variables. This
method follows the work of Johnson [25] and, more recentiy,vCIOugh’
and Simmons [26]. In our derivation, however, we eliminate most
of.their assumptions and use a differént set of transformations
from local to global coordinates. Moreover, our‘theoryvis more
general in that it allows for the possibility of a nonuniform
distribution of dislocations and for their production and inter-
.action.

We next formulate an evolutionary equation for the dislocétion
density. These results are based on the single and pair-wise
dislocation processés of fixed source production, cfoss-glide
multiplicétion, dislocation immobilization, and pair annihilation.
Appropriate equafions for the dislocation velocity are also discussed
in the same context.

We complete our constitutive development by discussing the

elastic energy stored in the crystal lattice as a result of the

presence of dislocations.

tr
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2.2 The Plastic Strain Rate Equation

Consider a small segment of an arbitrary dislocation line,'
Associated with this segment afe its yelocity and its tangent,
which define its local plane of motion, and its Burgers vector,
which describes the>crystallographiq displacement it produces. Wé
denote these vectors by V;l, ;2, and g respectively, where ;1 and
;2 are unit vectors and v is the dislocation speed. The oﬁiy
dislocation motions that produce displacement changes are those
for which the velocity is orthogonal to the line direction. We
may therefore assume without loss of generality that ;1 -.;é = 0.
These two vectors, taken with ;3 = y1 X ;2, then form an értho—
normal bésis for a local dislocation coordinate systém. In addition,
the plane of motion and the Burgers vector provide us with a means
for grouping disloéations which produce the same displacement

changes. Among all dislocations in a specimen, we classify those

- characterized by the same ;3 and the same b as one family.

If we now focus attention on a single family of dislocations
identified by the plane of motion with normél ;% and by the Burgers
vector gk and construct a small rectangular volume element such that
its edges are parallel to ;%, ;g, ;% s, We can compute the macro-
scopic plastic strain rate associated with the distortion Qf this
family. It is assumed that the volume of this element is of the
same order of magnitude as the core volume of a dislocatioﬁ segment
of length 2, where £ is the length of the element.in the ;5 direction,

Plastic deformatidn'of this element is the result of dislocation
flux through it. The passage of a single type k dislocation pro-

duces a relative displacement bk of the element faces which are



12

parallel to the plane of motion. The relative velocity of these
two faces is gk/At, where At is the mean time between dislocation
arrivals (or departures) at the element. This is conveniently ex-

pressed in the ;?, ;%, ;% coordinate system as the two shear

components,
. .Pk k k k '
(Y)egg = (Y)e31 = gk(;l-- ) )/2w  At, - (2.1a)
(y)ePk _ (y):Pk _ keok ok o k : o
€53 €2y 4 (y2 b)/2w At, . - (2.1b)

and an extensional component,

Pk k sk k | ' -
(y)eslg . (;1; - By /v at, ) (2.1c) .

of a plastic strain rate tensor, all other components of which are
zero. Here wX is the separation between the element faces which
are parallel to the plane of motion. Due to our assumption con-
cerning the volume of the element, this can be‘taken to be the

dislocation core width. The factor Ck is defined as follpws:'

= sen@* - P, (2.2)

where Ek is the force acting on the dislocation and sgn denotes

épk is
Ny

the signum function (which ensures that the sign of
consistent with the convention that a positive force will produce

a positive dislocation velocity).

The rate of change of the number of dislocations in our

element is given by the formula

nk = "1)‘2‘ [Vix Nk av]/sds = Sk nKav/sas, (2.3)

where Nk is the dislocation density_(line length per unit volume)
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for type k dislocations. We assume that during the time required

for a unit change in nK, the integrals in (2.3) can be approximated

by their mean value. This yields the following relation between
the mean dislocation arrival time and the rate of change of the

dislocation density:

ot = 1/ (K Wk, | (2.4)
Subsfituting this result into (2.1), the componenets of the plastic

strain rate tensor become

Y

(y):Pk _ (y):PK _ Kkk ok kik
513 531 4 (y1 b )w N /2,‘. (2.5a)
(Y):Pk _ (y)-Pk k >k >k, k:k
= - bOWN/2, 2.5b
€3 €1y = g (Y2 JwN/2 ( )
() Pk _ Ck(;k . gk)wka; . (2.5¢)
33 3
(:Pk _ (y):Pk _ (y):Pk _ (y):Pk _
f11° T E12 % e T TTEpp = 0 (2.5d)

in terms of dislocation quantities.
Consider a global coordinate Systém with linearly independent

' > >
base vectors xl, X, ;3. These vectors are related to the local

base vectors yX, yX, yX by the formula
1 2 3

> = k +k :
X, aij yj. | (2.6)

The components of the plastic strain rate tensor in the global
coordinate system are given by the transformation

Pk _ gk gk (gPk
im “jn mn

Applying this to (2.5), we obtain
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k >k =k . k ok sk .k ok ok

.Pk - . k | [ k B . : - -
. o , _ (2.82)
k . kok >k kak 2k kok +k‘] kek
tays(agyyy b r Ay b Ay s DO WG

or equivalently,

P

i

? T T N )

Pk _ _k k
£15 = (£/2)(ygbs + yg5bs

-‘where ygi are the components of thé vector ;g and b?rare'the
components of the vector gk with respect to the global base Qectors;
Equation (2.8) expresses tﬁe contributidn of the motion of

dislocations of type k to the plastic strain rate. If we consider
other.dislocation families, the same result appliés but to materially
different volume elements. All such elements, ﬁoweVér, cén bevbl
chosen so as to have a given point in common. The resultant. plastic
vstrain rate at this point can then be considered to be the summation
of tﬁe contributions from each dislocation family:

P

Pl k .k k .k, kek (2.9)
ij ’ ,

k x

 This equation has exactly the form suggested by Kelly and Gillis

[11] on the basis of thermddynamical arguments.

In the discussion that follows, we assume that ;g . gk =0

for all k. This corfesponds to an assumption of pure glide. Since_
it is commonly observed that plastic defoimation of crysfalline
materia;s is nearly isochoric, glide is the dominant pfocess and
ﬁhis assumption will be a good aﬁproximation for most cases.

As a notational convenience, we now define the orientation

' k
tensors y :
4"

_k
oo = (y

(2.10)
ij :

k., k k .k k
Sf’j + y3jbi)/2b ,
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where bk =~j3k . gk.

These tensors, which describe the geometric

properties of the dislocation families, have the following character-

istics: ‘
ukT = uk, ' (2.11a)
n, n .

tr(Rk) -0, - (2.11b)
e [ 2] = /2, (2.11¢)

n X
ee[3]=0, (2.11d)
¢ 2.11d)

where T denotes‘transpose and tr the trace or sum of diagonal terms.
Thus, there are only three independent values in each of these
tensors.

Using (2.10), equation (2.9) can be rewritten in the form

P 'k kK k.k kok :
eij =1 ”ij ' b wN. (2.12)

It is clear from thisvexpression that the orientation tensors
entirely determine the tensorial character of ép.

Equation (2.2) can also be recast in terms ofsgk. The force
éxerted on a dislocation segmeht by a general stress field g is

given by Weertman and Weertman [27] as
=75« 0 BY. | (2.13)
2 N
Taking the scalar product of this with ;?, we obtain

>k ok _ ok _ ok T 2k kT _  k
£ ey =y xyy)) 9b =y  ob . (2.14)

for the component of this force in the direction of dislocation
motion. The stress tensor, however, is symmetric. Equation (2.14)

is therefore equivalent to

7k

Ot kT 2>k , 2kT _ =k k k (2.15)

-k _ _
yi = (1/2)(yz g b +Db 0yg) =b tr(po).



16

Let s denote the stress deviator:
1Y ..

s =g - (1/3)tr(o)1, C(2.16)
SN v NV
where £ is the unit tensor. - SinCe'tr(E) = 0, we may replace g by
s in (2.15). We thus obtain

£ . ?? = b* truks) - (2.7)
n, v

for the force producing dislocation motion, and
k Mook : e 1ay
= sgn [tr(g i)] _ : (2.18)

for the sense term in the plastic strain rate equation.

Choose a global coordinate system such that. the base vectors

> > -> .
Xy xz, x3 are orthonormal. In this case, the transformation from

local to global coordinates can be constructed from a sequence of

rotations. Using the sequence shown in Figure 1, the components

of the resulting transformation matrix are as follows:

ail = cos ¢k cos wk - cos ok sin’d)k sin wk, (2.19a)
afz = -coS ¢k sin wk - cos ek sin ¢k cos wk, (2.19b)
a?s = sin 6k sin ¢k, . (2.19c¢)
agl = sin ¢k cos wk + cos ek cos ¢k sin wk, (2.194d)
'agz = sin ¢k sin wk + cos ok cos ¢k cos wk, (2.19e)
iak = -cos ¢k sin ek, o (2.19f)
23 .
a§1 = sin ek sin wk, : i (2.19g)
ak = sin ek cos wk, (2.19h)
32
k _ k .
az5 = COS 8", (2.191)

'Equation‘(2.10), the expression defining the orientation tensors,

{3



can be written in the form

k _ [ k
Mig = (1/2) (ailajS + ajlais)cps W
) K - (2.20)
+ (aiZajS f aj2a13)51n w ],
k . -k :
where w is the angle between the local base vector Yy and the

Burgers. vector gk. Substituting into this from (2.19), the

k . .
components of uin the global coordinate system are

uk = (10‘[cos(wk + wk)sin 2¢k sin 26k
11 2
r ok 2k x (2.21a)
- sin(y" + w }sin” ¢ sin 26" , v
uk = (!9 [(lasin(wk + wk)sin 2¢k sin zek
12 2 2
v x « X (2.21b)
v - cos(y + w )cos 2 ¢ sing ],
ukl = (10 [cos(wk + wk)cos ¢k cos ek '
13 - 2 S y W (2.210)
' - sin(¢ + w )sin ¢~ cos 286 ],
uk = (19 [-cos(wk + wk)sin 2¢k sinek '
22 2
X X K X (2.21d)
- sin(y" + w )sin¢ " cos 26 ],
k _ L k k, . .k k
u23 = (2) [cos(w + w )sin¢ coso | (2.21e)
+ sin(wk + wk)cos¢k cos zek],
kK _ 1 . ..k k, .. k
Mg = () [sin@v" + &) sin 26 ]. (2.21f)

Noté that the angles ¢k and wk appear only in the linear combination

wk +-mk, We may therefore replace these two angles by the single
angle xk = wk + wk:
ﬂ¥1 = (%9 [COS xk sin 2¢k sinek - sin xksin2¢ksin 26k], (2.22a)
k _ 1 1 . k. k . k
Hip = (59 [(59 sin x sin 2¢ sin 26

) (2.22b)

- cosxk cos 2¢k sinek},

17
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Kk

My = (%J [cos xk cos¢krcosek'- sinxk sin¢k cos zek], (2.22¢)
U§2‘= (%9 [-cosxk_sin.2¢k,sin6# - sinxkvc052¢k sin 26k], (2.224)
“53 = (%J [cosxk sin¢k cosék + sinxk cos¢k cos 2ek], | (2.22e)v
u§3 - (%J.[sinxk sin 26%]. B - (2.226)

Thus; the tensor gk depends.onvonly three independent angles. More-
over it is evident from this result that %p is independent»of the
scréﬁ or edge character of the dislocations. |
For single crystal specimens, the possible glide systems are
usually well-defined. 1In a polycrystalline sample, however, this
is not the case. The principal axes of the grains will in general
vary throughout the solid making it impossible fo specify the‘set\‘
of orientation angles {xk, ¢k, ek} a priori. It, therefore, appears
reasonable and advantageous to replace this discrete set by a set
of three continuous random variables {x, ¢, 6}. This allows us to
replace the summation in equation (2.12) by an integral and wfite

the plastic strain rate equations as follows:

€l-)- = fuiJ(X: ¢’ 6) C(X: ¢, e) b(X, q)’ e)

1J (2.23)

Wi, ¢, 0) N(x, ¢, 0)dk,

where dk is the fractional number of dislocation families having
coordinates between (X, ¢, 0) and (x + dx, ¢ +'d¢,‘6 + d9).
The function Z and the tensor u are defined by the continuous
. . a2 _

equivalents of equations (2.18) and (2.22). This yields
L = sgn [tr(us)], (2.24)
vV

for the sense function, and -
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uyy = (3) [cosx sin 24 siné - sin sinZ¢ sin 20] . (2.25a)
- 2 26 2¢ sine ],
Hyp = (2 [(—9 siny sin 2¢ sin - cosx cos 2¢ sin (2.25b)
iz = (%9 [cosx cos¢ cosO® - siny éin¢ cos 29] ‘ (2.25c)
1 . . . 2, .
Moy = (59 [ -Cosx sin 2¢ sin® - sinx cos ¢ sin 26], (2.25d)
Hyz = (%9 [cosx sin¢ cost + siny cos¢ cos 26] - (2.25e)
U, = (19 [51nx sin 26] ' (2.25%)
33~ 2 ’ '

for the components of the orientation tensor.

Cdnsider a single glide plane with unit-normél ;3. The
probability that this vector lies between (¢, 6) and (¢ + d¢, 6 + d6)
is idehtical to the probability that its endpoinﬁ lies within an
element of area dS = sin® d6 d¢ on the surface of the unit sphere.

This geometric analogy yields

dP> = £+ (¢, 0)sin6® do d¢, (2.26)
Y3 Y3

where f;s is the probability density functlon(f y3, that is, it
describes how the endpoints of the glide plane normals are dis-
tributed over the surface of tﬁe unit sphere.

In a similar manner, the probability that the Burgers vector
in a given glide plane will lie betweeﬁ X and X + dx is identical
to the probability that: the endp01ng of the vector B/NB - B |

lies w1th1n an element of arc length ds = dx on the unit circle.

This yields
| dPg = fg(x, ¢, 6)dy (2.27)

where fg is the probability density function for the direction of

the Burgers vector, It is a function of ¢ and 6 as well as X because



20

the distribution of possible directiqns for b will, in general,
'depend on the glide plane under consideration.

The probability given by (2.26) is equivaléht to the fractional
number of glide planes betwgen (¢, 6) and (¢i+ dé, 6 + do), while
that given by (2.27) is equivalent to fhe fractional number of
Burger vecfor directions between X and x + dx on the glide piéne
with coordinates (¢, 8). The fractional number of_dislocation‘.

families, dk, is just the product of these two numbers:
dk = £50x,4,0) £5 ($,0)sin0 do d¢ dy. (2.28)

Thus, the macroscopic plastic strain rate in a polycrystalline

material is given by

+7 +1w w/2

o =ff/ RLE 7 N sind d6 d¢ dx,  (2.29)

-7 -T O

where, to avoid double counting of dislocations, the integration

is taken over the unit hemisphere.

2.3 Dislocation Production and Interaction

In this section Qe consider processes which result in changes
in dislocation density. Neglecting interactions between more than
two dislocations, these are production by fixed sources  (Frank-Read
sources), breeding by multiple cross-glide, and pair annihilation.
For dislocations of type k, this caﬁ be expressed by the eqﬁation

°k Kok ok k k2 (2.30)

= aj + a1 N" - a2 N,

k . . . ' . .
where a is the net rate at which fixed sources create dislocations
of type k, a? is a breeding coefficient, and a; is an attrition

coefficieht [16]. These coefficients will, in general, depend

W
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on the dislocation densitiés for all families,_the applied stress,
the temperature distribution, and the distribution of such things
as grain boundariés, precipitate particles, and free surfaces.

For the case of a single dislocation.family; theoretical [28]
and experimental [29] investigations have shown that the breeding
rate due to cross-glide multiplication is proportional to the mean
dislocation speed. By considering multiplication and blocking
interactions when several dislocation types are present, Kelly énd

Gillis [17] have generalized this result according to the formula
ak = ke Sk gd K, (2.31)

where AK is the reciprocal mean free path between multiplication
interactions for type k dislocations and vk is the mean sﬁeed of
the mobile type k dislocations. The variable Bk, which we call

the mobile fraction, is the ratio of the mobile density to the total
density of typé k dislocations. It has been intréduced because
experimehtal measurements of dislocation density invafiably relate
to total density while measurements of dislocation speed relate to
the mobile density.

The probability of pair-wise annihilation depends on tﬁe
presence of two dislocations of the same family in a given neighbor-
hood 6f each other. The average time between such encounters will
be inversely proportional to the mean dislocation speed and, since
only mobile dislocations can move into the neighbbrhood of other
dislocations, directly proportional to the mobile fraction. An
appropriate expression for the attrition coefficient is tﬁerefpre

.ag = & gk vk, : (2.32)
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where Kklis‘the mean radiusvdf thé.interaction_neighborhood for
annihilation events fdr type k disiocations. Substituting this
result and that given by (2;31) into equainn (2.30), the évo-
lutiohary equation for the dislocation density becomés

W 2 ok

a + kK 8 k\kz.

L S 5

(2.33)

Wé now assume that all dislocations produced by fixed source$ and
by multiplication events are initially mobile. By analogy with
equation (2.33), this leads to the following expression for the rate
of Change.of the mobile density:

. : 2
JEm ag . (Ak-xﬁ) oK NEm- _ Kg vE Nkm< (2.34)

Here Ag is the reciprocal mean free path for the immobilization of
type k dislocations by inclusions and by other dislocation families.
The quantity Kg represents the resultant mean interaction distance
fbr the removal of mobile type k dislocations by type k dislocations
(this includes both annihilation and immobilization events). It
follows from these last two éduations'and the definition of the

mobile fraction that

k _k .k

gk - a§(1'- gy /NE + Ak - gk - AN
,» ,
. ok Kg) Kk g2, (2.35)

The elements of dislocation production and interaction essential
to the present theory are given by the continuous equivalents, in
terms of glide system orientation, of equations (2.33) and (2.35).

These equations are

N = a (x,6,8) + A(X,,6) V(x,0,0)BN
(2.36)

= K(X:¢se) V(X,(b,G)BN‘z,

[
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and 8= a (66,0 (1 - BY/N + [A(08:0) (1 - B) = A_(x,6,0)] v(x,$,8,)8

4 [k $,8) -k (X,6,0)]V(x,4,8,)N8%,
' (2.37)
where, as in the discrete formuiation, the coefficient may depend
on stress, temperature, and the variables B and N.

In many cases the above expressions are more general than
necessary. Production by fixed sources, while sometimes importgnt
to the initiation of plastic deformation;:is quickly eclipsed by
production due'to cross-glide multiplication onée flow has started
[16]. In addition, experimental evidence suggests that the mobile
fraction is small compared to unity most of the time [30}. Under
these conditions equation (2.36) cén be approximafed by

N = A066,0) [1 - N/NE(X,0,0)] v, 6,088 . (2.38)

and equation (2.37) by

B = [k 066,0) - x(:6,0] [N (x,6,00/N - 6] v(x,6,00N8.  (2.39)
Here N* = )/ and‘NT = (A - Ao)/(Kb - k). The first of these pafaf
meters, N*, can be thought of as a saturation value for the dis—
location density. When N approaches N*, the rate of annihilation
becomes equal to the rate of production and the dislocation density
‘remains constant. Assuming Az A and Ky > K N defines a similar
limiting value for the mobile density. In this casé, however, it is
a lower rafher than an upper limit.

If the parameters A, Xo, K, and K, do not depend explicitly
on time, equations (2.38) and (2.39) can be combined to yield an
equation for B in terms of dislocation density. Dividing (2.38) by

(2.39) we have
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ap/an + [ (e <8/ (-N/N) = (-3 Ay [Na-wn ). 240

Provided the bracketed terms above are independent of 8, this dif-

ferential eduation is linear. As such, it'has thé general solution
B = exp(-P) {C +] (1-A,/A) exp(P) dN/ [N(l:—N/N*)]} (2.41)
where P is an integrating factér, |
P =f [te-e2/2 ] ans (-nynsy, @)
and C is the constént of integration. Since fhis‘fesult gives B
explicitly in terms of N, it is possible to eliminate the mobile

fraction from equation (2.38). Thus, in this.particular case we '’

are able to reduce the required number of constitutive equations by

one.

We conclude this section by notihg that when the parameters
K,vK, and K, are independent of N as well as B,vthe:integrél in
(2.42) can be evaluated analytically. Usihg thé définition of N*
this yields

v

P = (l-KO/K)ln(l-KN/A) (2.43)
for the integrating factor. If we take the limit of this expression
‘as « » 0, that is, the case of an infinite saturation density, we
obtain _

P = (KO/A)N. - » (2.44)
Taking Ao = X and substituting (2.44) into (2.41) then yields the
result
B =C exp| -(KO/X)N]. (2.45)

We thus obtain the form suggested by Gilman [16] on the basis of

creep behavior as a limiting case of equations (2.38) and (2.39).

=3

fy
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2.4 The Dislocation Velocity

The importance éf the diélqcation velocity in modern theories
of crystalline plasticity has led to considerable effort being
devoted to tﬁe study of dislocation mobilities. It is gehefaily
accepted that these ﬁobilities depend primarily on the apﬁlied
stress and the resistance of the lattice. Direct measuremerits of the -
stress dependence of v at various temperatures hayé been obtained
by dividihg the displacement of specially introducedvmobile dié-
locations by:the duration of an applied stress pulse [31]. The
dilecafion displacements are determined by either selective gtcﬁ-

‘ pitting [31], or by x-ray topography [32]. This method relies on
the fact that the inertia of dislocations is extremely small,va
 situation that has been verified experimentally since the velocities
obtained have proven to be largely independent of the pulse duration.
The stress and temperature dependence of the dislocation velocity
cén also be obtained by interpretive analysis pf‘ultrasonic attenu-
ation measurements [33]. Data obtaiﬁed in this manner, hOQever,

ﬁay be valid only over a limited stress range. The model on which
it is based assumes that the force normal to_each unit léngth of

a moving'dislocation is linearly related to its Velocity.

Theoreticallmodels for the experimentally observed stress and
femperature.dependence of v have been developed‘by several authors
[34, 35].» Klahn [36],'for example, considers the effects of
thermally acﬁivated, athermal, and viscous drag dislocation mechanisms
on v,'both individually and in combination. Diffusion controlied
creep mechanisms are also discussed} These prbcesses, howeVer,

are significant only at very low stresses and at temperatures
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above about one-half the melting temperature.

Here we take the thermally activated mechanisms to be dominated v
by théfcutting of simple rectanguiar obstacles in a homogeneous
array'and the athermal mechanisms by a sinusoidally varying long
range back stress. Assuming an independent time séquenCe for
thermally activated and fér viscous drag mechanisms, we have the

following expression for the dislocation velocity:

’ 2 r - 2 w2 12y /311
Y- { B, ( 2T L > 1/3 exp[ urd - d(2rL? t*2 b3 ]} .
T*b vg ™ b’ kT ' .

(2.46)

Here B is the viscous damping coefficient, TI' is the average disf
‘location energy per unit length, L is the spacing between obstacles,
Vo is the.Debye frequency, d is the barrier width, u is the relative
barrier strength (0 < u =< 2), and k is the Boltzman constant. To
account for relativistic effects when v approaches the shear wave

velocity, c, we assume that B is of the form [37]

B

B /(1 - viredy, (2.47)

and that I is of the form

r

r/vVi - w2z | (2.48)
The quantity t* represents the effective stress acting on the

dislocation. Averaging stresses over one wave length for the back

stress, it is given by the formula

™ =/tr2(us) - 62 b2 2 N , (2.49)
. vy €

where § is an experimentally determined factor (~1/5) [38], and
Yy is the elastic shear modulus. The first term in this formula

is the shear stress driving the dislocation motion and is obtained
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from the.result (2.17); the second term represents the effect
of the long range back stresses assuming the dislocations are
imbedded in an isotropic elastic lattice.

A model similar to that leading to equation (2.46) has
recently been proposed by Gillis, Gilman, and Taylor [39]. In

their characterization, the mechanism for motion through the
obstacle array is taken to be tunneling [35] rather than thermal
activation. Assuming an independent time sequence for tunneling

and for viscous glide, this results in the following stress-velocity

relation:

v = {(z b t*/c2B )/ [\/ﬁ (2bt*/cB )2 - 1]
D ' -1 (2.50)
+ exp(D/T)/voL}v ,
where 1 is the applied shear stress, tr(kg), D is a characteristic
drag stress, and Y is the frequency with which the dislocations
attempt to surmount obstacles.

As cnn be seen in Figure 2, the dislocation speeds predicted
by (2.46) and (2.50) can be made nearly identical By an appropriate
choice of parameter values. In most cases both thermal activetion
and tunneling will probably be operative over some range of stress
and a combination of these two forms will be required to fit the
observed behavior.

Both of the velocity‘equations just presented are quite
complicated and, hence, difficult to use in studieé of the behavior
of our constitutive model. Two simple forms which have been

successfully used in approximating experimental curves are an

empirically determined power law [31],
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v=yv (r/f y», - (2 Si
o o’ ’ ; -31)
where‘v0 is a characteristic velocity and T the efiective stress
}‘at that‘veidcity, and -the Gilman relation [40];1
v = v* exp(-D/1), - _ (2.52)

where v* is a characteristic limiting velocity. These equations
will be used in lieu of (2.46) or (2.50) for the behavioral studies

given in Section III.

2.5 Elastic Eﬁergy Due to Dislocations

The presence of dislocations in a polycrystalline material
produces an elastic distoftion of the crystal iaf;iée. As.such,'
the energy of the resulting straih field is stored in the material,
beiné recoverable‘upon removal of the dislocatibns.' The energy per
unit leﬁgth of a dislocation in an isotropic material has been
calculated by several authors [41, 42]. For type k dislocations,
it is given by the formula

e = (u/am [ B - Y2/ + BF . ¥H2]

| [In(wz/wk) + ak], | (2.53)
where L is the shear modulus of the material, v is ifs Poissons
ratio,'ahd wg is the radius of thé extent of influence of the dis-
location; The Quantity a, which is of order unity, represents the -
contribution of the core energy to the total dislécation energy.

Using eqﬁation (2.53), we.obtain the followiﬁg expression for |
"~ the total storéd energy per unit volume.due to dislocations:
= qugam N[ oKy Ao - Ry

(2.54)
[ln(wz/wk) + ak].-
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It is clear that this expression'requires the stored energy to
increase with increasing dislocation density; that is, with in-

creasing plastic deformation. This result is consistent with

~ available data for polycrystalline [20] and monocrystalline [43]

metals.

Equation (2.54) is adequate as long as we know which glide
systems are available. For a random distributibn'of systéms as in
a polycrystalline sample, however, it is convenient to reformulate
this equation in terms of the random variébles introduced in section

2.2.  We thus obtain

+T+T /2

4= @ sam [ [ [ N b% [Inqws/w) + a] £ £5 sino do do dx

3 ,
[cos w/{1-v) + sin w]dw,

-
where w.is a new random variable define as shown in Figure 1 ahd
we have assumed that the dislocations are uniformly distributed
between edge and screw types. After evaluating the last integral

in (2.55), we have

'd . +4+ /2 5 :
ed =t/ [@vysa-w]f [[ 8T [In/w +a]f 57

~m-T o (2.56)
sin6 do d¢ dy

for the total internal energy density due to dislocations in an iso-

tropic (elastic) material.

2.6 Summary

The visco-plastic behavior of polycrystalline materials has

been shown to be characterized by three rate equations:

29

.p +1 +1 /2 .
£ = [/[ u zbw fgf}‘,*SNsme do d¢ dx, (2.29)
™ m O
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N = a (x:6,0) + A(x,4,0) V(X,$,0)N |
: : (2.33)

- K(6,6:0) V(x,6,8) B,

B = 2 (x,6,0) (1-B)/N + [A(x,$,8) (1-8) - A (x,6,0)] V(x,,0)8
B | | - (2.35)

+ [k(x:4,8)-x_(x,6,8)] V(x,6,0)8°N.

These equations relate the microsgopic phenomenon‘of dislocation.
production and intefaction to the macroscopic plastic strain rate.
Although these equations were obtained by restricting the dislocations
to glide motions only, they are general enough to reproduceba wide
range of observed material behavior. This includes strain hardening
and softening, Bauschinger effect, and the devéldpment of plastic
anisotropy. These aspects of the model are illustrated in the next
section:by several examples. |

In conclusion, we note that if we identify the vector of internal .
variables, 3, with the discrete dislocation densities, Nk, the
functions G and H from the thermodynamic dgvelopment of Section 1.2
can be identified with dislocation expressions. In the limitvof an
infinite number of dislocation families; that is,‘Nk > N(x,9,6),
the dimension of the vector space for & becomes infinite and the

inner products in equations (1.25) and (1.26) can be defined using

integrals. This yields

+7 +7w w/2

P 2 e : . o '
= (5} 0 .
€ = (1/4n ).[ ~[ ]' H s N siné de d¢ dx - (2.57)
- -7 o ? : '
and r , + +7 7/2 .
W= (-p /4n2) j’ /ﬁ,[ G > N sino do d¢ dx. (2.58)
omSmo :

Comparing (2.57) with (2.29), it is clear that
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a2y . ' _ ‘
Q’g = 4n | bw f—g f;s. | (2.59)
To obtain a similar relation for G we require the time derivative
of equation (2.56). Assuming that W, is a function of N only and

that all other parameters in (2.56) are independent of N and time,

we have

, ed . » ) bjjvfnjy/Z
w =e = (u/4) (2-v)/(1-v)
e ] :
' © =% =T 0 7 (2.60)

b2 [nQw/w) + (1/w) (dw /dN) + a]N & £ sine do d¢ dx.

3

Comparing this result with (2.58) then yields the identification
- 72 2 '

P G 3 =T Uy [(2-v)/(1-v)]b"[In(w /w) + (l/we)(éwe/dN) + a]

f> f>
b y3

Thus, we see that the constitutive equations we have developed using
dislocation mechanics are consistent with thermodynamics as pre-

sented in Section 1.2.

(2.61)
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III. BEHAVIOR OF THE CCNSTITUTIVE EQUATIONS FOR POLYCRYSTALLINE
PLASTICITY - = : s

3.1 Introductién

To illustrate thé utility of the consfitufive theory just »
presented, we now consider seve:al examples chosen for simplicity
and the rénge'of behavior obtainable. In keebing with the idea of
simpiicify, we neglect thermal effects and assume that the dislocatioﬁ
parameters b, w, A, Ao’ k, and Ko are all cqnstaht. .In additioﬁ,
" we assume that the elastic resﬁonse of the sample materials is iso-
tropic and linear and that dislocation productionvby fixed séurces
is negligible. With these restrictions in mind, the constitutiﬁe
equations cﬁaracterizing our samples are as follows: |

+m +7m /2

.P ) .
.. = A b .. v B N(1-N/N*) f> f>
EJ.‘J Ao _/ J[f 111] - B N( /N*) b Y’3
' -7 -mT o0 : (3.1
sin6 de6 d¢ dy,
N =2xv BN - N/NY, (3.2)
B= vB[A* - B + *N)], - (3.3)
* - .P N . * _ - .
€5 = eij_+ (l/E) [(1+v)cij VO Gij], (;.4)
v = v(uij sij)z 0, o (3.5)
where A* = A - Xo, K¥* = Ko - ¥, E is Young's modulus, Gij is the

Kronecker Aelta (sij =0 if i # j"sij,='1 if i = j), and all other
quantifies‘are as previously defined. ‘Here also we have made use
6f summation notation; that is, a repeated index'implies summation
on that index, and have used edua;ion (2.38) to obtain (3.1).

For comparison of results, it is convenieﬁt to ndn-dimenéion-

alize the variables involved. We, therefore, define a normalized

strain tensor and a normalized plastic strain tensor,
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Eij = (E/To)eij H Eij = (E/To)eij’ (3'6)
a normalized stress tensor and.a normalized stress deviator,

cij cij/'r0 s i ij/To’ . | (3.7)

a normalized dislocation density,

N = N/N*, (3.8)
and a normalized dislocation speed,

v = v/vo. _ | (3.9)
Making the required change of variables in our constitutive equations,

we have:

ip _ +T O+ w/2 _ _ _
€. =V, A b\ﬂN*(E/ro)J[./~ J[ M5 € VB NA-NEy £y
(o]

ij
T (3.10)
sin® d6 d¢ dy,

.N=VOA\78N(1-N), - (3.11)
B = v, AV B [B*-B8(L + B N)], (3.12)
f = L@ ey g - Ve, b (3.13)

ij ij ij kk °ij '
v = (l/vo) V(To ulJ Sij)’ . (3.14)

where B* = A*/A and B* = («*/A)N*. The quantity volb w N*(E/To)
has the dimensions of reciprocal time and hence defines a character-
istic material rate, e*. Using this to normalize t, we have fhe

following form for our fully non-dimensional constitutive equations:

dEP +7 +1 /2 _ _ .
;E~1J f jF-/-/. “ij z v B N(1-N) fg f;3 sind de d¢ dy, (3.15)
S -m -T 0

AN AsRQ -1 7, | - - (3.16)
dt | .
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9? = A B8 [B* - B(1 + B*N)] v, - (3.17)
dt ,

deyj - a2y, 1+ v 5 -y 99k S0 O (3.18)
dt at at dt J '

where E = g*t, and A = vok/é* = [b W N*(E/To)]-l'

Dué to tﬁe complicated nature of the integrand in (3.15), it
is unlikely that the required integration can be performed analytically.
In addition, since the dependence of N and B on X, ¢, and 6 changes
with time through equations (3.16) an& (3.17), the angular dependence'
of the integrand changes with time. It is, therefore, neceséary to
have_some'humerical means of approximating the required integration.

To obtain a suitable quadrature scheme we define three new

variables as follows:

z, = sin[2(0 - 7/4)], -  (3.192)
z, = sin(2¢), ; h (3.19b)
25 = sin(2x). : (3.19¢)

Making a change of variables in (3.15) from X, ¢, 6 to Zgs Zy5 295

we have
dEP j +1 +1 +1
— = 2 N(1-N) fy f>
a [ ] vy ened g

1A A
' (3.20)
sin o[ (1-22) (1-22) (1-22)1 72 4z

These integrals are in a form suitable for approximation by the

Cﬁgbyshev—Gauss formula [44]

2

22)71/2 4

+1 m
]’ f(z)(1 - z > (n/m) ;I £(z), (3.21)

-1
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where ziv='cos[(21 - 1)7/2m] and m is the number of abscissa values
(this formula has the advantage“of having precision of order 2m - 1
* with equal weights). Thus we obtain

_P ' nz Ny, m

___...'_'_V 3 ) o )
—ij = (2n°/nn,n,) kgz 251 m§1 uij(xk,¢2,6m) (x> 9y 0p)

G(Xk’¢2’em)_B(Xk’¢z’em)

(3.22)

° N(Xk’¢2 :em)[l’N(in¢2:em)] fg(xk’¢2,6m)
f;a(xk,¢2,em) sing_,
where 6 = (n/2)[1 -(2m - 1)/2n1], 9, = m[l-(2% - 1)/n2], '
(3.23)

= 7w[1 - (2k - 1)/n

Xy 3]

This result completes the preliminary mathematical manipulations

necessary for our subsequent behavioral analysis.

3.2 Behavior of the Plastic Strain Rate for a Given Dislocation
Distribution

The behavior of the plastic strain rate for multiaxiai states
of stress can be explored most easily by choosing a distribution |
for the dislocations. We can then evaluate the right-hand side of
eqﬁation (3.15) without the necessity of solving‘(3.16) - (3.18).
For simplicity, we assume that N <<1. In this caée (3.15) reduces

to the form

d-P _+m 4w w/2 _ '
CEij =8N [ _[ Mij ©V £, sind do d¢ dy, (3.24)
- -7 0 ’

where fE denotes the product of the probability density distributions

N .

for N and B with the distributions fy and f; for the available
3 .

Burger's vector and glide plane orientations.
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In the examples that follow we consider three different

functional forms for fe
N

€
N

2 : | o
f =1/4 - (3.25a)
which corresponds to a uniform distribution in all variables with

" respect to Burger's vector and glide plane oriéntation; and

£ = (5/4 1Y) sin'(e) sin®(e), | (3.25b)
f

€
N

(3/4 7°) sin’(¢/2) sin’(8), . (3.25¢)

which corresponds to a uniform,distfibution in all variables with
respect fo Burger's vector orientation and a nonuniform distribution
ﬁith respect to glide plane orientation. It willnbe shown that |
(3.253) lea&s to isotropic behavior, (3.25b) leads to orthotropic
behavior (due to symmetfies in the distribution function), and
(3.25¢) 1leads tb fully anisotropic behavior. Thus we can conclude
that changes in the-distriﬁution of N and B with respect to glide
plane orientation can result in the development of plastic anisotropy
as flow progresses. This phénomena is often obéerved experimentally
but is not readily explained by other theories.

For simplicity we assume that therdislocation speed is given
v by the power law (2.51). Using equation (3.14), this‘yields the
“relation

- In

“ij Sij (3.26)

v = | ,
where we have neglected the back stress. For the case of a linear
dependence of v on M, 5 gij; that is, n = 1,

v = .. - : | .27
LV o=y 513 | (3.27)

and the integrals (3;24) can be evaluated analytically for all three-



forms chosen for the probability density, fe' Omitting the

¥

algebraic details, the results are as follows:

’
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§§’11 = (8 §/15) [5); - (1/2) 5y, - (1/2) 5.1, (3.283)
t o . : . _
R o .
=12 = (8 N/10) §,,, (3.28b)
dt
at - 3 |
— 13 = (B N/10) s,,, _ (3.28c)
dt ‘ ’ '
de’. " . S
5:-22 = (B N/15) [$,, - (1/2) S5 - (1/2) 5,1, (3.284)
. dt : o
de? -
— 23 = (B N/10) So3s (3.28¢)
dt
ag? = - . -
E?-ss = (8 N/15) [5,, - (1/2) 5, - (1/2) 522], (3.28f)
t -
for fE given by (3.25a),
g
ae’ _ - . -
E:-ll = 8 N(5/63) [5;; - (1/2) §,, - (1/D)54,], (3.29a)
t S
4P _
€€ 12 = B K(17/126) 5155 : (3.29b)
g’ _ . | |
=13 = g N(17/126) 5, , (3.29¢)
at , o
. dép ) ) N ) )
Ej-zz = 8 N(1/21) [5,, - (1/6) Sg5 - (5/6) 5,1, (3.29d)
t : o : U
acf . - - |
=23 = g N(7/126) 5,4, . , (3.29¢)
. dt
e’ _ _ - -
Ej-ss = B8 N(1/21) [s33 - (5/6) S11 - (1/6) 522], (3.29f)
t .
for fe given by (3.25b), and
n,
def _— - _ vz
— 11 = B N[(1/14)s;; - (3/70)s,, - (1/35)s45 - (3/112)s,.],

dt -

(3.30a)
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-P , - '
_3%512 = B N[(4/35) 512 - (39/2240) 513],' ' .(;.30b)
2P - ) . : =
S 13 = 8 N[(13/140) 5,5 - (39/2240) 5.,], (3.30c)
dt
azF - . - - -
E%-zz =B N[(1/14) 522-(1/35) 5335(3/70) sll-(s/sso) S,51s
' (3.30d)
dEP S - , o o -
— 23 = B N[(13/140) 5,,-(3/224)s,,-(3/1120) S,,-(9/560)s,.1,
dt | ' |  (3.30e)
de’ _ . _ . .
— 33 = B8 N[(2/35) 533-(1/35) 511’(1/35) Sy * (9/2801523],

de (3.30f)
for fe given by (3.25c).

N .
Equations (3.28) clearly indicate that the plastic strain rate

is isotropic in this case. This is just the behavior that would be
expectéd for a polycrystalline sample in which the .dislocations are
uniformly distributed over all glide systems and all glide syétems'
are equally probable. The forﬁ of equations (3.29), on the_other
hand, can be seen tb be consistent with the definition of ortho-
tropic behavior. As in the isotropic case, the principal axes of
stress coincide with those of the plastic strain rate. The dependence
of the principal plastic strain rates on the principal stresses,
however, does not exhibit the symmetry éharacteristic of isotropy.
_ Finally; although equations (3.30) do possess some symmetry, the
presence of tensile stress terms in the expression for d;gg/df
clearly implies that the plastic strain rate exhibitS'anisotropic
behavior in this case.

For other than the linear stress-speed relation just considered,
the integréis-in'(3.24) cannot be easily evaluated except by numerical

means. We therefore make use of the results expressed in (3.22) to



compute the plastic strain rate for more complicated stress-speed
felations. As examples we have chosen the power function (3.26)

with n = 3, 5, 11, 21; and 51. Odd integervpowers have been chosen
for cohputational economy while illustraing'the behavior as n becomes
‘large (since using (2.51) with n =~ 10 - 50 seem§ to fit the data 

for many metals well). If n is an odd integer greater than zero,

where 51 and §2 are the principal components of. the normalized stress

deviator. This result can be expanded by using the binomial theorem.

r=o “ij 71 2

Thus
S. 3 n n-r T -n-Tr - T I
tv =gl () (upyigg) (MypHz3)" 81~ Sy (3.32)
and we can write
dsf - nr -n-r - T
_e_ij:'BN E C S S, _ (3.33)

dt
where the coefficients C?? are defined by the fOrmUla

- nz nl

nr _ ., 3 n 3 ‘
C.. = (2n /n1n2n3)(r) I %% “ij(xk?¢2’em)

) k=1 =1 m=1 -

. . n-=*
.o T

” f% (Xy>g,6,) siné . (3.34)

These coefficients need to be calculated only once. Equation (3.SSj
can then be used to compute qspldﬁ for arbitrary 51, §2, reéulting |
in a considerable savings in computational effort. .

A convenient means for comparing the plastic strain rates

obtained with various stress-speed relations and dislocation system

1
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. distfibutions is the rate of plasfic work, wp_= tr(g %P), Equiva-
lently,,we.éan défine a normalized rate of plagtic.work, ﬁp = fr(g %P),
or, in terms of principal stresses, |
AR R A o SR D

Using equations_(3.33)‘and (3;34) to caléulate the plastic strain
rate, we have computed Wt in a square in (51-83),(62-53) spécé for
fi =1, 3, 5, 11, 21, and 51, and for fE given by,(3.25a), (3.25b),
and (3.25c). The results are shown inNFiguresiS -?25; where we
have plotted contours of tonstanf plastic power dissipatibn-(r#te.‘
of plastic work). To faciliate comparison, the same contour values
~were used in all plots fqr a given f€;

Consider first the‘fesults forfa uniform distribution of dis-
locations and glide systems (Figures 3.- 14). For small n, the
contours closely approximate the Von Mises yield surface in shape
and, in faét, are identical to it for n = 1. As the value of n is
increésed, the contours move closer together and approach the yield
surface of Tresca in shape. If we define the yield stress to be
that state of stress at which the plastic power dissipation reaches
a prescribed critical value, these contours cofreSpond to possible
y{eld surfaces.

- The appearance of Tresca type surfaces as n is increased is
due to the fact that for large values of ﬁ there is a signficant
difference in dislocation speed between glide planes on which the
shear stress is maximum and ali other‘glide planes. Plastic floﬁ
is therefore dominated by the motion of dislocations on such ﬁlanes'

resulting in Tresca type yielding. For small values of n, the dis-

1ocation'§peed is not so strohgly-dependent on glide plane orientation
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" and dislocation motion on a large number of glide planes will
contribute significantly to the flow, thus resulting in von Mises
type yielding. Behavior similar to this was also noted by Lin

and Ito [13] based on a simpler model.
) . - Ko T

Thé large spacing of the ‘contours for small n suggests a
gradual increase in plastic-st;ain rafe with stress. This behavior
is tYpical of such materials as artificial gréphite [45]. The |
concentration of contours for large n, on the other hand, implies
that there is a sharp increase in the plastic strain rate after
byielding as is observed in tests on mild steels. To more clearly
illustrate this behavior and its dependence on h, we have piotted
the plastic power dissipation in perspective (Figures 9 - 14).

Note th#t in all cases there is a flat area of esSentially zZero
dissipation before yielding. This is followed by a rapid increase

in ﬁp.as the stress is increased. The rate of this increase, as Well
as the shape of the surface is seen to depend on n in the manner
just discussed. - The flat portion of the surface at the tbp is the
result of putting limits on the plotting space and has no real
significénce.

The results for the cases when.f€ is givéh by (3.25b) and (3.25c) |
shown in Figures 15 - 20 and 21 - 26, :xhibit essentially the same
behavior with Tespect to increasing n as was observed when fe was
v given by (3.25a). The contours are somewhat distorted from :hese

obtained for the previous cases, however, due to the anisotropic

behavior pointed out in our analytic solutions for n = 1.

3.3 Behavior of the Constitutive-Model Under Uniaxial Loading
In order to illustrate the type of material behavior our theory

is capable of modeling, we consider three examples using uniaxial
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stress deformation under the assumption of homogenéous strain.
They are (i) a constant strain rate teét,_(ii)'a stress relaxation
test, and (iii) cyclic loading at constant strain‘rate,magnitude.
These exémples have the advantage of demonstrating the essential
features of the model while maintaining a reasonable dégree of
computational simplicity.

For uniaxial loading_under homogeneous strain, equations (3.15)

and (3.18) reduce to

ds 1 +m +1 /2 _ _ o S
== = f [ My, &V 8 N(1-N)sine d6 d¢ dx (3.36)
dt 472
- -M O
d5 i ai
and —_ = = - = (3.37)
dt dt dt

respectively, where we have assumed that all glide planes and all
Burger's vector orientations are equally probable. In addition, the
dislocation speed relation for our sample material, which we again

take to be the empirical power law, simplifies to
- -n
v = fu, ol - (3.38)

In order to maintain a uniaxial state of stress during isochoricv
plastic deformation, the distribution of dislocétion systems must
possess certain symmetries throughout the deformation. This implies
that we can take N and B to be independent of the orientation -angles
Xs ¢, and‘e; One way to ensure this independence and the required
symmetry is to let N and g be initially uniformly distributed and

replace v in equations (3.16) and (3.17) by its average value,

+7 +7 /2

V> = (1/4 m2) f jf v sing de d¢ dx. (3.39)

-7 -mT O
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This yields the following set of nonlinear.ordinary differential

equations characterizing uniaxial plastic deformation:

dep n-1

- = C_8NI-N) olo B (3.40)
dt .
9{“— = AC, B RN1-N) |3, o (3.41)
dt -

d o r=ny -
L - ac, se* - 8 + B* 0", | (3.42)
dt ' o o

- - -P

do . de . de - (3.37)

dt dt dt

where we have substituted (3.38) for v and the coefficients C,
and Cv are defined by

+7 47w w/2

C; = (1/4 72) ] // Iull *11 sine de d¢ dx (3.43)
’ -T -7 v
o +7 +T /2
and  C = (1/4 72) /’ f[ qul sine de d¢ dx (3.44)
=T -7 (o] .

respectively. For our examples, the integrals in these expressions
were evaluated using the quadrature scheme given in Section 3.1
and the differential equations were solved numerically using a
routine based on Gear's method [46, 47].

Figures 27 - 29 show typical fesults for constant strain rate
tests. In.Figure 27 we have plotted the normalized stress, 0, versus
the normalized strain, e, for various values df_normalized strain

rate, de/dt. These results clearly show a rate sensitivity with.

-higher stresses prevailing for a given value of strain at higher

strain rates. A yield drop is also observed with the magnitude of

the drop increasing with increasing strain rate. In Figure 28
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curves fqr the same strain tatevvalues are pidtted for a méterial
with the same parameters as those used in Figure 27 but a higher
initial dislocation density. Comparison of these curves with the
previous ones shohé that the yield drop has decreased but the rest
of the curve has reméined unchanged. This indicates that fhe yield
drop is due mainly to the magnitude of the iﬂitial dislocation
density, N, relative to N*. When NO/N*-is.small the dislocation
density initially‘increéses much faster than the plastic strain.
' This produces a cascade effect which results in the yield drop.
Finally, in Figure 29 we show the variation in results that can
be obtained by changing.some of the parameter in equations (3.40)-
(3.42). Among other things we note that the yield drop is also
affected by.the value of B*, which controls the'rate‘of hardening,
and the exponent in the dislocation speed felation.

In a stress relaxation experiment, the material is subjected
to an instantaneously applied strain, e, which is maintained constant.
The initial stress is given by the elastic response of the material
and relaxés by relief of elastic strain as plastic strain accumulates.
In Figure 30, we have plotted curves of normalized stress, o, Versus
normalized time, t, for several values of normalized strain, ;0'
For values of Eo below approximately 3 the stress initially decays
very slowly. At the smaller values of Eo the dislocation density
increases rather slowly. If the initial dislocation density is small,

as it is in this case, it takes a certain amount of time for it to

build up to a value at which the plastic strain rate becomes significant.
Thus we observe an initial slow decay followed by a rapid quasi-

exponential decay when the dislocation density builds up. Figure 31
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shows the same curves for a material with a larger initial dislocation
density. In this case, however, all curves have the expected
behavior in that the stress decays equnentially with]fime.

Fdr theAcase of cyclic loading; we take the total strain rate

to be given by the equation

1 sgnfcos(w T E/Zrz)], | (3.45)

de/dt = 1
wﬁere sgn denotes the signum function, which is plus or minus unity
according to, the sign of its argument. This e*pfession yields a
constant magnitude of Ty for the applied stréin rate and é constant
amplitudé'df rz for the applied s;rain cycle. in Figures 32 - 34
- we have plotted norﬁalizedrstress versus normalized strain for three

1

with a small initial dislocation density. It exhibits a yield drop

cycles with r; = 10 and T, = 20. The first plot is for a material

followed by softening and finally by hardeningl When the initia1
dislocation density is increased, as shown in Figure 33, the yield
drop is eliminated along with the initial softening. This behavior
is similar to that observed by Kelly and Gillis [48] in their recent
work on cyclic loading. Figure 34 demonstrates the behavior obtained
when a fraction of the immobile dislocations become mobile at eéch
strain rate reversal. As can be seen, the stress decreases éharply
when fhisvoccurs. This behavior is consistent with fecently re-

ported experimental work on single crystals [49].
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IV. CONCLUSIONS -

Usihg arguments based difectly on the dislocation procesées
involved, we have derived a set of constitutive equatiqﬁsvfof
.polycrystalline_plasticify that is fully consistent With thermo-
dynamiévréquirementé. The'idea bf‘randomly distributed‘glide
.plane orienfations and Burger's'Vector directibﬁs_has been intro-
duced to facilitate handling of the polyCrystalline structure.
This avoids the awkward dislocgtion arrangemént tensors asséciated
with the statistical dislocation theory‘proposed by Krbner [23]
as well as the neéessity of knowing-a priori the.availablé glide
. systems at each-materiél point for all times bf ihtereét. Instead
we obtéin equations involving probability distributions for varia--
bles which are directly related to measurable‘aisiocatibh quanti-
ties.

In our initial derivation of the plastic strain rate equa-
tion webconsider bothvconservatiVe and non-éonservative motions
of arbitrary dislocations (i.e., they can be edge, screw, or mixed)f
Nonfcon§érvatiVe motions however, are rare at normal temperatures.
Hence we restrict.our final analysis to conservative motions only,
i.e. puie glide. For this case it is shown that the tensorial
character of the macrpscopic pléstic strain rate can be aftribqted
entirely to a second rank symmetriC'tensor,bx , directly related
tb‘the ordinafy elements of crystallographic glide and independent
of the edge or screw character of the disloéatibns.

The evolutionary equations for the dislocatibﬁ density and
the mobile fraction are based on single and pair-wise dislocation .

processes. These include production by fixed sources (such as
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Frankikead sources), breeding by croés-glide mﬁlfiplication, iﬁ—
mobilization of dislocations by inclusions andvothef.dislocations,
and pair annihilation. As a result of the inclusion of anni- |
hilation eVents, th¢ equations obtained allow for the occurrence
of_such phgnomena as saturation of the dislocation density. In
other theories, e.g. Kelly and Gillis [11] ,'fhisvhas been
included_only_by‘using additional assumptions. o |

Simplified forms of these evolutionary equations have been
developgd for the case when production by fixed sources is un-
important énd the mobile fraction is small. As this is the usual
situation, these simplified equations are prbbably adequate for
most cases. Moreévep, it has béen shown that an.analytic expres-
sion'for‘the ﬁobiie fraction in terms.qf the dislocatidn density
can be obtained in this case, provided phat the equat;dn_coeffi—
cients are iﬁdépen&ent:of B _and‘time. if these coefficients
are also independent of N, this expression has been shown to re-
duce to tﬁe exponential form suggested by Gilman [16] in the
limit of zero prbbability for annihilation events.

Because of the importance of the dislocation velocity to the
evolutiénary equations for. N and. 8, we have included a brief
discussion of the stress and.temperature dependencg of this quan-
tity. Resistance to .dislocation motion is assumed to be con-
trolled by'acgivation past fixed obstacles and viscoué_glide
through a clear lattice. Two different activation models have
been considered, (1) thermal acﬁivation, and (2) tunneling.

After modification to_account for relatiyistic effects, the ther-

mal activation model with an athermal back stress is shown to
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. yield essgntially.the samefreéults.as'fhe tunneling model..

In order to furtbér'corrcldtc our theory With'rcsu]t§ obtained’
froﬁvfhermodyﬁamics, we ha?e_developed an'exprgésion for the ener-
gy stoféd in the crystﬁl lattice as a result of the'presence of
dislocétions._-This répresents the fréction-éf'thé t0t31 p1astic
work'tﬁat cou1d ultimately bé récovéred if the dislocapions were
fembved; The ekpreSSion obtained assumes that.the disloéatioﬁs
are,uhiformly distributéd between edge'and screw types and that
the crystal matrix is isotropic and linearly elasﬁic. it re;
quires that the stored energy incfease with inéreésing‘plastié
deformation, but at a slower raté, éS‘iﬁ.observed eXperimentally.

Using_durvplastic strain rate equation, characteristic
yield conditions have‘been computed for three sample dislocatioh
probability Aenéity functions. _For simpiicity, the dislocétion
speed was assumed to Be given by-the empiréal power law and ther-
mal effecté were ignored. When the stress—speed.felationship is
linear; we have been able tovevaluate the integrals in the plas-
tic strain rafe equation analytically. The solutions obtained
clearly show the ability of our theory to modei the development
of plastic anisotropy. For higher powers in the stress-speed
relation we must fesbrt to numerical methods to evaluate the iﬁte—
' grals_invblved and we have suggested a particularly'efficient quad-
rafure formﬁla fdr this purpose. It has Gaussian precision but
uses equal weights and equally spaced abscissas in the random
variables ¥, ¢, énd 8. Plots of the calculated yield surfaces
show that the shape varies from that of von Mises at small expo-

nent values to that of Tresca at large'eXponent_values.v This be-



havior hés been attributed to the fact that af large expohent
values the stress-speed relation has a strong 6ri¢ntation depen-
dence. This makes thg dislocation speed: very large on'glidé

planes close tofthose with.maximumbshear stress and negiigible

on all others. Hence only a few glide planes contribute to the.
plastic fiow in this case giving a Tresca typeISUrface. This vari-
ation in the shape of the surfacgs with expoﬁent value hasbalso
been .shown to.be relatiﬁely independent of the isotropy of the .
dislocation probability diStribution.

To demonstrate the utility of our theory we have examined
several examples of uniaxial stress deformation. These examples,
which consist of constant strain rate, stress‘felaxation, and
cyclic loading tests, show that our theory can qualitatively model
most obseiVed one—diménsional results. These include the occur-
rence of upper and lower yield points, material hardening and soft-
ening, Bauschinger effect, and strain rate sensitivity. Among
other things, it has been shown that the occurrence of a yield
_drop in fhe constant strain rate.test and a delay‘time in the
stress relaxation test are particularly sensitive to the initial
dislocation density relative to the saturation density.

With regard to further developments of this theory, we
believe that identification of the probability density functions
involved is probably the most important. To do this properly non-
uniform three-dimensional experiments would have to be performed{
A numerical identification scheme such as that proposed by Iding

[50] codld then be used to obtain parameter values. In lieu of _

this, a simple tension-torsion test. could possibly provide an -iden-
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tification for some of the structure of the distributions.
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‘Transformation from global coordinates (x., Xys Xg) to

1

2,'y3) can be accomplished by a sequence

local-éoordinates (yl,.y

of three rotations:

_éos ¢ sin¢ 0

E = - sin ¢ cos ¢ 0
' 0 0 1
1 0 0
C = 0 cos 6O éin 0
n
‘0 - sin 8 cos 6
cos ¥ sin ¢ 0
B = - sin w cos ¥ O
4]
0 1
A= C
n n,

Since rotations are orthogonal transformation, the inverse

. : . -1
transformation, from local to global coordinates, is % = Q = Q.

Fig. 1
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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