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ABSTRACT 

Using arguments ~ased directly on the dislocation processes 

involved, we derive a set of constitutive equations for polycrys-

talline plasticity that is fully consistent with thermodynamic re-

quirements. The idea of randomly distributed glide plane orienta-

tions and Burger's vector directions is introduced to facilitate 

handling of the polycrystalline structure. This yields equations 

involving probability distributions, for variables which are direct-

ly related to measurable dislocation quantities. 

When the motion of the dislocations is isochoric, the tensor-

ial character of the plastic strain rate is shown to be entirely 

determined by a second rank symmetric tensor directly related to 

ordinary elements of crystallographic glide. This same tensor is 

also shown to determine to shear stress acting on a dislocation. 

Characteristic yield conditions are calculated for several 

sample materials in which the dependence of the dislocation velocity 

on stress is given by an empirical power function. The shape of 

the yield surfaces for these materials is shown to vary from that 

of von Mises when the exponent is small to that of Tresca when the 

exponent is large. Additional examples illustrate the ability of 

the proposed theory to model such phenomena as the development of 

anisotropy during plastic deformation, material hardening and 

softening, the occurrence of upper and lower yield points, and 

Bauschinger effect. 
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I. INTRODUCTION 

1.1 Historical Perspective 

In the past decade, the theory of plasticity in crystalline 

materials has undergone extensive development. Using the frame­

work of modern continuum mechanics [1], very general three-di­

mensional theories have been proposed o~ the basis of thermody-

namical arguments. By direct generalization of classical theory, 

Green and Naghdi [2, 3] developed a general theory of elastic-

plastic materials of the rate independent type. A similar development 

was presented by Lee and Liu [4]. Pipkin and Rivlin [5] have 

developed the constitutive equations for rate independent materials 

with memory. They have shown that a general theory of elastic-plastic 

materials arises as a special case of the theory of rate-independent 

materials. 

The formulation of the thermodynamic theory of rate-sensitive 

plastic material within the framework of thermodynamics of a material 

with internal state variables has been given by Perzyna and Wojno [6] 

and by Kratochvil and Dillon [7]. Similar work with particular 

attention to identifying the internal variables with dislocation 

quantities has been presented by Tseng [8], by Hahn and Jaunzemis [9], 

by Bhandari and Oden [10], and by Kelly and Gillis [11]. In addition, 

Bhandari and Oden have given a detailed comparison of the existing 

mathematical theories and have shown the equivalence of approaches 

using evolutionary equations and memory functionals. 

In contrast to the mathematical theories just mentioned, physical 

theories of crystalline plasticity, that is, those in which the 

constitutive equations are derived by modeling the physical dis-

1 



location processes directly, have been developed by Taylor [12], 

by Lin and Ito [13], by Lin [14], by Mura [15], and by Gilman [16]. 

Equations obtained in this manner have been identified with those 

obtained on the basis of thermodynamics by Kelly and Gillis [11]. 

In this work, we utilize results from both mathematical and 

physical theories. Our emphasis, however, is on direct physical 

arguments. We begin our discussion with a review of thermodynamic 

resul ts obtained along the lines of Kelly and Gillis' [17] 

arguments. The constitutive equations for the plastic strain rate 

and the rate of change of the dislocation density are then derived 

using arguments based directly on the dislocation processes involved. 

Random variables and associated probability distributions are 

introduced to facilitate handling of the polycrystalline structure. 

The resulting equations are shown to be consistent with the forms 

obtained using thermodynamics. Finally, the behavior of the model 

is illustrated with several examples. 

1.2 Basic Assumptions and Thermodynamic Results 

It is our intention in this dissertation to construct a t~eory 

of plasticity for polycrystalline materials based on the use of 

internal variables. Following Coleman and Gurtin [18], the evolution 

of these internal variables is described by a set of differential 

equations which are of first order in time. In contrast to their 

work however, we develop our equations in the material rather than 

the spatial description and make use of a different set of state 

variables. In the derivation that follows we use symbolic notation 

for tensors and vectors, for example, £, Je, where possible and use 
'U 

index notation, £ij' Xi, for manipulations. 
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We consider a body B acted on by a body force and a sym-

metric stress field. Although the presence of dislocations can, 

according to some geometric analyses, lead to body couples and 

couple stresses, these are assumed to be absent at the macro-

scopic level. Similarly, diffusion of mass in B is neglected as 

being of only microscopic importance. We refer the motion of B 

to a fixed system of rectangular cartesian axes and designate the 

+ 
position of a typical particle at time t by a column vector x, 

where 
+ ++ 
x = ·x (X, t), (1.1) 

+ 
and X denotes a reference position of the particle, here taken to 

+ 
be the initial position. The vector mapping function X is assumed 

to be sufficiently smooth that its gradient, 

+ + + 
. F. = Grad x = ax/ax, 

'V 

is continuous and such that det(F) > 0 for all t. 
'V 

(1. 2) 

In a plasticity theory, the initial annealed condition of the 

material has a special significance and it is convenient to develop 

the theory with respect to the initial configuration. A suitable 

measure of deformation under these circumstances is 

~ = (1/2) (~ - V (1.3) 

and (1.4) 

where I is the identity tensor, C is the right C4uohy-Green tensor 
'V 'V 

C = pTp (1.5) 
'V 'V 'V 

and 0 is the rate of deformation tensor, 
IV 
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Here, as in what follows, a superposed dot denotes differentiation 
. -+ 

with respect to time holding X fixed and grad denotes the spatial 

gradient operator. 

~ Let h denote the heat flux vector measured per unit tune 

and per unit area in the reference configuration, Po the mass density 

in the reference configuration, and (J the synunetric Piola-Kirchhoff 
tV 

stress tensor. From the integral form of the principle of balance 

of energy we can deduce the local rate of work equation: 

-+ 
poe = tr(~~) - Div h + por, (1. 7) 

where £ is the internal energy per unit mass, r is the heat supply 

per unit mass, and Div denotes the divergence operator with respect 

to X. In a similar manner the integral form of .the C1ausius-Duhem 

inequality leads to the relation 

• -+ 
pon + Div(h/T) - po(r/T)? 0, (1.8) 

where T is the temperature and n is the entropy per unit mass. 
-+ 

If we consider hIT as an entropy flux and r/T as an entropy 

supply, the inequality (1.8) defines a specific internal entropy 

production rate a: 
-+ -+ -+ 

poTa = poTn + Div h -por - (l/T)h wg ~ 0, (1.9) 

-+ 
where g denotes the temperature gradient in the reference state, 

Grad T. Alternatively, equation (1. 7) can be used to eliminate r 

-+ 
and Div h yielding 

• • • -+- -+-
= poTn -poe + tr((J£) - (l/T)h . g 

""" 
(1.10) 

for the dissipation equation. 
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Following Kelly and Gill is [11], we introduce the Gibb' s themo­

dynamic potential defined by 

p ~ = p (nT-E) ¥ tr(OE). 
o 0 'V\t 

(1.11) 

Differentiating this expression with respect to time and sub-

stituting the result into (1.10) we have 

p To = p ~ 
o 0 

+ '+ 
p nT - (l/T)h . g. 

o 

Assume that the Gibb's potential has the form 

+ 
~ = ~(o, T, a) 

'V 

(1.12) 

(1.13) 

+ and the internal variables, a, are governed by the evolutionary 

equations 

+ + + + 
a = q(o, T, g, a). 

'V 
(1.14) 

The function ~ is taken to be continuously differentiable at least 

+ + 
twice with respect to 0 and T and once with respect to a, while q 

'V 

is taken to be continuously differentiable at least once with 
+ + 

respect to 0, T, g, and a. With ~ defined as in equation (1.13), 
'V 

the dissipation equation becomes 
. 

p T6 = tr[(p ~ - E)~] + P (~T-n)'f + p ~-+- 0 ~ - (I/T)h.l, 
o o'fl 'V 'V, 0, 0 , a 

(1.15) 

where we have used subscripts to indicate partial derivatives of 

the potential function with respect to the subscripted quantity, 

for example, ~,T = a~/aT. 
# 

The Clausius-Duhem inequality a.sserts that 15 ,2: 0 for every 

themodynamicprocess in B. Since the values of IT and T can be 
'V 

prescribed arbitrarily for each time t, this inequality cannot be 
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satisfied independent of the signs of a and T unless their co-

efficients in equation (1.15) vanish identically. Consequently, 

we obtain the relations 

e: = Po4> a (1.16) 
'" , 

'" 
and n = 4> , T (1.17) 

and the dissipation equation reduces to 
0 

+ + + 
p To = p4>+' Cl - (l/T)h 0 g. (1.18) 

0 o ,Cl 

This last result can then be combined with equation (1.9) to yield 

the form 
. 

• • -+h + p Tn = p r - D1V + P 4> + • Cl 
o 0 0 ,Cl (1.19) 

for the Gibb's equation. 

Taking the time derivative of equation (1.16), we obtain the 

following expression for the rate of strain: 
o 

+ f=p4> oa+p4> T+p4> +'Cl 
u 0 ,acr '" 0 aT 0 ,aCl (1.20) 

""" ' '" '" , (,. 

At normal temperatures, the most significant feature of plastic 

deformation in crystalline materials is that it alters the crystal 

positions without destroying the basic crystalline structure [19]. 

As a resul t, the thermoiH as tic response of crystall ine solids is 

essentially unaffected by plastic deformation. This implies that 

the instantaneous thermoelastic compliances p 4> and p 4> T o ,aa 0 ,a 

""" '" + are independent of the internal state and hence independent of Cl. 

The most general form for 4> that satisfies these restrictions 

is the following: 
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.1 

," 

I = le(a,T) + (lIp )tr(oH) + G(T,~), 
'V 0 """ 

(1.21) 

where H must be a second order tensor function 
-+ 

of a. only. Thus, 
'V 

equation (1. 20) can be rewritten in the form 
0 

Ie p Ie t + 
-+ 

E = 0 d + H-+o a. 
'V Po aa t:V o ,aT ,a. , 

""" 'V 

(1.22) 

and it appears reasonable to identify the elastic, thermal, . and 

plastic strain rates as 

o e Ie (1.23) E = Po 
0 a 

'V ,aa 'V 

""" 
°T Ie 0 

E = Po T, (1. 24) ,aT 'V 'V 

0 

(1. 25) and 
op -+ 
E = H-+ 0 a. 
'V 'V,a. 

respectively. 

When crystalline solid is deformed plastically, not all of the 

plastic work is lost in heat. Some of this energy is stored in the 

crystal lattice, associated with the elastic strain field of 

newly created dislocations [20]. This energy is not released on 

unloading but can usually be recovered by annealing, a process 

which will remove dislocations. If we identify this sto_r,ed energy 

with the function G as follows: 
o 

-+ wr = - pG -+ 0 a. 
o ,a. 

then. the equation for internal dissipation becomes 

(1. 26) 

o p -+ -+ 
p To = (w _wr ) - (l/T)h 0 g, (1.27) 

o 

p .P 
where w denotes the plastic work rate tr(aE). In a similar manner 

""" 
we can combine this notation with equation (1.19) and the time 
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derivative of (1.17) to obtain 

p T(~eTT + G,TT)'f = por - Div Ii - p T tr(~e ·T;) 
o , 0 'f(, 'U 

(1.28) 

for the equation governing changes in temperature. 

Using the Gibb' s potential in the form given in (1.21) has led 

to an expression relating the plastic strain rate to the rate of 

change of the internal variables. In addition, it gives the 

additivity of elastic and plastic strain rates as a consequence. 

This is in contrast to most other theories where it is an additional 

assumption. 
• • -+ -+ -+. It only remains to ldentlfy a, H(a), and G(T,a) wlth 

'U 

known dislocation parameters in a manner consistent with equations 

(1.25) and (1.26). This will be investigated in the next section. 
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II. DISLOCATION MECHANICS ANDPOLYCRYSTALLINE PLASTICITY 

2.1 Introduction 

There are several known sources of irreversible or plastic 

defermation in solids. These include void growth, crack propagation, 

grain boundary sliding, twinning, diffusional processes, and the 

generation and motion of dislocations. In crystalline materials, 

however, it is well established that dislocation processes play 

the dominant role. Since the known properties of dislocations 

seem capable of explaining most features of polycrystalline 

plasticity, we base our constitutive development on dislocation 

mechanics. 

Contemporary work in plasticity based on dislocation behavior 

extends across a broad range of mathematical sophistication. On 

one hand are general three-dimensional theories. These have been 

formulated based largely on either the theory of continuously 

distributed dislocations, as developed by Bilby [21] and Mura [22], 

or the use of statistical dislocation arrangement tensors, as 

advanced by Kroner [23] and Kratochvil and Dillon [7]. On the 

other hand, there are simple one-dimensional theories, such as 

those of Gilman [24], which seem to have had greater success in 

relating observed dislocation behavior to material properties. 

The chief disadvantage of the three-dimensional theories lies in 

their use of awkward variables that are difficult to relate directly 

to measurable dislocation quantities. We, therefore, attempt in our 

development to make use of the kinds of variables employed in the 

successful one-dimensional theories, generalized to three-dimensions. 

Using direct physical arguments, ~e suggest a general three-
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dimensional plastic strain rate equation relating this macro­

scopic quantity to microstructural parameters. Specializing 

this result to the case of pure glide, we show that the tensorial 

character of the plastic strain rate can be attributed to a second 

rank symmetric tensor directly related to ordinary elements of 

crystallographtc glide. 

To apply our results to arbitrary polycrystalline samples, 

we introduce the glide plane orientations and Burger's vector 

directions as continuously distributed random variables. This 

method follows the work of Johnson [25] and, more recently, Clough 

and Simmons [26]. In our derivation, however, we eliminate most 

of their assumptions and use a different set of transformations 

from local to global coordinates. Moreover, our theory is more 

general in that it allows for the possibility of a nonuniform 

distribution of dislocations and for their production and inter­

action. 

10 

We next formulate an eVOlutionary equation for the dislocation 

density. These results are based on the single and pair-wise 

dislocation processes of fixed source production, cross-glide 

multiplication, dislocation immobilization, and pair annihilation. 

Appropriate equations for the dislocation velocity are also discussed 

in the same context. 

We complete our constitutive development by discussing the 

elastic energy stored in the crystal lattice as a result of the 

presence of dislocations. 
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2.2 The Plastic Strain Rate Equation 

Consider a small segment of an arbitrary dislocation line. 

Associated with this segment are its velocity and its tangent, 

which define lts local plane of motion, and its Burgers vector, 

which describes the crystallographic displacement it produces. We 

-+ -+ -+ -+ 
denote these vectors by vYl' Y2, and b respectively, where Yl and 

-+ 
Y2 are unit vectors and v is the dislocation speed. The only 

dislocation motions that produce displacement changes are those 

for which the velocity is orthogonal to the line direction. We 

• -+-+ 
may therefore assume without loss of generahty that Y1 • Y2 = o. 

These two vectors, taken with Y3 = Y1 x Y2' then form an ortho­

normal basis for a local dislocation coordinate system. In addition, 

the plane of motion and the Burgers vector provide us with a means 

for grouping dislocations which produce the same displacement 

changes. Among all dislocations in a specimen, we classify those 

-+ -+ characterized by the same Y3 and the same b as one family. 

If we now focus attention on a single family of dislocations 

identified by the plane of motion with normal Y~ and by the Burgers 

vector bk and construct a small rectangular volume element such that 

~ -+k -+k its edges are parallel to Y1' Y2, Y3 ' we can compute the macro-

scopic plastic. strain rate associated with the distortion of this 

family. It is assumed that the volume of this element is of the 

same order of magnitude as the core volume of a dislocation segment 

of length t, where t is the length of the element in the Y~ direction. 

Plastic deformation of this element is the result of dislocation 

flux through it. The passage of a single type k dislocation pro­

duces a relative displacement bk of the element faces which are 



parallel to the plane of motion. The relative velocity of these 

two faces is bk/~t, where ~t is the mean time between dislocation 

arrivals (or departures) at the element. This is conveniently ex-

+k +k +k d" h h pressed in the YI' Y2' Y3 coor lnate system as t e two sear 

components, 

(Y)~Pk 
13 

(y) oPk k -+k 
= £31 = r,; (Y1 

and an extensional component, 

"rk / Ie b ) 2w llt, 

k +k ..J< k 
= r,; (Y3 0 b )/w ~t, 

(2.1a) 

(2.lb) 

(2.lc) 

of a plastic strain rate tensor, all other components of which are 

zero. Here wk is the separation between the element faces which 

are parallel to the plane of motion. Due to our assumption con-

cerning the volume of the element, this can be taken to be the 

dislocation core width. The factor r,;K is defined as follows: 

(2.2) 

where fk is the force acting on the dislocation and sgn denotes 

the signum function (which ensures that the sign of ~Pk is 
'V 

consistent with the convention that a positive force will produce 

a positive dislocation velocity). 

The rate of change of the number of dislocations in our 

element is given by the formula 

(2.3) 

where Nk is the dislocation density (line length per unit volume) 

12 



for type·k dislocations. We assume that during the time required 

for a unit change in nk. the integrals in (2.3) can be approximated 

by their mean value. This yields the following relation between 

the mean dislocation arrival time and the rate of change of the 

dislocation density: 

(2.4) 

Substituting this result into (2.1). the componenets of the plastic 

strain rate tensor become 

(y)·Pk (y)·PK k +k 
• bk)wkNk

/2. E = E31 = l; (Y1 
13 

(2.5a) 

(y)·Pk (y)·Pk ktk ·bk)wkNk/2. E = E l; Y2 23 32 = (2.5b) 

(y)·Pk 
E33 = ktk 

l; Y3 • bk)wkNk • (2.5c) 

(y)·Pk 
Ell = (y)·Pk 

E12 = (y)·Pk 
E21 = (y)·Pk 

E22 = 0. (2.5d) 

in terms of dislocation quantities. 

Consider a global coordinate system with linearly independent 

base vectors + x3' These vectors are related to the local 

base vectors Y~ by the formula 

~. = a~. ~. 
1 lJ J 

(2.6) 

The components of the plastic strain rate tensor in the global 

coordinate system are given by the transformation 

·Pk k k 
E = a. a. 1m In 

Applying this to (2.5). we obtain 

(y)·Pk 
E • mn 

13 



14 . 

·Pk (l;;k/2) [k k +k b"k . k +k +k k +k • b'k) E •• = ai3(aj1Y1 • + a j2Y2 
. b . + aj3Y3 1J 

(2.8a) 

k k +k b'k k +k :+k k +k b'k)] k·k 
+ aj3(ailY1 • + a i2Y2 • b' + aU Y3 . w N ; 

or equivalently, 

·Pk k k k k k k·k (2.8b) E:. • = (I;; /2)(Y3· b . + Y3 .b.)w N, 
1J 1 J J 1 

k ~ k where Y3i are the components of the vector Y3 and bi are the 

+k 
components of the vector b with respect to the global base vectors. 

Equation (2.8) expresses the contribution of the motion of 

dislocations of type k to the plastic strain rate. If we consider 

other dislocation families, the same result applies but to materially 

different volume elements. All such elements, however, can be 

chosen so as to have a given point in common. The resultant plastic 

strain rate at this point can then be considered to be the summation 

of the contributions from each dislocation family: 

.p k k k k k k k·k 
E. . = L (I;; /2) (Y3. b. + Y3· b . ) w N 

1J 1 J J 1 
(2.9) 

This equation has exactly the form suggested by Kelly and Gillis 

[11] on the basis of thermodynamical arguments. 

+k +k 
In the discussion that follows, we assume that y • b = 0 

3 

for all k. This corresponds to an assumption of pure glide. Since 

it is commonly observed that plastic deformation of crystalline 

materials is nearly isochoric, glide is the dominant process and 

this assumption will be a good approximation for most cases. 

As a notational convenience, we now define the orientation 

k tensors l,.l 

"" 
k 

lJ·· = 1J 
(2.10) 

r,. 

" 
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k J+k -+k where b = b - b . These tensors, which describe the geometric 

properties of the dislocation families, have the following character-

istics: 

kT k 
(2.lla) ~ = ~ 

'" '" 
tr(~k) = 0, (2.llb) 

'" 
tr [ (}) 2] = 1/2, (2.llc) 

'" 
tr [(~k) 3] = 0, (2.lld) 

'" 
where T denotes transpose and tr the trace or sum of diagonal terms. 

Thus, there are only three independent values in each of these 

tensors. 

Using (2.10), equation (2.9) can be rewritten in the form 

-p 'k k k k k-k 
E •• = l: ~ .. l;; b w N • 

1J 1J 

It is clear from this expression that the orientation tensors 
-p 

entirely determine the tensoria1 character of E • 
'V 

(2.12) 

k Equation (2.2) can also be recast in terms of~ The force 
'" 

exerted on a dislocation segment by a general stress field a is 

given by Weertman and Weertman [27] as 

? _ +k (bk) - Y2 x R, • (2.13) 

Taking the scalar product of this with y~, we obtain 

+kT k 
y a b 

3 '" 
(2.14) 

for the component of this force in the direction of dislocation 

motion. The stress tensor, however, is symmetric. Equation (2.14) 

is therefore equivalent to 

? _ +k 
Y1 = (2.15) 



Let s denote the stress deviator: 
'V 

s = a - (1/3)tr(a)l, 
'V 'V 'V 'V 

(2.16) 

where ~ is the unit tensor. Since tr(u) = 0, we may replace 0 by 
tv I'y 

s in (2.15). We thus obtain 
'V 

for the force producing dislocation motion, and 

for the sense term in the plastic strain rate equation. 

(2.17) 

(2.18) 

Choose a global coordinate system such that the base vectors 

-+ -+ -+ 
xl' x2 ' x3 are orthonormal. In this case, the transformation from 

local to global coordinates can be constructed from a sequence of 

rotations. Using the sequence shown in Figure 1, the components 

of the resulting transformation matrix are as follows: 

k cos ~k cos ~k _ cos ek sin~k sin ~k. (2.l9a) all = 

k ~k . ~k ek . ~k . ~k (2.19b) a12 = -cos S1n - cos S1n cos • 

k sin ek sin ~k. (2.19c) a13 = 

k sin ~k ~k ek <j>k sin ~k. (2.19d) a21 = cos + cos cos 

k sin ~k sin ~k ek ~k ~k. (2.1ge) a 22 = + cos cos cos 

k k . ek (2.19f) a23 = -cos ~ S1n • 

k sin ek sin ~k. (2.19g) a31 = 
k sin ek ~k. (2.19h) a32 = cos 

k ek (2.19i) a33 = cos 

16 

Equation (2.10), the expression defining the orientation tensors. 
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can be written in the form 

~~j = (1/2) [(ai1a j3 + aj 1ai3)cos w
k 

+ (a i2a j3 + a j2a
i3

)sin wkJ, 
(2.20) 

k +k 
where w is the angle between the local base vector Y1 and the 

+k Burgers vector b. Substituting into this from (2.19), the 

components of ~k in the global coordinate system are 
'U 

k 1 [ k k k k 
~1l = (2") . cos(1jJ + w )sin 2<jl sin 2e 

k 
~12 

k 
~22 

k 
~23 

k 
~33 

. (",k k). 2 ~k sl·n 2ek - SIn 0/ + W SIn ~ , 

1 [ k k k k = (2") cos(1jJ + w )cos <jl cos e 
k k k k] - sin(1jJ + w )sin <jl cos 2e , 

= 1 [ k ("2) -cos(1jJ + wk)sin 2l . ek SIn 

- sin(ljJk k) . <jlk + w sIn cos 2ek ], 

(!.) [cOS(ljJk + k) . <jlk ek = w sIn cos 
2 

+ sin(ljJk + 
k k 

w )cos<jl cos 2ek], 

= (}) [sin(ljJk + wk) sin 2ek ]. 

(2.21a) 

(2.21b) 

(2.21c) 

(2.21d) 

(2.21e) 

(2.21f) 

Note that the angles IjJk and wk appear only in the linear combination 

k k IjJ +w. We may therefore replace these two angles by the single 

angle X 
k k k = IjJ + W : 

k (!.) [cos 
k sin 2<jlk . k sin k . 2<jlk. 2ek] 

~11 = X SIne X SIn SIn , 2 
(2.22a) 

k (!.) [ (i) sin k sin 2<jlk sin 2ek 
~12 = X 2 (2.22b) 

- cosx k k k-
cos 2<jl sine J, 
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k (}) [ cos k cos</>k k sinx k . k 2ek ], (2.22c) 1113 = X cose sl.n</> cos 

k (~) [ -cosX k sin 2</>k . ek sinX k cos 2</> k sin 2e k], (2.22d) 1122 = Sl.n 

k (}) [cosx 
k . k k 

+ sinX k k· k] (2.22e) 1123 = sl.n</> cose cos</> cos 2e , 

k (l) [sinx k sin 2ek]. (2.22f) 1133 = 2 

k Thus, the tensor II depends on only three independent angles. More­
tV 

.p 
over it is evident from this result that £ is independent of the 

tV 

screw or edge character of the dislocations. 

For single crystal specimens, the possible glide systems are 

usually well-defined. In a polycrystalline sample, however, this 

is not the case. The principal axes of the grains will in general 

vary throughout the solid making it impossible to specify the set· 

of orientation angles {xk , </>k, ek} a priori. It, therefore, appears 

reasonable and advantageous to replace this discrete set by a set 

of three continuous random variables {X, </>, e}. This allows us to 

replace the summation in equation (2.12) by an integral and write 

the plastic strain rate equations as follows: 

.p f £ij = llij(x, </>, e) sex, </>, e) b(x, </>, e) 
(2.23) 

w (x, </> , e) N (x, </>, e) dk • 

where dk is the fractional number of dislocation families having 

coordinates between (X. </>. e) and (X + dx, </> + d</>. 'e + de). 

The function s and the tensor II are defined by the continuous 
tV 

equivalents of equations (2.18) and (2.22). This yields 

s = sgn [tr(~s)], (2.24) 
'VV 

for the sense function, and 
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llll = (!) [ cosx sin 2e/> sine - sinx sin2e/> sin 2e] (2.25a) 2 

1112 = (~) [(}) sinx sin 2e/> sin 2e .,. cosx cos 2e/> sine ], (2.25b) 

1113 = (!) [cosx cose/> cose - sinx sine/> cos 2e] (2.25c) 2 

(!.) [-cosx sin 2<1> sine " 2 sin 2e ], (2.25d) 1122 = -S1nx cos e/> 2 

1123 = (}) [cosx sin<l> cose + sinx cose/> cos 2e] (2.25e) 

1133 = (~) [sinx sin2e], (2.25f) 

for the components of the orientation tensor. 

-+ 
Consider a single glide plane with unit normal Y3" The 

probability that this vector lies between (e/>, e) and (e/> + de/>, e + de) 

is identical to the probability that its endpoint lies within an 

element of area dS = sine de d<l> on the surface of the unit sphere. 

This geometric analogy yields 

= tt (e/>, e)sine de de/>, 
3 

(2.26) 

-+ . . 
where fY3 is the probability density function of Y3; that is, it 

describes how the endpoints of the glide plane normals are dis-

tributed over the surface of the unit sphere. 

In a similar manner, the probability that the Burgers vector 

in a given glide plane will lie between X and X + dX is identical 

to the probability that the endpoing of the vector b/\/5" • B" 

lies within an element of arc length ds = dX on the unit circle. 

This yields 

(2.27) 

where f5 is the probability density function for the direction of 

the Burgers vector~ It is a function of e/> and e as well as X because 
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-+ the distribution of possible directions for b will, in general, 

depend on the glide plane under consideration. 

The probability given by (2.26) is equivalent to the fractional 

number of glide planes between (~, a) and (~ + d~, a + da), while 

that given by (2.27) is equivalent to the fractional number of 

Burger vector directions between X and X + dX on the glide plane 

with coordinates (~, a). The fractional number of dislocation 

families, dk, is just the product of these two numbers: 

(2.28) 

Thus, the macroscopic plastic strain rate in a polycrystalline 

material is given by 

+'If +'If 'If/2 

=f! J .p 
e: .• 

1J 
~ .. s bw f+b f-+ N sina da d~ dx, 

1J Y3 
(2.29) 

-'If -11" 0 

where, to avoid double counting of dislocations, the integration 

is taken over the unit hemisphere. 

2.3 Dislocation Production and Interaction 

In this section we consider processes which result in changes 

in dislocation density. Neglecting interactions between more than 

two dislocations, these are production by fixed sources (Frank-Read 

sources), breeding by multiple cross-glide, and pair annihilation. 

For dislocations of type k, this can be expressed by the equation 

(2.30) 

where ak is the net rate at which fixed sources create dislocations 
o 

of type k, a~ is a breeding coefficient, and a~ is an attrition 

coefficient [16]. These coefficients will, in general, depend 
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on the dislocation densities for all families, the applied stress, 

the temperature distribution, and the distribution of such things 

as grain boundaries, precipitate particles, and free surfaces. 

For the case of a single dislocation family, theoretical [28] 

and experimental [29] investigations have shown that the breeding 

rate due to cross-glide multiplication is proportional to the mean 

dislocation speed. By considering multiplication and blocking 

interactio~s when several dislocation types are present, Kelly and 

Gillis [17] have generalized this result according to the formula 

k v , (2.31) 

where Ak is the reciprocal mean free path between multiplication 

interactions for type k dislocations and vk is the mean speed of 

the mobile type k dislocations. The variable Sk, which we call 

the mobile fraction, is the ratio of the mobile density to the total 

density of type k dislocations. It has been introduced because 

experimental measurements of dislocation density invariably relate 

to total density while measurements of dislocation speed relate to 

the mobile density. 

The probability of pair-wise annihilation depends on the 

presence of two dislocations of the same family in a given neighbor-

hood of each other. The average time between such encounters will 

be inversely proportional to the mean dislocation speed and, since 

only mobile dislocations can move into the neighborhood of other 

dislocations, directly proportional to the mobile fraction. An 

appropriate expression for the attrition coefficient is therefore 

(2.32) 
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where Kk is the mean radius of the interaction neighborhood for 

annihilation events for type k dislocations. Substituting this 

result and that given by (2.31) into equation (2.30), the evo-

lutionary equation for the dislocation density becomes 

(2.33) 

We nOw assume that all dislocations produced by fixed sources and 

by multiplication events are initially mobile. By analogy with 

equation (2.33), this leads to the following expression for the rate 

of change of the mobile density: 

(2.34) 

Here A~ is the reciprocal mean free path for the immobilization of 

type k dislocations by inclusions and by other dislocation families. 

The quantity K~ represents the resultant mean interaction distance 

for the removal of mobile type k dislocations by type k dislocations 

(this includes both annihilation and immobilization events). It 

follows from these last two equations and the definition of the 

mobile fraction that 

+ (Kk _ Kk) vk Nk ak2 
o 

(2.35) 

The elements of dislocation production and interaction essential 

to the present theory are given by the continuous equivalents, in 

terms of glide system orientation, of equations (2.33) and (2.35). 

These equations are 

. 
N = ao(x,~,e) + A(X,~,e) v(X,~,e)aN 

2 - K(X,~,e) v(X,~,e)aN , 
(2.36) 
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and B = ao (x,</>,6) (1 - B)/N + [A(x,</>,6) (1 

+ r K(x,</>,6) - K
O

(X,</>,6)]V(x,</>,6,)NB2, 

(2.37) 

where, as in the discrete formulation, the coefficient may depend 

on stress, temperature, and the variables B andN. 

In many cases the above expressions are more general than 

necessary. Production by fixed sources, while sometimes important 

to the initiation of plastic deformation, is quickly eclipsed by 

production due to cross-glide multiplication once flow has started 

[16]. In addition, experimental evidence suggests that the mobile 

fraction is small compared to ~nity most of the time [30]. Under 

these conditions equation (2.36) can be approximated by 

N = A(X,</>,6) [1 - N/N*(x,</>,6)] v(X,</>,6)BN (2.38) 

and equation (2.37) by 

Here N* = A/K and Nt = (A - A )/(K - K). The first of these para­o 0 

meters, N*, can be thought of as a saturation value for the dis-

location density. When N approaches N*, the rate of annihilation 

becomes equal to the rate of production and the dislocation density 

remains constant. Assuming A > A and K > K , Nt defines a similar 
- 0 0 

limiting value for the mobile density. In this case, however, it is 

a lower rather than an upper limit. 

If the parameters A, AO' K, and KO do not depend explicitly 

on time, equations (2.38) and (2.39) can be combined to yield an 

equation for B in terms of dislocation density. Dividing (2.38) by 

(2.39) we have 
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d8/dN + [(K -K)/~8/(1-N/N*) = (1-), /)')/[N(l-N/N*)]. o· 0 (2.40) 

Provided the bracketed terms above are independent of B, this dif-

ferential equation is linear. As such, it has the general solution 

B = exp(-P) {C + J (1- Ai),) exp(P) dN/ [N(1-N/N*)]} (2.41) 

where P is an integrating factor, 

P = J [(KO- K)/)' ] dN/ (1-N/N*), (2.42) 

and C is the constant of integration. Since this result gives B 

explicitly in terms of N, it is possible to eliminate the mobile 

fraction from equation (2.38). Thus, in this particular case we 

are able to reduce the required number of constitutive equations by 

one. 

We conclude this section by noting that when the parameters 

A, K, and K are independent of N as well as B, the integral in o 

(2.42) can be evaluated analytically. Using the definition of N* 

this yields 

(2.43) 

for the integrating factor. If we take the limit of this expression 

as K ~ 0, that is, the case of an infinite saturation density, we 

obtain 

P = (K /)')N. 
o 

(2.44) 

Taking ),0 = ), and substituting (2.44) into (2.41) then yields the 

result 

(2.45) 

We thus obtain the form suggested by Gilman [16] on the basis of 

creep behavior as a limiting case of equations (2.38) and (2.39).." 
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2.4 The Dislocation Velocity 

The importance of the dislocation velocity in modern theories 

of crystalline plasticity has led to considerable effort being 

devoted to the study of dislocation mobilities. It is generally 

accepted that these mobilities depend primarily on the applied 
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stress and the resistance of the lattice. Direct measurements of the 

stress dependence of v at various temperatures have been obtained 

by dividing the displacement of specially introduced mobile dis­

locations by the duration of an applied stress pulse [31]. The 

dislocation displacements are determined by either selective etch-

pi tting [31], or by x-ray topography [32]. This method relies on 

the fact that the inertia of dislocations is extremely small, a 

situation that has been verified experimentally since the velocities 

obtained have proven to be largely independent of the pulse duration. 

The stress and temperature dependence of the dislocation velocity 

can also be obtained by interpretive analysis of ultrasonic attenu­

ation measurements [33]. Data obtained in this manner, however, 

may be valid only over a limited stress range. The model on which 

it is based assumes that the force normal to each unit length of 

a moving dislocation is linearly related to its velocity. 

Theoretical models for the experimentally observed stress and 

temperature dependence of v have been developed by several authors 

[34, 35]. Klahn [ 36], for example, considers the effects of 

thermally activated, athermal, and viscous drag dislocation mechanisms 

on v, both individually and in combination. Diffusion controlled 

creep mechanisms are also discussed. These processes, however, 

are significant only at very low stresses and at temperatures 



above about one-half the melting temperature. 

Here we take the thermally activated mechanisms to be dominated 

by the cutting of simple rectangular obstacles in a homogeneous 

array and the athermal,mechanisms by a sinusoidally varying long 

range back stress. Assuming an independent time sequence for . 

thermally activated and for viscous drag mechanisms, we have the 

following expression for the dislocation velocity: 

+ ( 2 r L2 ) 1/3 explr- u r d - d(2rL2 T*2 b2) 1/3]}-1 
v 3 T* b 7 kT o 

(2.46) 

Here B is the viscous damping coefficient, r is the average dis-

'location energy per unit length, L is the spacing between obstacles, 

v is the Debye frequency, d is the barrier width, u is the relative 
o 

barrier strength (0 ~ u ~ 2), and k is the Boltzman constant. To 

account for relativistic effects when v approaches the shear wave 

velocity, c, we assume that B is of the form [37] 

(2.47) 

and that r is of the form 

(2.48) 

The quantity T* represents the effective stress acting on the 

dislocation. Averaging stresses over one wave length for the back 

stress, it is given by the formula 

(2.49) 

where 15 is an experimentally determined factor (-1/5) [38], and 

lle is the elastic shear modulus. The first term in this formula 

is the shear stress driving the dislocation motion and is obtained 
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from the result (2.17); the second term represents the effect 

of the long range back stresses assuming the dislocations are 

imbedded in an isotropic elastic lattice. 

A model similar to that leading to equation (2.46) has 

recently been proposed by Gillis, Gilman, and Taylor [39]. In 
~ 

their characterization, the mechanism for motion through the 

obstacle array is taken to be tunneling [35] rather than thermal 

activation. Assuming an independent time sequence for tunneling 

and for viscous glide, this results in the following stress-velocity 

relation: 

v = 

} 
-1 

+ exp(D/T)/VoL , 
(2.50) 

where T is the applied shear stress, tr(~), 0 is a characteristic 

drag stress, and Vo is the frequency with which the dislocations 

attempt to surmount obstacles. 

As can be seen in Figure 2, the dislocation speeds predicted 

by (2.46) and (2.50) can be made nearly identical by an appropriate 

choice of parameter values. In most cases both thermal activation 

and tunneling will probably be operative over some range of stress 

and a combination of these two forms will be required to fit the 

observed behavior. 

Both of the velocity equations just presented are quite 

complicated and, hence, difficult to use in studies of the behavior 

of our constitutive model. Two simple forms which have been 

successfully used in approximating experimental curves are an 

empirically determined power law [31J, 
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~,: . 

n 
v = V (.IT ) , o 0 

(2.51) 

where v is a characteristic velocity and. the eftective stress o 0 ~ 

.. at thatveloci ty, and the Gilman relation [40],· 

v = v* exp(-DIT), (2.52) 

where v* is a characteristic limiting velocity. These equations 

will be used in lieu of (2.46) or (2.50) for the behavioral studies 

given in Section III. 

2.5 Elastic Energy Due to Dislocations 

The presence of dislocations in a polycrystalline material 

produces an elastic distortion of the crystal lattice. As such, 

the energy of the resulting strain field is stored in the material, 

being recoverable upon removal of the dislocations. The energy per· 

unit length of a dislocation in an isotropic material has been 

calculated by several authors [41, 42]. For type k dislocations, 

it is given by the formula 

(2.53) 

where 11 is the shear modulus of the material, v is its Poissons e 

ratio, and w~ is the radius of the extent of influence of the dis-

location. The quantity a, which is of order unity, represents the 

contribution of the core energy to the total dislocation energy. 

Using equation (2.53), we obtain the following expression for 

the total stored energy per unit volume due to dislocations: 

(2.54) 
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It is clear that this expression requires the stored energy to 

increase with increasing dislocation density; that is, with in-

creasing plastic deformation. This result is consistent with 

available data for polycrystalline [20] andmonocrystalline [43] 

metals. 

Equation (2.54) is adequate as long as we know which glide 

systems are available. For a random distribution of systems as in 

a polycrystalline sample, however, it is convenient to reformulate 

this equation in terms of the random variables introduced in section 

2.2. We thus obtain 

d +~+~ ~/2 2 
e: = (1l/4~) III N b [In(w/w) 

-~-'Tf 0 +~ 

f [cos2 w/ (1-\1) 
-~ 

+ a]f~ f+ sine de d~ dx 
Y3. 

. 2 ]d· + Sln w w, 
(2.55) 

where w is a new random variable define as shown in Figure 1 and 

we have assumed that the dislocations are uniformly distributed 

between edge and screw types. After evaluating the last integral 

in (2.55), we have 

+~+~ ~/2 

e:d = (1l/4) [(2-\l)/(I-\l)]/f J 
-~-~ 0 (2.56) 

sine de d~ dx 

for the total internal energy density due to dislocations in an iso-

tropic (elastic) material. 

2.6 Summary 

The visco-plastic behavior of polycrystalline materials has 

been shown to be characterized by three rate equations: 

.p +~ +~ ~/2 

~ = J f I II I'; bw f-+ f-+ N sine de d~ dx, 
'V b Y3 

(2.29) 

~ ~ 0 
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. 
e = 

N = a (X,~,e) + A(X,~,e) v(X,~,e)eN o 
2 - K(X,~je) v(x,~,e) eN , 

ao(x,~,e)(l-e)/N + [A(x,~,e)(l-e) - \(x,~,e)] v(X,~,e)8 

(2.33) 

(2.35) 

These equations relate the microscopic phenomenon of dislocation , 

production and interaction to the macroscopic plastic strain rate. 
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Although these equations were obtained by restricting the dislocations 

to glide motions only, they are general enough to reproduce a wide 

range of observed material behavior. This includes strain hardening 

and softening, Bauschinger effect, and the development of plastic 

anisotropy. These aspects of the model are illustrated in the next 

section by several examples. 

In conclusion, we note that if we identify the vector of internal 

variables, ~, with the discrete dislocation densities, Nk, the 

functions G and ~ from the thermodynamic development of Section 1.2 

can be identified with dislocation expressions. In the limit of an 

infinite number of dislocation families; that is, Nk 
+ N(X,~,e), 

the dimension of the vector space for d becomes infinite and the 

inner products in equations (1.25) and (1. 26) can be defined using 

integrals. This yields 

+1T +1T 1T/2 
kP 

= (l/41T2) f f f 
-1T -1T 0 

and 

H N sine 
1\,+ ,n 

de d~ dx 

+1T +1T fr/2 • 
w

r = (-PO/41T 2 ) f ,J f G,~ N sine de d~ dx. 
-1T -1T 0 

Comparing (2.57) with (2.29), it is clear that 

(2.57) 

(2.58) 

, 



H + = 4~2 ~ s b W f~b· f+ • 
~,a ~ Y3 

(2.59) 

To obtain a similar relation for G we require the time derivative 

of equation (2.56). Assuming that we is a function of N only and 

that all other parameters in (2.56) are independent of N and time, 

we have 

+~ +~ ~/2 

(2-v)/ (1-v) f J f 
-'IF -~ 0 (2.60) 

Comparing this result with (2.58) then yields the identification 

-Po G,: = ~2 ~e [(2-V)/(1-V)]b
2

[ln(we/w) + C1/we)(dwe/dN) + a] 

(2.61) 

Thus, we see that the constitutive equations we have developed using 

dislocation mechanics are consistent with thermodynamics as pre-

sented in Section 1.2. 
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III. BEHAVIOR OF THE CONSTITUTIVE EQUATIONS FOR POLYCRYSTALLINE 
PLASTICITY 

3.1 Introduction 

To illustrate the utility of the constitutive theory just 

presented, we now consider several examples chosen for simplicity 

and the range of behavior obtainable. In keeping with the idea of 
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simplicity, we neglect thermal effects and assume that the dislocation 

parameters b, w, A, AO' K, and KO are all cqnstant. In addition, 

we assume that the elastic response of the sample materials is iso-

tropic and linear and that dislocation production by fixed sources 

is negligible. With these restrictions in mind, the constitutive 

equations characterizing our samples are as follows: 

.p 
E •. = 
1J 

+1T +1T 1T/2 
A bw Iff ll·· Z;; v S N(l-N/N*) f~b f+ 

1J Y3 
-7. -1T 0 

sine de dcjl dx, 

N = A v S N(l - N/N*) , 

. 
S = v S[A* - S(A + K*N)], 

• P •• 
e .. = e .. + (l/E) [(l+v)o .. - vOkk 01'J·], 

1J 1J 1J 

v = v(ll .. s .. )~o, 
1J 1J 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

where A* = A - A K* = K - K E is Young's modulus, 0 .. is the 
0' 0' 1J 

Kronecker delta (oij = 0 if i ; j, 0ij = 1 if i = j), and all other 

quantities are as previously defined. Here also we have made use 

of summation notation; that is, a repeated index implies summation 

on that index, and have used equation (2.38) to obtain (3.1). 

For comparison of results, it is convenient to non-dimension-

alize the variables involved. We, therefore, define a normalized 

strain tensor and a normalized plastic strain tensor, 



-, 

e: .• = (E/T )e: •. 
1J 0 1J 

-p p 
e:.. = (E/T ) e: .. , 

1J 0 1J 

a normalized stress tensor and a normalized stress deviator, 

cr .. = 0 . . /T 
1J 1J 0 

j = S IT . . . . , 
1J 1J 0 

a normalized dislocation density, 

N = N/N*, 

and a normalized dislocation speed, 

-v = v/v . o 
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(3.6) 

(3.7) 

(3.8) 

(3.9) 

Making the required change of variables in our constitutive equations, 

we have: 

:p 
e: •. 

1J 

+'IT +'IT 

= V 0 A b w N* (E/T 0) f f 
-'IT -'IT 

N A -= v v 
0 

. -
B = v A v 

0 

! !P 
e: •. = e: .. + 

1J 1J 

'IT I 2 f ~ij S v B N(l-N)fb fy3 
o 

sine de d<p dx, 

B N(1 N), 

B [B* - B(1 + B* N) ], 

. - -
(1 + \/) O .. - \/Okk <5 •• 

1J 1J 

V = (l/vo) VeT ~ .. s .. ) , o , 1J 1J 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

where B* = A*/A and B* = (K*/A)N*. The quantity v Ab w N*(E/T ) 
, 0 0 

has the dimensions of reciprocal time and hence defines a character-

istic material rate, ~*. Using this to normalize t, we have the 

following form for our fully non-dimensional constitutive equations: 

d-P 
= 77 JI2 e: .. - B N(1-N) ft fy3 sine de dcp dx, -lJ ~ .. s v 

dt 1J 
(3.15) 

-'IT -'IT 0 

dN A B N(1 N) -
dt 

v, (3.16) 
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dB A B [8* = -
dt 

B(l B*N)] -+ v, (3.17) 

de: .. 
-p do .. v~k de:· . 

(1 + v) o .. , -'l.J = =:LJ + -J..J 
dt dt dt dt 1J 

(3.18) 

where t = ~* t, and A = v A/~* = [b w N*(E/. )]-1. 
o 0 

Due to the complicated nature of the integrand in (3.15), it 

is unlikely that the required integration can be performed analytically. 

In addition, since the dependence of Nand B on x, ~, ande changes 

with time through equations (3.16) and (3.17), the angular dependence 

of the integrand changes with time. It is, therefore, necessary to 

have some numerical means of approximating the required integration. 

To obtain a suitable quadrature scheme we define three new 

variables as follows: 

Zl = sin[2(6 - ~/4)], 

Z2 = sin(2~), 

Z = sin(2x). 3 

(3.l9a) 

(3.l9b) 

(3.l9c) 

Making a change of variables in (3.15) from x, ~, e to z3' z2' zl' 

we have 

(3.20) 

These integrals are in a form suitable for approximation by the 

Chebyshev-Gauss formula [44] 

+1 m f fez) (1 - z2) -1/2 dz ~ (~/m) ih f(Zi)' (3.21) 

-1 

: 
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where zi = cos[(2i - 1)n/2m] and m is the number of abscissa values 

(this formula has the advantage of having precisi()n of order 2m - 1 

with equal weights). Thus we obtain 

_p n3 n2 nl 
de ij ~ (2n 3/nl n2n3) E E E ~l·J·(Xk.~n.em) ~(Xk· .~n.em) 
dt k=R. R.=l m=l ~ ~ 

f+ (Xk.~n.e ) sine. 
Y3 ~ m m 

where em = (n/2)[1 -(2m - 1)/2nl l. ~R. = 'n[1-(2R. - 1)/n2]. 

.Xk = n[l - e2k - 1)/n3]· 

(3.22) 

(3.23) 

This result completes the preliminary mathematical manipulations 

necessary for our subsequent behavioral analysis. 

3.2 Behavior of the Plastic Strain Rate for a Given Dislocation 
Distribution 

The behavior of the plastic strain rate for multiaxial states 

of stress can be explored most easily by choosing a distribution 

for the dislocations. We can then evaluate the right-hand side of 

equation (3.15) without the necessity of solving (3.16) - (3.18). 

For simplicity. we assume that N < < 1. In this case (3.15) reduces 

to the form 

d - P 
e: •. 

-IJ 
dt 

+n +n n/2 

= (3 N J J f 
-n -n 0 

~ .. ~ v f sine de d~ dx. 
1J e 

'" 
(3.24) 

where f denotes the product of the probability density distributions 
£ 

'" for Nand (3 with the distributions f+b and f+ for the available 
Y3 

Burger's vector and glide plane orientations. 



In the examples that follow we consider three different 

functional forms for f e: 
'V 

fe: = 1/4 1f 
'V 

2 
(3.2Sa) 

which corresponds to a uniform dist~ibution in all variables with 

respect to Burger's vector and glide plane orientation, and 

f = (5/4 1f2) sin4 (cp) sin4(6), 
e: (3.2Sb) 
'V 

f = (3/4 1f2) sin2(cp/2) sin
2

(6)i 
e: 

(3.2Sc) 
'V 

which corresponds to a uniform distribution in all variables with 

respect to Burger's vector orientation and a nonuniform distribution 

with respect to glide plane orientation. It will be shown that 

(3.25a) leads to isotropic behavior, (3.25b) leads to orthotropic 

behavior (due to symmetries in the distribution function), and 

(3.25c) leads to fully anisotropic behavior. Thus we can conclude. 

that changes in the distribution of Nand S with respect to glide 

plane orientation can result in the development of plastic anisotropy 

as flow progresses. This phenomena is often observed experimentally 

but is not readily explained by other theories. 

For simplicity we assume that the dislocation speed is given 

by the power law (2.51). Using equation (3.14), this yields the 

relation 

- Ill .. - In (3.26) v = s.. , 
1J 1J 

where we have neglected the back stress. For the case of a linear 

dependence of v on - that is, 1, ll .. s .. ; n = 
1J 1J 

- (3.27) Z;; v = ll.· s. , 
1J 1J 

and the integrals (3.24) can be evaluated analytically for all three 
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forms chosen for the probability density, f. Omitting the e: 
'V 

algebraic details, the results are as follows: 

-p 
de: 11 = (B N/15) [5

11
- (1/2) 522 - (1/2) 53.3], 

dt 

-p 
de: 12 = (B N/tO) -
dt 

s12' 

-p 
de: 13 = (B N/10) -

s13' 
dt 

-p 
de: 22 (B N/15) [5 22 = 
di 

-p 
de: 23 = (B N/l0) 5

23
, 

di 

- (1/2) -
s33 - (1/2) 511 ] , 

-p 
:~ 33 = (B N/15) [533 - (1/2) 511 - (1/2) 522 ], 

for f given by (3.25a), e: 
'V 

-p 
de: 11 = B N (5/63) [5

11 
- (1/2) 522 - (1/2) 533] , 

dt 

-p 
de: 12 = B N(17/126) 512 , 
di 

-p 
de: 13 = B N(17/126) 513 , 
di 

dEP -
di 22 = B N(1/21) [522 - (1/6) s33 - (5/6) 511], 

-p 
de: 23 = B N(7/126) 523 , 
di 

-p 
de: 33 = B N(1/21) [533 - (5/6) 511 - (1/6) 522 ] ~ 
dt 

for f given by (3.25b), and e: 
'V 

(3.28a) 

(3.28b) 

(3.28c) 

(3. 28d) 

(3.28e) 

(3.28f) 

(3.29a) 

(3.29b) 

(3.29c) 

(3.29d) 

(3.2ge) 

(3.29f) 

-p 
de: 11 = B N[(1/14)5 11 - (3/70)5 22 - (1/35)533 - (3/112)523], 
dt (3.30a) 
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-p 
de 12 = a N[(4/35) s12 - (39/2240) s13]' 
dt 

(3.30b) 

-p 
de: 13 = a N[ (13/140) 513 - (39/2240) 512], 
dt 

(3.30c) 

-p 
de: 22 = 
dt 

-p 
de 23 = 
dt 

-p 
de: 33 = 
dt 

a N[(1/14) 522-(1/35) 533-(3/70) 511 -(3/560) 523], 

(3.30d) 

a N[(13/140) 523-(3/224)511 -(3/1120) 522 -(9/560)5331. 
(3.30e) 

a N[ (2/35) 533- (1/35) 511 - (1/35) 522 + (9/280) 523], 

(3.30f) 

for f given by (3.25c). e: 
IV 

Equations (3.28) clearly indicate that the plastic strain rate 

is isotropic in this case. This is just the behavior that would be 

expected for a polycrystalline sample in which the dislocations are 

uniformly distributed over all glide systems and all glide systems 

are equally probable. The form of equations (3.29), on the other 

hand, can be seen to be consistent with the definition of ortho-

tropic behavior. As in the isotropic case, the principal axes of 

stress coincide with those of the plastic strain rate. The dependence 

of the principal plastic strain rates on the principal stresses, 

however, does not exhibit the symmetry characteristic of isotropy. 

Finally, although equations (3.30) do possess some symmetry, the 

- p -presence of tensile stress terms in the expression for ds 23/dt 

clearly implies that the plastic strain rate exhibits anisotropic 

behavior in this case. 

For other than the linear stress-speed relation just considered, 

the integrals in (3.24) cannot be easily evaluated except by numerical 

means. We therefore make use of the results expressed in (3.22) to 



, . 

compute the plastic strain rate for more complicated stress-speed 

relations. As examples we have chosen the power function (3.26) 

with n = 3, 5, 11, 21, and 51. Odd integer powers have been chosen 

for computational economy while illustraing the behavior as n becomes 

large (since using (2.51) with n ~ 10 - 50 seems to fit the data 

for lIIanymetals well). If n is an odd integer greater than zero, 

(3.31) 

where sl and s2 are the principal components of the normalized stress 

deviator. This result can be expanded by using the binomial theorem. 

Thus 

z; v = 
n 
1: r=o 

and we can write 

-p 
de: .. 
- 1J = 
dt 

e N ~ C~: snl-r 5
2
r , 

r=o 1J 

where the coefficients C~: are defined by the formula 
1J 

,n3 n2 nl 
= (2n3/nln2n3)(nr) E E E ~. '(Xk'.1,e ) 

k=l 1=1 m=l 1J,' m 
c~: 

1J 

(3.32) 

(3.33) 

• [~22(xk'.1,em) - ~33(Xk'.1,em)] 
r 

f (Xk'.R,e) sine. (3.34) e: ~ m m 
IV 

These coefficients need to be calculated only once. Equation (3.33) 

can then be used to compute deP/dt for arbitrary 51' 52' resulting 
IV 

in a considerable savings in computational effort. 

A convenient means for comparing the plastic strain rates 

obtained with various stress-speed relations and dislocation system 
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P .p 
distributions is the rate of plastic work, w = tr(a € ). 

'" '" 
Equiva-

-P lently,we can define a normalized rate of plastic work, w 
!P = tr(o € ), 

'" '" 
or, in terms of principal stresses, 

(3.35) 

Using equations (3.33) and (3.34) to calculate the plastic strain 

-P . 
rate, we have computed w l.n a square in (°1-°3),(°2-°3) space for 

n = 1,3, 5, II, 21, and 51, and for f given by (3.25a), (3.25b), 
€ 

'" and (3.25c). The results are shown in Figures 3 - 25, where we 

have plotted contours of constant plastic power dissipation (rate 

of plastic work). To faciliate comparison, the same contour values 

were used in all plots for a given f . 
£ 

'" Consider first the results for a uniform distribution of dis-

locations and glide systems (Figures 3 - 14). For small n, the 

contours closely approximate the von Mises yield surface in shape 

and, in fact, are identical to it for n = 1. As the value of n is 

increased, the contours move closer together and approach the yield 

surface of Tresca in shape. If we define the yield stress to be 

that state of stress at which the plastic power dissipation reaches 

a prescribed critical value, these contours correspond to possible 

yield surfaces. 

The appearance of Tresca type surfaces as n is increased is 

due to the fact that for large values of n there is a signficant 

difference in dislocation speed between glide planes on which the 

shear stress is maximum and all other glide planes. Plastic flow 

is therefore dominated by the motion of dislocations on such planes 

resulting in Tresca type yielding. For small values of n, the dis-

location speed is not so strongly dependent on glide plane orientation 

!: 
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and dislocation motion on a large number of glide planes will 

contribute significantly to the flow, thus resulting in von Mises 

type yielding. Behavior similar to this was also noted by Lin 

and If.&J13] based on a simpler model. 
,11...... '-'.:::. 
r-

The large spacing of the:contours for small n suggests a 

gradual increase in plastic strain rate with stress. This behavior 

is typical of such materials as artificial graphite [45]. The 

concentration of contours for large n, on the other hand, implies 

that there is a sharp increase in the plastic strain rate after 

yielding as is observed in tests on mild steels. To more clearly 

illustrate this behavior and its dependence on n, we have plotted 

the plastic power dissipation in perspective (Figures 9 - 14). 

Note that in all cases there is a flat area of essentially zero 

dissipation before yielding. This is followed by a rapid increase 

-p 
in w .as the stress is increased. The rate of this increase, as well 

as the shape of the surface is seen to depend on n in the manner 

just discussed .. The flat portion of the surface at the top is the 

re~;ultof putting limits on the plotting space and has no real 

significance. 

The results for the cases when f is given by (3.25b) and (3.25c) e 
'V 

shown in Figures 15 - 20 and 21 - 26, exhibit essentially the same 

behavior with respect to increasing n as was observed when f was 
.t 

given by (3.25a). The contours are somewhat distorted from these 

obtained for the previous cases, however, due to the anisotropic 

behavior pointed out in our analytic solutions for n = 1. 

3.3 Behavior of the Constitutive Model Under Uniaxial Loading 

In order to illustrate the type of material behavior our theory 

is capable of modeling, we consider three examples using uniaxial 



stress deformation under the assumption of homogeneous strain. 

They are (i) a constant strain rate test, (ii) a stress relaxation 

test, and (iii) cyclic loading at constant strain rate magnitude. 

These examples have the advantage of demonstrating the essential 

features of the model while maintaining a reasonable degree of 

computational simplicity. 

For uniaxial loading under homogeneous strain, equations (3.15) 

and (3.18) reduce to 

and 

-p 
dE 

dt 
= 

1 +1T +1T 12 

41T2 f f 
-1T -1T 0 

do dE 
= 

dt dt 

-p 
dE 

dt 

(3.36) 

(3.37) 

respectively, where we have assumed that all glide planes and all 

Burger's vector orientations are equally probable. In addition, the 

dislocation speed relation for our sample material, which we again 

take to be the empirical power law, simplifies to 

(3.38) 

In order to maintain a uniaxial state of stress during isochoric 

plastic deformation, the distribution of dislocation systems must 

possess certain symmetries throughout the deformation. This implies 

that we can take N and a to be independent of the orientation angles 

x, ~, and e. One way to ensure this independence and the required 

symmetry is to let N and a be initially uniformly distributed and 

replace v in equations (3.16) and (3.17) by its average value, 

+1T +11" 1T/2 
<v> = (1/4 1T2) f J J v sine de d~ dx. (3.39) 

-1T -1T 0 
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This yields the following set of nonlinear ordinary differential 

equations characterizing uniaxial plastic deformation: 

-p 
-I-n-ll de: 

C B N(l-N) = CJ CJ , 
dt e: (3.40) 

dN 
A C B N(l-N)lonl, == 

dt v (3.41) 

dB = A C B[B* - B(l + B* N)] lonl, 
dt v (3.42) 

do dB 
-p 

de: 
= = 

dt dt dt 
(3.37) 

-where we have substituted (3.38) for and the coefficients C v e: 

and C are defined by v 

+1T +7T 1T/2 I n+11 . C = (1/4 1T2) Ilf ~11 sine de d~ dx (3.43) e: 
-1T -1T 0 

+1T +1T 1T/2 
1~~11 sine de d. dX and C = (1/4 1T2) I I I (3.44) 

V 

-1T -1T 0 

respectively. For our examples, the integrals in these expressions 

were evaluated using the quadrature scheme given in Section 3.1 

and the differential equations were solved numerically using a 

routine based on Gear's method [46, 47]. 

Figures 27 - 29 show typical results for constant strain rate 

tests. In Figure 27 we have plotted the normalized stress, 0, versus 

the normalized strain, £, for various values of normalized strain 

rat~d£/dt. These results clearly show a rate sensitivity with 

.higher stresses prevailing for a given value of strain at higher 

strain rates. A yield drop is also observed with the magnitude of 

the drop increasing with increasing strain rate. In Figure 28 



curves for the same strain rate values are plotted for a material 

with the same parameters as those used in Figure 27 but a higher 

initial dislocation density. Comparison of these curves with the 

previous ones shows that the yield drop has decreased but the rest 

of the curve has remained unchanged. This indicates that the yield 

drop is due mainly to the magnitude of the initial dislocation 

density, No' relative to N*. When N /N* is small the dislocation o 

density initially increases much faster than the plastic strain. 

This produces a cascade effect which results in the yield drop. 

Finally, in Figure 29 we show the variation in results that can 

be obtained by changing some of the parameter in equations (3.40)-

(3.42). Among other things we note that the yield drop is also 

affected by the value of B*, which controls the rate of hardening, 

and the exponent in the dislocation speed relation. 

In a stress relaxation experiment, the material is subjected 

44 

to an instantaneously applied strain, £ , which is maintained constant. o 

The initial stress is given by the elastic response of the material 

and relaxes by relief of elastic strain as plastic strain accumulates. 

-In Figure 30, we have plotted curves of normalized stress, 0, versus 

normalized time, t, for several values of normalized strain, £ . o 

For values of 

very slowly. 

£ below approximately 3 the stress initially decays 
o 

At the smaller values of £ the dislocation density o 

increases rather slowly. If the initial dislocation density is small, 

as it is in this case, it takes a certain amount of time for it to 

build up to a value at which the plastic strain rate becomes significant. 

Thus we observe an initial slow decay followed by a rapid quasi-

exponential decay when the dislocation density builds up. Figure 31 

r. 
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shows the same curves for a material with a larger initial dislocation 

density. In this case, however, all curves have the expected 

behavior in thalt the stress decays exponentially with time. 

For the case of cyclic loading, we take the total strain rate 

to be given by the equation 

(3.45) 

where sgn denotes the signum function, which is plus or minus unity 

according to, the sign of its argument. This expression yields a 

constant magnitude of r l for the applied strain rate and a constant 

amplitude of r 2 for the applied s~rain cycle. In Figures 32 - 34 

we have plotted normalized stress versus normalized strain for three 

cycles with r l = 10 and r 2 = 20. The first plot is for a material 

with a small initial dislocation density. It exhibits ~ yield drop 

followed by softening and finally by hardening. When the initial 

dislocation density is increased, as shown in Figure 33, the yield 

drop is eliminated along with the initial softening. This behavior 

is similar to that observed by Kelly and Gillis [48] in their recent 

work on cyclic loading. Figure 34 demonstrates the behavior obtained 

when a fraction of the immobile dislocations become mobile at each 

strain rate reversal. As can be seen, the stress decreases sharply 

when this occurs. This behavior is consistent with recently re­

ported experimental work on single crystals [49]. 



IV. CONCLUSIONS 

Using arguments based directly on the dislocation processes 

involved, we have derived a set of constitutive equations for 

polycrystalline plasticity that is fully consistent with thermo-

dynamic requirements. The idea of randomly distributed glide 

plane orientations and Burger's vector directions has been intro-

duced to facilitate handling of the polycrystalline structure. 

This avoids the awkward dislocation arrangement tensors associated 

with the statistical dislocation theory proposed by Krtlner [23] 

as well as the necessity of knowing a priori the available glide 

. systems at each material point for all times of interest. Instead 

we obtain equations involving probability distributions for varia-

bles which are directly related to measurable dislocation quanti-

ties. 

In our initial derivation of the plastic strain rate equa-

tion we consider both conservative and non-conservative motions 

of arbitrary dislocations (i. e., they can be edge, screw, or mixed). 

Non-conservative motions however, are rare at normal temperatures. 

Hence we restrict our final analysis to conservative motions only, 

i.e. pure glide. For this case it is shown that the tensorial 

character of the macroscopic plastic strain rate can be attributed 

entirely to a second rank symmetric tensor, ~ , directly related 
rv 

to the ordinary elements of crystallographic glide and independent 

of the edge or screw character of the dislocations. 

The evolutionary equations for the dislocation density and 

the mobile fraction are based on single and pair-wise dislocation. 

processes. These include production by fixed sources (such as 

46 



Frank~Read sources), breeding by cross-glide multiplication, im-

mobilization of dislocations by inclusions and other dislocations, 

and pair annihilation. As a result of the inclusion of anni-

hilation events, the equations obtained allow for the occurrence 

of such phenomena as saturation of the dislocation density. In 

other theories, e.g. Kelly and Gillis [11] , this has been 

included only by using additional assumptions. 

Simplified forms of these evolutionary equations have been 

developed for the case when production by fixed sources is un-

important and the mobile fraction is small. As this is the usual 

situation, these simplified equations are probably ad~quate for 

most cases. Moreover, it has been shown that an analyticexpres-

sion for the mobile fraction in terms of the dislocation density 

can be obtained in this case, provided that the equa1 .on coeffi-

cients are independent of S and time. If these coefficients , . 

are also independent of N, this expression has been shown to re­

duce to the exponential form suggested by Gilman [ 16] in the 

limit of zero probability for annihilation events. 

Because of the importance of the dislocation velocity to the 

evolutionary equations for Nand S, we have included a brief 

discussion of the stress and,temperature dependence of this quan-

tity. Resistance to dislocation motion.is assumed to be con-

trolled by activation past fixed obstacles and viscous glide 

through a clear lattice. Two different activation models have 

been considered, (1) thermal activation, and (2) tunneling. 

After modification to account for relativistic effects, the ther-

mal activation model with an athermal back stress is shown to 
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yield essentially the same results as the tunneling model. 

In order to further correlate our theory with results obtained 

from therillodynamics, we have developed an expression for the ener­

gy stored in the crystal lattic~ as a result of the presence of 

dislocations. This represents the fraction of the total plastic 

work that could ultimately be recovered if the dislocation~ were 

removed. The expression obtained assumes that the dislocations 

are uniformly distributed between edge and screw types and that 

the crystal matrix is isotropic ahd linearly elastic. It re­

quires that the stored energy increase with increasing plastic 

deformation, but at a slower rate, as is observed experimentally. 

Usihg our plastic strain rate equation, characteristic 

yield conditions have been computed for three sample dislocation 

probabili ty density functions. ,For simplicity, the dislocation 

speed was assumed to be given by the empircal power law and ther­

mal effects were ignored. When the stress-speed relationship is 

linear, we have been able to evaluate the integrals in the plas­

tic strain rate equation analyt~cally. The solutions obtained 

clearly show the ability of our theory to model the development 

of plastic anisotropy. For higher powers in the stress-speed 

relation we must resort to numerical methods to evaluate the inte­

grals involved and we have suggested a particularly efficient quad­

rature formula for this purpose. It has Gaussian precision but 

uses equal weights and equally spaced abscissas in the random 

variables X. 4>. and 6. Plots of the calculated yield surfaces 

show that the shape varies from that of von Mises at small expo­

nent values to that of Tresca at large exponent values. This be-

48 
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havior has been attributed to the fact that at large exponent 

values the stress-speed relation has a strong orientation depen­

dence. This makes the dislocation speed very large on glide 

planes close to those with maximum shear stress and negligible 

on all others. Hence only a few glide planes contribute to the 

plastic flow in this case giving a Tresca type surface. This vari­

ation in the shape of the surfaces with exponent valu~ has also 

been shown to be relatively independent of the isotropy of the 

dislocation probability distribution. 

To demonstrate the utility of our theory we have examined 

several examples of uniaxial stress deformation. These examples, 

which consist of constant strain rate, stress relaxation, and 

cyclic loading tests, show that our theory can qualitatively model 

most observed one-dimensional results. These include the occur­

rence of upper and lower yield points, material hardening and soft­

ening, Bauschinger effect, and strain rate sensitivity. Among 

other things, it has been shown that the occurrence of a yield 

drop in the constant strain rate. test and a delay time in the 

stress relaxation test are particularly sensitive to the initial 

dislocation density relative to the saturation density. 

With regard to further developments of this theory, we 

believe that identification of the probability density functions 

involved is probably the most important. To do this properly non­

uniform three-dimensional experiments would have to be performed. 

A numerical identification scheme such as that proposed by Iding' 

[50 J could then be used to obtain parameter values. In lieu of 

this, a simple tension-torsion test could possibly provide an iden-
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tification for some of the structure of the distributions. 
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Transformation from global coordinates (xl' x
2

' x
3

) to 

local coordinates (Y
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, Y
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, Y3) can be accomplished by a sequence 

of three rotations: 
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Since rotations are orthogonal transformation, the inverse 

transformation, from local to global coordinates, is a 
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-1 T = A = A • 
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Fig. 1 
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