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Abstract 
The Simulation Problem Analysis Research Kernel (SPARK) environment for simulation of nonlinear differential 
algebraic systems has been revised to improve modeling convenience, modeling .flexibility, and solution efficiency. 
Solution efficiency has been enhanced IJy automatic decomposition of the problem into strongly connected compo­
nents: characterized as separately solvable subproblems. The normally constructed data flow graph in SPARK 
allows such components to be identified and placed in the correct order for sequential solution resulting in signif­
icant speed-up for problems that are not strongly interconnected. Modeling .flexibility has been enhanced IJy add­
ing Multivalued Objects. Whereas conventional SPARK objects represent single eqliiitions .and produce a single 
result, this extension allows more complex objects which themselves solve simultaneous sets of equations for mul­
tiple results. The need for such objects arises when submodels are to be solved independently of the SPARK 
solver; e.g .• to use a specially tailored algorithm. With regard to modeling convenience, the graphical user inter­
face now allows model definition by selection and placement of object icons in a graphical window in an X-win­
dows environment. These objects can be connected with macro links comprising multiple problem variables. The 
resulting problem is then translated into a Network Language Specification file for SPARK processing. 

Strong Component Decomposition 
The Case for Decomposition 
Often, the sets of simultaneOus, nonlinear equations 
required in simulations can be quite large, making 
solution efficiency an important issue. Since the 
number of steps required for solution is O(n3), where 
n is problem size, one way to seek improved effi-
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ciency is to break the problem into several smaller 
ones, to be solved one at a time. This principle of 
"divide and conquer" is widely accepted, but it needs 
to be observed that there are good ways and bad 
ways to decompose a problem. For example, if we 
break the problem into two parts A and B that are 
interdependent, i.e., A depends on variables that are 
calculated in Band vice versa, solution requires iter­
ation between A and B until convergence is achieved 
on the coupling variables. This is not a particularly 
good situation; since at best we lose, .through the iter­
ation between the parts, some of what we have 
gained through size reduction. If the problem is non­
linear, it is also likely that iteration is required inter­
nal to A and B, and iteration within iteration is 
fraught with numerical difficulties. For one thing, the 
convergence theorems that apply to iteration of sets 
of nonlinear equations (Ortega 1970) do not apply in 
this case. Clearly, we are much better off if we can 



break the problem into pieces that are not interdepen­
dent. i.e., either A or B can be solved without any 
results from the other; the independent part is solved 
first. then the second part. and we are finished. The 
entire efficiency gain due to size reduction is then 
realized. 

Most ·simulation programs offer some method of 
problem decomposition, but usually the decomposi­
tion encouraged by these programs is not ideal from 
the standpoint of solution efficiency .. Modular simu­
lators, e.g., 1RNSYS (Klein 1988), evaluate portions 
of the problem internal to the modules, which is a 
form of decomposition. WISely, the modules are usu­
ally crafted so as to avoid internal iteration since the 
global solver iterates for convergence of the external 
variables. However, the decomposition into modules 
is done manually, and it is common practice to make 
the divisions along lines suggested by physical com­
ponent and subsystem boundaries. This leads to mod­
ules that combine equations that, while related 
physically, are not necessarily related in an efficient 
numerical solution procedure. For example, both 
mass and energy balance equations must be enforced 
in a collector component of an air duct system. Often 

· an air duct system problem will have specified mass 
flows, but will require iteration to satisfy the energy 
balance equation. Since all embedded equations are 
executed at every call of the ·module, un-needed 
work is performed as the mass equation is needlessly 
reevaluated at every iteration. 

The HVACSIM+ program (Park 1985) has a modular 
structure like 1RNSYS. In addition, the user is 
allowed to specify a higher form of decomposition 
unit. called a block, containing several or many mod­
ules. There can be iteration both within and among 
these blocks. Again, since users customarily hand­
craft the modules and blocks along lines paralleling 
the physical system, there is little likelihood of 
achieving independence among them, so the itera­
tion-within-iteration situation arises. 

SPARK Problem Decomposition 
The Simulation Problem Analysis Research Kernel 
(SPARK) differs radically from other simulation pro­
grams with regard to problem decomposition. This is 
because the fundamental unit of a SPARK model is 
an object containing a single equation rather than a 
module. Large modules, called macro objects, are 
allowed, but are only temporary assemblies of equa­
tion objects provided for convenience of the modeler. 
They are disassembled into equation objects as pro­
cessing begins, so that the SPARK solver has access 
to individual equations and variables. From the equa­
tions and variables a data flow graph is constructed, 
representing all data dependency throughout the 
problem. 

This structure allows decomposition to be done so as 
to maximize solution efficiency using well known 
algorithms on graphs. Separately solvable parts of 
the problem are detected and placed in the correct 
order for solution without iteration among the parts. 
The basic principles of the SPARK decomposition 

method can be demonstrated wiih a simple example. 
Figure 1 shows a data flow graph that might be con­
structed by SPARK from a problem specification. 

. Figure 1. Problem data flow graph 

Here we see a graph with 8 vertices and 9 directed 
edges. Each vertex represents an equation (perhaps 
nonlinear), producing a single variable that is propa­
gated to other vertices (i.e., equations) along the 
edges of the graph. Inspection of this graph reveals 
much about the proper solution process. It can be 
seen that iteration will be required to solve it because 
there are cycles (closed paths) in the graph (e.g., 
solving c requires solving b, which requires solving 
d, which requires solving c, _.). Also, it is evident 
that at least two vertices are required to break all 
cycles. A little thought will reveal that this means at 
least two iteration variables will be required, e.g., the 
ones calculated at d and g. Assuining that a Newton~ 
Raphson iteration method is employed to calculate 
new values, this means that a 2x2 linear problem has 
to be solved at. each iteration if we solve the entire 
problem together. However, closer examination 
reveals that the problem partitions nicely into four 
non-interdependent parts, represented by vertex sets 
{a},{b,c,d},{e,f,g}, and {h}. Obviously, we should 
begin by solving {a}, since it has no inputs from . 
ojher parts of the problem*. Then we rould simulta­
neously solve the set (b,c,d}, an iterative problem in 
one variable. Once this is finished the { e,f,g} part 
could be solved iteratively, and finally the singleton 
{h}. It is thereby seen that the problem can be solved 
by two sequential, iterative problems with a single 
iterant in each, and evaluation of two single equa­
tions. What we did above by visual inspection is eas- · 
ily automated with well-known graph algorithms. 
Graph terminology uses the term component to rep­
resent a particular subset of edges and vertices of a 
graph. A component in which ever vertex can be 
reached from every other vertex, and is maximal in 
the sense that no other vertices could be included 
without losing this reachability, is said to be a 
strongly connected component. or strong component 
for short. In simple terms, it means that while you 
can reach any vertex in the strong component from 
any vertex within it, you cannot get back to it once 
. you leave. It will be· observed that this precisely 
describes the conditions for non-interdependent 
problem components. Therefore, since there are sim­
ple algorithms that identify the strong components of 
a directed graph (Aho, Hopcroft. and Ullman 1983), 
computation problems can be automatically decom­
posed into non-interdependent sub-problems. This is 

* Exogenous values possibly required at various ver-
3 tices are not shown. 
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what is done in the most recent version of SPARK. 

Let us compare this solution approach to the alterna­
tives. One approach would be to put the equation at 
every vertex in residual form and treat every variable 
as an iterant. This would require solution of a set of 
eight linear equations at each Newton iteration, 
requiring roughly 83 steps per iteration. Although 
done by many solvers, this is clearly far from opti­
mal. Merely by using a small cut set algorithm we 
can reduce the problem to two iterants, requiring 
only 23 steps periteration, as has always been done 
in SPARK. This gives a theoretical solution time 
reduction of 64:1. By strong component decomposi­
tion we instead solve two single equations com­
pletely outside of any iteration, and two !­
dimensional iterative problems requiring 13 steps per 
iteration. Ignoring the singletons, this is a 4:1 reduc­
tion relative to the normal SPARK cut set reduction, 
and 256:1 relative to the residual approach; While 
these reductions will not be fully realized due to 
overhead (see below), they provide strong motivation 
for pursuing the approach. Other than SPARK, the 
only program of which we are aware that decom­
poses the problem into strong components is EES 
(Klein 1991). However, the current version of EES 
allows algebraic problems only, so is not directly 
useful as a simulation tool. 

Implementation 
Because the implementation of strong component 
(SC) decomposition was a straightforward extension, 
we begin here by a review of the basic SPARK meth­
odology. FJrSt, SPARK creates a bipartite graph in 
which the equation objects are represented in one set 
of vertices, and the problem variables in the other. A 
matching algorithm (McHugh 1990) is then applied, 
yielding an equation for each variable. Subsequently, 
a directed graph is created, not unlike the simple one 
depicted in Figure 1. This graph is processed by a cut 
set algorithm (Levy and Low 1988), yielding a small 
set of vertices that cut all cycles. For each vertex in 
the cut set, a new vertex, called a break, is added to 
the graph and all edges emanating from the original 
cut set vertex are caused to emanate instead from the 
break vertex. This creates an acyclic graph as shown 
in Figure 2. 

Rgure 2. Acyclic data flow graph. 

A topological sort (Aho, Hopcroft, and Ullman 1983) 
is then done on the vertices of the acyclic graph, 
yielding a visitation order; evaluating the equation 
objects in this order yields a new value for each orig­
inal cut set vertex for a set of "guess" values at the 
break vertices. This is called "driving" the data flow 
graph. The differences between the guess and calcu­
lated values are treated as the "functions" which the 
Newton-Raphson iteration forces to zero. 

The shortcoming of the above process is that it 
results in firing the entire graph at each iteration. The 
pmpose of the revisions was to instead detect the 
strong components and treat each one separately, but 
in the same numner as just descnbed. 

The implementation attempted to make maximum 
use of code and data structures in the existing 

· SPARK. COnsequently, the parser which interprets 
the problem specification file and generates the basic 
problem data structnres, remained unchanged. Also 
unchanged were the basic graph structures and algo­
rithms. Since matching precedes construction of the 
data flow graph, and hence strong component 
decomposition, the matching algorithm also survived 
unchanged. After the matching, however, it was 
apparent that extensive changes would be necessary 
either in the basic structure of the data, or in the algo­
rithms. We could either build a completely separate 
data flow structure for each strong component, or 
leave the existing whole-problem structure in place 
and simple tag the objects to identify their strong 
component membership. The former would require 
major changes in data structures with minimum algo­
rithm changes, while the latter would be the reverse. 
The latter approach was selected because the data 
flow structure is rather complex, while the algo­
rithms are straightforward. 
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With this approach, the directed problem graph is 
created as before. However, before doing the cut set, 
an SC algorithm is applied to the directed problem 
graph, marking each object with the its strong com­
ponent number. Notably, the algorithm is such that 
the strong components are discovered in a reverse 
topological ordering, so along with the decomposi­
tion we learn the correct solution order. For efficient 
access, object pointers are collected into an array for 
each strong component Then the cut set algorithm is 
applied to the entire problem· and the break vertices 
are· added exactly as before, but now marking them 
with the strong component number. This yields a 
whole-problem, acyclic data flow graph exactly as 
shown in Figure 2, except now each vertex is marked 
with a strong component number. The solve proce­
dure, which previously subjected the entire data flow 
graph to the Newton-Raphson process, now contains 
a loop over the strong components in topological 
order. In a particular pass through this loop, only the 
vertices in the corresponding strong comP<>nent are 
processed. Thus we solve the problem in pieces, 
although it is all stored in the same data structure. 

Benchmark Testing 
In order to see how much solution performance was 
improved, a problem was constructed that should 
greatly benefit from strong component decomposi­
tion. This problem consisted of ten simple zones con­
nected'in series by a single air stream, Figure 3. 

J 
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Rgure 3. Rooms in series. 

The zone model (a macro object) was such that a sin­
gle break variable was required. Without strong com­
ponent decomposition, 10 iteration variables are 
required, and a 10x10 linear set has to be solved at 
each Newton-Raphson iteration. With strong compo­
nent decomposition, there are instead 10 sequential 
problems to be solved, each with a single break vari­
able and a 1x1 linear set. Of course, the results pro­
duced agree precisely with those produced by earlier 

100 versions of SPARK (see Figure 4). 
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Figure 4. Temperature (F) of rooms 1, 3, 5, 7, 
and 10 vs. Time (h) 

The observed speed-up for solving this problem at 
0.1 hour intervals over a 1000 hour simulation period 
was between approximately 3 and 4, depending on 
the processor used (Sun Spare 2: 2.65, Gateway 2000 
486133: 3.73). 

If the entire execution time was attributable to solv­
ing the linear set within the Newton-Raphson loop, 
we would expect a theoretical speed up for this prob­
lem of lx103:10xl3=100:1. However, many other 
operations must be carried out, not all of which are 
affected by the decomposition. If we only look at the 
time spent in solving the linear set, we see a speed-up 
of 16: 1, still somewhat lower than the theoretical 
value. One reason is that with decomposition there 
are more calls to the functions that carry out the 
Newton-Raphson process. We are investigating ways 
to improve performance in this area of the code. 

With the aid of profiling tools, we also discovered 
other places where SPARK perfonnance could be 
significantly improved. In particular, a great deal of 
time is spent moving arguments into place for the 
function calls. This is not unexpected, since every 
equation results in a function call. However, it 
appears that a simple change in addressing could 
achieve an additional speed-up by another factor of 5 
2. This change is currently under investigation. 

Multivalued Objects 
The Need for Multlvalued Objects In an 
Equation-Based Environment . 
Much of the knowledge and expertise of the building 
simulation community is embodied in FORI'RAN 
code in such venerable programs as BLAST, DOE-2, 
TRNSYS, and HVACSIM+. One of the great defi­
ciencies of the new simulation environments such as 
SPARK and IDA (IDA 1988) is the lack of complete 
building component libraries needed for building 
simulation. The developers of such environments 
tend to concentrate on the more exciting parts of the 
development task and allow the creation of compo­
nent libraries to languish. Unfortunately, it can be 
difficult to use the old component models directly in 
the new environments. SPARK, for instance, needs 
its objects and macro objects in equation-based fonn. 
Furthennore each SPARK object is initially input­
output free. When SPARK does assign inputs and 
outputs, only one output per object is allowed. In 
contrast, FORTRAN subroutines are algorithmic, 
have assigned inputs and outputs, and can have mul~ 
tiple outputs. 

The new simulation environments may also not be 
ideal for solving certain types of problems. There is 
no reason to expect, for instance, that SPARK is an 
ideal method for swdying forced or natural convec­
tion in a room. It is likely that such a study would 
employ an existing stand-alone FORTRAN program. 
It would be very useful, however, if there were a nat­
ural way in which such a program could be included 
as a subproblem in a larger SPARK simulation prob­
lem. The hard-coded convection model' might fonn 
part of a larger SPARK zone model, for instance. 

For the above reasons the SPARK simulation envi­
ronment is being extended to include multivalued 
objects; i.e., objects that for a given set of inputs pro­
duce multiple outputs. These objects violate the basic 
philosophy of SPARK and ilihibit SPARK's methods 
for reducing the effective problem size. However for 

·practical reasons such objects may be needed for a 
particular problem and there is a fairly natural way of 
including them in the SPARK data structure. 

MuHivalued Objects In SPARK 
In SPARK the strategy for handling multivalued 
objects is to replace a multivalued object having n 
inputs and m outputs with m objects, each having n 
inputs and 1 output. This will be done in a way trans­
parent to the user. That is, the problem graph seen by 
the user either via the graphical interface or as a Net­
work Specification Language (NSL) problem file 
will be unchanged, but the solver portion of SPARK 
will change the internal representation of the prob­
lem by replacing multivalued objects with sets of sin­
gle-valued objects. Since multivalued objects are 
special in the sense that they require special process­
ing by the solver, they need to be denoted as special 
in NSL by the addition of a new class type. Usually, 
in SPARK, a class represents an equation and is cre­
ated with the NSL define keyword. There are other 
class types, however. A class representing a predictor 

. . · .. ~ p 



formula is created by the define _yre keyword for 
instance. When an object is instantiated, it inherits its 
type from its class. In NSL a class of multivalued 
objects will be created by using the new keyword 
define_ mult _out as in the following example. 

define _mult_ out example(in 1 ,in2,in3,outl ,out2) 

{ 

} 

double inl,in2,in3,outl,out2; 

outl = examplef(inl,in2,in3); 
out2 = examplef(inl,in2,in3); 

Here a class example of type MULT_OUT is created. 
The C function associated with it is examplef. It will 
be invoked with an argument list inl,in2,in3,outl, 
out2; that is, the argument list will contain the inputs 
followed by the outputs. In most cases example/ will 
just call the FOR1RAN subroutine or function 
needed to model or solve this portion of the problem. 

In addition to this explicit change to NSL, the under­
lying data structure must also be enhanced. In partic­
ular, a vector of integers obj_list will be added to the 
object data structure. In the solver, this list will con­
tain the unique object numbers of all the objects in a 
set of single-valued objects that replace a multival­
uedobject. 

The SPARK solver will start with the problem graph 
defined by the user. The solver changes this graph by 
replacing each multivalued object in the problem 
with a set of single output objects, each having the 
same inputs as the original object but having only 
one of its outputs. The outputs of these new objects 
are preassigned, so they do not have to go through 
the matching process. Once the normal objects have 
been matched with variables in the usual way, the 
directed problem graph, containing all the objects, 
can then proceed through cut set reduction normally 
and the final SPARK graph, the data flow graph, can 
be created as usual. The final step before numerical 
solution of the problem is to create the firing list: a 
list of objects in the order in which they will be exe­
cuted. When an object is about to be added to the list, 
SPARK will check whether its type is MULT_OUT. 
If it is, all the objects in obj_list are added to the fir­
ing list in sequence. However, only the first of these 
objects will have the ability to execute the C function 
associated with the original multivalued object. 
When this first object is "fired" it will execute the 
function and the outputs of the function will be 
saved. When the subsequent objects in obj_list are 
fired, they will obtain their output from these saved 
output values. Thus, the function associated with the 
original multivalued object is only fired once in each 
traversal of the firing li~t. 

SPARK Graphical Editor 
The SPARK Graphical Editor (SGE) was developed 
to.overcome the difficulties in developing and link­
ing classes using the textual SPARK Network Speci­
fication Language. This language is "bottom up", i.e. 
you first define the lower level classes and then use 
them to build higher level classes. SGE facilitates 
"top down" creation of classes by simultaneously 

allowing higher level and lower level editing using 
the multiple windows capability. For example, a 
class can be temporarily defined by simply drawing 
its icon and its ports. It can then be instantiated on 
screen and linked to other objects, deferring its full 
definition (specifying its underlying equations) to a 
later time. 

SGE is a multi-window, multi-buffer editor running 
under X-Windows that allows creation of objects, 
macro objects, and entire simulation problems by 
manipulating screen icons. A sample screen from the 
SGE is shown in Figure 5. Classes selected from a 
library can be instantiated as objects and placed any­
where on the screen. Once placed, they can be inter­
connected to form a network that represents the 
simulation problem. The objects can be moved, 
deleted, modified, or expanded to show internal 
structure. When the problem is complete, SGE cre­
ates a problem specification file that is sent to the 
SPARK kernel for matching, reduction, and solution. 

In SGE, icons are used to represent objects. An icon 
consists of a polygonal outline that gives a pictorial 
representation of the object (such as a fan), plus tick 
marks that represent ports. The ports are the object's 
variables that can be linked to other objects. 

A class is created with SGE as follows (see Figure 5 
for numbered items): From the file ops menu select 
edit file and give the class a name. This will open an 
empty window with the class name in the upper left­
hand comer. Click the icon-outline button (12). 
Draw the icon outline in the window using line seg­
ments. Click the make-port button (14) to draw the 
ports (by clicking on the icon outline) and to name 
the ports. 

If this is a primitive class (one with a single equa­
tion), open a text window and enter the differential or 
algebraic equation for the class. (A text window is 
opened by clicking on the class name and selecting 
•text-window' from the resulting pop-up menu.) If 
the MACSYMA symbolic processor (MIT 1983) is 
available, invoke it to automatically produce the C­
functions for the equation inverses (which are needed 
by the SPARK solver). Otherwise type in the C-func­
tions by hand in the text window. 

To create a macro class (one with two or more cou­
pled equations) first ins~tiate two or more existing 
classes and then link the resulting objects together in 
a graphical editing window (20). The procedure is as 
follows: To instantiate a class, select the make­
object button (1), then click on any icon, such as 
(24), that is in the directory window or in any other 
window. This allows a copy of the icon to be dragged 
to the editing window (20). A second click instanti­
ates the class and places the resulting object's icon 
(23) in the editing window. 

The next step in creating the macro class is to link the 
objects. Select the make-link button (5). Click on a 
port of an object in the editing window to start the 

6 link. Click on the port of another object (or on 
another already-existing link) to end the link. SGE 



will give a warning if the lirik is illegal (for example, 
if you connect a temperature port to' a flow port). 

. (Clicking on a port after clicking the "connect hints" 
button (19) will highlight the other ports to which 
this port can be legally connected.) The make-link 
operation can also be used to connect external ports 
of the macro class (21, for example) to ports of 
objects inside the class (22, for example). After all of 
the links are made, the resulting macro· class can be 
saved in the library using options under file ops. 

Other editing buttons are available to move an object 
(2), resize an object (3), delete an object or a link ( 4 ), 
reroute a link (9); edit a link (6,7,8); name an item 
in a window (10); or attach comments to an item 
(15). The query button (16) gives detailed informa­
tion on an item. For example, querying an object 
gives the object name, class name, class description, 
and scale factor for the icon display. 

0 

Two other buttons are used to specify inputs (I 7) and 
outputs (18) of a problem. Inputs can be data read 
from a file or values you are prompted to enter. Out­
put can be shown as graphs or meters attached to the 
icons on the screen, or output can be written to a file 
for later display. 

Conclusion 
Early versions of SPARK established the viability of 
object oriented modeling and graph theoretic solu­
tion techniques for building simulation. This paper 
has addressed three important extensions. Strong 
component decomposition enhances the solution effi­
ciency for a wide class of problems. Multivalued 
objects allow SPARK models to incorporate sub­
models that•calculate multiple variables using con­
ventional, procedural code. Finally, the user 
interface is enhanced by a graphical problem editor 
in a modem window environment 
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Rgure5: 
Sample screen from the SPARK Graphical Editor. DIRECTORY is a (partial) library of classes repre­
senting HVAC components like fans and coils. A system model is created by dragging these classes 

into the editing window (20) and linking them. Numbered items are described in the text. 
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