
•,

LBL-33906
UC-350

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

ENERGY & ENVIRONMENT
DIVISION
Presented at the IBPSA's "Building Simulation 93,"
Adelaide, Australia, August 16-18,1993, and to be
published in the Proceedings

Recent Improvements in SPARK: Strong
Component Decomposition, Multivalued
Objects, and Graphical Interface

W.F. Buhl, A.E. Erdem, F.C. Winkelmann, and E.F. Sowell

August 1993

ENERGY & ENVIRONMENT
DIVISION

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

OJ _,
g----
(]1

lSI

r r
..... CD
o- ("')

r
I ..., 0 w Ill "0 w ..., Cc::: 10 Cc::: lSI ())

DISCLAIMER

This document was prepared as an account of wotk sponsored by the United StaleS
GovcmmenL While this document is believed to contain com:ct infonnation, neither
the United States Govc:mment nor any agency thereof, nor The Regents of the
University of California, nor any of their employees, makes any warranty, express or
implied, or assumes any legal responsibility for the accuracy, completeness, or
use:fulncss of any information, apparatus, product, or process disclosed, or teprcsents
that its usc would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by its trade name, tradcmatk,
manufacturer, or othc::rwisc, docs not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency
thereof, or The Regents of the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof, or The Regents of the University of California.

Lawrence Bctkcley Laboratory is an equal opportunity employer.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

1\,

Proceedings of IBPSA,
"Building Simulation 93",
Adelaide, Australia,
August 16-18 1993

LBL-33906

RECENT IMPROVEMENTS IN SPARK:

STRONG COMPONENT DECOMPOSITION,

MULTIV ALUED AND OBJECTS,

INTERFACE
••

GRAPHICAL

by

W.F. Buhl, A.E. Erdem, and F.C. Winkelmann
Energy and Environment Division

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

and

E.F. Sowell
Computer Science Department

California State University at Fullerton
Fullerton, California 92634

August 1993

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Building Technologies, Build­
ing Systems and Materials Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Lawrence Berkeley
Laboratory is an Equal Opportunity Employer.

1

Recent Improvements in SPARK:
Strong Component Decomposition,

).

Multivalued Objects, and Graphical Interface

W. F. Buhl, A. E. Erdem, F. C. Winkelmann
Simulation Research Group

Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720 USA

•
E. F. Sowell

Computer Science Department
California State University at Fullerton

Fullerton, CA 92634 USA

Abstract
The Simulation Problem Analysis Research Kernel (SPARK) environment for simulation of nonlinear differential
algebraic systems has been revised to improve modeling convenience, modeling .flexibility, and solution efficiency.
Solution efficiency has been enhanced IJy automatic decomposition of the problem into strongly connected compo­
nents: characterized as separately solvable subproblems. The normally constructed data flow graph in SPARK
allows such components to be identified and placed in the correct order for sequential solution resulting in signif­
icant speed-up for problems that are not strongly interconnected. Modeling .flexibility has been enhanced IJy add­
ing Multivalued Objects. Whereas conventional SPARK objects represent single eqliiitions .and produce a single
result, this extension allows more complex objects which themselves solve simultaneous sets of equations for mul­
tiple results. The need for such objects arises when submodels are to be solved independently of the SPARK
solver; e.g .• to use a specially tailored algorithm. With regard to modeling convenience, the graphical user inter­
face now allows model definition by selection and placement of object icons in a graphical window in an X-win­
dows environment. These objects can be connected with macro links comprising multiple problem variables. The
resulting problem is then translated into a Network Language Specification file for SPARK processing.

Strong Component Decomposition
The Case for Decomposition
Often, the sets of simultaneOus, nonlinear equations
required in simulations can be quite large, making
solution efficiency an important issue. Since the
number of steps required for solution is O(n3), where
n is problem size, one way to seek improved effi-

The authors can be reached at:
Lawrence Berkeley Laboratory
Mailstop: 90-314 7
1 Cyclotron Road
Berkeley, CA 94720, U.S.A.
FAX: (510) 486-4089 or 486-5172
Phone:(510)486-5711
E-mail: fcw%gundog@lbl.gov 2

ciency is to break the problem into several smaller
ones, to be solved one at a time. This principle of
"divide and conquer" is widely accepted, but it needs
to be observed that there are good ways and bad
ways to decompose a problem. For example, if we
break the problem into two parts A and B that are
interdependent, i.e., A depends on variables that are
calculated in Band vice versa, solution requires iter­
ation between A and B until convergence is achieved
on the coupling variables. This is not a particularly
good situation; since at best we lose, .through the iter­
ation between the parts, some of what we have
gained through size reduction. If the problem is non­
linear, it is also likely that iteration is required inter­
nal to A and B, and iteration within iteration is
fraught with numerical difficulties. For one thing, the
convergence theorems that apply to iteration of sets
of nonlinear equations (Ortega 1970) do not apply in
this case. Clearly, we are much better off if we can

break the problem into pieces that are not interdepen­
dent. i.e., either A or B can be solved without any
results from the other; the independent part is solved
first. then the second part. and we are finished. The
entire efficiency gain due to size reduction is then
realized.

Most ·simulation programs offer some method of
problem decomposition, but usually the decomposi­
tion encouraged by these programs is not ideal from
the standpoint of solution efficiency .. Modular simu­
lators, e.g., 1RNSYS (Klein 1988), evaluate portions
of the problem internal to the modules, which is a
form of decomposition. WISely, the modules are usu­
ally crafted so as to avoid internal iteration since the
global solver iterates for convergence of the external
variables. However, the decomposition into modules
is done manually, and it is common practice to make
the divisions along lines suggested by physical com­
ponent and subsystem boundaries. This leads to mod­
ules that combine equations that, while related
physically, are not necessarily related in an efficient
numerical solution procedure. For example, both
mass and energy balance equations must be enforced
in a collector component of an air duct system. Often

· an air duct system problem will have specified mass
flows, but will require iteration to satisfy the energy
balance equation. Since all embedded equations are
executed at every call of the ·module, un-needed
work is performed as the mass equation is needlessly
reevaluated at every iteration.

The HVACSIM+ program (Park 1985) has a modular
structure like 1RNSYS. In addition, the user is
allowed to specify a higher form of decomposition
unit. called a block, containing several or many mod­
ules. There can be iteration both within and among
these blocks. Again, since users customarily hand­
craft the modules and blocks along lines paralleling
the physical system, there is little likelihood of
achieving independence among them, so the itera­
tion-within-iteration situation arises.

SPARK Problem Decomposition
The Simulation Problem Analysis Research Kernel
(SPARK) differs radically from other simulation pro­
grams with regard to problem decomposition. This is
because the fundamental unit of a SPARK model is
an object containing a single equation rather than a
module. Large modules, called macro objects, are
allowed, but are only temporary assemblies of equa­
tion objects provided for convenience of the modeler.
They are disassembled into equation objects as pro­
cessing begins, so that the SPARK solver has access
to individual equations and variables. From the equa­
tions and variables a data flow graph is constructed,
representing all data dependency throughout the
problem.

This structure allows decomposition to be done so as
to maximize solution efficiency using well known
algorithms on graphs. Separately solvable parts of
the problem are detected and placed in the correct
order for solution without iteration among the parts.
The basic principles of the SPARK decomposition

method can be demonstrated wiih a simple example.
Figure 1 shows a data flow graph that might be con­
structed by SPARK from a problem specification.

. Figure 1. Problem data flow graph

Here we see a graph with 8 vertices and 9 directed
edges. Each vertex represents an equation (perhaps
nonlinear), producing a single variable that is propa­
gated to other vertices (i.e., equations) along the
edges of the graph. Inspection of this graph reveals
much about the proper solution process. It can be
seen that iteration will be required to solve it because
there are cycles (closed paths) in the graph (e.g.,
solving c requires solving b, which requires solving
d, which requires solving c, _.). Also, it is evident
that at least two vertices are required to break all
cycles. A little thought will reveal that this means at
least two iteration variables will be required, e.g., the
ones calculated at d and g. Assuining that a Newton~
Raphson iteration method is employed to calculate
new values, this means that a 2x2 linear problem has
to be solved at. each iteration if we solve the entire
problem together. However, closer examination
reveals that the problem partitions nicely into four
non-interdependent parts, represented by vertex sets
{a},{b,c,d},{e,f,g}, and {h}. Obviously, we should
begin by solving {a}, since it has no inputs from .
ojher parts of the problem*. Then we rould simulta­
neously solve the set (b,c,d}, an iterative problem in
one variable. Once this is finished the { e,f,g} part
could be solved iteratively, and finally the singleton
{h}. It is thereby seen that the problem can be solved
by two sequential, iterative problems with a single
iterant in each, and evaluation of two single equa­
tions. What we did above by visual inspection is eas- ·
ily automated with well-known graph algorithms.
Graph terminology uses the term component to rep­
resent a particular subset of edges and vertices of a
graph. A component in which ever vertex can be
reached from every other vertex, and is maximal in
the sense that no other vertices could be included
without losing this reachability, is said to be a
strongly connected component. or strong component
for short. In simple terms, it means that while you
can reach any vertex in the strong component from
any vertex within it, you cannot get back to it once
. you leave. It will be· observed that this precisely
describes the conditions for non-interdependent
problem components. Therefore, since there are sim­
ple algorithms that identify the strong components of
a directed graph (Aho, Hopcroft. and Ullman 1983),
computation problems can be automatically decom­
posed into non-interdependent sub-problems. This is

* Exogenous values possibly required at various ver-
3 tices are not shown.

;'

what is done in the most recent version of SPARK.

Let us compare this solution approach to the alterna­
tives. One approach would be to put the equation at
every vertex in residual form and treat every variable
as an iterant. This would require solution of a set of
eight linear equations at each Newton iteration,
requiring roughly 83 steps per iteration. Although
done by many solvers, this is clearly far from opti­
mal. Merely by using a small cut set algorithm we
can reduce the problem to two iterants, requiring
only 23 steps periteration, as has always been done
in SPARK. This gives a theoretical solution time
reduction of 64:1. By strong component decomposi­
tion we instead solve two single equations com­
pletely outside of any iteration, and two !­
dimensional iterative problems requiring 13 steps per
iteration. Ignoring the singletons, this is a 4:1 reduc­
tion relative to the normal SPARK cut set reduction,
and 256:1 relative to the residual approach; While
these reductions will not be fully realized due to
overhead (see below), they provide strong motivation
for pursuing the approach. Other than SPARK, the
only program of which we are aware that decom­
poses the problem into strong components is EES
(Klein 1991). However, the current version of EES
allows algebraic problems only, so is not directly
useful as a simulation tool.

Implementation
Because the implementation of strong component
(SC) decomposition was a straightforward extension,
we begin here by a review of the basic SPARK meth­
odology. FJrSt, SPARK creates a bipartite graph in
which the equation objects are represented in one set
of vertices, and the problem variables in the other. A
matching algorithm (McHugh 1990) is then applied,
yielding an equation for each variable. Subsequently,
a directed graph is created, not unlike the simple one
depicted in Figure 1. This graph is processed by a cut
set algorithm (Levy and Low 1988), yielding a small
set of vertices that cut all cycles. For each vertex in
the cut set, a new vertex, called a break, is added to
the graph and all edges emanating from the original
cut set vertex are caused to emanate instead from the
break vertex. This creates an acyclic graph as shown
in Figure 2.

Rgure 2. Acyclic data flow graph.

A topological sort (Aho, Hopcroft, and Ullman 1983)
is then done on the vertices of the acyclic graph,
yielding a visitation order; evaluating the equation
objects in this order yields a new value for each orig­
inal cut set vertex for a set of "guess" values at the
break vertices. This is called "driving" the data flow
graph. The differences between the guess and calcu­
lated values are treated as the "functions" which the
Newton-Raphson iteration forces to zero.

The shortcoming of the above process is that it
results in firing the entire graph at each iteration. The
pmpose of the revisions was to instead detect the
strong components and treat each one separately, but
in the same numner as just descnbed.

The implementation attempted to make maximum
use of code and data structures in the existing

· SPARK. COnsequently, the parser which interprets
the problem specification file and generates the basic
problem data structnres, remained unchanged. Also
unchanged were the basic graph structures and algo­
rithms. Since matching precedes construction of the
data flow graph, and hence strong component
decomposition, the matching algorithm also survived
unchanged. After the matching, however, it was
apparent that extensive changes would be necessary
either in the basic structure of the data, or in the algo­
rithms. We could either build a completely separate
data flow structure for each strong component, or
leave the existing whole-problem structure in place
and simple tag the objects to identify their strong
component membership. The former would require
major changes in data structures with minimum algo­
rithm changes, while the latter would be the reverse.
The latter approach was selected because the data
flow structure is rather complex, while the algo­
rithms are straightforward.

4

With this approach, the directed problem graph is
created as before. However, before doing the cut set,
an SC algorithm is applied to the directed problem
graph, marking each object with the its strong com­
ponent number. Notably, the algorithm is such that
the strong components are discovered in a reverse
topological ordering, so along with the decomposi­
tion we learn the correct solution order. For efficient
access, object pointers are collected into an array for
each strong component Then the cut set algorithm is
applied to the entire problem· and the break vertices
are· added exactly as before, but now marking them
with the strong component number. This yields a
whole-problem, acyclic data flow graph exactly as
shown in Figure 2, except now each vertex is marked
with a strong component number. The solve proce­
dure, which previously subjected the entire data flow
graph to the Newton-Raphson process, now contains
a loop over the strong components in topological
order. In a particular pass through this loop, only the
vertices in the corresponding strong comP<>nent are
processed. Thus we solve the problem in pieces,
although it is all stored in the same data structure.

Benchmark Testing
In order to see how much solution performance was
improved, a problem was constructed that should
greatly benefit from strong component decomposi­
tion. This problem consisted of ten simple zones con­
nected'in series by a single air stream, Figure 3.

J

_.

Rgure 3. Rooms in series.

The zone model (a macro object) was such that a sin­
gle break variable was required. Without strong com­
ponent decomposition, 10 iteration variables are
required, and a 10x10 linear set has to be solved at
each Newton-Raphson iteration. With strong compo­
nent decomposition, there are instead 10 sequential
problems to be solved, each with a single break vari­
able and a 1x1 linear set. Of course, the results pro­
duced agree precisely with those produced by earlier

100 versions of SPARK (see Figure 4).

60':---~----=---~----!------!
0 I 2 3 4 5

Figure 4. Temperature (F) of rooms 1, 3, 5, 7,
and 10 vs. Time (h)

The observed speed-up for solving this problem at
0.1 hour intervals over a 1000 hour simulation period
was between approximately 3 and 4, depending on
the processor used (Sun Spare 2: 2.65, Gateway 2000
486133: 3.73).

If the entire execution time was attributable to solv­
ing the linear set within the Newton-Raphson loop,
we would expect a theoretical speed up for this prob­
lem of lx103:10xl3=100:1. However, many other
operations must be carried out, not all of which are
affected by the decomposition. If we only look at the
time spent in solving the linear set, we see a speed-up
of 16: 1, still somewhat lower than the theoretical
value. One reason is that with decomposition there
are more calls to the functions that carry out the
Newton-Raphson process. We are investigating ways
to improve performance in this area of the code.

With the aid of profiling tools, we also discovered
other places where SPARK perfonnance could be
significantly improved. In particular, a great deal of
time is spent moving arguments into place for the
function calls. This is not unexpected, since every
equation results in a function call. However, it
appears that a simple change in addressing could
achieve an additional speed-up by another factor of 5
2. This change is currently under investigation.

Multivalued Objects
The Need for Multlvalued Objects In an
Equation-Based Environment .
Much of the knowledge and expertise of the building
simulation community is embodied in FORI'RAN
code in such venerable programs as BLAST, DOE-2,
TRNSYS, and HVACSIM+. One of the great defi­
ciencies of the new simulation environments such as
SPARK and IDA (IDA 1988) is the lack of complete
building component libraries needed for building
simulation. The developers of such environments
tend to concentrate on the more exciting parts of the
development task and allow the creation of compo­
nent libraries to languish. Unfortunately, it can be
difficult to use the old component models directly in
the new environments. SPARK, for instance, needs
its objects and macro objects in equation-based fonn.
Furthennore each SPARK object is initially input­
output free. When SPARK does assign inputs and
outputs, only one output per object is allowed. In
contrast, FORTRAN subroutines are algorithmic,
have assigned inputs and outputs, and can have mul~
tiple outputs.

The new simulation environments may also not be
ideal for solving certain types of problems. There is
no reason to expect, for instance, that SPARK is an
ideal method for swdying forced or natural convec­
tion in a room. It is likely that such a study would
employ an existing stand-alone FORTRAN program.
It would be very useful, however, if there were a nat­
ural way in which such a program could be included
as a subproblem in a larger SPARK simulation prob­
lem. The hard-coded convection model' might fonn
part of a larger SPARK zone model, for instance.

For the above reasons the SPARK simulation envi­
ronment is being extended to include multivalued
objects; i.e., objects that for a given set of inputs pro­
duce multiple outputs. These objects violate the basic
philosophy of SPARK and ilihibit SPARK's methods
for reducing the effective problem size. However for

·practical reasons such objects may be needed for a
particular problem and there is a fairly natural way of
including them in the SPARK data structure.

MuHivalued Objects In SPARK
In SPARK the strategy for handling multivalued
objects is to replace a multivalued object having n
inputs and m outputs with m objects, each having n
inputs and 1 output. This will be done in a way trans­
parent to the user. That is, the problem graph seen by
the user either via the graphical interface or as a Net­
work Specification Language (NSL) problem file
will be unchanged, but the solver portion of SPARK
will change the internal representation of the prob­
lem by replacing multivalued objects with sets of sin­
gle-valued objects. Since multivalued objects are
special in the sense that they require special process­
ing by the solver, they need to be denoted as special
in NSL by the addition of a new class type. Usually,
in SPARK, a class represents an equation and is cre­
ated with the NSL define keyword. There are other
class types, however. A class representing a predictor

. . · .. ~ p

formula is created by the define _yre keyword for
instance. When an object is instantiated, it inherits its
type from its class. In NSL a class of multivalued
objects will be created by using the new keyword
define_ mult _out as in the following example.

define _mult_ out example(in 1 ,in2,in3,outl ,out2)

{

}

double inl,in2,in3,outl,out2;

outl = examplef(inl,in2,in3);
out2 = examplef(inl,in2,in3);

Here a class example of type MULT_OUT is created.
The C function associated with it is examplef. It will
be invoked with an argument list inl,in2,in3,outl,
out2; that is, the argument list will contain the inputs
followed by the outputs. In most cases example/ will
just call the FOR1RAN subroutine or function
needed to model or solve this portion of the problem.

In addition to this explicit change to NSL, the under­
lying data structure must also be enhanced. In partic­
ular, a vector of integers obj_list will be added to the
object data structure. In the solver, this list will con­
tain the unique object numbers of all the objects in a
set of single-valued objects that replace a multival­
uedobject.

The SPARK solver will start with the problem graph
defined by the user. The solver changes this graph by
replacing each multivalued object in the problem
with a set of single output objects, each having the
same inputs as the original object but having only
one of its outputs. The outputs of these new objects
are preassigned, so they do not have to go through
the matching process. Once the normal objects have
been matched with variables in the usual way, the
directed problem graph, containing all the objects,
can then proceed through cut set reduction normally
and the final SPARK graph, the data flow graph, can
be created as usual. The final step before numerical
solution of the problem is to create the firing list: a
list of objects in the order in which they will be exe­
cuted. When an object is about to be added to the list,
SPARK will check whether its type is MULT_OUT.
If it is, all the objects in obj_list are added to the fir­
ing list in sequence. However, only the first of these
objects will have the ability to execute the C function
associated with the original multivalued object.
When this first object is "fired" it will execute the
function and the outputs of the function will be
saved. When the subsequent objects in obj_list are
fired, they will obtain their output from these saved
output values. Thus, the function associated with the
original multivalued object is only fired once in each
traversal of the firing li~t.

SPARK Graphical Editor
The SPARK Graphical Editor (SGE) was developed
to.overcome the difficulties in developing and link­
ing classes using the textual SPARK Network Speci­
fication Language. This language is "bottom up", i.e.
you first define the lower level classes and then use
them to build higher level classes. SGE facilitates
"top down" creation of classes by simultaneously

allowing higher level and lower level editing using
the multiple windows capability. For example, a
class can be temporarily defined by simply drawing
its icon and its ports. It can then be instantiated on
screen and linked to other objects, deferring its full
definition (specifying its underlying equations) to a
later time.

SGE is a multi-window, multi-buffer editor running
under X-Windows that allows creation of objects,
macro objects, and entire simulation problems by
manipulating screen icons. A sample screen from the
SGE is shown in Figure 5. Classes selected from a
library can be instantiated as objects and placed any­
where on the screen. Once placed, they can be inter­
connected to form a network that represents the
simulation problem. The objects can be moved,
deleted, modified, or expanded to show internal
structure. When the problem is complete, SGE cre­
ates a problem specification file that is sent to the
SPARK kernel for matching, reduction, and solution.

In SGE, icons are used to represent objects. An icon
consists of a polygonal outline that gives a pictorial
representation of the object (such as a fan), plus tick
marks that represent ports. The ports are the object's
variables that can be linked to other objects.

A class is created with SGE as follows (see Figure 5
for numbered items): From the file ops menu select
edit file and give the class a name. This will open an
empty window with the class name in the upper left­
hand comer. Click the icon-outline button (12).
Draw the icon outline in the window using line seg­
ments. Click the make-port button (14) to draw the
ports (by clicking on the icon outline) and to name
the ports.

If this is a primitive class (one with a single equa­
tion), open a text window and enter the differential or
algebraic equation for the class. (A text window is
opened by clicking on the class name and selecting
•text-window' from the resulting pop-up menu.) If
the MACSYMA symbolic processor (MIT 1983) is
available, invoke it to automatically produce the C­
functions for the equation inverses (which are needed
by the SPARK solver). Otherwise type in the C-func­
tions by hand in the text window.

To create a macro class (one with two or more cou­
pled equations) first ins~tiate two or more existing
classes and then link the resulting objects together in
a graphical editing window (20). The procedure is as
follows: To instantiate a class, select the make­
object button (1), then click on any icon, such as
(24), that is in the directory window or in any other
window. This allows a copy of the icon to be dragged
to the editing window (20). A second click instanti­
ates the class and places the resulting object's icon
(23) in the editing window.

The next step in creating the macro class is to link the
objects. Select the make-link button (5). Click on a
port of an object in the editing window to start the

6 link. Click on the port of another object (or on
another already-existing link) to end the link. SGE

will give a warning if the lirik is illegal (for example,
if you connect a temperature port to' a flow port).

. (Clicking on a port after clicking the "connect hints"
button (19) will highlight the other ports to which
this port can be legally connected.) The make-link
operation can also be used to connect external ports
of the macro class (21, for example) to ports of
objects inside the class (22, for example). After all of
the links are made, the resulting macro· class can be
saved in the library using options under file ops.

Other editing buttons are available to move an object
(2), resize an object (3), delete an object or a link (4),
reroute a link (9); edit a link (6,7,8); name an item
in a window (10); or attach comments to an item
(15). The query button (16) gives detailed informa­
tion on an item. For example, querying an object
gives the object name, class name, class description,
and scale factor for the icon display.

0

Two other buttons are used to specify inputs (I 7) and
outputs (18) of a problem. Inputs can be data read
from a file or values you are prompted to enter. Out­
put can be shown as graphs or meters attached to the
icons on the screen, or output can be written to a file
for later display.

Conclusion
Early versions of SPARK established the viability of
object oriented modeling and graph theoretic solu­
tion techniques for building simulation. This paper
has addressed three important extensions. Strong
component decomposition enhances the solution effi­
ciency for a wide class of problems. Multivalued
objects allow SPARK models to incorporate sub­
models that•calculate multiple variables using con­
ventional, procedural code. Finally, the user
interface is enhanced by a graphical problem editor
in a modem window environment

ftOVe object

R~ ~:r-- H E I) f-- ·~

I ~

'--- 1- -H

RF ~3 z

1 22
EF'l

---...1+1
-LJ

Rgure5:
Sample screen from the SPARK Graphical Editor. DIRECTORY is a (partial) library of classes repre­
senting HVAC components like fans and coils. A system model is created by dragging these classes

into the editing window (20) and linking them. Numbered items are described in the text.
7

References

Abo 1983
Abo, A. V., J.E. Hopcroft, and J.D. Ullman .. 1983.
Data Structures and Algorithms. Addison Wesley,
Reading, MA.

IDA1988
Sahlin, P. 1988. (formerly MODSIM) .. MODSIM, a
Program for Dynamical Modeling and Simulation of
Continuous Systems." Technical Report from the
Institute of Applied Mathematics, P.O. Box 26300, S-
100 41, Stockholm.

Klein 1991
Klein, S.A. 1991. Engineering Equation Solver
(EES), F-Chart Software, Madison, WI.

Klein 1988
Klein, S.A. 1988. '"'RNSYS -A Transient System
Simulation Program." Technical Report of the Solar
Energy Laboratory, Univ. of Wisconsin, Madison,
WI.

Levy and Low 1988
Levy, H., and D.W. Low. 1988 ... Contraction Algo­
ritlun for Finding Small Cycle Cut Sets." J. Algo­
rithms, 9 : 470-493.

McHugh 1990.
McHugh, J. 1990. Algorithmic Graph Theory. Pren­
tice Hall, Englewood Cliffs NJ.

MIT1983
MACSYMA Reference Manual, version 10, Mathlab
Group, Laboratory for Computer Science, Massachu­
setts Institute of Technology, Cambridge, MA.

Ortega 1970
Ortega, J.M. and W.C. Rheinboldt. 1970. Iterative
Solutions of Nonlinear Equations In Several Vari-
ables. Academic Press, New York r

Park, Clark, and Kelly 1985
Park, C., D.R. Clark, and G.E. Kelly. 1985. "An
Overview of HVACSIM+, A Dynamic Building/
HVAC Control Systems Simulation Program." In
Proceedings of the 1985 International Building Per­
formance Simulation Association Conference (Seat­
tle, WA, Dec 3-6).

8

....

LA~NCEBERKELEYLABORATORY
UNIVERSITY OF CALIFORNIA ·

TECHNICAL INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

....

