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ABSTRAcT 

Infiltration of water and non-aqueous phase li_quids (NAPLs) in the vadose zone 

gives rise to complex two- anci three-phase immiscible displacement processes. Physical 

and numerical experiments have shown that ever-present small-scale heterogeneities will 

cause a lateral broadening of the descending liquid plumes. This behavior of liquid 

plumes infiltrating in the vadose zone is similar to the familiar transversal dispersion of 

solute plumes in single-phase flow. Noting this analogy we introduce a mathematical 

model for ''phase dispersion'' in multiphase flow as a Fickian diffusion process. 

It is shown that the driving force for phase dispersion is the gradient of relative per

meability, and that addition of a phase-dispersive term to the governing equations for 

multiphase flow is equivalent to an effective capillary P!essure which is proportional to ,. 
the logarithm of the relative permeability of the infiltrating liquid phase. Finite difference 

discretization of the phase-dispersive flux is discussed, and the relationship between 

''physical'' phase dispersion and numerical dispersion arising from finite-difference 

discretization is established. Effects of phase dispersion are demonstrated by numerical 

simulation for three illustrative problems,~ including water and NAPL infiltration from a 



-2-

localized source, and water injection into depleted vapor-dominated geothermal reser

voirs. It is found that a small amount of phase dispersion can completely alter the 

behavior of an infiltrating NAPL plume, and that neglect of phase-dispersive processes 

will lead to unrealistic predictions of NAPL behavior in the vadose zone. 

INTRODUCTION 

The process of solute dispersion - the spreading of a plume of a dissolved chemical 

species during advective transport,_ is of interest in many areas of subsurface flow. 

Examples include characterization of flow systems through tracer tests, migration of con

taminants in groundwater, enhanced oil recovery, geothermal energy production, gas pro

duction and storage, solution mining, and geochemic<tl evolution of natural hydrothermal 

systems. The fundamen_tal mechanism causing dispersion is a random component in mag

nitude and direction of seepage velocities in porous and fractured media, caused by the 

irregular geometry of the void space on spatial scales ranging from pore level to 

regional-scale heterogeneities. The phenomenon of dispersion has been described, with 

considerable success, as being analogous to Fickian (molecular) diffusion (Scheidegger, 

1954, 1974; de Marsily, 1986), although in recent years compelling evidence has been 

accumulated that the diffusion analogue is of limited applicability in field situations, 

where dispersivities appear to increase with time and distance of solute transport (de 

Marsily, 1986; Gelhar et al., 1992). This "scale effect'; on dispersivities is not fully 

understood at present; it seems to be related to the fact that in natural media hetero

geneity is present over a broad range of scales (Wheatcraft and Cushman, 1991; Sudicky 

and Huyakorn, 1991). 

In multiphase flow another kind of dispersion process may occur which is also of 

considerable practical importance in many engineering applications, yet has received 

only rather limited study. Consider a situation where a fluid phase invades a region in 

which other fluid phases are present that are not miscible with the invading phase. The 
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invading phase will then displace some of the resident fluid, and in doing so may disperse 

longitudinally as well as transversally due to medium heterogeneities and anisotropies, 

and flow instabilities. Examples of such immiscible or partially miscible displacements 

are many, including infiltration of ·water. into the vadose zone (displacing soil gas), 

infiltration of a non-aqueous phase liquid (NAPL; displacing soil gas or water), injection 

of gas into aquifers for storage purposes, injection of water into vapor-dominated geoth

ermal reservoirs (displacing steam), and many enhanced oil recovery processes, such as 

water flooding, steam· flooding; chemical flooding, and carbon dioxide flooding. To be ~ 

sure, in such multiphase flow processes "conventional" solute dispersion will also occur 

within any of the flowing phases, much as solute dispersion occurs in single-phase flow 

(Sahimi et al., 1986). An additional dispersion process of a different kind will develop, 

however, in that an invading plume of immiscible fluid phase will not propagate as an 

invariant shape, but will spread in space and time. We will refer to this process as ''phase 

dispersion,'' to distinguish it from the conventional solute (miscible) dispersion. 

An extreme example of phase dispersion is fingering of an invading phase that 

arises from an interplay between medium heterogeneity and hydrodynamic instability 

due to viscosity or density contrast. The displacement of soil gas by water infiltrating into 

the vadose zone is a gravitationally unstable process and may result in a highly dispersed 

displacement front where water fingers bypass much of the soil volume (Glass et al., 

1989, 1991; Kung, 1990). A similar gravitational instability arises when a NAPL invades 

the vadose zone, or when a dense NAPL (DNAPL) sinks below the water table. Injection 

of water into vapor zones in geothermal reservoirs is a gravitationally unstable process 

(Pruess, 1991), as is the release of gas from strata below the water table in operations 
' . 

such as gas or compressed air storage, or in corrosive gas release from deeply buried 

nuclear wastes. Viscous instabilities are present in many oil recovery operations, where 

the displacing phase such as water, steam or gas is less viscous than the resident oil, 

resulting in highly dispersed displacement fronts. · 
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In this paper we propose an approximate continuum-type approach for describing 
' 

phase dispersion, in analogy to the description of solute dispersion as Fickian diffusion. 

The formulation developed here is specialized to the problem of gravity-driven buoyancy 

flows, such as downward migration (infiltration) of a denser phase, or upward flow of a 

lighter phase; however, we believe that our approach should be applicable to more gen- · 

eral multiphase flow processes. Current mathematical models of multiphase flows cap-

ture phase-dispersive processes only when the medium heterogeneities causing such 

dispersion are described explicitly. This is completely analogous to the situation in 

solute transport, where no dispersive term is needed when heterogeneities are modeled 

explicitly; dispersion then arises from the "true" detailed velocity structure (Dagan, 

1988; Thompson, 1991). Explicit characterization and modeling is feasible for "large

scale" heterogeneities (with dimensions larger than or equal to grid block sizes), but is 

impractical for small-scale features of sub-grid block dimensions. A description of phase 

dispersion by means of explicit modeling of small-scale heterogeneities is limited to 

numerical experiments with computer-generated heterogeneity structure (Espedal et al., 

1991; Kueper and Frind, 1991; Po1mann et al., 1991). 

Neglect of phase-dispersive mechanisms in the governing equations for multiphase 

flow may lead to completely unrealistic flow predictions (Pruess, 1991b). For example, 

gravity-driven infiltration of a dense phase will be predicted to proceed as an essentially 

straight downward flow when ignoring medium heterogeneities such as small-scale lami

nations and layering, embedded clay lenses, or irregularities of fractures or fracture net

works. (In anisotropic media the direction of gravity-driven flow may deviate from the 

vertical, but infiltration from a localized source in a homogeneous anisotropic medium 

would still be predicted to occur a:s a very narrow plume.) Mediurri heterogeneities would 

tend to partially divert flows laterally, in. a manner· akin to transversal dispersion. An 

example of such behavior was reported from field experiments at the Borden Site, 

Ontario, where PCE was allowed to infiltrate into the ground from a point source 



- 5-

(Poulsen and Kueper, 1992). Through subsequent excavation the experimenters deter

mined that the PCE plumes spread horizontally as they descended, reaching horizontal 

extents of from 0.5 to 2.0 m over an infiltration depth of 2 - 3 m. Soil heterogeneity con

sisted of millimeter-size laminations with subtle variations in texture, color, and grain 

size. Numerical experiments have· also shown that the main effect of smpl-scale hetero

geneity is a broadening of an infiltrating liquid plume (Kueper and Frind, 1991; Polmann 

et al. 1991). A continuum model of phase dispersion as proposed here offers a simple 

means to capture essential effects of such heterogeneity in an approximate fashion, 

without necessitating a highly detailed description of multiphase flow with explicit 

representation of heterogeneities that would be impractical for "re'al" systems. 

Partial justification for a continuum description of phase dispersion is provided by 

the recent work of Espedal et al. (1991). These authors investigated two-phase immisci'

ble displacement in two-dimensional domains with stochastic permeability distribution. 

They performed high-resolution numerical simulations of such displacements to obtain a 

detailed explicit description of the displacement fronts. Through spatial averaging they 

·then derived a PDE for average saturation. This PDE turned out to be similar in form to 

the original (microscopic) saturation equation, but included an additional phase-. 

dispersive term. They then obtained solutions for the space-averaged saturation equation 

by numerical simulation on coarse grids, and were able to show that these approximated 

well the average longitudinal dispersion of the displacement fronts seen in the high

resolution simulations. It is perhaps not surprising that the process of spatial averaging, 

whether directly applied to the microscopic saturation equation, or applied to the solution 

of the microscopic equation, leads to similar results. It is noteworthy, however, that the 

additional term arising in the space-averaged equation is dispersive in nature, i.e., it 

corresponds to a flux proportional to - D * V S, where S is the saturation of the invading 

phase, and Dis a second-order tensor. 
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In some cases fingering instability in immiscible displacement may be so severe as 

to prohibit any approximate treatment as a continuum-type dispersion process. An exam

ple may be the strong, persistent fingering of water infiltrating into a coarse stratum from 

an overlying fine-grained zone of low permeability (Glass et al., 1989,--1991). Further

more, the description of dispersion as a Fickian diffusion process is approximate and of 

limited validity, even under generally favorable conditions. Nonetheless we expect that 

in many situations a treatment of phase dispersion by a Fickian diffusion analogue may 

be a useful approximation. It will likely provide an improvement over existing descrip

tions of multiphase flows, which make no explicit allowance for phase dispersion at all. 

Complete absence of phase-dispersive processes can lead to severe errors especially in 

space-discretized numerical models (Brand et al., 1990; Pruess, 1991b). 

It is the purpose of this paper to introduce what we believe to be a plausible 

mathematical model for multiphase dispersion. To establish a reference case and intro

duce our notation we begin by briefly summarizing the conventional formulation of 

solute dispersion in single phase flow. Subsequently we introduce our proposed formula

tion for phase dispersion .. Although applicable to more general processes of immiscible 

displacements, the treatment in this paper focusses on gravity-dominated flows, such as 

downflow .of a· dense phase, or upflow of a light phase. An interesting perspective on 

phase dispersion is gained by comparison with "physical" dispersion from capillary 

forces, and by the familiar "numerical" dispersion that arises from a space-discretized 

treatment of continuum flow processes. Our dispersion model is illustrated by means of 

applications to problems of water and NAPL infiltration, and geothermal injection. The 

tange of validity of the model has not yet been evaluated. This will require comparison 

with laboratory and field observations, and computer simulations of two-phase immisci

ble displacement that represent medium heterogeneity and anisotropy in full explicit 

detail. Work along these lines is in progress and will be reported elsewhere. 

\. 



- 7-

SOLUTE DISPERSION 

The conventional treatment of dispersion conceptualizes this process in analogy to 

Fickian diffusion, described by the customary convection-dispersion equation (de Mar-

sily, 1986) 

ac .. · 
q,at = div (DVC - Cu) (1) 

where q, is porosity, C is solute concentration, D is the dispersion tensor, and u is the 

volumetric flux (Darcy velocity) of the solution. The solute mass flux 

Fcd=Cu-DVC . (2). 

includes a convective term 

Fc=Cu (3) 

and a diffusive-dispersive term 

Fd=-DVC (4) 

The dispersion tensor is written 

(5) 

with the transversal and longitudinal dispersion coefficients given by, respectively, 

(6a) 

(6b) 

The first term in Eqs. (6a,b) represents molecular diffusion, while the second term 

represents hydrodynamic dispersion. The coefficients a.r and aL have units of length and 
' . 

are customarily called dispersivities. 
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PHASE DISPERSION 

Let us consider a simplified situation of two-phase flow that is applicable to many 

infiltration problems. A liquid phase such as water or a non-aqueous phase liquid (NAPL) 

is assumed to infiltrate into the vadose zone and to immiscibly displace a ''passive'' gas 

phase with negligible pressure buildup in the latter. Liquid volume flux (Darcy velocity) 

is then given by 

(7) 

where k and lcr1 are, respectively, absolute and relative permeability, ~~is viscosity, Pcap 

is capillary pressure, p1 is liquid density, and g is acceleration of gravity. Neglecting 

phase change processes (evaporation and condensation) and assuming constant liquid 

density, a liquid phase volume balance can be written as 

(8) 

where S1 is liquid saturation. The flux expression Eq. (7) can be rewritten in a form that is 
""' 

analogous to the c~nvective-dispersive solute flux of Eq. (2) 

(9) 

where 

(10) 

plays the role of advection velocjty, and 

.lrdP '1 dP 
Dcap = k _""T_l ~ I=- V · cap l 

~~ dS1 p1g d ln S1 
(11) 

is a tensor that represents capillary effects. 
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We mention in passing that an easy improvement of Eqs. (7) through (11) can be 
' -

achieved by- replacing PI with (PI - p g), to account for the buoyancy effect of the dis-

placed phase. For water infiltration under ai:nbient conditions in the vadose zone the den

sity contrast between displacin,g arid displaced phase is approximately 1000, so that this 

correction amounts to an insignificant value of approximately 0.1 %; however, for 

infiltration of dense NAPL below the water table this correction is essential, as the den-

sity of invading J?NAPL is of the same order as that of the displaced water. 

From Eq. (10) we note that vSI is the Darcy velocity due to gravity-driven flow, so 

that v may be interpreted as a velocity of liquid phase propagation that is enhanced due 

to the fact that liquid is present at a saturation SI < 1. Dcap can be interpreted as a tensor 

of "phase dispersion" due to capillary action. Capillary phase- dispersion is isotropic, 

and by comparison with Eq. (6) the corresponding dispersivity may be identified as 

(12) 

While solute dispersivities are generally considered constants independent of solute con

centration, the capillary _dispersivity of an immiscible phase infiltrating under gravity is

seen to generally vary with liquid phase saturation S1, being independent of S1 only in the 

special circumstance where Pcap -In SI. 

With these definitions, the volume balance equation (8) can be rewritten in the form 

of a convection-dispersion equation for saturation, in complete analogy to Eq. (1) for 

solute concentration. Inserting Eq. (9) into Eq. (8) we have 

(13) 

Note that so far we have only recast Eqs. (7) and (8) in different form, without any 

changes in substance. Exploiting the formal analogy of Eq. -(13) with Eq. (1) we now 

propose that effects of hydrodynamic dispersion of an- invading liquid phase from 

medium heterogeneities, anisotropies, -and flow instabilities may be approximated by a 
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suitable extension of the capillary dispersion tensor. In analogy to Eqs. (5) and (6) we 

write 

D -D · 
~ =Drl+ L T VV . vz (14) 

with the transversal and longitudinal elements of the phase dispersion tensor given by 

(15a) 

(15b) 

Exploiting the identity Vlv =gig, the proposed form Eq. (14) of the phase dispersion ten-

sor for gravity-driven infiltration processes may be rewritten as 

(16) 

Physically it is to be expected that the transversal and longitudinal phase dispersivities ~ 

and &.L introduced in Eqs. (15a,b) should not be constants but should depend on liquid 

saturation. The reason for this is that, at different saturation levels, different portions of 

the pore space with generally different geometry and heterogeneity will participate in 

liquid flow (Sahimi et al., 1986; Espedal et al., 1991). At present we have no information 

on the nature and strength of the dependence of phase dispersivities on saturation. 

· The phase-dispersive mass flux may be written 

(17) 

Inserting from Eqs. (10), (15), ·and (16), this becomes 

(18) 

... 

.... 
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where we have introduced a z-coordinate axis pointing vertically upward. These equa

tions essentially complete our formal development of the phase dispersion process during· 

infiltration. To further elucidate the physical ''meaning'' of our proposed formulation let 

us assume for the moment that phase dispersivities are only weakly dependent on satura

tion. Introducing an "average" constant phase dispersivity ~' Eqs. (15a,b) can be 

rewritten, using Eq. (12), as 

(19) 

Eq. (19) indicates that in our proposed formulation phase-dispersive effects can be 

thought of, in an approximate· way, as equivalent to an additional capillary pressure 

which is proportional to the logarithm of phase saturation. Note that this "dispersive" 

capillary pressure will in general be anisotropic, presumably being weaker in the hor

izontal than in the vertical direction, as we expect Oo,T < ao,L· Further note that it is nega

tive regardless of whether the invading phase is wetting or non-wetting, so it will always 

tend to spread infiltrating plumes. The close formal correspondence between capillary. 

and phase-dispersive effects expressed in Eq. (19) may be useful for evaluating condi

tions under which one or the other effect would dominate. Generally speaking, we expect 

phase-dispersive mechanisms to be most important when capillary pressures are weak. 

Additional insight can be gained from further elaboration of the liquid volume bal-. 

ance Eq. (8). Considering only the gravity flow term in Eq. (7), and again neglecting 

(small) variations in density and viscosity, we have (Pruess, 1991b) 

(20) 

which is a first-order hyperbolic equation with traveling wave solutions of the form S(z,t) 

= f(z+tv/<j)), where v/<j) given by 

(21) 
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is the propagation velocity of saturation disturbances. Comparing Eqs. (21) and (10), the 

relationship between v and v is 

A dln~I 
v=v--

dlnSI 
(22) 

Eq. (20) suggests that it may be more appropriate to formulate phase dispersion in terms 

of v rather than v. To do this we rewrite Eqs. (15a,b) with reference to vas follows 

so that, from a.v = &.v, 

A· dlnSI 
a.=a.--

dln~i 

Capillary dispersivity with respect to vis then, from Eqs. (12) and (24), 

1 dPcap 
a=--~ 

cap plg d ln ~I 

and Eq. (18) for the phase-dispersive mass flux becomes 
• 

(23a) 

(23b) 

(24) 

(25) 

(26) 

To relate the v-based dispersion formulation to capillary effects, we proceed as in the 

derivation of Eq. (19). Introducing an average constant fJ.o, independent of SI, hence ~I· 

Eqs. (23) can be expressed as 

(27) 
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The v and v.:based formulations, Eqs. (18) and (26), or (19) and (27), are completely 

equivalent. The choice of a reference velocity for phase dispersion only affects the 

dependence of dispersivities on saturation, see Eq. (24). It would be desirable to choose 

the reference velocity in such a way that dispersivities depend on saturation as weakly as 

possible. Intuitively one expects that the v-based formulation is preferred: but this is 

speculative at present. 

FuRTHER PERSPECTIVE ON PHASE DISPERSION 

An interesting persp~ctive on our formulation of phase dispersion can be gained by 
-

considering an exponential relationship between relative permeability and capillary pres-

sure, 

Pcap 
lcr1 = exp <P -. ·-) 

P1g 
(28) 

This is of semi-quantitative validity in many media and is of special interest because it 

leads to simple quasi-linear models (Pullan, 1990). The parameter P has units of inverse 

length, and is often referred to as "sorptive number". From Eq. (27) the dispersive addi-
. . 

tion to capillary pressure then takes on the ~pproximate form 

dis_ Po - aoP Pcap (29) 

so that the effect of phase dispersion would be approximately equivalent to multiplying 

the strength of capillary pressure by a factor (1 + aoP). Alternatively, an effective capil

lary dispersivity can be calculated· from Eqs. (25) and (28) as <Xcap= liP. This indicates 

that capillarity will dominate when 1/P >> aL or <X-f, while phase dispersion will dom

inate in the opposite circumstances, P >> a1 or aT. Fine-grained media have small p, 

hence are likely to be capillary-dominated, while in coarse media p is large and phase 

dispersion may dominate. 
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Another interesting comparison can be made with "numerical" phase dispersion 

effects that arise in numerical simulations of immiscible displacements. Analyzing 

finite-difference approximations of gravity-driven liquid flow in two:-dimensional vertical 

sections, Pruess (1991b) showed that the finite space.discretization gives rise to artificial 

"numerical" phase dispersion effects which generally are anisotropic, and mathemati

cally are equivalent to an "effective grid capillary pressure," given by 

P grid = C p g In tr cap 1 Arl (30) 

The coefficients C have units of length and can be thought of as ''numerical phase 

dispersivities" (compare Eqs. 25, 27) .. The analysis presented in (Pruess, 1991b) shows 

that numerical dispersivities are constants, independent of saturation, whose magnitude is 

of the order of the grid spacing. Numerical dispersion is generally anisotropic. It depends 

on the 'orientation of the computational grid relative to the vertical, as well as on the finite 

difference approximation used. Table 1 (from Pruess, 1991b) lists numerical phase 

dispersivities for parallel and diagonal vertical grids of square blocks with side length h 

(see Fig. 1), and for five- and nine-point finite difference schemes (Fig. 2; Forsythe and 

Wasow, 1960; Yanosik and McCracken, 1979). 

Table 1. Transversal and longitudinal numerical phase dispersivities CT 

and CL in vertical grids (from Pruess, 1991b). 

Grid 

parallel 5-point 

9-point 

0 

h/6 

h/2 

h/2 

diagonalS-point h/(2 ..J2) h/(2 ..J2) 

9-point h/(3 ..J2) (h ...fi)/3 

... 
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It is interesting to note that the numerical dispersion effects represented by Eq. (30) 

are identical in form to the approximate expression Eq. (27) for our proposed model for 

phase dispersion. We believe that this correspondence is more than a fortuitous coin

cidence. Finite-difference modeling 'implies that fluids upon entering a grid block 

''instantaneously'' spread and mix throughout the grid block volume. This process bears 

a close similarity to the "mixing cell" approach in which tracer migration is modeled as 

proceeding through a series of finite-volume compartments (Nir and Kirk, 1982), within 

each of which fluids are completely mixed in the sense of a "well-stirred" reactor. In the 

present context our interest is in phase dispersion rather than solute dispersion, and the 

instantaneous ·spreading or mixing within a finite-volume block would refer to an immis-

cible fluid phase rather than to dissolved solute. The finite-compartment model has an 

intuitive appeal, and the close formal correspondence between nu~erical phase disper

sion in finite difference models and our proposed model for physical phase dispersion 

seems to lend additional support to the latter. 

NUMERICAL SIMULATION 

We have incorporated the .Fickian model for phase dispersion into our multiphase 

multicomponent simulators TOUGH2t (Pruess, 1987, 1991a) and STMVOC (Falta et al., 
I 

1992). To derive a finite difference expression for the phase-:dispersive flux, Eq. (26), we 

introduce a Cartesian coordinate· system (ex, ey, ez), with unit vectors ex and ey being hor

izontal, and ez pointing vertically upward. Eq. (26) can be rewritten as 

(31) 

Discretization of Eq. (31) is accomplished by introducing first-order finite differences for 

· the derivatives of liquid relative permeability. Appropriate weighting schemes are 

t Available from: Energy Science and Technology Software Center (ESTSC), P.O. Box 1020, Oak Ridge, TN 37831 
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required for the coefficients multiplying the gradients of relative permeability. The phase 

dispersivities a.r and a.L may generally depend on saturation but were assumed to be 

constants in this work; thus they pose no issue with respect to finite difference approxi

mation. The factors in front of the parentheses are ''interface quantities,'' which gen

erally depend on conditions j,n both grid blocks between which flow is taking place. The 

customary TOUGH2 options are employed here, including harmonic or upstream weight

ing for absolute permeability, upstream weighting for the group (p1 /j..L1)~ and averaging 

for the group (p1g). 

Another subtle point deserves mentioning. The implementation of Eq. (31) as it 

stands may give rise to dispersive flux in a direction opposite to the general advective 

flow. Indeed, for ()~1/oz < 0 dispersive flux will be upward, opposing gravity. This 

unphysical behavior is analogous to the well-known phenomenon of upstream migration 

in conventional models of Fickian solute dispersion (de Marsily, 1986). In our finite

difference implementation of Eq. (31) we avoid unphysical flows by testing for the sign 

of o~foz, and permitting dispersive flux only in the downward and horizontal directions. 

In this paper we consider dispersivities to be constants, independent of saturation. 

Under these conditions the capillary· analogue Eq. (27) is not an approximation but is 

strictly valid. It offers an alternative approach for finite-difference implementation of 

Fickian phase dispersion which conceptually is extremely simple. All that is needed is 

addition of a phase-dispersive capillary pressure, 

P dis = a. Pig lrt ~~ (32) 

where a. = a.r for horizontal flow connections, and a. = a.L for vertical flow connections. 

We also implemented the phase dispersion by means of the equivalent capillary 

pressure given in Eq. (32). Through test calculations for many different saturation condi

tions we verified that both formulations yield identical fluxes. However, we found that 

the capillary pressure formulation has serious drawbacks in practical applications. It 

.. 
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diverges as relative penneabilitY approaches zero, and generally tends to be more 

strongly non-linear, so that it is subject to more severe space truncation errors when cal

culating finite-difference fluxes between grid blocks that have a finite difference in 

saturations. The Vkx-1 based formulation, Eq. (31), lends itself well to finite-difference 

approximation, and it was used for all calculations presented in this paper. 

APPLICATIONS 

We now present illustrative applications of the Fickian phase. dispersion model. The 

problems considered include infiltration of water and trichloroethene (TCE) into the 

vadose zone, and water injection into low-pressure vapor zones in geothermal reservoirs . 

. By analogy to solute dispersion in single-phase miscible flow one may expect longi

tudinal phase dispersivity to be larger than transversal phase dispersivity. However, the 

latter will have a more dramatic impact on flow behavior in multiphase infiltration prob

lems. Indeed, longitudinal (vertical) phase dispersion will only modify the predominant 

downward advective migration, while transversal dispersion will lead to a qualitatively 

new behavior, namely, a lateral (horizontal) spreading of infiltration plumes in isotropic 

media where gr~vity-driven advective flow is strictly· downward. The simplest problem 

that can serve to illustrate the phenomena is water infiltration in the vadose zone from a 

localized source, such as ·an irrigation line. Subsequently we proceed to the practically · 

significant and more difficult three-phase problem of phase dispersion during infiltration 

of spilled TCE. Our final example concerns water injection into superheated vapor zones. 

This is an important problem in the management of vapor-dominated geothermal reser

voirs, which involves immiscible displacement coupled with strong heat transfer and 

phase change processes. 
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WATER INFILTRATION INTO THE VADOSE ZONE 

We consider water infiltration into the vadose zone. The model system (Fig. 3) is a 

two-dimensional vertical (X-Z) section of 1 m thickness. Space discretization is made 

into square blocks of 2.5 m side length. The water table is at a depth of 37.5 m. For rela-· 

tive permeability we use the formulation given by Corey (1954). A reduced liquid satura

tion s* is defined as 

(33) 

with Swr and Sgr being irreducible liquid and gas saturation, respectively. Liquid and gas 

relative permeabilities are 

kx-I = (S*)4 (34) 

lcrg = (1 - s*)2(1 - [S*]2) (35) 

Capillary pressures were neglected to better h_ighlight effects of phase dispersion. The 

problem parameters for this and the other illustrative problems are summarized in Table 

2. 

Prior to start of infiltration the system is run to static gravity-capillary equilibrium, 

using a two-phase treatment that accounts for the small vertical pressure gradient 

· corresponding to gravity equilibrium for soil gas. Equilibrated gas pressures and liquid 

saturations are then held constant at the right boundary, and water is infiltrated at a rate 

of .05 kg/s into the upper left hand grid block. The left boundary is modeled_ as a sym

metry plane, using ''no flow'' boundary conditions. Several cases were run using dif-

ferent values for transv~rsal phase dispersivity, and different finite difference schemes. 

A calculation without phase dispersion shows the behavior that is expected in a 
' . . 

homogeneous isotropic medium. At an infiltration rate much below maximum gravity

driven flow, and with no capillary pressure, thereis no driving force for lateral flow. A 

simulation with a standard 5-point finite difference scheme produces a narrow downward 

slumping plume that remains confined to the first (leftmost) column of grid blocks 

• 
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(results not shown). Recall from Table 1 that five-point differencing in a ''parallel'' grid 

that is aligned with horizontal and vertical directions -has the unique property that 

transversal numerical phase dispersion vanishes. Thus there is neither a physical nor a 

numerical effeet that could give rise to a broadening of the plume. Addition of a transver

sal phase dispersivity of a.r = 0.2 m causes a lateral broadening of the infiltration plume 

(Fig. 4) as expected, which becomes very pronounced when the system is run to steady 

state (Fig. 5). Steady state conditions are approached quickly in the upper interior portion 

of the pluJ11e, while the outer regions with only slightly elevated liquid saturation con

tinue to spread on a very slow time scale. An approximate doubling of the· transversal 

phase dispersivity has only modest impact on· the inner high-saturation region of the 

plume, while strongly affecting the peripheral regions ofslightly elevated liquid satura-
. ' . 

tion. Fig. 6 shows the steady-state plume for a transversal phase dispersivity of a.r = 

0.4167 m, a value that was chosen to permit a direct comparison with the steady-state 

plume for 9-point differencing and no phase dispersion in Fig. 7. Note that, according to 

Table 1, both.calculations have the same numerical (and no physical) longitudinal phase 

dispersivity, while the numerical transversal phase dispersivity in the 9-point calculation 

of CT = 2.5/6 = 0.4167 m is equal to the physical phase dispersivity in the 5-point calcu-

lation,. 

Based on the equivalence between numerical and physical phase dispersion dis-

cussed above we expect that both infiltration plumes should be identical. Inspection of 

Figs. 6 and 7 shows that, for the most part, the saturation contours agree, but there are 

also significant differences. In the 9-point scheme no portion of the plume extends 

upward beyond the main diagonal of the grid, while the physical phase dispersion effect 

leads to significant lateral spreading above the diagonal. The main reason for the lack of 
/ 

closer agreement is i~ the upper boundary condition in the 9-point differencing scheme. 

Indeed, the 9-point approximation is violated in the top row of grid blocks which have no 

flow connections going upward. The derivation of the numerical phase dil)persivities as 
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Table 2. Parameters used in simulations 

water TCE geothermal 
' 

infiltration infiltration injection 

permeability (m2} 15.8 x w-12 lOx 10-12 lOx w-12 

porosity .35 .35 .05 
\ 

soil (rock) density (kg!m3) t t 2600. 

specific heat (J/kg°C) t t 1000. 

thermal conductivity (W/m°C) t t 2.1 

relative permeability Eqs. 33-35 Eqs. 36-38 Eqs. 33-35 

irreducible water saturation .10 .15 .30 

irreducible gas saturation .01 .01 . .05 

irreducible NAPL saturation - .05 -

exponent - 3.0 -

initial conditions: 
' 

temperature (°C) 20.0 20.0 240. 

pressure (bar) 1.0 1.013. 10. 

water saturation .10 .15 0 

injection specifications: 
. 

water rate (kg/s) .05 - .01 

water enthalpy (kJ/kg) t - 125.8 

TCE rate (kg/s) - .7687 x w-3 -

t isothermal problem, no thermal data needed. 
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given in (Pruess, 1991b) is only valid in the interior of the flow domain, where grid_ 

blocks can receive downward flow. This suggests that a better confirmation of the 

correspondence between numerical and physical phase dispersion should be possible by 

eliminating the effects of the upper boundary. Accordingly, we initialized a 9-point simu

lation from the upper (top row of grid blocks) boundary conditions obtained for the 

steady state with transversal phase dispersivity of <Xrr = 0.4167 m. The resulting steady 

state (Fig. 8) agrees quite closely with the steady state for physical phase dispersion in 

the 5-point grid, Fig. 6. Remaining small discrepancies are believed to be. caused by 

higher order space derivative terms (third order and beyond) which are different in the 

two fonnulations. 

TCE SPILL 

Spills or leaks of non-aqueous phase liquids, such as solvents or fuel oils, have fre

quently occurred at low rates in near-surfac~ environments. The present problem assumes 

that a quantity of 465 kg of TCE, corresponding to two barrels, is spilled over a 7 -day · 
/ 

period. Infiltration into a homogeneous soil column of 10 Darcy permeability occurs 

from a point-like source of 15 em diameter. The water table is at a depth of 40 m. There 

is no infiltration of water, and the entire unsatUrated zone is initialized at an irreducible 

water saturation of 15%. Three-phase relative permeabilities are represented by a slightly 

modified version of Stone's first method (Stone, 1970). For water, gas, and NAPL-phases 

we have;respectively, 

= [Sg-Sgr]n. 
k.rg 1-s 

wr 

(36) 

(37) 

(38) 
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where n is the exponent (Table 2), and Swr, Sgr, and Snr represent, respectively, irreduci

ble saturation of water, gas, and NAPL phases. Water-gas capillary pressures are 

represented by van Genuchten's formulation (van Genuchten, 1980), written in the form 

·(39) 

with parameters agw = 5.0 m-1, Sm = 0, and v = 1.84. Capillary pressure between the 

NAPL and gas phases is assumed negligibly small. The behavior of the contaminant is 

modeled in a two-dimensional radially symmetric (R-Z) system, with constant pressure 

conditions maintained at the land surface. Radial grid increments are small near the spill 

point, increasing logarithmically to the large outer radius of 300m, see Fig. 9. Additional 

problem specifications are given in Table 2. 

The NAPL behavior during and subsequent to the spill event is simulated with the 

STMVOC code, an offshoot of TOUGH developed by Falta et al. (1992a, b) for the flow 

of three immiscible phases. STMVOC represents full multi-phase partitioning (vaporiza

tion and aqueous dissolution) of the NAPL. It includes advective flow in all three phases, 

as well as multicomponent diffusion in the gas phase. Adsorption of the NAPL to the 

porous medium can also be accounted for, although it was assumed negligible in the 

present case. Fig. 10 shows simulated saturations of free-phase TCE at the end of the 7-

day spill period, wi$out any phase dispersion. It is seen that flow of the NAPL phase in 

the unsaturated zone is straight downward, as was to be expected. Indeed, the only driv

ing force for lateral flow is provided by the increase in soil gas pressure due to the inva

sion of the TCE plume. This increase and associated lateral TCE migration are ·very 

small, because of the very small viscosity of the soil gas that is being displaced. The . 

situation is very different once the plume reaches the water table. water viscosity is 
~ 

larger than TCE viscosity at ambient temperature, so that non-negligible pressurization 

occurs as TCE displaces water. This provides a driving force which causes the TCE 

plume to spread laterally. The effect is amplified by capillary suction effects, which drive 

" 
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water towards the region of diminished water saturation in the TCE plume. 

The fate of the contaminant plume is entirely different when transversal phase 

dispersion is included. Figures 11 and 12 show simulated saturations of free-phase TCE 

at the end of the 7-day spifl period, for transversal phase dispersivities of a.r = .002 m 

and a.T = .02 m, respectively. The plume now spreads not only downward but also 

laterally in the unsaturated zone. The lateral spreading is stronger for larger transversal 

dispersivity, as expected, but even for a "small" dispersivity of .002 m the spreading is 

very significant. Because of the radial flow geometry, the rather modest broadening of 

the plume to approximately 1 m diameter, as compared to the 0.15 m diameter of the 

spill, offers sufficient volume to retain all of the free-phase TCE within the unsaturated 

zone, above the water table. 

The different plume configurations with and without phase dispersion at the end of 

the spill period make for very different behavior after the spill has terminated, when the 

flow system is left to its internal driving forces. The results for a 5-year period following 

the spill are summarized in Table 3. 

Table 3. TCE inventory following a spill of 465 kg over 7 days. 
I . . 

time= 7 days time= 1 year time = 5 years 

no phase CX.T a.r nopbase CX.T a.T no phase CX.T 

dispersion =.002m =.02m dispersion =.002m =.02m dispersion =.002m 

free phase 434.1 kg 447.1 kg 451.3 kg 358.3 kg O.Okg 11.2 kg 358.3 kg O.Okg 

dissolved 13.1 kg 5.7kg 4.1 kg 34.5 kg 116.7 kg 76.0kg 23.8kg 64.4kg 

gaseous 17.2kg 11.2 kg 8.2kg 51.8kg 233.1 kg 152.0 kg 30.3 kg 128.6kg 

total 464.4kg 464.0kg 463.6kg 444.6kg 349.8kg 239.2kg 412.4kg 193.0kg 

At the end of the spill period (7 days) most of the TCE is present as a free NAPL 

phase. The amount vaporized into the soil gas phase (and a corresponding amount 

a.r 
=.02m 

O.Okg 

33.3 kg 

66.6kg 

99.9kg 
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dissolved in immobile water) is small, but is larger when phase dispersion is neglected. 

This is explained by the fact that the non-dispersed plume has a smaller radius and there

fore, at approximately equal total volume, has a larger surface area than the dispersed 

plumes for contacting soil gas. At later times the phase-dispersed plumes are subject to 

much stronger vaporization. Mter one year, in the case without phase dispersion approxi-

mately 77% of spilled TCE forms a free-phase plume beneath the water table. This 

plume is not affected by gas phase diffusion and advection; it remains unchanged after 5 . ' 

years as there is no regional groundwater flow in our system that could dissolve it. The 

phase-dispersed plumes on, the other hand remain in the unsaturated zone where they are 

subject to very substantial diffusive and advective gas phase flow effects. Due to its prox

imity to the land surface, a significant amount of TCE is removed from the flow system 

simply by diffusion into the atmosphere. With increasing ,transversal phase dispersivity; 

more of the TCE plume remains close to the ground surface, resulting in stronger decline 

of TCE inventory from diffusion across the land surface. The vapor migration occurs 

both by diffusion and by buoyancy-driven gas flow: a column of soil gas containing TCE 

vapors is heavier than clean air; it flows downward, inducing entry of clean atmospheric 
. " ' 

air into the soil upstream from the NAPL plume,,thus providing for continuing vaporiza-

tion into the flowing, gas stream (Falta et al., 1989). TCE vapors are subject to equili

brium phase partitioning into the aqueous phase. The ratio of dissolved to vaporized TCE 

inventory in the simulations with phase dispersion is seen to be approximately 0.50 at all 

times. This particular ratio is somewhat fortuitous, and is explained as follows. From 

aqueous solubility and vapor pressure of TCE one can calculate that, at a temperature of 

20°C, the ratio of partial TCE densities (concentrations) in aqueous and gaseous phases is 

2.83. In the present problem, water saturation in the unsaturated zone is .15, so that the 

.ratio of dissolved to vaporized TCE mass in the unsaturated zone is ·2.83 x .15/.85 = 0.50. 

In the simulations without phase dispersion additional TCE is dissolved in the aqueous 

phase below the water table, so that the ratio of dissolved to vaporized TCE is larger. 

" 
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Although total TCE inventory changes monotonically with tranvers31 phase disper-

sivity at all times, TCE inventories in NAPL, aqueous, and gaseous phases show a,more 

complicated behavior. After 1 and 5 years, the amounts of TCE dissolved in the aqueous 

· and vaporized in the gas phase are larger for cx.r = .002 m than for <x.r = 0 or aT = .02 m. 

This is explained ~y noting that for CX-r = .002 m less TCE leaves the flow system by dif

fusion into the atmosphere as compared to cx.r = .02 m, while the larger surface area of 

the TCE plume for CX-r = .002 m enhances diffusive migration away from the NAPL 

plume, promoting more rapid evaporation. 

It is clear from the above discussion that a rather small amount of phase dispersion 

can completely alter the behavior of NAPL plumes in thick unsaturated zones, both dur

ing initial infiltration and also during subsequent multiphase transport processes. This 

observation suggests that numerical simulations of NAPL flow processes that do not 

account for effects ofubiquitous small~scale heterogeneity may give completely spuriOU$ 

and unrealistic results. 

WATER INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS 

Vapor~dominated geothermal reservoirs are a rare but practically important type ·of 

geothermal system. They produce dry steam (usually) that is directly useable for electric 

power generation. The vapor-dominated fields at . The Geysers, California, and Lar

derello, Italy, have been utilized for power generation for several decades. Fluid with

drawal has caused well flow rates and pressures to decline. Water injection is the chief 

means by which dwindling fluid reserves can be replenished and a larger fraction of the 

heat energy stored in the rocks be recovered. 

Injection of water into depleted (low pressure) vapor zones gives rise to a complex 

interplay of fluid flow and heat transfer processes with phase change. The process is 

gravitationally unstable, and is further complicated by the fractured-porous nature of 

vapor-dominated reservoirs. Injected water will enter the reservoir primarily through a 

I 



-26-

number of fractures intercepted by the injection well. The fractures tend to be steeply 

dipping and form an irregular network. Heterogeneities are expected to be important on 

all scales from individual fractures to reservoir-scale networks. The unfractured matrix 

rock has low permeability, of order microdarcies. It provides heat transfer to boil injected 

water in the fractures, and it can absorb water by means of capillary imbibition and other 

processes (Pruess and O'Sullivan, 1992; Pruess and Enedy, 1993). 

Engineering design of injection systems requires a capability to realistically 

describe the evolution of boiling plumes of injected water, so that undesirable thermal 

degradation and liquid interference at production wells may be avoided. In the major 

fractures capillary effects will be weak, so that water movement will essentially be deter

mined by gravity-driven advective flow within a heterogene~us setting. In a ''conven

tional'' modeling approach using homogeneous permeability, phase dispersion will arise 

only from numerical grid effects. In the most commonly used parallel grid with 5-point 

differencing this numerical dispersion is highly anisotropic (see Table 1), providing no 

mechanism for lateral (horizontal) spreading of injection plumes. Accordingly, injection 

plumes take the shape of narrow downward slumping fingers (Lai and Bodvarsson, 1991; 

Shook andFaulder, 1991, Pruess, 1991b). Inclusion of physical phase dispersion effects 

provides a mechanism for lateral water migration. This will have an important impact on 

the area for rock-fluid heat transfer available to the injection plume, and for possible

breakthrough of liquid water at production wells. 

We have used an idealized two-dimensional vertical section model representing a 

highly permeable fracture zone to examine phase-dispersive effects during water injec

tion into a low-pressure vapor zone (see Fig. 13). Problem specifications are given in 

Table 2. Simulated results for injection plumes without allowance for phase dispersion 

effects in parallel and diagonal 5-point grids are shown in Fig. 14. They exhibit the 

trends expected from the analysis of numerical dispersivities, Table 1. The parallel grid 

generates no transversal numerical phase dispersion, and accordingly gives a straight 

... 
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downward slumping plume. In contrast, the diagonal grid has a transversal numerical 

phase dispersivity of h/(2 -../2) = 3.54 m, which causes a significant broadening of the 

plume. A detailed analysis of space discretization errors for this problem was given in 

(Pruess, 199lb). 

Fig. 15 shows an injection plume predicted from a 5-point parallel grid with a phase 

dispersivity of 1.67 m. The broadening of the plume is entirely due to the physical phase 

dispersion effect. For comparison we show simulation results obtained with the same 

grid, but using 9-point differencing and no phase dispersion (Fig. 16). According to 

Table 1, both simulations have the same total (numerical plus physical) phase dispersivi

ties, both in transversal and longitudinal directions. Inspection of Figs. 15 .and 16 shows 

that the agreement.between them is excellent. 

DISCUSSION AND CONCLUSIONS 

In many applications involving multiphase flow medium heterogeneity is the key to 

understanding and modeling flow and transport. Heterogeneity in the unsaturated zone 

typically occurs on a broad range of scales, from "small" (millimeters to meters) to 

"large" (meters to kilometers). Conceptually, large-scale heterogeneity can be dealt 

with rather easily; it is accounted for by explicitly discretizing the flow domain and 

assigning appropriate material properties to the various s-pbdomains. Small-scale hetero

geneity poses more difficult problems. Physical and numerical experiments have shown 

· that ever-present and seemingly insignificant heterogeneities down to the millimeter 

scale can have very strong effe~ts on multiphase flow behavior, especially in the case of 

NAPL fluids infiltrating in the unsaturated zone (Poulsen and Kueper, 1992; Kueper and 

Frind, 1991). Clearly, detailed characterization of such small-scale heterogeneity will be 

impossible for most flow systems of practic~l interest, and it would be impractical to 

explicitly account for it in numerical models. Description of multiphase flow in the pres

ence of small-scale heterogeneity then faces a problem completely analogous to the 
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problem of solute transport in heterogeneous media. This paper proposes to deal with this 

problem in a similar way, by adding a phenomenological dispersive flux term to the 

governing equations for multiphase flows. 

Whereas in solute transport the quantity being dispersed is solute concentration, the 

quantity subjected to "phase dispersion" is phase saturation S. Restricting ourselves to 

gravity-driven infiltration problems, we have recast the multiphase flow equations into 

the familiar form of the convection-dispersion equation, with capillarity being 

represented by a dispersion tensor. This tensor is then generalized in analogy to the cus

tomary tensor of solute dispersion to include transversal and longitudinal phase disper

sion effects. It is shown that the proposed phase dispersion term is analogous to a capil

lary pre~sure with strength proportional tb the logarithm of liquid relative permeability. 

Hence, the effective phase-dispersive capillary pressure is always negative, regardless of 

phase wettabilities. The driving ''force'' for phase dispersion is provided by relative per

meability gradients. 

We have derived finite-difference approximations for the phase-dispersive flux, 

which were coded into our multiphase flow simulators TOUGH2 and STMVOC. 

Analysis of space truncation errors in the finite difference approximation leads to the 

identification of grid effects which are equivalent to the proposed "physical" phase 

dispersion. Calculations for infiltration of water and trichloroethene (TCE) into . the 

vadose zone, and injection of water into depleted vapor-dominated geothermal reservoirs, 

have demonstrated that the basic effect of phase dispersion is a horizontal broadening of 

descending liquid plumes. Our simulations have also verified the close correspondence -

between physical phase dispersion, and numerical phase dispersion which arises as an 

artefact of space discretization. 

We emphasize that our calculations are intended to illustrate typical effects that fol

low from our proposed model for phase dispersion. ·Applicable parameter choices and 

indeed the range of validity for the model are not known at present Experimental and 
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modeling studies will be needed to explore the conditions that would permit application 

of a Fick:ian diffusion model to phaSe dispersion, and to establish magnitude and possible 

- saturation dependence of phase dispersivities. 
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Figure 1. Schematic of parallel and diagonal grids for vertical section models. 



,. 

' / ' / '/ 
/' 

/ ' 
/ ' 

\ 

/ 
/ 

' ' 

/ 
/ 

' ' 
/ 

/ 
~ 

' 

_/ 

// 

/ 

/ 
/ 

/ ' ' ' 

/ 

35 

' / ' / '-/ 
/'-

/ ' 
/ ' 

/ ' 
/ ' 

/ ' 
/ ' ' / ' / ' / ' / ' / ' / x > 

/ ' / ' / ' /' 
,_ 

/ ' / ' ', / 

' / 

' / 

' / 
NW '-N/ NE 

~ • •, / ' / 

' / ' / 

' / ' / 
'/ '-/ 

' ., 

' / ' / ' /.I' 

' ' ' . ' 
.1' 

' .>-
/ 

/ 

' 

{ 

/ 

// 
/ 

/ 

' ' .'._ 

' 

' / ' / 

' / ' / 

' / ~~p 
w/~ 
/ ' / ' / ' / ' / ' / ' '/ ' . /~ i', / 

/ 
/ ' / 

/ ' / , 
)I • sw /s' 

/ ' 
. ' 

// ' 
/ 

' / 

' / 

' / 

' 

' / 

' / 

' / 

/~E 
/ ' 

/ ' 
/ ' v ' 

1', 

' ' '• SE 

' / 

' / 

' / 

' / 
'-/ 

1', 

" ' ,_ 
/ 

/ 
/ 

/ 
/ 

1', 

' ' ' 
/ 

/ 
/ 

/ 

XBL 913-6057 

Figure 2. Five- and nine-point finite difference approximations (modified from Pruess 
and Bodvarsson, 1983). · 
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Figure 3. Vertical section grid used for simulating water infiltration into the vadose 

zone. 
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Figure 4. Simulated water infiltration plume after 5.35 x lo5 seconds, with a transver-

sal phase dispersivity of <Xrr = 0.2 m. Contour lines of water saturation are 
.. 

shown. 
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Figure 5. Steady-state water infiltration plume with transversal phase dispersivity of 

a-r = 0.2 m. 
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Figure 6. Steady-state water infiltration plume with transversal phase dispersivity of 

c:x.r = 0.4167 m. 
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Figure 7. Steady-state water infiltration plume simulated with 9-point parallel grid; no 
~ 

phase dispersion. 
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Figure 8. Steady-state water infiltration plume in 9-point parallel grid, no phase 

dispersion, with upper boundary condition taken from the simulation shown 

in Fig. 6. 
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Figure 9. Radially symmetric (R-Z) grid used for simulating a point-like TCE spill. 

Two expanded views of the grid show the lines connecting nodal points. 

Grid extends to R = 300 m. 
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Figure 10. TCE plume simulated with 5-point parallel grid, no phase dispersion, at the 

end of the 7-day spill period. 
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Figure 11. Same as Fig. 10, but phase dispersivity aT= 0.002 m. 
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Figure 12. Same as Fig. 10. but phase dispersivity a.T = 0.02 m. 
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Figure 13~ Schematic of 2-D vertical section model for fracture zone in a depleted 

vapor-dominated geothermal reservoir (from Pruess, 1991b)~ 
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Figure 14. Simulated plumes after 717.01 days of injection in parallel and diagonal 5-

. point grids (from Pruess, 199lb). Two-phase regions are shaded. 
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Figure 15. Injection plume after 717.01 days in parallel 5-point grid, with phase disper-
'-

sivity a.r = 1.67 m. The contour lines show water saturation. 
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Figure 16. Injection plume after 717.01 days in parallel 9-point grid, no phase disper-

sion. 
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