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Abstract 

A molecular-thennodynamic model is developed for representing thennodynamic properties of aqueous two-

phase systems containing polymers, electrolytes, and proteins. The model is based on McMillan-Mayer solution 

theory and the generalized mean-spherical approximati~n to account for electrostatic forces between unlike ions. The 

Boublik-Mansoori equation of state for hard-sphere mixtures is coupled with the osmotic virial expansion truncated 

after the second-virial terms to account for short-range forces between molecules. 

Osmotic second virial coefficients are reported from low-angle laser-light scattering (LALLS) data for binary 

and ternary aqueous solutions containing polymers and proteins. Ion-polymer specific-interaction coefficients are 

detennined from osmotic-pressure data for aqueous solutions containing a water-soluble polymer and an alkali 

chloride, phosphate, or sulfate salt. 

When coupled with LALLS and osmotic~pressure data reported here, the model is used to predict liquid-

liquid equilibria, protein partition coefficients, and electrostatic potentials between phases for both polymer-polymer 

and polymer-salt aqueous two~ phase systems. For bovine serum albumin, lysozyme, and a-chymotrypsin, predicted 

partition cOefficients are in excellent agreement with experiment 

1 Current address: Agricultural and Technical University ofWageningen, Wageningen, The Netherlands .. 

2 Current address: Ingenieria Quimica, Universidad de Extremadura, Badajoz, Spain 
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Introduction 

In 1956, Per-Ake Albertsson (1986) introduced aqueous two-phase partition systems to the biological and 

engineering communities. Following Beijerinck (1896), Albertsson found that phase separation often occurs when 

two water-soluble polymers [e.g. polyethylene glycol (PEG) and dextran] or when a polymer and a strong electrolyte 

[e.g. PEG and an alkali phosphate] are dissolved in water. The aqueous two-phase systems so formed contain mainly 
. ; 

.water, with each phase enriched with respect to one of the separation-inducing components. Due to their high-water 

content, both equilibrium phases provide a suitable environment for labile macromolecules, cells, membranes, and 

organelles. 

Aqueous two-phase partition systems provide a sensitive technique for fractionating and separating complex 

mixtures of bio-macromolecules (Walter et al., 1985; Kula et al., 1982). When a mixture of proteins is added to an 

aqueous two-phase system, each type .of protein partitions uniquely between the phases. The partitioning behavior 

of a protein in a given two-phase system is governed predominantly by its size, surface chemistry, and net charge, 

with other, usually smaller, contributions made by forces associated with the dipole moment and the polarizability of 

the protein (Johansson, 1974b; Brooks et al., 1985; Haynes et al., 1989b). As shown by Hustedt et al. (1990), 

subtle changes in any of these properties can lead to noticeable changes in partitioning behavior. 

Recently, attention has· been given to the use of aqueous two-phase technology as an initial step in the 

(large-scale) isolation of genetically engineered proteins (Walter et al., 1991). To aid design and optimization of 

r 
aqueous two-phase systems for recombinant-protein separations, several investigators have proposed models for 

predicting the thermodynamic properties of aqueous two-phase systems, giving special attention to prediction of 

protein partition coefficients. Most of these previous modeling efforts have focused on description of 

· nonelectrostatic forces, in particular excluded-volume forces, affecting phase diagrams and partition coefficients. For 

example, an early model was provided by Brooks et al. (1985), who used Flory-Huggins theory to correlate phase­

diagram and protein partition-coefficient data. Among others, Walter et al. (1991) have questioned the applicabilityt 

of Flory-Huggins theory, which assumes that all polymer segments are uniformly distributed and are free to assume 
. . 

a large number of configurations, to the description of protein partitioning since proteins generally have rigid 

structures and .assume highly nonuniform segment densities .in solution. However, Brooks et al. demonstrated that 
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Flory-Huggins theory could qualitatively describe phase diagrams and protein-partition coefficients in the absence of 

electrostatic effects (Albertsson et al., 1987). 

v Following Brooks, Tjemeld and coworkers used Flory-Huggins theory to correlate a wide variety of tellUII)' 

polymer/polymer/water phase diagrams (Gustafsson et al., 1986a; Gustafsson et al., 1986b; SjOberg and Karlstrom, 

1989). Also, Diamond and Hsu (1989) correlated an extensive set of dipeptide and low-molecular-weight protein 

partition-coefficient data using a simple, linearized form of Flory-Huggins theory. 

A more sophisticated lattice..:model approach was proposed by Baskir et al. (1987; 1989), who used the 

polymer adsorption theory of Scheutjens and Fleer to examine the nature of polymer-protein interactions in aqueous 

solution. In the same spirit, Abbott et al. (1991) applied the polymer-solution scaling theories of de Gennes (1979) 

to the description of interactions between nonionic phase-forming polymers and globular proteins. The novel 

physical pictures which emerged provide important criteria for testing existing and future models. 

An alternate modeling approach was first proposed by King et al. (1988) who applied the theory of Edmond 

and Ogston (1968), based on the osmotic virial expansion truncated after the second-virial-coefficient terms, to the 

prediction of phase diagrams and protein partition coefficients; low-angle laser-light scattering measurements were 

used to determine osmotic second virial coefficients, the only nonelectrostatic model parameters. A short time later, 

we extended this theory to include three-body and higher-order interactions through application of differential-solvent­

vapor-pressure data.[Haynes et al., 1989a]. Following the liquid-solution-theory approach of King et al., Cabezas et 

al. (1989) used the isothermal-isobaric virial expansion of Hill (1986) to predicttemary phase diagrams. Recently, 

Forciniti et al. (1991) used an osmotic-virial-expansion based theory, similar to that of King et al., to interpret an 

impressive set of protein-partition-coefficient data at the isoelectric poiilt. 

The excellent reviews by Walter et al. (1991) and Abbott et al. (1990) provide a critical analysis of these 

and other models describing the effects of the polymers on phase separation and isoelectric protein partitioning. 

Unfortunately,little attention has been given to modeling aqueous two-phase systems containing ions (and 

electrostatic forces) despite their well-established importance (Johansson, 1974a; Reitherman et al., 1973; Bamberger 

et al., 1984; Brooks et al., 1984; Sharp et al., 1986; Zaslavsky et al., 1991, 1988, 1987, 1986, 1983, 1982, 1981, 

1980, 1979, 1978). For realistic engineering applications, it is essential that electrostatic forces be included in any 

model for aqueous solutions containing proteins. To model protein partition coefficients in systems containing 
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electrolytes, Brooks (Walter et al., 1985), and King et al. (1988) extended their theories to include the effect of the 

interfacial-electrostatic-potential difference. The resulting models follow classical electrochemical thermodynamics 

(Guggenheim, 1959) by assuming that the logaritlun of the partition coefficient of the protein macroion, In KP, is 

given by 

In Kp {1) 

where ~ * is the protein partition coefficient in the absence of an interfacial-electrostatic-potential difference .6cl> 

(Alberts son, 1986); In ~ * is given, for example, by Flory-Huggins theory in Brooks' model and by the osmotic 

virial expansion in King's model. For most polymer/polymer/water two-phase systems, Equation (1) captures the 

basic effects of added eleCtrolytes (at low concentrations) on protein partitioning, probably because the formation of 

an interfacial-electrostatic-potential difference is the dominant effect of adding small amounts of strong electrolytes to 

such systems. 

However, Equation (1) does not consider the ions of added strong electrolytes or the counterions of protein 

macroions as molecular species; as a result, no account is given of the influence of ion hydration/solvation 

(including salting-out forces), hydrated-ion excluded-volume forces, and electrostatic screening (double-layer forces) 

on phase diagrams and protein partition coefficients. Neglect of these forces is satisfactory for . many 

polymer/polymer/water two-phase systems containing strong electrolytes at low concentrations (King et al., 1988; 

Haynes et al., 1991; HayneS et al., 1992c). However, ion-specific forces and screening effects become increasingly 

. important as the concentration and charges of ions increase. (Robinson and Stokes, 1954 ). Moreover, models which 

neglect these effects cannot be used to describe polymer/salt/water two-phase systems, which are finding increasing 

industrial use in large-scale protein-purification trains. 

This work is concerned with the influence of electrolytes and electrostatic forces on phase diagrams and 

protein partition coefficients. A few years ago, we presented results from a molecular-thermodynamic model fdt 

aqueous two-phase systems which specifically includes the molecular properties and effects of salts (Haynes et al., 

1989b). That model, which draws from the concentrated-electrolyte-solution models of Guggenheim (1935) and 

Newman (1973), is based on the osmotic virial expansion coupled with extended Debye-Hiickel theory to account for 
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electrostatic forces between unlike ions" Predicted phase diagrams and interfaCial-electrostatic-potential differences 
. . 

were in good agreement with experiment for polymer/polymer/water systems containing small amounts of strong 

electrolytes and globUlar proteins; however, predicted protein partition coefficients were in only fair agreement wi~ 

experiment. primarily because of the requirement that a single "effective" ion-size parameter must be ~ when 

applying Debye-HUckel theory to multicomponent electrolytic solutions" 
~ 

Cabezas et at (1989) presented a similar model which combines Pailtliorpe et ai:s (1982) extension to 

. I . 
Debye-HUckel theory with the isothermal-isobaric viria1 expansion" With paiameters fit from isopiestic vapor-

pressure experiments and the low-angle laser-light scattering data of King et alo (1988), Cabezas' model accurately 

predicts polymer/polymer/water phase diagrams for systems containing strong electrolytes" However, Cabezas' 

model has not been used to predict protein partition coefficients" 

. In this work, we relax the restriction of a single ion-size parameter by replacing ~bye-HUckel theory with 

the generalized mean-spherical approximation, a statistical-mechanical result from integral-equation theory providing 

analytical expressions for the thermodynamic properties of a multicomponent mixture of unequal-sized ions dilute in 

a liquid continuum (Blum, Lo, 1975)" This result is coupled with a perturbed Boublik-Mansoori expansion for 

nonadditive hard-sphere miXtures (Mansoori et at, 1971) and the osmotic virial expansion, with the hard-sphere 

contribution removed (McMillan hnd Mayer, 1945)" This coupling yields a statistical-thermodynamiC model useful 

for predicting phase diagrams, (globular) protein partition coefficients, and electrostatic potential differences in 

polymer/polymer and, more important. polymer/salt aqueous two-phase systems" 

Modeling of Multicomponent Electrolytic Solutions 

The correlation or prediction of thermodynamic properties of multicomponent electrolytic solutions requires 

an appropriate molecular-thermodynamic theory" Theories of ionic behavior in solution have been developed in a 

number of ways, including empirical correlation and statistical mechanics" Semi-empirical theories, such as that of 

Meissner and Tester (1972; Meissner, 1980), are not our concern here" Instead, we focus on those theories which are' 

derived from the primitive model of molecular fluids using statistical mechanics" In the primitive model, ions are 

considered as charges embedded in hard spheres of specified diameter" Solvent molecules are not explicitly modeled; 

instead, the effects of solvent granularity are removed by averaging over all possible configurations of the solvent 

5 



molecules. Through this averaging process, known as McMillan-Mayer solution theory; the solvent is replaced by a 

continuum ha~ing the same macroscopic (dielectric) properties as those of the solvent 

For liquid.solutions at normal temperatures and pressures, phase equilibria can be described by ~ 

appropriate activity-coefficient model. Useful activity-coefficient models for multicomponent aqueous mixtures of 

strong electrolytes having ions of similar size include those of Guggenheim and Turgeon (1955), Newman (1973), 

Haynes et al. (1989b), Bromley (1974), Cruz and Renon (1978), Chen et al. (1982), Chen and Evans (1986), 

Haghtalab andVera (1988), and, most notably, Pitzer (1973; 1974). All of these models are based on Debye-Huckel 

theory; therefore, they use a single ion-size (distance-of-closest-approach) parameter to describe all ion-ion 

interactions in solution. This approximation is satisfactory for systems where ion diameters differ by less than a 

factor of two, but agreement with experiment quickly deteriorates as the i<:>n-size asymmetry increases above two 

(Zemaitis et al., 1986). Therefore, activity-coefficient models based on Debye-Huckel theory are of limited use in 

describing charge-charge interactions in aqueous two-phase systems, where the ratio of protein-macroion diameter to 

strong-electrolyte ion diameter is typically between five and twenty five. 

Fortunately; integral-equation theory provides a powerful method for developing activity-coefficient models 

for multicomponent electrolytic solutions which explicitly include the (hydrated) diameter of each ion in the mixture 

(Hansen and McDonald, 1977; Friedman, 1985; Rasaiah et al., 1972; McQuarrie, 1976). Integral-equation theory 

provides a means for determining the pair correlation function &iir) describing the distribution of ions of type i 

around a central ion of type j from knowledge of the pair potential function U;_j(r); the pair correlation functions so 

derived can then be used to determine useful thermodynamic properties of the solution. 

The primitive model for electrolyte solutions belongs to a more general class of liquid theories based on 

solution of the Omstein-Zemike integral equation: 

hij(r) C;;(r) + t Pk f c,;(lr- r'l) hik(r') dr {2) 

where Pt is the number density of species k, and Cij(r) is the direct correlation function between particle i and particle. 

j when the distance between these particles is r; hij(r), the total correlation function, is a measure of the total 

influence of particle ion particle j; it is related to the pair correlation function by ~j(r) = ~j(r) - 1. Since Cij(r) and 
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~ir) are both unknown, a second, approximate relation, known as a closure relation, is needed to transfonn Equation 

(2) into a closed equation for ~j(r). A nurriber of closure relations consistent with the primitive model can be found 

" in the literature; the most successful of these are the mean-spherical approximation ~SA and its modifications) an~ 

the hypemetted-chain (HNC) approximation, which can be thought of as a second-order correction to the MSA. For 

description of aqueous solutions of 1-1 and 1-2 electrolytes, HNC theory is slightly superior to MSA theory for 

predicting thennodynamic properties. However, HNC theory, which must be solved numerically for each solution 

condition, is 100t well suited for use in multicomponent phase-equilibrium calculations. MSA theory is more 

appropriate for such calculations, in part, because its solution, even for unequal-sized ions, is analytical. 

The mean-spherical approximation has been applied to the primitive model of electrolytes (Waisman and 

Lebowitz, 1970, 1972; Blum, 1975, 1980; Blum and H~ye, 1977), primarily to correlate activity coefficients in 

aqueous electrolyte solutions (Triolo et al., 1976, 1978; Watanasiri et al., 1982; Ball et al., 1985; Corti, 1987). 

From this earlier work, the MSA, with contributions from hard-sphere interactions explicitly included, is known to 

yield good results for activity coefficients of 1-1 and 1-2 electrolytes up to moderate ion concentrations. However, at 

very dilute salt concentrations ( < 1x10·6 M), which are not our concern here, inaccuracies in the MSA can occur as a 

result improper account of coupling forces. 

In this work, we examine the applicability of generalized MSA theory to the description of charge-charge 

. interactions in aqueous solutions containing polymers, strong electrolytes, and globular-protein macroions (Anderson 

and Chandler, 1971, 1972; Chandler and Anderson, 1972). 

The MSA closure relation is given by (McQuarrie, 1976) 

Cij(r) = -Uij(r)/kT 

hij(r) = - 1 , 

r > dij 

r < dij 

(3) 

where ~ is the distance of closest approach between ions i and j. Results from MSA theory reveal an intricate 

'" interplay between ion size, charge, and the thermodynamic properties of electrolytes in solution which is not 

captured by Debye-Hfickel theory (Lee, 1988; Olivares and McQuarrie, 1975). As shown later, this interplay is 

essential to a quantitative description of protein and salt partitioning in aqueous two-phase systems. 
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For a multicomponent aqueous solution containing ions of arbitrary diameters and charges, MSA theory 

(obtained from simultaneous solution of Equations {2) and (3) through Fourier transforms) yields the following 

expression for the charge-charge contribution to the excess modified Helmholtz energy, A'Ex.cc (Blum, 1980; Harve~ 

et al., 1988), · 

. 
AEx, c~ = 

v 
-~( r L pi zf + .JLn P!) + .r:.u 

e i 1 + di r 2a 37t 

2 2 2 
~ L, Pi (1 + dirr (zi - 1tdi Pn/2a) 

LPiZf 
i 

Pn = j_ L dj pj Zj. 
n j 1 + dj r 

3 
n = 1 + .1L L pj dj 

2a j 1 + dj r 

{4) 

where K is the reciprocal Debye screening length, e is the electronic charge, k is Boltzmann's constant,£ is the 

permittivity of the solvent continuum, T is the absolute temperature, zi is the valence of species i, dj is the hard-

sphere diameter of ion j, and the sums extend over all ionic species. r is the MSA screening parameter, which 

reduces to K/l (i.e. the Debye-Hiickellimit) at infmite dilution. A'Ex,cc is relative to a mixture of uncharged hard 

1 spheres in a dielectric continuum. 

The Modified Helmholtz Energy of an Aqueous Mixture of Polymers, Salts, and Globular Proteins 

The statistical-mechanical basis for ionic-solution models derived from the primitive model, and for dilute-

polymer-solution models such as the osmotic virial expansion, lies ultimately in the dilute-liquid-solution theory 

developed by McMillan and Mayer. The independent variables for McMillan-Mayer theory are temperature, volume, 

chemicat potential of the solvent (J.Lc), and. numbers of moles of solutes (~'s). As recently established (Haynes et 

al., 1992a), application of statistical mechanics to eiectrolytic or dilute-polymeric solutions yields a modified 
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.,, 

Helmholtz energy A'= A- nJ.L
0 

(where A is the Helmholtz energy of the mixture). Thus, all other thermodynamic 

properties are derived from A', not A. •The use of models derived in the McMillan-Mayer framework for correlating 

and predicting phase-equilibrium data therefore requires an understanding of the thermodynamic connection between 

the semigrand canonical ensemble (Hill, 1986), where the independent variables are T, V, IJ.0 , and all solute mole 

numbers, and experimental data, where temperature, pressure, and all compositions are the independent variables. 

Establishment of this connection is not merely of academic interest Correct conversion of model equations to the 

constant-temperature and constant-pressure framework often leads to quantitative improvements in the ability of 

models derived in the McMillan-Mayer framework to describe real-solution properties. 

Here, we use the key results from Haynes et al. (1992a) to develop a free-energy model for aqueous 

solutions containing polymers, salts, and globular proteins. 

Following conventional practice (e.g., Prausnitz et al., 1986), we divide the modified Helmholtz energy A' 

into its ideal and excess contributions: 

. . 
A' = Aid+ AEx (5) 

where A'id' the ideal modified Helmholtz energy for an incompressible liquid mixture, is given by (Haynes et al., 

1992a) 

A.id = L n j [ aj + 
jo~o 

-il [ ( 
-il y - L Yj Dj ' ' ' 

RT I~ V ~ n; } l + 1:, a. : ~· + RT In I · 
Yo . 

t -I. <llj 
= L Dj [ aj + RT In <Pd + !o [ ao - llo + RT In ( 1 -

Yo jo~o 

L \f7 Dj )] 
jo~o 

y 

(6) 

In Equation (6), cpj (= cjVj9
) and vt are the volume fraction and partial molar volume of component j, 

res~tively, and, by definition, aj = llje- P Vj9; aj (which can be interpreted as a molar Helmholtz energy) is a 
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function of temperature but, since the system was taken to be incompressible, not of pressure; Jlje is the standard-

state chemical potential of component j defmed at the limit of vanishing soluteS. 

The excess modified Helmholtz energy, A'Ex• is divided into five parts: 

I I I I I I 

A& = A&, bs + AEx, na + . A&, ic + A&, cc + AEx. ve (7) 

A'Ex.hs is the contribution to the excess modified Helmholtz energy due to mixing unequal-sized hard spheres in a 

continuum solvent A'Ex.na provides a frrst-order hard-sphere nonadditivity correction to A'Ex.hs· The inclusion of 

this term follows Abbott et al. (1991), who suggested that significant penetration of protein macroions into the 

volume occupied by polymer coils may occur in systems where the sizes of the two molecules are similar, or where 

the polymer occupies a larger volume than the protein macroion. A'Ex.ic is the contribution due to the ion-charging 

process; A'Ex,cc accounts for charge-charge interactions in solution and is· given by Equation (4). · Finally, A'Ex,ve 

accounts for short-range interactions between solute molecules in solution; as shown later, A'Ex,ve is derived from 

the osmotic virial expansion truncated after the second-virial-coefficient tenns. 

A) The Additive Hard-Sphere Contribution to A'Ex 

An accurate equation of state (EOS) for mixtures of additive hard spheres in vacuum has been derived by 

Boublik (1970) and by Mansoori et al. (1971). We can extend Boublik's EOS to account for the presence of 

continuum by applying the principles developed in Haynes et al. (1992a). The resulting EOS for a mixture of 

additive hard spheres in a continuum is given by 

where 

7tNAv ~ ni dF 
;:U = v~ = __ .........._ __ 

6 

(8) 

with m = 0, 1, 2 or 3 
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-· 
P

0 
= ij.L

0
- ac)/ V 

0
8, and NAvis Avogadro's number. In Equation (8), the presence of the continuum is reflected in 

the P jkT term which, at infinite dilution, forces the total pressure to converge to the vapor pressure of the solvent. 

Integration of Equation (8) with respect to volume gives A'~~s• the modified Helmholtz energy of a mixture of 

additive hard-spheres in a continuum. The constantofintegration.is determined by expanding the expression for A'~~s 

for large V and comparing the result with the corresponding form of A'id for an ideal dilute fluid. A'Ex,hs is then 

given by 

.. ' 
AEx,hs = Abs - Aid 

(9) 

Haynes et al. (1992a) provide a derivation of Equation (9). 

B) The Nonadditive Hard-Sphere Mixture Correction Contribut~on to A'Ex 

The Boublik-Mansoori EOS assumes that the distance of closest approach between two molecules (like or 

unlike) is given by the sum of their hard-sphere radii: 

(10) 

where ~j is the hard-sphere distance of closest approach between solutes i and j. This approximation seems 

reasonable for electrostatic interactions, which, in dilute solutions, occur over distances that are large compared to th~ 

sizes of the solutes. However, in aqueous two-phase systems, where the volume occupied by a random-coil polymer 

(e.g., polyethylene glycol) chain can be comparable to that of a protein, the "true" distance of closest approach O"ij• 

characterizing the nonelectrostatic interaction between polymer i and protein (or polymer) j, may be significantly less 
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than ~j since the large number of polymer-chain configurations allow the protem to penetrate partially the average 

volwne occupied by the polymer (Abbott et al., 1991). The demonstrated importance of excluded-volume forces in 

aqueous two-phase systems (Haynes et .al .• 1989b; Cabezas et al., 1989; Kiiig et al., 1988; Forciniti and Hall, 1990) 

suggests that polymer-penetration effects can significantly influence phase ·diagrams and protein partition 

coefficients. 

Polymer-penetration effects are accounted for by incorpOrating a nonadditivity correction into the model. 

Perturbation theory can be used to relate the thermodynamic properties of a nonadditive mixture of hard spheres in a 

continuum to thoSe of an additive hard-sphere system. Here, perturbation theory is used to expand the modified 

Helmholtz energy of a hard-sphere mixture in a continuum in a Taylor series with the set of expansion parameters 

(cr;j- ~j). Truncation of the expansion after the frrst-order perturbation tenns gives (Haynes, 1992b; Harvey, 1988) 

. . 
AEx,na = · Ana (11) 

where A'ru is the modified Helmholtz energy of a nonadditive hard-sphere mixture, in a continuum solvent; g;j(~j) is 

the contact value of the pair correlation function for species i and j in the additive hard-sphere system. A good 

estimate of &;j(~) for additive hard-sphere mixtures is given by Grundke and Henderson (1972): 

(12) 

Originally derived by Grundke and Henderson for hard-spheres in vacuo; this expression for &;j(d;) is also applicable 

to a mixture of uncharged solute molecules in an uncharged continuum (Haynes, 1992b). A derivation of Equation 

(11) is given elsewhere (Haynes, 1992b; Harvey, 1988). 

C) The Ion-Charging Contribution to A'E,. 



By modeling ions as charged hard spheres in a continuum of uniform dielectric constant, Born (1920) 

calculated the reversible work required to charge an ion in solution. Following Born, we write the ion-charging 

contribution to the excess modified Helmholtz energy as 

. N 2 2 
AEx,ic = Av e L lli Zj 

e i di 
(13) 

where the sum extends over all ionic species. 

D) Osmotic-Virial-Expansion Contribution to A'Ex 

Several authors (Edmond and Ogsten, 1968; King et al., 1988; Haynes et al. 1989b; Forciniti et al, 1991; 

Cabezas et al., 1989) have demonstrated the applicability of models based on the osmotic virial expansion (or on the 

isobaric-isothermal virial expansion of Hill) to the prediction of polymer/polymer/water phase equilibria. For a 

multicomponent mixture of solutes dilute in a solvent, the osmotic virial expansion is given by (McMillan and 

Mayer, 1945; Krigbaum and Flory, 1953) 

n = RT[. L Di + NAv L L llj llj Bij(J.Lo, T)] 
i..O v i..O j..O y2 . 

(14) 

where n is the osmotic pressure of the solution; B\{J1.
0

, 1), which has units of liters, is the molecular osmotic 

second virial coefficient characterizing short-range two-body interactions between solutes i and j, and the expansion 

has been truncated after the second virial coefficient terms (Hill, 1986). Statistical-mechanical arguments provide a 

relation between B*ij(Jl.o• 1) and the potential ofmean force Wij(Jl.o• T, r): 

= .11~ [e- WiiUto. T, r)/kT _ 1] 47tr2 dr 
2· 

0 

(15) 

where Wij(JJ.o• T, r) describes the interaction between molecules i and j held a fixed distance r apart when the 

remaining molecules, all solvent molecules, are canonically averaged over all configurations. 

1 3 



In our model, the hard-sphere contribution to a•ij(J.l.o, T) is already accounted for in the nonadditive hard­

sphere mixture terms (Equations (9) and (11)). The hard-sphere contribution to a•ij(J.l.o, T) can be determined by 

solving Equation (15) for a mixture of hard spheres; the result is given by [B"ij(J.l.
0

, T)Jru. = (1000)27tcrij3/3. For 

example, when both i and j are nonionic polymers, we can split B"ij(J.l.o, T) into two terms: 

(16a) 

where ~·ij(J..t..,,T) is a residual osmotic second virial coefficient describing specific nonelectrostatic and non-hard-sphere 

interactions between solutes i and j; ~·ij(J.l.0,T) is directly related to pii(J.l.
0
,T), the specific-interaction ·coefficient 

(kg/mol) of Guggenheim. Similarly, for two-body interactions between protein macroions and/or ions of added 

electrolyte, we can define p•ij(J..t..,,T) by splitting a•ij(J.l.o,T) into three terms: 

(16b) 

where [B•ij(J.l.
0

, T)]cl represents all contributions made to a•ij(J.l.
0

, 1) by electrostatic forces which are taken into 

~ccount in the model by A'&..cc and A'Ex,ic [Equations (4) and (13)]. 

Equation (14), with a•ijOto• T) replaced by p•ij(Jl
0
,T), can be used to determine the virial-expansion 

contribution to the excess modified Helmholtz energy; the resulting expression for A'Ex.~ is given by 

(17) 

The procedure for deriving EqUation (17) from Equation (14) is given in Haynes et al. (1992a). 

Equations (4) through (17) provide a modified Helmholtz energy model applicable to the description o~ 

equilibrium properties of moderately concentrated aqueous solutions containing random-coil nonionic polymers, 

strong electrolytes, and globular proteins. 

14 
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Determination of Model Parameters 

Application of Equation (7) to a specific aqueous two-phase system requires knowledge of several 

parameters, including the hard-sphere diameter of each solute, the molar volume of the solvent, the partial molar 

volume at infmite dilution of each solute, the electrokinetic charge and valence of each ionic (or macro-ionic) 

species, the solvent dielectric constant, the osmotic second virial coefficient characterizing each solute i - solute i 

interaction, and the cross osmotic second Viria1 coefficient characterizing each solute i - solute j interaction. 

· Charges and valences for ions of strong electrolytes are determined from the stoichiometry of the 

dissociation reaction; .all strong electrolytes are assumed to be fully dissociated in aqueous solution. Protein 

macroion electrokinetic charges as a function of solution pH were taken from the literature (Tanford and Wagner, 

1954; Tanford et al., 1955; Tanford, 1961; Sakakibara and Hamaguchi; 1968; Shiao et al., 1972; Hom and Heuck, 

1983). The charge and hard-sphere diameter of the counterions to each protein were assumed to be the same as those 

of the corresponding ion of the added strong electrolyte. 

Ion-ion (salt) specific-interaction coefficients, ~ij(Jl0,T)'s, at 25°C were taken from the data of Guggenheim 

and Turgeon (1955), Guggenheim and Stokes (1958), and Newman (1973). 

A) Hard-Sphere Diameters 

Table .I shows hard-sphere diameters for a number of ions of added strong electrolytes, nonionic random-<:oil 

polymers, and (globular) protein macroions. Cation hard-sphere diameters were taken from Robinson and Stokes 

.._ (1954), Kraus (1949), Walden (1936), Harned and Owen (1958), and Burgess (1988). Anion hard-sphere diameters 

were regressed from mean-ionic activity-coefficient data for binary aqueous solutions containing the electrolyte at 

25°C (Robinson and Stokes, 1954; Hamed and Owen, 1958; Guggenheim and Stokes, 1958; Zemaitis et al., 1986). 

The "hard-sphere" diameter of each random-coil polymer was detennined by fitting to differential solvent 

vapor~pressure data (Haynes et al., 1989a) for the binary aqueous polymer solution; Equation (5) yields the 

following expression for the solvent vapor-pressure difference aP between pure solvent and aqueous polymeJ1 

solution 

( 18) 
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where Po is the vapor pressure of pure water at 25°C, N 1 is the number of polymer 1 chains, and. V o is the molar 

volume of the solvent; the first tenn inside the exponential is the Camahan-Starling equation of state for ~ 

monodisperse hard-sphere system (which the Boublik~Mansoori hard-sphere EOS reduces to when applied to a single­

solute-in-continuUm system); «111 is the volume fraction of solute 1 based on the partial molar volume of the solute 

at in!mite dilution; B*11 is the molecular osmotic second virial coefficient (in units of liters) for the polymer 

obtained from low-angle laser-light scattering data (Rathbone et al., 1990; King et al., 1988). 

Protein macroion hard-sphere diameters were taken from Tyn and Gusek (1990), who present effective 

hydrodynamic radii and diffusion coefficients for eighty-six globular proteins in water.at 25°C. 

Hard-sphere distance-of-closest-approach parameters, dij• are detennined from the Boublik-Mansoori 

(Boublik, 1970; Mansoori, 1971) combining rule 

(19) 

which assumes that the hard-sphere diameters are additive. 

B) Partial Molar Volumes 

At infinite dilution, partial molar volumes for salts and proteins are widely available; for example, 

experimental values for salts can be found in Hamed and Owen (1958), Guggenheim and Stokes (1958), and Millero 

(1971, 1~72). For proteins, partial molar volumes at infinite dilution ·can be found in a number of sources including 

Creighton (1984), Jones (1979), Tanford (1961), and Goldberg (1984). 

Infinite-dilution partial molar volumes for nonionic random-coil polymers were regressed from data for 

solution density as a function of polymer concentration, using the relation (Newman, 1973) 

(20) 
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where p is the solution density (giL) and M,.1 is the number-average molecular weight of the polymer fraction 

(g/mol). Measured infinite-dilution parti~ molar volumes are 3.12 ± 0.20 L/mol for PEG 3350 (M,.1 = 3790), 8.56 

± 0.25 L/mol for PEG 8000 (M,.1 = 9037), 25.7 ± 0.50 L/mol for dextran T-70 (M,.1 = 29630), and 151.0 ± 2 

I./mol for dextran T -500 (M,.1 = 167000). Each measurement was done at 25 °C and the data represent the arithmatic 

average of four independent experiments. 

C) Polymer and Protein Osmotic Second Virial Coefficients 

Static low-angle laser-light scattering (LALLS) measurements were made with an LDC/Milton-Roy KMX-

6 LALLS photometer according to the procedure given by Rathbone et al. (1990). Refractive-index increments were 

measured with an LDC/Milton-Roy K.MX-16 laser differential refractometer following the procedure given by 

Rathbone et al. (1990). All experiments were for dilute, binary, aqueous polymer solutions and for aqueous 

electrolyte (buffer) solutions containing a globular protein. All measurements were at 25°C. 

Rayleigh theory provides the relation for determining the polymer (molar) osmotic second virial coefficient, 

Bii (mL moVgl), from experimental values of the reduced Rayleigh ratio at several polymer concentrations using the 

relation: 

Kc· -'= 
Re 

1 (OJ.lo\ = -1- + 2Buci 
- 1000 RTV0 OCi Jr.P Mw; (21) 

where R 9 is the reduced Rayleigh ratio, ci is the mass concentration of solute i, Mwi is the weight-average 

molecular weight of the polymer, and K (cm2 moVg2), an optical constant characteristic of the polymer and the 

solvent, is given by 

(22) 
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where n
0 

is the refractive index of the solvent, A. is the wavelength of the incident light (em), and vi (mL/g) is the 

refractive-index increment at infmite dilution. 

As shown in Figure 1 for dextran T -40 in water at 25°C, the osmotic second virial coefficient and weight~ 

average molecular weight for each polymer fraction i were determined from a plot of KcJ R 9 as a function of 

polymer concentration. 

Table 2 reports experimental osmotic second virial· coefficients, weight-average molecular weights and 

specific refractive-index increments for two polyethylene glycol fractions and four dextran fractions. Additional 

nonionic polymer virial coefficients and weight-average molecular weights from LALLS measurements have been 

reported previously (Rathbone et al., 1990; King et al., 1988) .. I 

Osmotic second virial coefficients and weight-average molecular weights were also measured for flfteen PEG ... 

fractions chemically modified to carry charge on the ends of each chain. The chemically modified PEG fractions were 

kindly provided by Dr. Maria Kula (1990), who used them to study polyelectrolyte charge effects on protein 

partitioning. Table 3 shows osmotic second virial coefficients and weight-average molecular weights for all of the 

modified polymers in water, and for several of the modified polymers in 10-mM and 100-mM potassium phosphate 

buffer. 

For LALLS measurements on proteins, the aqueous buffer solution serves as the solvent. The specific 

refractive-index increment was determined for each aqueous buffer (or salt-enriched) solution. Then, Kcj R 9 values 

were measured by LALLS over a range of protein concentrations. Here, R 9 is the reduced Rayleigh ratio describing 

the intensity of the protein- protein interaction at the given solution pH. 

Tables 4, 5, and 6 report osmotic second virial coefficients and weighFaverage molecular weights for bovine 

serum albumin,lysozyme, and a-chymotrypsin, respectively, in a number of aqueous buffer (salt) solutions at 25°C. 

The specific-interaction coefficient, Pu• for each polymer i or protein i can be regressed from its osmotic 

second virial coefficient and (number-average) molecular weight by relating the model (as written for a binary 

solution) and the osmotic virial expansion truncated after the second virial coefficient term: 

rr = woo RT Ci ( _t_ + BiiCi } ~ RT Ci . (aA~) · 
Mn; _ iJV 11a. I1j <P<O>. 1 

(23) 
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where n is the osmotic pressure of the· mixture, and A' Ex is a function of 13u as shown in Equations (7) and (17). 

All other model parameters for the binary system must be known to regress a 13u parameter using Equation (23); f~r 

binary dilute polymer solutions, the hard-sphere diameter of the polymer is the only other model parameter. For 

dilute aqueous protein solutions at a given pH, the hard-sphere diameter and electrokinetic charge ·Of the protein must 

be known, as well as the total ionic strength of the solution. 

D) Cross Osmotic Second Virial Coefficients for Macromoleculaes 

Tables 7, 8, and 9 report experimental cross osmotic second virial coefficients for several polymer pairs, 

polymer-protein pairs, and (globular) protein pairs, respectively. With the individual osmotic second virial 

coefficients, weight-average molecular weights, and specific refractive-index increments known for the two 

macromolecules, the cross osmotic second virial coefficient, Bii' was detennined from the limiting slope of a plot of 

K'(ci + cj)/ R 8 as a function of total polymer concentration (ci + c~ according to the linear relationship (Kratochvil 

et al., 1975), 

K'(Ci + Cj) -- m(Ci + Cj) + b 
Rq 

where 

m _ 2v?M;1wtBfi + 4VNjMw 1MwiWiWjBij + 2vJM;iwfBTI 

(v?Mw1Wi + VfMwiWj} 

(24) 

In Equation (24), K' (mol/cm4
) is Klv/ and wi is the weight fraction of polymer fraction i, defined as cj(ci + ci). 

Equation (24) is valid only when the ratio of polymer concentrations, cjci' is held constant for all measured values of 

R e· 
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The cross specific-interactio.n coefficient, ~ij• is regressed from the cross osmotic second viria1 coefficient for 

the macromolecule pair by relating the model (as written for a ternary solution) and the osmotic virial expansion 

truncated after the second virial coefficient tenn: 

IT= lOOORT? Ci(J. + ?BijCj) = RT?ci- (a~jx) , . . (25) 
1 n, 1 1 )J.o. nJ ~). 1 

where the regression also requires values for the individual solute virial coefficients and specific-interaction 

coefficients. 

E) Macromolecule '- Salt Cross Specific-Interaction Coefficients 

Studies by Huglin (1972) showed that low-angle laser-light scattering can be used to obtain a qualitative 

understanding of the strength of salt- macromolecule interactions in aqueous solution. However, a quantitative 

interpretation of the light-scattering data was hindered by the relatively weak scattering intensity of the ions of the 

strong electrolyte, whose molecular size is commensurate with that of the solvent 

Fortunately, Scatchard and coworkers (1946, 1954), Cassassa and Eisenberg (1960, 1964), and Tombs and 

Peacocke (1974) have established a thennodynamic framework for regressing macromolecule- salt cross coefficients 

from vapor-pressure osmometry or membrane-osmometry data. Table 10 reports cross specific-interaction 

coefficients for nonionic polymer - salt pairs. Polymer - salt ~ij parameters were regressect directly from vapor-

pressure-osmometry data for ternary aqueous solutions containing nonionic polymer i and strong electrolyte j. A 

Knauer model A-0280 vapor-pressure osmometer was used for all solvent vapor-pressure measurements~ 

Table 11 reports cross specific-interaction coefficients for (globular) protein - salt pairs. Protein - salt f3ij 

parameters were regressed directly from. membrane-osmometry data for ternary aqueous solutions containing protein i 

and strong electrolyte j. A Knauer membrane osmometer was used for all osmotic-pressure measurements. 

Experimental details of all new osmotic-pressure and vapor-pressure data can be found elsewhere (Haynes, 1992b; 

Haynes et al., 1992c; Haynes et al., 1989b; Knauer A~0280 vapor-pressure osmometer operations manual, 1988; 

Knauer membrane-osmometry operations manual, 1990). 
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Following Scatchard et al. (1946, 1954), the solvent vapor pressure and the osmotic pressure of a dilute 

ternary aqueous solution containing one diffusible solute (3) and one nondiffusible macroion (2) are related to the 

chemical potentials of the solute species by 

[
d In. (Po- L1P)] 

R.I. · Po 
Vo . dc2 

= ·..dll. = ffi2 

dc2 Mn2 
(26) 

where 11\ is the molality (moJ.Ikg solvent) of solute i.: Equation (26) was used to regress macromolecule - salt cross 

specific-interaction coefficients from solvent vapor-pressure data or osmotic-pressure data; each solute chemical 

potential was determined from appropriate differentiation of A'. In deriving Equation (26), Scatchard assumed that 

the solution was dilute and incompressible. and that contributions from the partial molar volume of the small 

diffusible solute are negligible. / 

Figure 2 shows experimental and calculated osmotic pressures as a function of protein concentration for a 

ternary aqueous system at pH 8 and 25°C containing bovine serum albumin and 50-mM potassium-phosphate buffer. 

\ 

Osmotic pressures were calculated using Equations (4) through (17) and the parameters in Tables I. 4, and 11. The 

excellent agreement of the model calculations with experiment suggests that the model may also be useful for 

correlating osmotic pressures of other aqueous (globular) protein solutions. 

Calculation of Liquid-Liquid Equilibria 

Consider a liquid (a) - liquid ((3) system at temperature T and pressure P containing nonelectrolytes and 

electrolytes. At equilibrium, the chemical potential of each component present in both phases must be the same in 

the two phases. The chemical potential for any nonelectrolytic solute j is determ,ined from A' by 

Jl. - ('dA')· . J--
dn j J1o. ni (iotj,O), T, V 

(27) 
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Equation (27) also applies to any ion j present in both phases; in that case, however, Jlj is the electrochemical 

potential of ion j (as defined by Guggenheim (1959)) which depends on the electrical state of the phase. 

Since each bulk phase is, on average, electrically neutral, ions must move from phase Cl to phase ~ in 

neutral combinations. Although the work of transferring an ion i from one phase to another depends on the electrical 

states of the two phases, the work of reversibly transferring at constant temperature and volume a neutral 

combination of ions from phase c:x to phase~ does not For a solution containing a strong electrolyte (or protein) j 

which has dissociated into a cationic species (i =+)and an anionic species (i = -),we defme the molar chemical 

potential of the neutral salt Jlj as 

Jlj = V-+Jl+ + V-J.l.. . (28) 

= V-+Jl~ + V-Jl~ + RT In {v~-ty~-) + vRT In (CJ'Y±j) 

' 
where 'Yt is the molar mean-ionic activity coefficient Equation (28) is used to determine the chemical potential of 

each neutral salt fonned from the set of ions in solution. Equilibrium tie-lines and compositions are calculated by 

forcing the chemical potential of each neutral component to I>e the same in the two phases. 
. . I 

Experimental Phase Diagrams and Partition Coefficients 

A) Experimental Phase Diagrams 

Equilibrium phase compositions in polymer/polymer and polymer/salt aqueous two-phase systems were 

detennined using size-exclusion high-performance liquid chromatography (HPLC). The HPLC used a three-column 

configuration comprised of one Bio-Gel TSK-40 30-cm colwnn and two Bio-Gel TSK-30 30-cm columns connected . 

in series. Dextran concentrations were measured with a Perkin-Elmer 241 Polarimeter using a specific optical 

rotation of+ 199.5°. The protocol followed was the same as that of King et al. (1988). 

B) Experimental Solute Partition Coefficients 

Salt partition coefficients were determined by measuring cation concentrations in each phase using either a 

Perkin-Elmer model 2280 or model 2380 atomic-absorption spectrophotometer. Cation emission intensity was 
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detected at a wavelength of 589.5 run and a slit width of 0.2 or 0.4 nm. Potassium chloride was added to each 

sample containing Na+ to prevent ion pairing, and an ionization impact bead was used to improve sensitivity. 

Protein concentrations in aqueous buffer solutions were measured spectrophotometrically with a Milton~ 

· Roy Spectronic 1201 spectrophotometer at a static wavelength of 280 nm. The extinction coefficients, E280 
1% 

(cm2/mg), used for lysozyme, a-chymotrypsin, and bovine serum albumin are 2.55, 2.00, and 0.66. respectively. 

Model Predictions 

Table 12 reports crij values, which represent the true distance of closest approach between solutes i and j, 

regressed from equilibrium-composition data for ternary and quaternary aqueous two-phase systems. PEG - PEG and 

dextran - dextran crij values were regressed from dilute ternary osmotic-pressure data, and Dextran - PEG crijs from the 

minimum experimental tie-line length for the salt-free system. All salt - polymer and salt - protein crij values were 

regressed from dilute ternary vapor-pressure-osmometry data. Finally, protein- polymercrijs were regressed from the 

experimental partition coefficient for the protein at the minimum tie-line length studied. 

The A' model given in Equations (4) through (17), the model parameters shown in Tables 1 through 12, and 

the liquid-liquid equilibria framework outline above were used to calculate phase diagrams, salt and protein partition 

coefficients, and (as discussed below) interfacial-electrostatic potential differences for a number of industrially 

important aqueous two-phase systems. All of the data in Tables 1 through 12 have been used in model calculations 

on aqueous two-phase systems. However, for brevity, we present here only a sample of calculated results which 

serve to illustrate the flexibility and accuracy of the model. 

All model calculations are based on simultaneous solution of the equilibrium criteria 

(29) 

for each neutral component j present in the two phases. For charged species· (such as proteins), the neutral' 

component j is formed by the appropriate combination of protein macroions and counterions. Eq. (28) gives J.l.j for 

each neutral combination so defined. The phase rule gives the total number of independent neutral combinations 

which can be formed from the charged species in solution. 
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Since the concentration of each protein appears explicitly in the A' model, the calculations presented below 
) 

consider the influence of proteins and protein-protein interactions on phase behavior and salt partition coefficients. 

This is an important departure from previous models, such as the models of King et al. (1988), Forciniti and Hall 

(1990), and Abbott etal. (1991), which rely on the assumptions that the protein is infmitely dilute and that salts 

have no effect on the polymer distribution coefficients. As shown below, proteins, at concentrations 0.1 wt% and 

above, can noticeably influence phase diagrams and salt partition coefficients. These effects may prove important in 

industrial aqueous two-phase extraction systems, where protein concentrations are often much larger than 1 wt% 

(Kula et al., 1982). 

A) Phase Diagrams 

Figure 3 ~bows experimental and calculated phase diagrams for the polyethylene glycol3350/dextran T-70 

aqueous two-phase system at 25°C. Aqueous mixtureS of PEG 3350 and dextran T-70 having a total composition 

. which lies above the coexistence curve separate into two liquid phases, while mixtures with total compositions 

below the coexistence curve give one liquid phase. The length of the tie-line which connects the total composition 

with_ the compositions of the resulting equilibrium phases provides a conven.ient parameter for correlating data. The 

tie-line length 1LL is a measure of the composition difference between the two equilibrium phases; it is defmed as 

(30) 

Model predictions are in good agreement with experiment over the entire range of tie-line lengths applicable to 

protein-extraction systems. Moreover, model predictions are significantly· better than those based on our earlier 

·model calculations using the osmotic virial expansion truncated after the second virial coefficient terms (King et al., 

1988; Haynes et al., 1989b). The superiority of this model for calculating phase diagrams for polymer/polymer 

aqueous two-phase systems is partly due to the incorporation of polymer-penetration effects. As shown in Table 12! 

for all random-coil polymer pairs, the "true" distance of closest approach G;i between polymer coils is smaller than 

the corresponding hard-sphere distance of closest approach, indicating partial penetration of one polymer chain into 

the average volume occupied by the other chain. 
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As suggested by the scaling-thermodynamics results of Abbott et al. (1991), the predictive abilities of the 

model become progressively worse with increasing molecular weight of the PEG fraction. Abbott et al. postulates 

that a transition in the conformation of PEG in aqueous solution from a compact, random-coil structure to a loose .• 

entangled polymer network occurs upon increasing the polymer's molecular weight above 10,000 D. The failure of · 

our model, which treats the polymer as a random coil, at PEG molecular weights above 20,000 D provides indirect 

evidence for the existence of this transition. 

The model has also been applied to the prediction of phase diagrams for polymer/salt aqueous two-phase 

systems. To illustrate, Figure 4 shows. experimental and· calculated phase diagrams for the polyethylene glycol 

3350/potassium-phosphate aqueous two-phase system at 25°C. Again, model predictions are in good agreement with 

experiment over the entire range of tie-line lengths applicable to protein extraction systems. Here, however, 

penetration effects make only a small contribution to the calculated phase diagrams, presumably because ions are 

repelled from the volume occupied by the polymer and by the relatively low dielectric constant of the polymer space 

compared with that of the free aqueous solution. As shown in Table 12, salt - PEG CJi/s are similar to the 

corresponding ~j·s, indicating that PEG chains strongly repel most salts. 

B) Salt Partition Coefficients in Polymer-Polymer Aqueous Two-Phase Systems 

As shown by King et al. (1988) and Albertsson (1986), addition of millimolar quantities of a strong 

electrolyte to polymer/polymer aqueous two-phase systems has only a small effect on the location of the coexistence 

curve. However, salts which partition unevenly between the phases of such systems are known to create interfacial 

electrostatic-potential differences (Brooks et al., 1985; Bamberger et al., 1984; Sharp et al., f986; King et al., 1988), 

which, in tum, can influence dramatically the partitioning behavior of charged biomolecules (Johansson, 1974b; 

Reitherman et al., 1973; Haynes et al., 1991). 

Figure 5 shows experimental and calculated phase diagrams for the polyethylene glycol8000/dextran T-500 

aqueous two-phase system containing 50-mM ~HP04• Comparison with the salt-free phase diagram measured b)l 

King et al. (1988) indicates that the salt decreases slightly the concentration of PEG in the dextrari-rich phase. As 

sho.wn in Figure 5, the model predictions capture this subtle change in the phase diagram. The dashed cUI'Ve, which 

represents the predicted coexistence curve for the salt-free system, lies just above the solid curve, which represents 
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the calculated coexistence curve for the salt-containing system. The difference in the two curves is largely due to the 

effect of mutual repulsion of PEG chains and small ions; In essence, PEG chains are salted out of the dextran-rich 

phase by the presence of the relatively high concentration of electrolyte. This strong exclusion force between PEG 

and salts provides some explanation for the effectiveness of mixtures of PEG and ammonium salts in precipitating 

globular proteins (Cohn and Edsall, 1944). Here, large fractions of the solvent are needed to solubilize PEG and 

salts as a result of their strong mutual repulsion; this water is then unavailable to solubilize the relatively insoluble 

(i.e., relatively hydrophobic) proteins. This effect, combined with the well known osmotic attraction between 

protein macroions due to Ideal depletion of polymer and salts between nearby protein macroions, can be used to 

explain many of the observed trends in protein-precipitation systems (see, for example, Vlachy and Prausnitz, 1992). 

Of course, other forces, such as hydrogen bonding, may also play a role in in salt-induced protein precipitation. 

Figure 6 shows experimental and calculated partition coefficients- for three salts in quaternary PEG 

8000/dextran T-500 aqueous two-phase systems. Here, the total concentration of the salt is 50-mM and the partition 

coefficient ~ of the salt is defmed as 

m~ 
Ki =-1

-

m~ 
I 

(31) 

where a represents the PEG-rich top phase. In this system, each salt partitions preferentially into the dextran-rich 

phase, with multivalent salts exhibiting_ the strongest preference for the dextran-rich phase. For each salt, calculated 

partition coefficents are in good agreement with experiment Once again, the model suggests that the large excluded­

volume repulsion force between PEG and ions is largely responsible for the observed partitioning behavior. 

C) The Interfacial Electrostatic-Potential Difference . .1 <1> 

Albertsson (1986), Johansson {1974b), Brooks et al. (1984), King et al. (1988), and Haynes et al. (1991) 

have provided convincmg experimental evidence for the existence of interfacial electrostatic-potential differences and 

their often dramatic influence on protein partitioning. In addition, Albertsson (1986) provided a thennodynamic 

arg-ument for the fonnation of potential differences in aqueous two-phase systems which suggests that they are 

created by differences in the relative chemical affinities of the ions of an added electrolyte for the two liquid phases. 
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Through application of the quasi-electrostatic potential theory of Newman (1973), Haynes et al. (1991) provided a 

direct thennodynamic relation between measured interfacial electrostatic-potential differences and ·the equilibrium 

compositions of an aqueous two-phase system. For example, in a polymer/polymer aqueous two-phase system 
- ., 

containing a 1:1 electrolyte, the partition coefficient of the electrolyte K. and the ~ell for the system are related by 

(Haynes et al., 1991) 

(32) 

Thus, ~ell's can be determined directly from experimental or calculated values of IC_. Conversely, ~<l>'s measured 
r 

with a Ag/AgCl capillary-electrode apparatus (Brooks et al.,l984; King et al.,1988) can be used to verify calculated 

salt partition coefficients. 

Figure 7 shows measured and calculated ~ell's as a function of tie-line length for three different strong 

electrolytes in the PEG 8000/dextran T-500aqueous two-phase system. Equation (32) was used to calculate ~ell's 

from the predicted salt partition-coefficient curves shown in Figure 6. The apparatus and procedure used to measure 

~ell's is described in recent papers (Haynes et al., 1991; King et al., 1988). Measured ~ell's range from near 0 for 

NaCl to 6.9 m V for N~S04 at a tie-line length of 25.0. These data are consistent with the measurements of Brooks 

et al. (1984) and King et al. (1988). For each salt, predicted ~<l>'s are in good agreement with experiment 

Figure 8 shows calculated ~<l>'s for the PEG 3350/potassium phosphate·aqueous two-phase shown in 

Figure 4. Predicted ~<l>'s for salt/polymer two-phase systems are similar to those for polymer/polymer systems, 

although the maximum ~<l> tends to be slightly higher in salt/polymer systems. Electrode leakage effects and 

poorly defined liquid junctions made it impossible to measure ~<l>'s for salt/polymer systems. Thus, it is not 

possible to detennine the accuracy of the predicted ~ell's shown in Figure 8. 

D) Protein Partition Coefficients 

Figure 9 shows experimental and calculated partition coefficients for bovine serum albumin, a-

'· chymotrypsin, and lysozyme in aqueous two-phase systems at pH 7.1 containing PEG 3350, dextran T-70, 50-mM 



potassium phosphate, and 2 mg/mL of one of the three proteins. Calculated protein partition coefficients are in good 

agreement with experiment over a wide range of tie-line lengths. Indeed, the protein-partition-coefficient calculations 

shown in Figure 9 are noticeably superior to those obtained froin a previously published model (Haynes et al., 

1989b), which used a single distance of closest approach to characterize all ion- ion, ion -protein, and protein -

protein interactions. For the system described in Figure 9, the model also predicts that the presence of the proteins 

(at a total concentration of 2 mg/mL. or about 0.1 wt%) forces the partition coefficient of the salt to increase by 3% 

to 7% relative to its protein-free value. In effect. the proteins exclude the salt and "push" it out of the dextran-rich 

phase. This subtle effect was conflnned by atomic absorption experiments, which showed that the phosphate 

partition coefficient increased by an average (over the entire range of tie-line lengths) of 6% in the presence of 

protein. Moreover, for the sam,e system at a protein-free tie-line length of 16.1 (wt%), the model predicts that the 

addition of2 mg/mL BSA increases the PEG concentration in the dextran-rich phase by 4.7%; an increase of 3.6% 

was observed experimentally using size-exclusio.n HPLC. 

Figure 10 shows experimental and calculated partition coefficients for a mixtUre of bovine serum albumin, 

a-chymotrypsin, and lysozyme in an aqueous two-phase system at pH 7.3 containing PEG 3350, dextran T -70. 50-

mM potassium chloride, and 2 mg/mL of each of the three proteins. Again, calculated protein partition coefficients 

are in good agreement with experiment over a wide range of tie-line lengths. Moreover. comparison of Figures 9 and 

10 shows that the model captures the important effects of the added strong electrolyte on protein partitioning; the 

model appears to aecount properly for the influence of the interfacial electrostatic-potential difference. salt - protein 
( 

i . 
electrostatic forces, lmd salt - protein excluded volume forces. For example, a-chymotrypsin and lysozyme carry a 

net positive charge at pH 7. In the chloride-containing system, where no interfacial electrostatic-potential difference 

is created. both proteins partition preferentially into the PEG-rich phase. In the phosphate containing system, where 

an interfacial pOtential difference is created with positive pole in the PEG-rich phase, the positively charged proteins 

partition into the dextran-rich phase. As shown in Figures 9 and 10, the model accurately predicts this important 

electrostatic effect 

Finally, the model also qualitatively predicts protein partition coefficients in PEG/potassium phosphate 

aqueous two-phase systems. For example. Table 13 compares calculated and experimental partition coefficients as a 

function of lLL for chymotrypsin in the PEG 3350/potassium phosphate two-phase system at pH 6.5. The reason 
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for the model's mild divergence from experiment is unclear; it may be due to the tendency for chymotrypsin to 

partially dimerize at elevated salt concentrations (Birktoft and Blow, 1972). 

Conclusions 

Integral-equation theory coupled with the McMillan-Mayer dilute-solution theory provides a molecular­

thermodynamic framework useful for describing dilute and semi-dilute aqueous solutions containing random-coil 

palymers, salts, and globular proteins. When coupled with light-scattering and osmotic-pressure data, a molecular­

thermodynamic model derived from this framework properly describes the equilibrium properties of aqueous two­

phase extraction systems. 

Unlike most previous work in this area, the thermodynamic model shown here takes full account of 

electrostatic forces which cannot be neglected when describing ~ systems that are used in current biotechnology. 
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Nomenclature 

. A Helmholtz energy, J 

A' modified Helmholtz energy, J 

A'Ex excess modified Helmholtz energy, J 

a distance of closest approach parameter, A 

ai J.li - P V ie , J/mol; or, activity of species i 

Bij osmotic second virial coefficient, mL mol/g2 

B*ij molecular osmotic second virial coefficient', L 

-. 
Ci molar concentration of species i, moles/L 

ci mass . concentration of species i, g/mL 

Cij(r) direct correlation function for solute i solute j interactions 

dij hard-sphere distance of closest approach, A 

e electronic charge, 1.60210 x 10·19 C 

· F · Faraday's constant, 96,487 C/equiv. 

f integration constant 

g ij( r) pair distribution function for solute i - solute j interactions 

h iJ( r) total correlation function for solute 1 - solute j · interactions 

h Planck's constant 

,k Boltzmann's constant 

K optical constant, cm2 mol/g2 

Ki partition coefficient of solute i, _(mol/kg)/(mol/kg) 

~· partition coefficient of solute i in the absence . of an interfacial potential 
difference,· (mol/kg)/(mol/kg) 

mi molality of solute i, mol/kg solvent , 
Mw weight-average molecular weight, g/mol 

Mn number-average molecular weight, g/mol 

NAv Avogadro's number, mol· 1 

Ni number of molecules of species 



n 0 solvent refractive index 

n i number of moles of species 

P pressure, Pa or mm Hg 

PEx excess pressure, Pa or mm Hg 

P 0 pure-solvent vapor pressure, Pa or mm Hg 

R universal gas constant, J/mol K or L Pa/mol K 

R 9 reduced Rayleigh ratio, cm2/ml 

r radial distance, A 

T absolute temperature, K 

ui;(r) interionic pair potential function, J/mol 

V volume, L 

V 0 molar volume of pure solvent, L/mol 

V i9 partial molar volume of species i, L/mol 

W_ij(r) potential of mean force, J 

wi weight fraction of species 

zi charge number of species 

Greek Letters and . Symbols 

residual osmotic second virial coefficient, L 

Pij solute i - solute j specific-interaction coefficient, kg/mol 

E permittivity, farad/em 

cll.i volume fraction of species i (based on V 9
) 

interfacial electrostatic-potential difference, mY 

'Yi (molar) activity coefficient of species i 

'Y± molar mean-ionic activity coefficient 

r MSA screening parameter, k 1 

reciprocal Debye length, k 1 

3 1 



A.i thermal wavelength of species i, m 

chemical potential or electrochemical potential of species i, J/mol · 
i . 

refractive-index increment . (of solute i) at infinite dilution, mL/g 

v +' v _ number of cations and anions into which a molecule of electrolyte dissociates 

n . osmotic pressure, Pa or mm Hg 

p solution density, giL 

Pi number density of solute i, L- 1 

crij true distance of closest approach between solutes i and j, A 

l;m reduced density-type parameter in the Boublik hard-sphere expansion 
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Table 1 

Solute hard-sphere diameters in dilute aqueous solution at 25°C 

Ion dii Polymer dii Protein dii 

(A) (A) (A) 

Bovine serum 
Na+ 2.32 PEG 3350 24.6 albumin 59.6 

K+ 3.04 PEG 8000 30.8 a-Chymotrypsin 36.0 

Li+ 1.86 Dextran T-70 46.8 Lysozyme 30.4 

Ca2+ 2.28 Dextran T-500 88.4 

Mn 2+ 1.98 

c1· 3.62 

H2Po4- 4.44 

HPO 2• 4 3.82 

HS04• 3.66 

so 2• 4 3.28 
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Table 2 

Osmotic second virial coefficients, specific refractive index increments, and 

weight-average molecular weights for polyethylene glycol and dextran 

fractions in water at 25°C. 

(from LALLS measurements) 

Polymer Mw Bii X 104 V· ·I 

(J?;/mol) (mL mol/J?;2) (cm 3/g) 

~ 

PEG 3350 3,860 36.3 0.131 

PEG 8000 11,700 30.3 0.132 
4 

Dextran T -10 10,100 8.2 0.152 
(lot# 30170) 

Dextran T -40 43,400 
(lot# 38205) 

5.~d 0.151 

Dextran T -70 68,100 4.0 0.147 
(lot# 07340) 

Dextran T-500 508,900 1.3 0.147 
I (lot# 38624) 
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Table · 3 

Osmotic second virial coefficients and weight-average molecular' weights for · 

several polyethylene-glycol based polyelectrolytes in water and in potassium 

phosphate buffer at 25°C 

Polymer Mw Bii X 104 

Fraction 
(g/mol) (mL mol/g2) 

. 
Pure Water 10-mM Buffer 0.1-M Buffer 

NH2 - PEG 1550 2380 2.49 1.94 1.85 

- ' 
" 4000 3840 , 2.14 1.69 1.20 

" 6000 5780 2.07 1.95 1.85 

" 10000 18,700 2.69 1.35 
-

" 20000 29,000 2.77 1.22 

" . 35000 36,400 2.48 1.44 

Cl- PEG 10000 12,300 1.18 ' 

" 20000. 22,700 1.42 

Br-PEG 20000 23,700 1.45 

COOH-PEG 20000 22,200 1.32 

NH2 - MPEG 5000 5610 3.37 

Cl-MPEG 5000 5760. 2.21 . 
Br-MPEG 5000 6620 1.73 
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Table 4 

Osmotic second virial coefficients and weight-average molecular weights for . 

bovine serum albumin in aqueous buffer (or salt) solutions at 25°C. 

(from LALLS measurements) 

Buffer Salt Cone. Molal pH Bu x 1if Mw 
Salt Ionic 

(or salt) Strength 

(mol/kg) (mol/kg) (ml mol/g2) ( g/mol) 

Potassium 
Phosphate 0.050 - 6.0 1.8 86,300 

" 0.100 - 6.0 1.6 " 
( 

Potassium 
Phosphate - 0:075 7.0 8.3 86,600 

" - 0.140 7.0 6.'1 " 
" - 0.280 7.0 3.7 " 
" - 0.400 7.0 2.5 " 
" - 0.500 ·7.0 2.4 " 

Potassium 
Phosphate 0.050 - 8.0 6.9 86,300 

" 0.100 8.0 6.1 " -
Sodium 

Phosphate - 0.075 7.0 8.6 88,200 
" 0.150 7.0 6.4 " -
" 0.300 7.0 3.9 " -
" 0.400 7.0 "2.8 " -
" 0.500 7.0 2.6 " -.. 1.000 7.0 2.6 " -

KCI 0.050 - -7 8.7 89,000 

NaCI 0.050 - -7 8.9 89,000 
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Table 5 

Osmotic second virial coefficients and weight-average molecular weights for 

lysozyme in aqueous buffer (or salt) solutions at 25°C. 

(from LALLS measurements) 

Buffer Salt Cone. Molal pH Bii X 104 Mw 
Salt Ionic 

(or salt) Strength 

(mol/kg) · (mol/kg) (ml mol/~2) (~/mol) 

Potassium 
Phosphate 0.050 - 6.0 0.4 17,900 

It 0.100 6.0 - 2.7 It -
Potassium 

Phosphate - 0.075 7.0 4.1 17,900 
It 0.140 7.0 - 2.5 It -
It 0.280 7.0 - 7.2 It -.. 0.400 7.0 - 10.0 It -
" 0.500 7.0 - 10.0 It -

' 

Potassium 
Phosphate 0.050 - 8.0 - 3.6 18,200 

" 0.100 - 8.0 - 7.4 .. 

Sodium 
Phosphate - 0.075 7.0 4.8 18,000 

It 0.150 7.0 - 1.9 It -
It 0.300 7.0 - 6.7 .. -
" . 0.400 7.0 - 9.8 .. -
" 0.500 7.0 - 11.0 It -
it .: ·1.000 7.0 11.0 II -

KCi 0.050 - -7 5.8 18,200 

NaCl 0.050 - -7 6.1 18,200 
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Table 6 

Osmotic second virial coefficients and weight-average molecular weights for _ 

a-chymotrypsin in aqueous buffer (or salt) solutions at 25°C. 

(from LALLS measurements) 

Buffer Salt Cone. Molal pH Bii X 104 Mw 
Salt Ionic 

(or salt) Strength 

(mol/kg) (mol/kg) (ml moiL&:}_ l_g_/mol) 
Potassium 

Phosphate 0.050 - 6.0 - 6.3 26,600 
" 0.100 6.0 - 3.3 " -

Potassium -

Phosphate - 0.075 7.0 - 26. 26,600 
" 0.140 7.0 - 13.0 -
" 0.280 7.0 - 4.9 - --

" - 0.400 7.0 - 3.5 . 
" 0.500 7.0 - 2.8 -
" - 1.000 7.0 - 2.3 
" 1.500 7.0 - 2.2 -

Potassium 
Phosphate 0.050 - 8.0 - 16.0 26,600 

" 0.100 8.0 - 5.8 II -

Sodium 
Phosphate - 0.075 7.0 - 21.0 26,800 

" 0.150 7.0 - 9.8 II -
" 0.300 7.0 - 3.9 " -
" 0.400 7.0 - 2.9 " -
" 0.500 7.0 - 2.2 It -
" 1.000 7.0 - 1.9 It -

KCl 0.050 - -1 - 13.0 26,200 

NaCI 0.050 - -1 - 13.0 26,200 
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Table 7 

Cross osmotic second virial coefficients for several polymer pairs 

in water at 25°C 

Polymer Pair Bii X 104 

(mL mol/g2) 

PEG 3350 : Dextran T -70 17.3 

PEG 3350 : Dextran T -500 13.6 

PEG 8000 : Dextran T-500 12.7 

Dextran T -10 : MOPEG 5 12.1 

Dextran T-70 : MOPEG 5 9.5 

Dextran T-70 : PVP 10 9.1 - . 
Dextran T -70 : PVP 40 5.6 

Dextran T-70 : pyp· 360 3.0 

Dextran T-70 : PVA 14 6.1 

· Dextran T-70 : MC 41 7.5 

Dextran T -70 : Aquaphase PPT 2.8 

Dextran T-500 : MOPEG 5 9.6 

MOPEG 5: PVP 10 15.3 

MOPEG 5 : PVP 40 10.9 

MOPEG 5 : PVP 360 8.0 



Table 8 

Cross osmotic second virial coefficients for several polymer-protein pairs 

in aqueous potassium-phosphate buffer solutions, at 25°C. For each polymer­

protein pair, an average Bij x 104 (mL mol/g2), determined from the set of 

LALLS data, . is reported in . parentheses. 

Polymer i PEG 3350 PEG 8000 Dextran T-70 Dextran T-500 

Protein i 

Albumin ( 8.0 ± 0.1) ( 5.5 ± 0.2) ( 2.6 ± 0.1) ( 1.5 ± 0.1) 

pH i : 50 mM buffer · 8.0 5.6 2.6 1.5 
pH 7 : 100· mM buffer 8.0 5.6 2.6- 1.5 ) 

pH 6 : 50 mM buffer 8.0 5.5 ' 2.6 1.5 
pH. 6 : 100 mM buffer 7.9 5.5 2.6 1.6 

Lysozyme ( 3.3 ± 0.1) ( 3.0 ± 0.2) ( 2.3 ± 0.1) ( 1.9 ± 0.1) 

pH 7 : 50 mM buffer 3.3 3.0 2.3 1.9 
pH 7 : 100 mM buffer 3.4 2~9 2.2 1.9 
pH 6 : 50 mM buffer 3.3 3.1 2.3 1.8 
pH 6 : 100 mM buffer 3.4 3.0 2.3 1.9 

a-Chymotrypsin ( 5.6 ± 0.2) ( 4.2 ± 0.1) ( 2.4 ± 0.1) ( 1.6 ± 0.1) 

pH 7 : 50 mM buffer 5.5 4.2 2.3 1.6 
pH 7 : 100 mM buffer 5.6 4.2 2.4 1.6 
pH 6 : 50 mM buffer 5.7 4.1 2.4 1.6 

.pH 6 : 100 mM buffer 5.6 4.2 2.4 1.6 
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Table 9 

Cross osmotic second virial coefficients for several protein-protein pairs 

in aqueous potassium-phosphate buffer solutions at 25°C. All data are 

determined from LALLS measurements and are reported 

as Bij x 104 (mL niol/g2). 

Protein i a-Chymotrypsin Lysozyme Albumin 

Protein j 

Albumin 

pH 7 : 50 mM buffer - 2.3 - 4.3 6.5 
pH 7: 100 mM buffer - 1.1 - 2.1 4.7 
pH 6 : 50 mM buffer - 1.6 - 3.8 1.8 
pH 6 :. 100 mM buffer - 0.5 - 1.7 1.6 

Lysozyme 

pH 7 : 50 mM buffer 0.5 2.5 
pH 7: 100 mM buffer - 0.2 - 1.9 
pH 6 : 50 mM buffer 0.8 0.4 
pH 6: 100 mM buffer 0.3 . - 2.7 

a-Chymotryvsin 

pH 7 : 50 mM buffer - 18. 
pH 7: 100 mM buffer - 11. 
pH 6 : 50 mM buffer - 6.3 

1 pH 6: 100 mM buffer - 3.3 
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Table 10 

Salt-polymer specific-interaction coefficients, ~ ij (kg/mol), characterizing 

nonelectrostatic interactions between electrolyte i and polymer j in aqueous 

solution at 25°C 

Polymer PEG 3350 PEG 8000 Dextran T -70 Dextran T-500 

Salt 

NaH2P04 2.69 11.45 0.69 1.96 

. Na
2
HP0

4 1.94 8.15 0.48 1.71 

KH~04 2.67 11.36 0.68 1.90 

K2HP04 1.93 8.10 0.48 1.61 
' 

.... 
NaHS04 3.44 14.43 0.72 2.48 

. 
Na2S04 2.47 10.30 0.68 1.88 

KHS04 3.42 14.33 0.72 2.40 

K2S04 2.45 10.21 0.68 1.75 

NaCl 0.24 1.30 0.01 0.04 

KCl 0.00 0.00 0.00 0.00 
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Table 11 

Cross specific-interaction coefficients, ~ ij (kg/mol), for (globular) protein -

salt pairs in aqueous solution at 25°C 

Bovine Serum a-Chymotrypsin Lysozyme 
Albumin 

Salt 

NaH2P04 3.48 1.96 1.69 

Na2HP04 3.36 1.75 1.53 

"' KH2P04 3.46 '1.89 1.63 
-

K2HP04 3.30 1.70 1.47 

NaHS04 . 4.83 2.31 1.88 

' 
Na2S04 4.36 2.18 1.65 

KHS04 
I 4.76 2.25 . 1.83 

' 

K2S04 4.31 2.10 1.60 

NaCl 0.83 0.46 0.29 
' 

KCI 0.76 0.40 0.25 
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Table 12 

True distance of closest approach parameters, aij (A), for polymer - solute 

interactions in aqueous solution at 25°C 

. Polymer i PEG 3350 PEG 8000 Dextran T-70 Dextran T-500 

Solute i 

Na+ 13.1 16.1 16.7 16.9 

K+ 13.2 16.4 17.6 17.6 

Cl- 13.3 16.5 17.9 18.4 

H2P04- 13.8 17.1 18.4 18.8 

HPO 2-' 4 13.8 17.0 18.6 18.6 

HS04- 13.6 16.7 18.1 18.5 

' so 2-4 13.7. 16.7 18.5 18.S 

PEG 3350 22.9 25.3 27.3 41.2 

PEG 8000 25.3 28.1 29.4 44.2 
' 

Dextran T-70 27.3 29.4 33.6 45.5 

Dextran T-500 41.2 44.2 45.5 53.6 
• 

Bovine serum 
albumin 41.6 43.9 45.3 59.2 

Chymotrypsin 28.1 31.3 27.5 44.6 

Lvsozvme 24.6 28.3 24.4 ', 43.8 



Table 13 

Comparison of experimental and calculated partition coefficients· for (2 

mg/mL) a-chymotrypsin in the poly(ethylene glycol) 3350/potassium 

phosphate two-phase system at pH 6.5 and 25 °C. 

Tie-Line Length Experimental Kp Calculated KJ) 

17.0 1.3 1.2 

20.4 1.7 ' 1.4 

25.3 2.4 1.8 

28.1 2.9 2.0 
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