
.l

, .

Presented at the CUBE Symposium,
Lawrence Livermore Laboratory,
Livermore, California,
October 23-25, 1974.

LBL-3392 J
('.7)

AN INTRODUC TION TO LLCAD
(LAWRENCE LABORATORY COMPUTER AIDED DESIGN)

Joseph E. Katz and Van L. Jacobsen

Octobe r 1974

Prepared for the D'. S. Atomic Energy Commission
under Contract W-7405-ENG-48

TWO-WEEK LOAN COpy

This is a library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy. call
Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

,.,

AN INTRODUCTION TO LLCAD (LAWRENCE LABORATORY
COMPU TER AIDED DESIGN)

Joseph E. Katz and Van L. Jacobsen,
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

ABSTRACT

LLCAD is a mostly FORTRAN computer program designed to relieve the user
of the tedious jobs associated with the design, production, documentation, and main
tenance of digital systems. LLCAD is written to operate on the CDC 7600 computer '
systems at the Lawrence Berkeley and Livermore Laboratories. This paper will
describe the over-all structure and operation of the program. The input processor
and report generator portions of the code are described, and a general description of
the LLCAD language and an example of itf:> use is provided.

INTRODUCTION

LLCAD, Lawrence Laboratory Com
puter Aided Design Program, is intended
to relieve the use r of the many tedious and
routine steps in the digital design process.
The'memory, speed and consistency of a
high powered digital computer are used to
aid the designer to greatly reduce clerical
errors, to do the humdrum table look-ups
for pin assignments, and to provide a tire
less source of documentation. Designers,
by means of LLCAD, may proceed from
the system specification and logic diagram
stage to the debugging phase via a short
detour to the computer center.

The LLCAD program was origin
ally developed at the Stanford Research
Institute by Kaye Tomlin, Ralph Keirstad,
and John Yarborough. The SRI.portion of
LLCAD, the input processor, fills a data
structure from the input description of a
design. SRI also supplied a specification
for the Report Generators which were
written at the Lawrence Berkeley Labora
tory.

This paper will provide the reader
with a brief introduction to the program.
Included in the introduction are a discus
sion of the LLCAD code, an example of how
it is used, and what kind of results it can
produce. The description of the LLCAD
program will include a short description
of the input processor code. The structure
of the Report Generators and their oper
ation are briefly described.

The reader is provided with a gen
eral introduction to the language rather
than an exhaustive complete discussion of

the LLCAD syntax. The introduction is il
lustrated by means of the input' code for a
simple design. The outputs produced by
LLCAD are described and an example is
provided.

PROGRAM DESCRIPTION

LLCAD is divided into two major
sections: A syntax processor and a report
generator. The syntax processor accepts
a format free card image input file and con
vert's it to fixed format output files and ta
bles. The report generator does a sequence
of sorts on these files to distribute common
information, 'delete redundant items, and
output reports. Extensive error checking
is done in both phases: the syntax pro
cessor checks for both incorrect syntax
and logically inconsistant description (in
valid address specification, trying to use
an undefined pluggable unit, etc.); the re
port generator checks for inconsistant de
sign and certain design errors (multiple
pluggable units at the same addre'ss~ ex
cess load on an output signal, etc.).

The syntax processor comprises
the bulk of LLCAD. It consists of approx
imately 10,000 source lines, contains abo,ut
200 subroutines, and requires 140k octal
(48k decimal) words of core to run on a
CDC 7600. The code was initially written
entirely in ANSI - 1966 standard FOR TRAN
IV and a significant effort went into trying
to achieve machine independance. Another
large effort was invested in making maxi
mum use of symbolic definition with the
pleasant result that the code is both easily
extensible and readily transportable.

-2-

LLCAD is essentially keyword driven.
Each major class of statement starts with
a unique keyword [CHASSIS, LOGICAL,
etc., see tables 1 through 3] which causes
LLCAD to initiate a subroutine unique to
that keyword. This subroutine is then re';'
sponsible for the rest of the processing of
the particular statement. This is not the
standard method of syntax processor im
plementation and serves to increase both
the size and complexity of the code, but
it allows for extremely detailed error
messages and for the detection of a very
large number of possible errors. Pres
ently, about 300 error messages exist in
the syntax processor, representing over
1000 errors or anamolous conditions.

The report generator provides the
majority of useful output of LLCAD and
does further error checking on aspects of
the design. There are three types of pro
cessing done in the report generator:
Most of its time is spent collating (sorting)
the primary design description file on its
various fields, then checking that impos
sible or inconsistant combinations haven't
been specified. (For example, a sort
will be done to group all records with the
same first two address levels. For each
of the groups of records, the pluggable
unit description is checked to make sure
that multiple pluggable units haven't been
specified for the same address, then the
pluggable unit information is put into all
records in the group that don't already
contain it.) The second type of processing
done by the report generator is to produce
the various reports requested by the user.
This consists of simply sorting the design
file into an appropria te orde r (by signal
name for a load-check list, by 3-level
address for a pluggable unit directory,
etc.), then reading sequentially through
the sorted file to output pertinent informa
tion from each record. The last, and
potentially most interesting, type of re
port generator processing involves analy
sis of aspects of the design to supply
unspecified information or to optimize
some set of parameters. Only two anal
ysis processes are currently implemented:
one computes near-minimum length wire
chains from the signal interconnections
specified in the design, the other assigns
unused circuits on pluggable units to logi
cal elements of the design (the logic blocks
defined later in this paper).

INPUT LANGUAGE INTRODUCTION

The user communicates with LLCAD

by means of a set of input data statements.
These statements are read in a format
free fashion which ignores blanks, blank
cards, and card boundaries.

Each LLCAD Statement starts with
a keyword which specifies the particular
type of Statement to be processed. Each
Statement is terminated by a semi-colon
(i). The following discussion will treat
the LLCAD syntax in a very general man
ner. A much more specific treatment of
the syntax is provided in the LLCAD
User's Manual. 1

The language may be divided into
five groups of Statements that perform
related functions. In order to set the
stage for a description of the LLCAD
Statement type groupings we shall pause
to consider at which point in the digital
design process one would use this pro
gram.

In order to satlsfy a set of system
specifications a designer soon finds him
self with a sketch or many sketche s, of
a logic diagram consisting of some combi
nation of gates, flip-flops, adders, shift
registers, etc. The implementation of
this design is, of course, dependent on
some choice of hardware type, indicators,
cabling, connectors, etc., and the selec
tion of a family of logic devices (pluggable
units). After the above choices have been
made, the LLCAD program may be used
to relieve the designer of such tiresome
and error-prone tasks as the production of
wire-lists, the checking of loads on output
drivers and the production of required tab
les of documentation.

STATEMENT TYPES

LLCAD is not limited by any par
ticular family group of logic device nor is
it restricted to any particular hardware
type. The first group o(LLCAD syntax
statements are a set of Hardware State -
ments used to describe the hardware en----vironment. Sets of hardware descriptive
statements may be gathered in libr'aries so
the user will not need to regenerate, at
each time of use, new code for common
hardware types.

To implement any given design, it
is possible to choose from a wide selection
of logical devices (pluggable units). The
LLCAD Pluggable Unit Statements used to
describe the pluggable unit environment,
are capable of describing logical devices

;'

.. , . /

.-.

-3-

ranging from an individual integratedcir
cuits in dual-in-line packages (DIPs) to an
array of DIP's on a printed circuit card.
As in the case of common hardware types,
it will be found convenient to assemble li
braries for the common pluggable unit fam
ilies.

Once the user has told LLCAD what
kind of hardware and pluggable units are to
be used, the task of describing the inter
connection of the logical elements remains.
This task is done by a set of Statements
called Assignment Statements. They are
the most important and frequently used
statements in the LLCAD syntax. Assign.,.
ment Statements are used to describe the
interconnection of logical elements by use
of signal names, to place pluggable units
at particular hardware addre$ses, to spec
ify wire-types, to specify wire-.or connec
tions, and to describe connections to input
or output connectors.

To assist the user in describing
digital designs in LLCAD syntax., there are
two Statements in the input language that
facilita te the de scription of repetitive struc
tures. The first is the FOR Statement
which is similar to the ALGOL FOR or the
FOR TRAN DO Statements. The second is
the DEFINE Statement which operates like
a text replacement macro. These two types
of "Shorthand" Statements are more fully
described in the LLCAD User's Manua1.1

The fifth group of LLCADstatements in
troduced are the Control Statements. They
are used to control the operation of LLCAD
by selecting default options, output reports,
etc.

Instead of attempting a detailed de
scription of each of the Statement types, an
example is presented to show how they are
used. By means of this simple design ex
ample, many features of the language will
be illustrated.

EXAMPLE

Consider the simple design shown
in Fig. 1. For this discussion, it is de -
cided to implement this design with the Con
trol Logic type of hardware. The Hardware
Statements sufficient to describe this en
vironment are shown in Table 1. A three
level addressing scheme is used. The
CHASSIS Statement[see code line (1)] spec
ifies a backplane of up tothree bins (named
A to C), each bin may have up to forty card
slots (named 1 to 40), and each card may
have as many as 44 pins (with the pins
named as shown in the CHASSIS Statement).
The SOCKET Statement describes the pin
coordinates and identifies the forty-four
pins on the connector named 2 X22 [see

INPun

»------0 OUTPun

)<>-----oOUTPUT2

XBL-7410-1831

Fig. 1. Simple design.

Table 1: Hardware Statements

CHASSIS BIN<A, B, C>, CARD< 1 TO 40>,
PIN<1 TO 22,A TO F,H,J TO N,P,R TO Z>;

SOCKET 2X2? SIZE = (0.14/3.276),
PIN = ,1 TO 22,A TO F ,H,J TO N,P,R TO Z>{0.0[22] ,0.14[22] /
<0.0 TO 3.276 BY 0.156>[2]);

TEMPLATE BIN TYPE = GL (SOCKET = 2X22,
PLACEMENTS =- <1 TO 40>(0.0 TO 15.6 BY 0.4/0.0[40] »;
BA Y 1 = <A TO C>;

LAYOUT A CL (0.0/0.0),
B = CL (0.0/3.276),
C = CL (0.0/6.552);

LENGTH WIRE =<1 TO 19>(0.315,0.625,0.94,1.2,1.5,2.0 TO 3.53 BY
0.51,4.22,4.89,5.6 TO 9.1 BY .7,10.1,11.1/
3.5 TO 4.5 BY 0.25,5 TO 6.5 BY 0.5,7.25 TO
12.5 BY 0.75,13.5,14.5);

(1)

(2)

(3)

(4)

(5)

(6)

code line (2)]. The TEMPLATE Statement
locates the sockets in the bin, while the

-4-

BA Y and LA YOUT Statements complete the
specification of the coordinates of the three
bins on the backplane [see code lines (3) to
(5)].

The LENGTH Statement [code line
(6)] is included in this hardware descrip
tion set but it is not peculiar to the Control
Logic hardware. This Statement specifies
a table of nineteen pin-to-pin lengths and
the corresponding nineteen pre-stripped
wire lengths. The information given by the
LENGTH Statement is used by LLCAD to
produce a numerical control tape for a
semi-automatic wire-wrap machine.

The Pluggable Unit Statements nec
essary to implement the simple design are
shown in Table 2. The POWER Statement
[code line (7)] defines the power supply bus
names. The Control Statement shown in
code line (8), selects an option that lets
LLCAD assign circuit numbers automatic
ally. The sample code shown in lines (9)
and (10) describe a twelve 2-input nand

gate logic card, Control Logic type CNG-
152T. The ELEMENT Statement [see
code line (9)] specifies the output and in
put connections for a device named N2T.
The ELEMENT Statement also specifies:
the FANOUT (drive capability of the N2T
output); t4e LOAD (input loading of the
N2T); and finally, the PREFERRED CARD
(the pluggable unit that contains elements
of the name N2T is a CNG-152T). Note,
the drive capability of the N2T is 10 but
for report purposes, to be shown later in
this paper, an artificially reduced value
of 1 has been used.

The LOGICAL Statement [see code
line (10)] identifies the type of socket that
the pluggable unit uses, specifies the pow
er pins, and gives the total power supply
drain for the pluggable unit. The LOGICAL
Statement also assigns a circuit function
to each of the pluggable unit pins.

In this example, the FOR State
ment imbedded in sample code line (10)
is used as a "shorthand" convenience.
The four lines marked (10a) to (10e) are

Table 2: Pluggable Unit Statements

POWER VCC, GND;

ASSIGN CIRCUIT-NUMBERS;

II TWELVE 2-INPUT NAND GATES CNG-i52T II
ELEMENT
(OUT) = N2T(INPUTi ,INPUT2),
FANOUT = i, LOAD = i, PREFERRED CARD = CNG-152T;

LOGICAL CARD CNG-i52T,
SOCKET :c 2X22, POWER:c(Y=VCC, 2i=VCC, Z=GND, 22=GND),
DRAIN = 45,
FORf I:c i,6,C,D,9,10,K,N,i3,i6,S
ANDt J = 2,4,A,E,7,ii,H,L,14,17,P
ANDt K= 3,5,B,F,8,i2,J,M,15,18,R
< < ($tI.2$) :c N2T($ t J .2$,$ t K.2$),»
END FOR END OF I, J, AND K LOOP;

(V) = N2T(T , U)
END CNG- i52T CARD ;

Expanded Code Produced by FOR Statement, Lines (iOa) to (iOe)

(01) = N2T(02,03)
(06) = N2T(04,05)
(C) N2T(A, B)
(D) = N2T(E , F)
(09) = N2T(07, 08)
(iO) N2T(11,i2)
(K) N2T(H,J)
(N) = N2T(L ,M) ,
(13) = N2T(14, 15) ,
(16) = N2T(17,i8),
(S) = N2T(P , R } ,

(7)

(8)

(9)

(10)

(iOa)
(iOb)
(iOc)
(iOd)
(iOe)

,"

I
4 ... •

expanded by the input processor to appear
in the input text stream as shown at the
bottom of Table 2. Note, that the com
pleted LOGICAL Statement assigns each

-5-

of the twelve outputs and their correspond
ing inputs to pins of the pluggable unit.

The sample code shown in Tables
1 and 2 'constitutes a description of the
Control Logic hardware and a common
pluggable unit. The code shown in lines
(1) to (10) may be used many times over
to implement other designs with this type
of hardware. Of course other pluggable
units can be added to the library as
required.

Assignment and Control Statements
to complete the description of the simple
design are shown in Table 3. The LLCAD
syntax to describe the interconnection of
the logical elements is in the form of logic
like equations. Simple statements are
used to assign pluggable units and to de
scribe input and output connections. From
these simple statements [lines (11) to (17)]
all of the pin assignments and documenta
tion necessary to describe this simple de
sign is produced by LLCAD.

A pluggable unit containing twelve 2-
input nand gates is placed at Bin A, Card
slot 1 by code line (11). Code lines (12)
to (15) describe all of the wiring shown in
the simple design [see Fig. 1]. All input
and output connection,s to the push buttons
and to connector PG-1 are described by
code lines (16) and (17).

The Control Statements [code lines

(18) to (20ll direct LLCAD to produce two
outputs. One is a paper tape to control a
semi-automatic wire-wrap machine and the
other is an output listing called the Load
Check Listing, [see Fig. 2]. The Load
Check Listing is an example of one of the
many types of output reports that are
available. The User's Manual 1 describes
these reports in more detail.

The Load Check Listing [Fig. 2] is
sorted on the signal names that appear in
input design description [see Table 3]. A
separate output line is provided for each
occurence of the signal name. The signal
source address will be on the first line of
output for any signal name. Many attributes
of the signal name are listed for each add
re s s. The column labeled F, for function,
will contain an S for a source, or an L
for a load. The column labeled F /L, for
fanout or load, contains the value specified
in the pluggable unit de scription, or the
arbitrary value of 99 for the fanout of an
external source. LOGIC BLK, refers to
the Logic Block identifier which LLCAD
automatically assigns to each element.
The Logic Block identifie'ris used by
LLCAD to differentiate among identical
elements. This simple design, for
example, uses four N2T elements
named ENABLE" ':'ENABLE" OUTPUT 1
and OUTPUT2 [see the Load Check List
ing, Fig. 2]. A discussion on the
naming of Logic Blocks is provided in the
User's Manual. 1 ELEMENT ,CKT, and USE
all are referenced back to the pluggable
unit description. REMARKS are a reprint
of comments provided in the Assignment
Statements [see Table3] by the ,user. The

Table 3: Assignment and Control Statements

USE CNG-152T AT A-1;

(ENABLE) := N2T(~~OPEN ,':'ENABLE) /CROSS COUPLED GATE/;

(~'ENABLE) N2T(':'CLOSE,ENABLE) /CROSS COUPLED, GATE/;

(OUTPUT 1) := N2T(INPUT1,ENABLE);

(OUTPUT2) = N2T(INPUT2,ENABLE);

EXSOURCE ~'OPEN AT PB-1-NO,
*CLOSE AT PB- 2-NO /PUSH BUTTON SWITCHES/,
INPUT1 AT PG-1-A,
INPUT2 AT PG-1-B;

EXLOAD OUTPUT1 AT PG-1-D,
OUTPUT2 AT PG-1-E /CONNECTIONS VIA PG-1/;

/ /CONTROL STATEMENTS //

MAKE RUN;

PRINT LOADS;

PUNCH NC-LIST;

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

-6 -

SIGNAL F FIL ADDRESS LOGIC ~LK ELE~ENT CKT USE REMARKS LI NE

*CL'JSE 99 .B-002- NO -CLOSE EX TERNAL PUSH BUTTON SW ITCHES 43
-CLOSE I A-00I-004 'ENABLE N2T 2 IN PUll CROSS COUPLeD GATE 39

*ENd.SLE S A-OO I-OOb -ENABLE N2T OUT CROSS COUPLED GATE 39
*ENAaLE L A-Oul-~03 ENABLE N2T INPUT2 CROSS COUPL ED GATE 38

ENABLE S A-OOI-OOI ENABLE N2T 1 OUT CROSS COUPLED GATE 38
ENABLE L A-00I-005 -ENABLE N2T 2 INPUT2 CROSS COUPLED GATE 39
EN~BLE L A-OOI- R OUTPUll N2T 3 INPUT2 40
ENABLE L A-OOI- F OUTPUT2 N2T 4 INPUT2 41

.***** EXCESS LOAD = 2.0

INPUn 99 PG-OOI- A -INPun eXTERNAL ~4

INPun I A-OOI- A OUTPUTl N2T 3 INPUTI 40

INPUT2 99 PG-OOI- -INPUT2 EXTERNAL 45
I NPUrz I A-OOI- OUTPUT2 N2T 4 INPUTI 41

-OPEN 99 PB-001- NO -OPEN EXTERNAL 42
*OPtN I A-00I-002 ENABLE N2T I INPUTI CROSS COUPLED GATE 38

OUTPUTI S A-,)(,I- C OUTPUll N2T 3 OUT 40
OUTPUTI L PG-OOI- 0 - EXTERNAL 4.

OUTPUT2 A-OOI- 0 OUTPUT2 N2T 4 OUT 41
OUTPUT2 PG-OOl- E - EXTERNAL CONNECTIONS VIA PG-I 41

--_.

I ERROR lSI IN ABOVE R'PORT. PAGE NUMRERS OF FIRST 50 PAGES CONTAINING ERRORS FOLLOW.

I.

Fig. 2. Load check listing.

last column, LINE, is a line number refer
ence back to the input code iisting printed
by LLCAD. The input code shown in Tables
1, 2, and 3, is printed during execution by
the input processor of LLCAD with line
numbers automatically generated.

Note, this Load Check Listing has
an error message included for the deliber
ately generated error. It is seldom the
case that one has to go to such extremes
to see error messages or noteworthy con
ditions reported by LLCAD. Conditions
that generate error or noteworthy condition
messages are described in the User's Man
ual1 .

ACKNOWLEDGEMENTS

Many of our associates both at LBL
and LLL have contributed to the develop
ment of thi s program. The original fund
ing to purchase the SRI portion of the code
was jointly provided by both the LBL and

LLL Electronics Engineering Departments.

At LBL, the continued support and en -
couragement of the Head of the EE Depart
ment, Dick A. Mack, is gratefully acknow
ledged. The engineering advice of Douglas
L. Abbott and the programming aid of David
Jensen were of great, assistance. Both
Waldo Magnuson, Jr., and Herschel H.
Loomis, Jr., of LLL, participated in the
design of the input syntax and contributed
to the overall program development.

This work was performed under the
auspices of the U. S.Atomic Energy Com
mission.

REFERENCES

1. LLCAD (Lawrence Laboratory Com
puter Aided Design) User I s Manual,
Joseph E. Katz and Herschel H. Loomis,
Jr., UCID-3688, Nov. 1974.

r

,
{

~----------------LEGALNOTICE------------------~

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.

TECHNICAL INFORMA TION DIVISION

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

