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VORTEX BLOBS IN A SQUARE CAVITY 
APPLICATION OF CHORIN'S METHOD 

Aleksei Ilyich Shestakov 

Lawrence Berkeley Laboratory 
and 

Lawrence Li vermo.re Laboratory 
University of California 

Berkeley, California 94720 

October 1974 

ABSTRACT 

Chorin i s method of solution of the Navier-Stokes equations, using vorticity 

blobs receiving both a deterministic as well as a random push, is applied to 

the two-dimensional problem of a flow inside a square cavity where one side 

moves in its own plane with a unit velocity. Results are presented for a 
3 Reynolds number of 10 . 
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1. Introduction 

The problem of computing the two-dimensional flow in a square cavity has 

enjoyed much popularity in the fields of Numerical Analysis and Fluid 

Dynamics. This popularity has been responsible for the extensive literature 

\" on the subject. The problem is often used as a model to test numerical 

techniques on flows containing closed streamlines. 

., . 

To my knowledge, all of the schemes found in the literature approximate 

the derivatives by divided differences of function values computed on a prede

signated mesh over the domain. This seems to impose an upper bound on the 

Reynolds number that one can use, since analysis implies that at least several 

grid points must fall within the boundary layer whose thicknes s is &(R -1/2). 

Chorin's scheme [7] is grid-free and seems to simulate the actual physics 

of the problem; it is essentially an application of the finite element method in 

Lagrangian coordinates. It is this scheme which is presented and applied in 

this report. 
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2. Equations of Motion and Statetnent of Probletn 

In the following, vectors and vector operators will be underlined, e. g., 

u, \7 denote the vector u and the gradient operator; while scalar functions will 

be denoted by letters, e. g., s. 
The equations of interest are the Navier-:"Stokes equations for two-dimen

sional flow, written in the vorticity transport fortn, 

(1) 

s is the vorticity, .~ = (u, v) is the velocity vector, and R is the Reynolds 

nutnber. Since the flow is two-ditnensional and incotnpres sible, there exists 

a streatn function LjJ, related to S by 

6.LjJ = - s, ( 2) 

where 6. == a 2 lax 2 + 0
2 lay 2 is the Laplacian operator. The velocity vector, 

u, can then be expressed in tertns of LjJ by, 

u = (u,v) = (a LjJ, - a LjJ), (3) 
- y x 

where u, v are the horizontal, and vertical cotnponents of u.Using (2) and 

(3), it follows that, 

i.eo, the curl of the velocity is the vorticity. Equations (1), (2), and (3) are 

to be solved in a dotnain Ywith the imposed IInb slip" condition at the boundary, 

0/3-; 

~ = velocity of the boundary, ( 4) 

or if the boundary does not tnove, 

u = 0 at of). 

There is also a specified initial condition, 

~(t = 0) = ~O' given. 

In particular, consider the probletn of cotnputing the flow inside a 
square cavity with the specified boundary conditions, (Fig. 1) and the initial 

condition ~ = (0,0) in [): The probletn is to cotnpute the steady flow inside 

the cavity when the bottotn edge has itnpulsi vely started to tnove in its oWn 

plane, to the right, with unit velocity. 

.. 
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(x, y) :: (0,1) u:: (0,0) (x,y) :: (1,1) 

U :: (0,0) U :: (0,0) 

(x,y) :: (0,0) ~ :: (1,0) (x, y) :: (1,0) 

Fig. 1. DOITlain of interest and boundary conditions. 

.. . 
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3. Chorin' s Scheme-Overview 

In this section an outline of Chorin's vortex scheme is presented, [7]. 

Consider the problem of computing the evolution of vorticity governed by 

Eqs. (1), (2), (3), and the boundary condition Eq. (4). Chorin as sumes that 

the vorticity is a sunl. of blobs, or vortices, .1 

s(r) = ~ S.(r-r.), 
- . J - -J 

J 

where each Sj(~) is a radially symmetric function of small support, and 

(5) 

lE.1 =- ,J x 2 + y2. Derive a velocity field, ~s (:), induced by this distribution of 

vorticity by solving Eqs. (2) and (3). If each vortex blob has attached to it a 

strength S., then we have a new representation for the vorticity, 
J 

where, 

s(_r) = ~ S'SO(r-r.) . ] --] 
J 

, r < 0' 

, r>O'. 

(6) 

(7) 

The constant 0' is the cut-off length; to be determined shortly, and r = l!.1. 
TIle expression for So will become convincing if we consider the integral of 

the vorticity, 

f I' (x, y)dxdy = I I 
Er .E? 

~ S.So(r-r.)dr = ~s·, 
. J - -J - ] 
J 

where the integral has been evaluated using polar coordinates. Equation (7) 

will also ITlake more sense after the discussion on the generation of vorticity. 

The basic vortex soC!:·) in turn generates its own blob stream function, 

tj;OCr); by solving, 

neglecting boundary values for the moment, 

1 
- 2'IT log r, r ~ 0' 

1 
- 2'IT0' r , r < 0' . 

(8) 

• II 
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Using Eqs. (8), (3) and (6), a velocity field, 

uy(x,y) =~ s,..::ou (x-x., y-y.) 
~ j J J J 

(9) 

is induced by the vorticity. In Eq. (9), ~O is the velocity induced by a single 

vortex located at the origin, and (x., y.) is the location of the /h vortex. 
J J ) 

~O(x,y) is obtained by differentiating (Eq. 8), 
1 

2 21Tr 
(-y,x), 

1 
21Tar (-y,x), 

r ~a 

(9.5) 

r < a. 

~s is a continuous velocity field obtained from a discontinuous, in fact singular, 

di stribution of vorticity. 

It is possible (Davari [13]), to generate a continuous stream function, ~O' 

by the addition of a constant, which yields 

1 
- 2TT log r , r ~ a 

(8.5) 

1 r 
21T (1 - log a - a)' r < a, 

and it is the expression (Eq. 8.5) which is used by the computer program. 

The actual solution of Eq. (1)is obtained by a first order correct in time, 

differencing algorithm which uses no spatial grid, but merely keeps track of 

the centers of the vortices. 

The velocity field ~ does not satisfy any boundary conditions. Section 4 

will explain how, using u y, an irrotational velocity field u (i. e. 'V X u = 0) 
-':> -p --p 

is constructed such that the combined velocity u == u y + u satisfies 
- -':> -p 

u·n=u.n + u·n=O -P-s - at a~ 

where n is the normal velocity vector at the boundary. Postponing the dis

cus sion regarding the second boundary condition (~: ~ = 0), let u denote the 

velocity field satisfying the normal boundary condition. 

Equation (1) is solved in two steps. The vortices move according to two 

distinct laws; the first, the deterministic component is Euler's equation. 

(10) 
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or if we follow the particles of the fluid, 

Ds = O. 
Dt ' 

and the second is the diffusive component, 

1 
R .t:.s . 

(10.5) 

(11 ) 

Equation (10), or (10.5), is solved by keeping track of the locations of the 

vortices. If (x. ,y.) denotes the position of the i-th vortex then, 
1 1· . 

2: 
jf.i 

s· uO(x.-x.,y.":y.) + u (x.,y.) 
J - 1 J 1 J . -p 1 1 

or, if (x:U, y.m) in the location of the i-th vortex at the m-th time step, 
1 1 

(x. m+1 , m+1) 
1 Yi 

m m I' m m 
--(x. ,Yo )+kl2: s.u,,(x. -x. 

1 1 . .J-' J-V 1 J 
Jrl 

y. - y~) + u (x~, ym
1
. ~ , 

1 J P 1 'J 

( 1Z) 

(13 ) 

where k is the tim.e step. This is Euler's method for the solution of 9rdinary 

differential equations. 

Equation (11) is solved by the random walk method developed by 

Chorin [7], whose idea was described by Courant, Friedricks, and Lewy [8] 

in their classic paper on difference~schemes. If 21 = ("1" "Z) is a vector 

whose components are gaussianly distributed random variables, with mean 

zero and variance Zk/R, then Eq. (11) is approximated by 

m+ 1 m+1 m m 
(x. ,y. ) = (x. , y. ) + ("1'''Z)' (14) 

1 1 1 1 

Denoting the right hand side of Eq. (1Z) by urn, then Eqso (13) and (14) 

are combined to yield, 

m+1 m+1 m m m· 
(x. , y. ) = (x. , y. ) +ku + ("1'''Z) 

1 1 1 1 
(15 ) 

as the approximation to Eq. (1). 

Consider now the generation of vorticity at the boundary. As previously 

noted, the field u does not satisfy the tangential boundary condition, 

.. 

. " 
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.:::.. ~ =-: Oor the tangential boundary velocity component, where ..§. is the unit vector 

tangential to ad. To correct this deficiency, imagine the existence of a thin, viscous, 

boundary layer. To evaluate the vorticity present, simply integrate ~X~ in 

the boundary layer. If the boundary is broken up into segments of length h, 

and one uses a midpoint rule approximation to the integral, the vorticity in 

the boundary layer of width 0 and length h (see Fig. 2), 

is, 

I 
I 

'Jl 
I 

---

12 h/2 

Fig. 2. Boundary layer along a wall. 

o I (-" X .!c') dydx " 

o 

(-0 u)dydx ~ - u(O, o)X h. 
y 

(16 ) 

u(O, 0) is the free stream velocity at the edge of the boundary layer, and it is 

set equal to u(O, 0), the velocity component at the boundary one wants to cancel. 

Note that above calculation was done using a local coordinate system. This 

vorticity is then coagulated into a new vortex. The newly created vorticity is 

allowed to diffuse, and it is the shape of the diffusing vortex, inside the cut-

off length, which now exerts a constant velocity at the boundary equal to the 

negative of ~. ~. This accomplishes the cancellation of the tangential boundary 

component and gives a value for a , namely a = h/2T!'. The new vortices dif

fuse into lYand become a part of the field 1;. The entire proces s is then 

reiterated. 
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4. Potential Flow 

4.0. Statement of problem and definitions. 

In order to move the vortices, it isriecessary to have a velocity field 

which satisfies the normal boundary condition; i. e. if the vortices are moved 

according to a velocity ~, then ~ must satisfy 

If Us is the velocity field generated by the vortices, 

uy (_r) = ~ s. U o (r ~ r .-) , 
-;:, . J - --J 

J 

where ~(E) is given by Eq. (9.5), then a velocity up is constructed, such 

that 

"U • n ="- u ·"n at af1~" 
-p - ~-

(17) 

( 18) 

Certainly, no extra vorticity should be added to the fluid, so u also satisfies, -p 

\1 X u = 0 in ft."'" 
-p 

Then defining u == u + ~, Eq. (17) is satisfied. 
- -p ----:. 

To calculate u , assume the existence of a sufficiently differentiable -p . 
function \jJ = \jJ (x, y) such that, 

p p 

u = (a \jJ , - a \jJ ). 
-p " y P" x P 

(19) 

(20) 

In this manner, the problem defined by Eqs. (18) and (19) is transformed into 

the classical Dirichlet problem of Potential Theory. Using Eq. (8.5) construct 

the stre"am function of the vortices, 

and at the boundary set 

\jJ, (r) =~ ~. \jJO(r-r.), 
':> - • 1 - -J 

J 

(on aEJ); 

while, using Eqs. (19) and (20), 

~\jJ = 0 in tf.' 
p 

(21) 

(22) 

(23) 

\.. 

. -
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It is the solution of Eq. (23) using Eq. (22) which is discussed in this section. 

Defining, 

(24) 

as the stream function of the flow, Eq. (22) sets the l\J = ° streamline on the 

boundary. Since 

o=al\J=u.n 
as - -

the generation of a velocity field satisfying the normal boundary condition is 

accornplished. 

4.1. NUInerical method of solution 

Numerically, the potential flow problem is solved as follows: Choose 

an integer i, e.g. £. = 5, and define N= l+1_1. Define d=1/(N+1), and 

imp~se a square grid on if of mesh size d (Fig. 3). 

(0, 1)~~1~~'1~1~~1~1~~""~~-V 
I I I I I 
I I I I I 
I I I I I 
I I I I I 

: I: :lJl I I I I 
~_l_}_L_~ _______ _ 

I I I 
I . -1- -L~-T-,..---------

-L -~-L-~-l.-.!.---------
d I I I I I 

T 
___ ...... ,._.l_.L ________ _ 

. -l_+_.LL ~ ________ _ 
I , ' I , 

(0,0) 

(1,1) 

(1,0 ) 

Fig. 3. Square mesh for calculation of potential flow. 

Let l\J .. be an approximation to l\J (jd, id); then using a standard 5-pt. approxi-
I,J p 

Dlation to the Laplacian operator, the equation 

13
2 

l\J (jd, id) + - l\J (jd, id) = ° 
p ay2 p 

becomes, 

. 2 
(l\J'+1 . + l\J. '+1 + l\J. 1 . + l\J .. 1 - 4 l\J .. )/d = 0, or simply, 

1 ,J 1,] 1-,J 1,]- I,J 
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l\J. 1 . + l\J. . 1 - 4l\J. . + l\J. .+ 1 + l\J. + 1 . = 0, 1-,) I,J- 1,) I,J 1,) 

and the values of any boundary rn.esh points are evaluated using Eq. (22). 

Hence. the partial differential equation, 6.~ = 0, istransfortned into the 

matrix equation F il! = y where F is block tridiagbnal, 

F = 

r I 

I r 
I 

I 

r 
I 

I 

r 

I IS the unit diagonal tnatrix, and r is tridiagonal, 

-4 1 

1 -4 1 
r = 1 -4 1 

1 

~ = (~(1) , ~(2), ..• , ~(N»T and ~(l) = (~l ,1,ljJl ,2' ... ' l\J1 ,N)T, fori = 1,2, ... , 

N. The vector :t. is of ditnension N 2 and contains many zeroes as well as the 

boundary values of l\J in its corresponding positions. 
p 

The systetn F iQ = :L is solved using the Bunern.an variant, of the odd-even 

cyclic reduction algorithm. [6] , and the solution is an approxitnation to the 

potential streatn function. l\J • at the grid points of the irn.posed rn.esh. 
p . 

To obtain a nutnerical function l\J which can be evaluated and differentiated 
p . 

anywhere, the cotnputed tnesh function.~ is approximated by a bi-quadratic 

spline function f(x, y), which is continuously differentiable and defined every

where in 17u ajY. The numerical details of the evaluation of the spline func

tion are found in the next section. 

In conclusion, the spline function f is a bi-quadratic continuously dif

ferentiable function which is an approximation to the grid function IV which 

- . 

. .. 
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solves ~ =:t.., the matrix equation approximating ,6.l\J p = o. 

u == ( a f, - a f). 
-p y x 

4.2. Construction of spline interpolator (Ref. [4]) 

To evaluate u , 
-p 

4.Za. One-dimensional case: Assume the {Yi} is an array of function values 

,.: on a grid, i. e. y. = y(x.}, and that the points {x.} are equally spaced, (Fig. 4) 
• 1 J J 

.y. 
J 

.'/: 1 J+ • Yj+1 

I I I ) x 
x. 1 x. x j +1 ]- J 

Fig. 4. Discrete function values of y = y(x). 

i. e. for all j, Ix. - x. 11 = d. Then, for aU x, '3, Ix - x.l:::; d/Z, define the 
J J+ J 

spline interpolator, 

It is tacitly assumed in the above definition that x. = 0; if not, then substitute 
2 J 

x - Xj for x. The operators 50 and 50 are the first and second central dif-

ference operators on the spline coefficients {g.} , i. e. 
J 

or in other words, 

• to f(x) 

Derive relationships for the spline coefficients by requiring that the spline 

agree with the given values ;;. at the points x., i. e. 
1 J 

y. = f(x.) = 
J ] 

( 25) 
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Equation (25) becomes a tridiagonal system for the spline coefficients g., . . J 
and having solved for theg.'s. to evaluate the spline. one need only look up 

J 
3 spline coefficients in a table, namely gj ±: l' and gj" 

4.2.b. Two dimensional case: Assume that there is a square mesh of mesh 

size d imposed on the domain and that ~. . is an approximation to ~ (jd, id), ,4 
I,J . P 

the stream function of the potential flow. There are a total of N interior points 

in each direction. so ~ is an array of N 2 elements. \. 

The problem is to find continuous functions approximating the derivatives 

of ~ at points (x. y). where (x, y) does not neces sarily coincide with a mesh 
p 

point. Assume for simplicity that Ix - x.l, Iy - y.1 -< d and (x., y.) = (0,0). 
. J 1 J 1 

Then the spline interpolator is: 

f(x, y) 
C) (i) 1 2 d 2 2 (i) 

g jl (y) + a 0 j g j (y) x + "2 (x + 4") a 0 j g j (y) 

where, 

and 

2 (i) _ 1 [(i) (i) (i)] aO·g· (y) = -2 g ·+1(Y) - 2g. (y) + g. 1(y) 
J J d J J J-. 

are the fir~t and second central differences of g(~)(y) on the index j. The 

function g(~)(y) is the one-dimensional spline in the vertical (y) direction 
J 

around y = y., at the point x = x. ; 
1 J 

g (.i)(y) = 1 (f + 6 f + f ) + .:L (f f ) 
J 8 i+1,j i.j i-1.j 2d i+l,j - i-1'j 

+ 
1 2 
-2::l..-2 (f. + 1 . - 2 f. . + f. 1 .). d I,J I,J 1-,J 

Once the coefficients f. . have been computed, to evaluate the spline it is 
I,J 

necessary to look up in a table the nine spline coefficients f. ., f.±1 .±:1' 
1,] 1 ,] 

f. . ±:1' and f. ±: 1 .. I,J 1,J 
The table of spline coefficients can be stored over the 

old function values since they are now superfluous. 

(26) 

(27) 

There are, however, a few more spline coefficients than original function 

values. Initially there were N 2 interior function values~. . and 4(N+ 1) 
I,J 

boundary values ~ (Fig. 5 ). 
s 
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(0,1) 

T I 1, I, 

(1,1) 

~2N+3 

~2(N+ 1) 
I 1 

~-~-~~....;.~------------------~--
I ~N 3~N N I' . , 

J 

. ~3 3 ~3 N 
--~-~--t-.l..------------- ---'- .... --
,I I , I ... ---'--~ --; --....;.- ---------- -----t---I I I . 

~4(N+1) ~-i--~--+----------------- ---~-- ~N+3 
t ! 1 1 (0 ,O)~---I--"'-""'-------------~-'-' (1,0) 

~1 ~2' ~3 ~4 ~+1 ~N+2 

Fig. 5. Location of grid values of potential stream function. 

This gives a total of (N + 2)2 function values. As mentioned previously, if it 

is necessary to evaluate the spline at an interior mesh point, it is necessary 

to find the II nearest" nine spline coefficients, which are stored over the 

original function values. A problem arises when the spline needs to be evalu

ated near a boundary grid point, as, for example, to calculate the vorticity in 

the boundary layer. In that case, it becomes necessary to know some spline 

coefficients "falling outside" ~(Fig. 6). 
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square 

mesh -r+ ____ ~---.-~-
I "I'~' I 
I I I 
I I 
I I x 

• • • 

Fig. 6. "Location" of spline coefficients on the bo'undary y = O. 

The points • fal,li~g qutside the domain are coefficients which ~ill need to be 

evaluated if the spline needs to be calculated in the shaded region. A similar 

problem arises when the spline needs to be evaluated near one of the corners 

(0,0), (0,1), (1,1), or (1,0). (Fig. 7) 

• 

• 

• • 

I 
I d-1 
I 
I 

--- .... -T--
II 
I d 
I 
I 

• 

x 

Fig. 7. "Location' ! of spline coefficients in the corner x = y = O. 

.If 
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After some arithmetic, it is evident that to be able to evaluate the spline 

everywhere in Rf, it is necessary to know a total of (N + 4)2 spline coefficients. 

For simplicity the spline may be arranged in a table (Fig. 7) over the old 

grid function values. 

f N+Z ,_1 • • • • • • f N + 2 ,N+2 

• • 

• • 

f f • • 1,1 i ,N- • 

• -f . 
0,-1 fO,O f O,1 fO,N fO,N+i 

• • • • • • 
f f . 
-1,-1 -1,0 

f 
-1,1 

f 
-1,N 

f 
-1 ,N+ 1 

f 
-1,N+2 

Fig. 8. Arrangement of spline coefficients. 

The following section describes the (N + 4)2 linear equations that the spline 

coefficients must satisfy. 

4.3. Linear equations for the spline coefficients 

To begin, it is easy to write down (N + 2)2 linear equations by reqUlrlng 

that the spline interpolator agree with the function values at the N
2 

interior 

grid points and the 4(N +1) boundary points. For example, if the spline must 

be correct at (0,0), then using Eqs. (26) and (27) obtain, 
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or, 

64 lJ!(O,O) 

SiITlilar equations will hold at the reITlaining (N + 2)2_1 boundary and in

terior grid points. 

However, (N + 4)2 coefficients have been used in the (N + 2)2 equations; 

hence (N + 4)2 - (N + 2)2 = 4 N + 12 ITlore equations are needed in order to 

have as ITlany equations as unknowns. After SOITle exaITlination it is evident 

that the norITlal derivative of the spline at the boundary can be arbitrarily 

prescribed. Letting f = f(x, y) denote the spline, it follows that ~f =u . s. 
un -p -

S · b "af h I" . Ince y construction, n- = - u . n = u y • n t e sp Ine generates an approxl-
uS -p- -"" -

ITlation to a potential flow which nullifies the norITlal velocity at the boundary, 

due to the vortices" It is then teITlpting to prescribe ¥n = - ~s . ~ ~ and 

thereby construct a velocity field satisfying both boundary conditions. However, 

I felt that this would give rise to an unreasonably non- SITlooth potential flow, 

hence the teITlptation was resisted, and ~~ was set equal to a backward, 

second-order correct, divided difference of the function values. Looking at 

Fig. 9 , 

n 

Fig. 9. Three grid function values near a boundary. 
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Let tjJ. denote the grid function values at the points •. It is then easy to 
1 

verify that 

1 3 1 atjJ J 2 
d (2tjJ 1 - "2 tjJ 0 - "2 tjJ 2) = an + 0 (d ). 

To transform this into an equation for the spline coefficients, as sume that 

we wish to write an equation for the coefficient f 1 . (Fig. 10). 
- , J 

( 1 ,j - 1) 

• 
/ 

(1 ,j) 

• 
(1,j+1) 

• 

" ... " "" '" '" :~L~ "'"'' C ~ ~ 
(-l,j -1) 

• • 
( - 1 ,j ) 

(- 1 ,j+ 1) 

• 

Fig. 10. Numbering of several spline coefficients near the boundary y = O. 

Using Eqs. (26) and (27) evidently 

or 

= atjJ _ of (0, j d) 
an ay 

f 1 . 1 + 6 (f 1- . - f 1 . ) ], - ,J- - ,] - ,J 

A similar equation holds at the vertical boundaries (Fig. 11) 

./ 
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(i ,0) 

.(i+1,1) 

~ 
• (i ,1) 

• (i-1,1) 

Fig. 11. Numbering of spline coefficients near the boundary x = O. 

i. e. , 

32 ljJ. 1 - 24 ljJ. 0 - 8~. 2 
1, 1, 1, 

-f +f. -6f. 1+6f. i- 1, - 1 1- 1, 1 1, - 1, - fi + 1, _ 1 + f i + 1, l' 

This gives a total of 4N such equations for the coefficients f 1 ., £. l' 
- , J J, -

fN + 2,j' fj ,N+2' for j = 1,2,···, N. 

It is now necessary to write down equations for the twelve remaining co-

efficients, f_ 1 ,_1' f_ 1 ,0' f O,_1' f_ 1 ,N+1' f_ 1 ,N + 2' '" i.e., the coefficients, 

• • • • 
• • 

• • 
• • • • • 

The twelve equations will be derived by prescribing values for the first order 

derivatives of the spline, Ofjax and afjay, and the second order mixed 

derivative a 2fjaxay at the 4 corners (0,0), (0,1), (1,0) and (1,1). Since f 

is the approximation to the potential stream function, Le., u = (a f,-a f), it 
-p Y x 

is allowable to prescribe the velocity ~ = ~p + ~s to be zero at the corners by 

writing 

./" 
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(28) 

Equation (28) transforms into 8 equations for the spline coefficients; in particu

lar at corner 1, (x,y) == (0,0) we get, 

~xf(O,O) (00) v ==Vt;, (29) 

(30) 

or 

(29.5) 

- 16 d u t; (0 , 0) == - f _ 1 , _ 1 - 6 f _ 1 , ° -f -1 , 1 + f 1 , _ 1 + 6 f 1,0 + f 1, 1 . 

(30.5) 

To derive 4 equations for the corner coefficients, f_
1

• _1,f_ 1 ,N+ 2' 

fN + ~, N + 2' fN + 2, -1 set the second order mixed partial of the spline equal 

to the backwards, second order correct, divided difference of the computed 

stream function; that is, labeling the stream function as in Fig. 12: 

I I 

lJi;-,~ - tyJ2~ --~2,2 
I I ct\ 
I I (jJ 
I I 

---... ----~-
lJi 1 ,O IlJi 1 ,1 IlJi 1 ,2 

I I 
I I 
I I 

.,.",~.,.,.",.,.~.,."..,..".,.,.,.,.,.,.,..,.- ace 
lJio,1 lJiO•2 

Fig. 12. Labeling of strearn function values in the corner x == y == 0. 

Then, 

9lJiO,0 - 12 (ljJO,1 + lJi 1 ,O) + 3 (lJiO,2 + lJi 2 ,0) + 16lJi1,1 

2 a 2lJi 4 
- 4(lJi 1 ,2 + lJi 2 ,1) + ljJ2,2 == 4d axay + e'(d ), (31 ) 

and using (26) and (27) 
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(32) 

Labeling the left hand side of Eq.(31) C1, at the corner 1, (x, y) = (0,0), we 

get 

C1 = f_ 1 ,_1 - f_ 1 ,1 - £1,_1 + f 1 ,1 ' ..1'1. 

with siITlilar equations at the reITlaining corners. 

4.4. Solution of systeITl for the spline coefficients 

This section presents the ITlatrix equation for the spline coefficients and 

its solution. 

Using the last section, define 

where 

f . == (f. l' f. 0' f. l' -1 1,- 1, 1, 

T 
•.. , £i, N + 2) • 

The equation to solve is 

where 

and 

M[=y, 

T 
¥ == (y -1' YO' Y l' ... , YN+2) 

(33) 

is the vector containing the streaITl function values at the grid points as well 

as values of its derivatives at the boundary. The ITlatrix M has the forITl 

- A 0 A 

A 6A A 

A 6A A 

M= A 6A A 

A 6A A 

-A 0 A 



. . 

where, 

-1 0 

1 6 

A = 1 

1 

1 

6 1 
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161 

-1 0 1 

The non-singularity of M is proved by exhibiting its inverse. The 

method of solution uses the Sherman-Woodbury formula and' closely follows a 

method presented by Widlund [9] . 

Initially the system Eq. (33) is transformed into the system 

where 

M 
f.L 

A· = 
f.L 

= 

-A 
f.L 

A 
f.L 

1 6 

1 

M f = y 
f.L= -f.L 

0 

6A 
f.L 

A 
f.L 

1 

6 1 

A 
f.L 

A 
f.L 

6A A 
f.L f.L 

161 

-1 0 1 

I 

I 
1 , .. , 
I 
1 

I 
I 

A 6A AI 
f.L f.L 

<J -A 0 
f.L 

(34) 
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and for 1,0,1,2,···, N + 2 

(y) .. = y. 0' for j 1=- 1. 
f.L I,J I,J 

In other words, multiply every (N, + 4~ equation by - f.L, beginning with the 

first. f.L is a solution of the equation 

and the reason for this transformation will become evident shortly. 

Assuming for the moment that A -1 exists and is easy to obtain, 
f.L . 

multiply every "matrix row" of Eq. (34)by A -1 , obtaining 
f.L 

where, 

E 

I IS the diagonal matrix, 

Ef = z :: 

-I 0 I 

I 6I I 

I 6I I 

I 61 I 

-I 0 I 

z = ( }T 
:::: ~ - 1 ' ~ 0' ~ l' ..., ~N + 2 • 

and for i = - 1, 0, 1, N + 2, 

-1 
z. == A (y) .• 
-1 f.L -f.L 1 

Equation (35) is then transformed into 

pre-

(35) 

(36) 

- . 



.. 

where, 

E == 
fl 

f.L! 

! 

0 - f.L! 

6! ! 

! 61 
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1 

. 

I 61 1 

-1 0 1 

and ~f.L ,== (f.L~ _1'z O. ~ 1 , • •• '~N+ 2) T. 'Equation (36) is now II uncoupled" 

and can be solved for ! by solving N + 4 systems of the type 

Ag
k 

= b
k 

' k= - 1,0,1,··., N + 2, 
f.L . -

where 

. -1 
Consider now the evaluation of A • The system to solve is 

f.L 

A x = b 
f.L -

where 

A 
.f.L 

f.L 

1 

o 
6 

-f.L 

1 

1 6 1 

161 

-1 0 1 

and f.L = 3 + -.rs is a solution of ..!. + f.L = 6. Note that, by defining, 
~ 

and 

TT 
u - (1, 0 ,0, ~ •• , 0) , v == (0, - 1, - f.L, 0, 0 •• 0) , 

f.L 1 

B == 1 6 1 

161 

161 

'" 1 0 1 



T 
then A = B + uv . 

f.l. 
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Hence using the Sherrnan- Woodbury formula, 

and the solution can be written directly, 

(37) 

Define the scalar, 13 === v T B -1 b , then from the definition of v, it is obvious that 

13 = - [(B-
1
E)2 + fl(B-

1
E)3] (38) 

-1 . th' -1 
where (B E)k is the k-· element of the vector B b. The matrix B has a 

ready L U decomposition, namely, 

1 

I 
f.l. 1 

1/f.l. 1 f.l. 1 
i B=LU=== 1/f.l. 1 i f.l.. 1 
J 
i 

i 

I 
1/f.l. 1 

l 
f.l. 1 

-1/f.l. 1/f.l.2 1 
1- 1/f.l.2 

1 
and it is now evident that it is necessary that - + f.l. = 6, or for stability, 

f.l. 

- 1 The evaluation of B b for the first term of Eq. 37 is now trivial since B 

has been decomposed into a product of triangular matrices; while the evalua

tion of B -1~ can he done analytically by induction. To solve the system 

Bl: = ~, 

T 
where l: = (y l' ... , YN) , u = (u 1 , 

first solve the system, 

L~ = ~,. getting 

T 
Z = (z 1 ~ z 2' ... , zN) where for j=1,2, .... ,N-1. 

. 1 
z. = (_ 1 /p.)J -
J / 

N- 2 / 2 and zN = (-1 f.l.) (1 + 1 f.l. ); 
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Then solve the system, 

Uy = ~ 

getting, 

(: + f.l2) 
2 ' 

- f-L 

= (_ i }N-3 _2_ 
YN-1 f-L 1 2' 

- f.L 
and 

1 2N-j-4 (1 + 2(N-j-1») 
y. = (- -) f-L 2 ' 

J f-L 1 - f.L . 

for j = 1,2,···, N-2. 

It is then easy to verify that 

hence 

and since 
·2 

f-L Z 33.92, make the simplification that, 

-1 
(1 - (1/f-L2)N-3) = 1; 

this is valid since N-3 will be a large integer (> 20). Therefore, 

B- 1u(1 + ~TB-1~}-1~TB-1E. = I3B-1~ 

where 13 has been evaluated previously by Eq. (38). The computation of 

I3B-1~ proceeds inductively as follows: define 

c == 13/(1-f-L
2

), 

a =' 
1 / 

2N-5 
c (- 1 f-L) , 

and if -1 
~ == I3B ~,it follows that 

J = 2, 3, ... , N, letting 



a. 
J 

get 

- fl a. 1 ' J-
2 

b. = b. 1/fl ' 
J J-

z. = a.(1 + b.) . 
. J J J 
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Thence, using the evaluated vector z, we have , from Eq. (37), that the solution f 

Q.E.D. 

This concludes the calculation of the potential flow. 

4.5. Timing tests for the potential flow calculation 

The calculation of the spline coefficients f. . involves solving two large 
1,J 

linear systems of equations, but, using modern techniques, these solutions 

can be obtained relatively inexpensively on large computers. • 

The first large system to solve is 

F~ = Y.. 

where ~ is the array of the grid function values of the potential stream func

tion. The numerical program used a mesh size of 

d = 1/64, 

and hence, there were 63 2 unknown interior grid function values. U sing the cyclic 

odd- even reduction algorithm [6], I wrote a routine which, when tested against 

the test function 4J = eXcos y on the unit square, obtained the result in .1 sec 

with a maximum error of 10- 6 . 

The second large system is Eq. (33), for the array f. . of the spline co-
2 1,J 

efficients. There are a total of 67 spline coefficients, and a test program 

was run to evaluate the spline coefficients given the grid values of the function 

eXcos yon the unit square. The routine took 6.1X 10- 2 seconds to solve for the 
-14 coefficients and achieved an accuracy of 10 when the spline was evaluated at 

the grid points. 

Both test programs were run on the LBL CDC 7600 machine and the timing 

was done with the library routine SECOND. 
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5. Numerical Experiment and Results 

As described in Section 2, the numerical experiment involved computing 

the steady-state solution of the two-dimensional flow inside a square cavity 

induced by one edge sliding in its own plane (Fig. 1). 

The program was run for the following sets of parameters: 

3 
R = Reynolds number = 10 , 

k = time step = 0.2, 

h = boundary discretization length = 1/20, 

d = mesh size for potential flow calculation = 1/64, 

and initially (t = 0) no vorticity was present in the domain f):' My hope was to 

achieve a steady- state distribution of velocity beginning with the fluid at rest. 

All of the pictorial output in this report will take the form of Fig. 16 where 

the boundaries of the square coincide with the outside arrows. Each arrow 

depicts the magnitude and direction of the velocity at the tail of the arrow. 

However, due to the relatively large range of the magnItude of the velocity 

field, ~ 1, the lengths of the arrows vary as the square root of ~ 1; i. e., if 

one arrow is half as long as another, the velocity there is 1/4 as small as the 

velocity of the larger one. Furthermore, the lengths of the arrows are scaled 

so that the largest occurring velocity draws an arrow as long as the plot mesh 

size. Note that in Fig. 16, the lower edge has the longest arrows, depicting 

the velocity at the sliding edge. 

Unfortunately, due to the random walk component of the displacement of 

each vortex, the velocity field, at anyone time step, is a random variable, 

(Fig. 20), and bears little resemblance to the expected velocity distribution. 

Hence, it was necessary to average many such velocity fields and hope that, 

by averaging, the random oscillations may be smoothed out. Another question 

remained unresolved: namely, when to consider that a steady- state had been 

reached and begin the averaging proces s. The program has one variable, NeT ~ 

that changes drastically at the beginning, namely, the number of vortices pre

sent in the fluid. NeT exhibited an almost monotomic growth for the first 100 

time steps when it reached 536. After the first 100 time steps, NeT did not 

exhibit further growth but merely oscillated from one time step to another; 

in fact, after 420 time steps there were still 547 vortices in the fluid. The 

averaging process was done over 320 time steps, from the 101~ time step 

to the 42~, and during this period, the number of vortices varied between 

500 and 580. Furthermore, velocity plots were outputted frequently at the 
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beginning (t = 0), and it was possible to trace the path of the strong vortices 

as they were shed from the sliding edge, carried downstream, and around 
, th 

the cavity, until, finally by the 100.::: time step, there were strong vortices 

distributed throughout the entire cavity. 

The final results are in the form of the average velocity field computed 

by evaluating ~ = ~p + u t; at the grid points of the plot. Figure 13 shows 

velocity field after it has been averaged over the 40 time steps, 381-420. 

Figure 14 is the velocity averaged over 80 time steps, 341-420. Figure 15 

is the velocity averaged over 160 time steps, 261-420, and finally Fig. 16 is 

the velocity averaged over 320 time steps, (101-420). With each subsequent 

plot, one can see the random oscillations being smoothed out. The vortex 

center of Fig. 16 appears to be near the point (x,y) = (.59, .39). 

Other data computed in Fig. 17, the velocity induced by the average of 

u at the plot boundary points (which lie on a~ and Figs. 18 and 19 depict the 

plot of the velocity u and v along a horizontal and vertical line through the 

vortex center. 

.' ,f 
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Fig. 13. Average velocity field over the last 40 tirnesteps, 381-420. 
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Fig. 17. Read velocities traversing the boundary keeping domain !!!iJ on your left. -

lVELOClTlES ALONG THE BDRY. 

K SIDE 1 SIDE 2 SIDE 3 SIDE 4 U V U v U v U V 1 O. O. o. o. o. o. o. O. 2 0.236066 0.002858 -0.010249 0.255553 0.011469 -0.000429 -0.000438 0.00~972 3 0.313567 0.009060 -0.003745 0.257163 0.009378 -0.000291 -0.0001~8 0.007~78 4 0.360064 0.000586 -0.001028 0.255775 0.010371 0.000279 0.000114 0.017381 
~ 0.367890 -0.002913 0.000867 0.305923 0.005824 0.000267 0.000883 0.019274 6 0.469382 ' -0.006202 -0.007~34 0.290101 0.012787 -0.001027 -0.001771 0.015414 7 0.448378 -0.006415 -0.002627 0.291951 -0 .. 012080 -0.000187 -0.0017·04 0.014747 8 0.~28655 -0.002506 -0.002918 0.266103 -0.009934 0.000048 0.00068~ 0.013376 9 0.~29802 0.007135 0.003213 0.2~7460 -0.0214~0 0.001776 0.003~72 -0.0022~2 10 0.553263 0.007369 0.0022~4 0.230006 -0.033808 0.001410 0.00032~ -0.009408 11 0.601020 0.003283 0.001557 0.24~223 -0.045790 -0.000307 -0.000219 -0.022880 12 0.~97273 -0.002779 0.002883 0.247411 -0.04~099 -0.001021 -0.000~4~ -0.037077 13 0.~89646 0.002109 -0.004345 0.244854 -0.0401~7 0.002318 -0.00044~ -0.03~9~~ 14 0.~93042 0.000040 0.000202 0.202467 -0.052913 0.001144 -0.00008~ -0.035240 

1~ 0.611942 -0.00~268 0.001708 0.184010 -0.056284 0.002147 -0.00309~ -0.043~49 16 0.646216 0.000511 -0.000~22 0.176108 -0.061903 0.000930 -0.001404 -0.038397 17 0.684083 -0.001011 0.000489 0.147630 -0.0644~5 0.000287 0.00029~ -0.049~13 18 0.715859 0.007510 0.000254 0.145647 -0.046925 0.00017~ -0.000623 -0.0428~3 19 0.708535 -0.003797 0.000605 0.119471 -0.039080 -0.001098 -0.001~34 -0.040719 20 0.686090 -0.001183 0.000295 O. 1 0~163 -0.039245 0.001848 -0.002420 -0.044612 21 0.724~67 0.003584 -0.001647 0.107936 -0.043800 0.002708 -0.001728 -0.037718 22 0.715077 0.002640 0.001243 0.096272 -0.033649 -0.000348 0.000168 -0.042564 23 0.725420 0.000191 -0.002339 0.098964 -0.032735 0.001269 -0.003611 -0.027092 24 0.753769 -0.007776 0.001062 0.083061 -0.020~14 -0.000631 0.000864 -0.036773 I 2~ 0.739526 0.0033~3 0.000734 0.081040 -0.021995 -0.000770 -0.000899 -0.033049 V-l 26 0.738990 0.001240 -0.002625 0.068797 -0.006575 0.000017 0.000020 -0.032572 V-l 27 0.735661 0.000863 -0.002502 0.066391 -0.014398 -0.000012 -0.000729 -0.029415 I 28 0.752624 0.001126 0.003111 0.052446 -0.013984 -0.003840 -0.000352 -0.028346 29 0.753332 0.003750 -0.002778 0.039652 -0.01~34~ 0.000626 -0.000319 -0.029679 30 0.750268 -0.000624 -0.000423 0.020013 -0.003732 -0.000308 -0.0004~3 -0.010089 31 0.733~47 0.004140 -0.000666 0.023998 -0.000~4~ -0.001008 0.001377 -0.012866 32 0.710856 0.003990 0.001~~0 0.00~983 -0.010~74 -0.0008~1 -0.002420 -0.01~763 33 0.696600 0.003143 -0.000457 0.010001 -0.008336 0.000688 -0.002017 -0.027628 34 0.684~96 -0.004540 0.001413 0.012235 -0.009604 0.000094 -0.0009~9 -0.02298~ 35 0.680802 -0.005~94 0.001371 0.000509 -0.0046~6 0.000490 -0.003076 -0.021~66 36 0.623197 0.001005 0.001492 -0.009810 0.00260~ 0.000386 -0.000~83 -0.030110 37 0.563941 -0.003272 0.0033~7 -0.00~493 0.009208 0.001449 -0.004029 -0.031179 38 O. ~32~11 0.004514 -0.000833 -0.0077~~ 0.007947 0.000991 -O.OOO~~O -0.06~21~ 39 0.332809 -0.000739 -0.001764 -0.006099 0.003050 -0.000320 -0.000192 -0.086209 

AVERAGE VELOCITIES 
SIDE 1 SlDE / 2 SIDE 3 SIDE 4 UAV VAV UAV VAV UAV VAV UAV VAV 0.594586 0.000497 -0.000496 0.127337 -0.018896 0.000228 -0.000719 -0.023834 

SIDE1:Y=O SIDE 2: X = 1 SIDE 3: Y'" 1 SIDE 4: X = 0 
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6. Dis cus sion of Results 

Qualitatively, the results in this report are similar to those predicted by 

analysis and similar to the numerical results of Bozeman and Dalton [3] . 

First of all, there does appear to be a large vortex centered slightly 

.1'\,. downstream and closer to the sliding edge, yet whose strength is felt through

out the cavity. By examining Figs. 18 and 19, it does seem as if there is an 

inner core of inviscid flow around the vortex center" since the line is almost 

straight there. Furthermore. there are two counter- rotating vortices in the 

stationary corners. Note, as well, the peculiar jog that the, velocity field ex

pibits near the leading edge of y = O. This also appears in Bozeman's paper. 

, ' . 
.. ' ,. 

However, there are some differences between the results here and those 

of Bozeman. First the down- stream corner vortex seems to be slightly larger 

than the upstream vortex, but both, although quite weak do appear on the plots 

(Fig. 15). Second, the slope of plots 18 and 19 is approximately 0.5 while 

Bozeman's results seem to have the slope closer to 0.7. This last discre

pancy seems to indicate the presence of more vorticity in the center in 

Bozeman's results. Third, the center of the large vortex does not coincide 

with Bozeman's center. but rather seems to fall back to where Bozeman 

places the center for the case R =400. 

I, 
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7. Discussion of Program - Conclusion 

Since the vortex method is still in its infancy, much remains to be ex

amined about it. 

There is, first of all, no known required relationship between k, the time 

step, and h, the boundary discretization length, as is often required for stability 

in finite difference schemes. By examining Figs. 16 and 17, it is evident that 

the velocity field does not satisfy the tangential boundary condition very well. 

Mechanically, however, the tangential condition is satisfied by virtue of the 

creation of a viscous boundary layer. This layer is omnipresent, but the 

vorticity there has only a local effect at the time of its creation, and its global 

effect on u occurs only after it has diffused into v.' It may then, perhaps, be 

too demanding to require that ~. ~ be exactly zero, since the vorticity neces sary 

to do exactly that appears in the evaluation of ~ only at the subsequent time 

step after having diffused from the boundary. Furthermore, I conjecture that 

better values than those of Fig. 17 could have been attained by either choosing·· 

k smaller, or h larger. 

Since the standard deviation of the random push for each vortex is 

".; 2k/R and the cut-off length a = h/21T, the choice of parameters (po 27) wlll 

cause most of the vortices to travel beyond the cut-off length as they diffuse 

from the boundary. This does not allow the vortex to cancel completely the 

tangential velocity component, ~.~, hence the poor satisfaction depicted by 

Figs. 16 and 17. It then seems reasonable to choose k and h such that 

I 2k h 
Q' J R = 21T 

where Q' is some number like 2 or 3; this, I believe, should give a better 

satisfaction of the boundary conditions. 

Some runs were made experimenting with different values for k, and I 

noticed that by decreasing k, the number of vortices in <f;!was increased. For 

example, using the s -field after 100 time steps as an input vorticity field, and 

letting k = 0.01 which gives a value of Q' ':;[ 2.5 above, the number of vortices grew 

to 820 after only 25 time steps when the program was terminated since there was no 

more room available to keep track of the vortices. On the other hand, using k = 0.4, 

the number of vortices decreased to a seemingly stable figure at around 320. 

It is, however, not very wise to make k too small since the deterministic 

component of the velocity is d{k) while the random component is 6"{k
1

/
2

). 

Hence, if k gets too small, the random component will begin to dominate 

making the flow look haphazard. 

., 

.... ' 
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The dis crepancy between the slopes of the lines of Figs. 18 and 19 and the 

results of Bozeman also merit some discussion. As previously noted, the results 

here seem to indicate the presence of les s vorticity than that occurring in 

Bozeman's experiment. Perhaps, the scheme presented here does not gen-

erate enough vorticity at the boundary, and this may be improved by a better 

approximation to the integral (16); or perhaps, the results of Bozeman display 

the existence of an artificial grid viscosity greater than the viscosity of the 

problem of interest. Many such questions still remain unresolved and they 

certainly merit further study. 

Another problem of interest is how one might speed up the calculations. 

Most of the execution time is spent on computing vortex interactions, since, 

given N vortices, one must compute N
2 

interactions to move them all, and if 

N is large this becomes costly. In particular, the runs for this problem took 

an average of 50 seconds per time step on the LLL CDC 6600 I L' machine. 

In conclusion, the vortex method seems to give good results for this prob

lem, and it is hoped that it will be tested on other problems, since it may be 

possible to apply this scheme to problems inaccessible to finite difference 

methods. 
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States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
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