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ABSTRACI' 

A continuous thennodynamic framework is presented for phase­
equilibrium calculations for solutions of polydisperse polymers. An expression 
for the Helmholtz function of mixing is based on a mathematically simplified 
Freed model developed previously. A binary mixture requires a size parameter 
c, and an energy parameter e; the fonner can be temperature dependent. while 
the latter can depend on temperature and chain-length. The functional approach 
is adopted to define thennodynamic functions and to derive expressions for 
chemical potentials, spinodals. and critical points. Computation programs are 
established for cloud-point-curve, shadow-curve, spinodal and critical-point cal­
culations for polymer solutions where the molecular-mass distribution of the 
polymer is specified. Examples for phase-equilibrium calculations are shown 
for cyclohexane-polydisperse polystyrene systems. Satisfactory results indicate 
the utility of the proposed framework and the computation procedures. 
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1. INTRODUCTION 

The phase behavior of binary polymer solutions and blends differs appreciably from that 
of ordinary liquid mixtures not only because of the large molecular-size difference between 
different solute and solvent, but also because the polymer solute is likely to be polydisperse. 
As indicated in a typical textbook (1], the phase diagram shown in Figure l(b) for a 
polydisperse solute is qualitatively different from that for a monodisperse sample, shown in 

. Figure l(a). In the latter case, an open circle represents the principal phase and the correspond­
ing filled circle represents the conjugate phase; they are located on the same coexistence (or 
cloud-point) curve. The maximum of that curve is the critical point However, in the fonner 
case [Figure l(b)], the cloud-point curve for principal phases does not coincide with the 
corresponding plot for conjugate phases. The latter plot is called the shadow curve. The 
molar-mass (or chain-length) distribution for the principal phase is usually different from-that 
of the conjugate phase as shown in the upper part of the figure. In some cases, the content of 
the polymer is higher in the conjugate phase than that in the principal phase with a wider dis­
tribution shifted to the higher molar-mass region, while in other cases, the content of the poly­
mer is lower in the conjugate phase than that in the principal. phase with a narrower distribu­
tion shifted to the lower molar-mass region. Of particular interest is the point of intersection 
of the cloud-point curve and the shadow curve, where the prilicipal phase and the-conjugate 
phase have the same composition, i.e., the same total polymer content and the same polymer 
molecular-mass distribution. This is the critical point of the polydisperse polymer solution. 

For development, production and processing of advanced polymer materials, it is neces­
sary to have a satisfacory understanding of the phase behavior of polydisperse polymer solu­
tions and polydisperse polymer blends. 

Although basic thermodynamic relations for polymer-solution phase equilibria are well­
known, application to polydisperse polymer systems is not trivial because for a solution con­
taining a polydisperse solute, a "binary" solution is, in fact, a multicomponent system with 
very many components. Instead of using two equations for equating chemical potentials of the 
solute and the solvent for a binary, we now have to use a huge number of equations 
corresponding to polymer molecules with different molar masses or chain lengths. Polymer 
molecules with different molar masses should be considered as different components. Expres­
sions for spinodal.s and critical points are then determinants of large capacity with a great 
number of second-order derivatives and third-order derivatives as their elements. For a true 
binary, only a simple second-order derivative and a simple third-order derivative are needed 
(2], but for a solution containing many components, the mathematical problem becomes prohi­
bitive. 

The literature contains several methods for describing the thennodynamics of 
polydisperse polymer systems. The essential goal is to obtain the partition coefficient K; for the 
polymer species i with relative molar mass M; or chain length r;; the latter is defined as the 
number of fundamental segments of a chain molecule, or the number of sites occupied by a 
molecule if the system is treated as a lattice. K; is defined as 

K- = ci>.(a) 1 ct>.<Pl 
' ' ' 

(1) 

where ct>;<a> and cl>;<P> are volume fractions of polymer species i in coexisting phases a and ~. 
respectively. Schultz (3] in 1939 was the first to carry out such calculations by suggesting that 
partitioning is governed by energy differences only and is independent of concentration. Later, 
Scott [4] used an improved method to calculate Ki by introducing two assumptions: a 
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negligible concentration of polymer in the dilute phase and omitting the tenn llr,. (where r,. is 
the number-average chain length in the Aory-Huggins equation). Some other authors 
[5,6,7,8,9] adopted the empirical expression forK;, 

K; = exp(O"r;) (2) 

where cr is a parameter obtained by fitting experimental data. The most rigorous method was 
developed by Koningsveld [10] and by Sole [11] based on Tompa's work [12]. Koningsveld 
adopted a generalized Flory-Huggins model for the Helmholtz function of mixing by introduc­
ing a concentration-dependent polynomial for the Aory parameter g, 

(3) 

where coefficients g1 may be functions of temperature and where (,~>, is the total volume frac­
tion of the prilymer solute. With this model, Koningsveld was able to express cr as an analyti­
cal function of g and «1>, and to derive closed-fonn expressions for spinodals and critical 
points from corresponding detenninants. An algorithm for calculations of the cloud-point curve 
and the shadow-curve was also "presented. In Koningsveld's work, the importance· of the 
chain-length dependence of the Aory-Huggins parameter g has been noted, and a priliminary 
derivation for the spinodal criterion was given. However, no further details were presented for 
a critical-point criterion and phase-equilibrium calculations. 

The references cited above are based on discrete multicomponent thennodynamics. Dur­
ing the last 10 years, Ratzsch, Kehlen and coworkers [13,14,15], and Cottennan and Prausnitz 
[16,17] developed a functional approach, where chemical potentials are defined using functiori~ : 
a1s to incorporate the molar-mass distribution or the chain-length distribution of a polymer · 
solute. The functional fonn of partial derivatives and higher-order variations of ftmctionals are 
also defined to derive thennodynamic relations for chemical potentials, spinodals and critical 
points. For the original Flory-Huggins model, RitzSch et al were able to prove the consistency 
between the ftmctional approach and the classical discrete-multicomponent approach. In thiS 
work, we use the functional approach for a lattice model based on the work of Freed and •·' 
coworkers (21,22,23). ; . 

For a solution containing a polydisperse polymer, the composition is usually characterize&· · 
by a continuous molar-mass (or chain-length) distribution. Phase-equilibrium thennodynamics, 
where discrete compositions have been replaced by continuous distribution, is often called con­
tinuous thennodynamics. The primary merit of the continuous-thennodynamic method is con­
venience: integration replaces summation over components. For an arbitrary distribution, Ying, 
Ye and Hu [18] developed a derivative method based on spline functions, which can be used 
for phase-equilibrium calculations. 

The next section presents a thennodynamicframework for phase-equilibrium calculations 
for mixtures containing a polydisperse polymer solute. The model used is a generalized expres­
sion for the Helmholtz function of mixing presented previously [19,20], based on the lattice 
theory of Freed et al [21,22,23]. Two parameters are used: the size parameter c, which is tem­
perature dependent, and the energy parameter fik which can depend on both temperature and 
chain length. Expressions for chemical potentials, spinodals and critical points are derived. For 
illustration, calculated results are given later for po~ystyrene-cyclohexane systems. 

'•·· '- v 

::t ,, ' 
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2. THERMODYNAMIC~WORK 

2.1. Helmholtz Function of Mixing 

Polymer solutions are often described by a lattice theory. For a binary, the mathematically 
simplified Freed model [19,20] can accurately duplicate the phase behavior of an Ising lattice 
and can obtain almost the same critical coordinates for cases with r 1=1 and r:z=1-10,000 as 
those from the original Freed theory. The mathematically-simplified model gives a convenient 
and brief Helmholtz function of mixing: 

~A <1>1 ~ -- = -ln<l>l + -ln<l>2 +gel>!~ (4) 
NrkT r 1 r2 

1.2 1 1 2 t t 3 2... 
g = -(---) + 2l + -<1>2 + -<1>1 - -1.074 t-wl~ 

9 r 1 . r 2 r 1 r 2 2 
(5) 

where Nr is the total number of sites in the.lattice, r 1 and r 2 are numbers of sites occupied by 
one molecule of component 1 and one molecule of component 2, respectively, and 

t = elkT 

£ = £u + £22 - 2£12 

(6) 

(7) 

Here Eii is the (positive) energy for each i-j pair,£ is the interacJ?.on energy parameter for the 
binary, while t is the corresponding reduced energy parameter. Eq.(S) is derived for a cubic 
lattice. Here, subscripts i and j refer to nonbonded polymer segments or to solvent monomers. 

For a binary polymer solution with a polydisperse polymer solute, with a slight change of 
notation, the Helmholtz function of mixing can be expressed as 

(8) 

where subscript o stands for solvent. The corresponding chain length r0 is usually taken to be 
unity. Subscript i stands for polymer species i; the corresponding chain length ri can be 
estimated by 

(9) 

Where V 1110 ,V0 .,M0 and V mi ,V1 .,Mi are molar VOlumes, SpecifiC VOlumes, molar masses for SOlvent 
and polymer species i, respectively. Subscripts (solute) stands for polymer; cr is a binary size 
parameter. Flory parameter gi is given by eq.(5), which is now chain-length and composition 
dependent The summation is over all polymer species with different molar masses. 

Using continuous thennodynamits, eq.(8) is rewritten: 

~...u:A <1>0 .. f <1>,. W(l) .. f 
NrkT = -;::-In<l>o + 0 r(l) ln[<l>,.W(l)]dl + <l>o 0 <l>,.W(l)g(l)dl (10) 

where W(I) is the distribution function for a polymer which satisfies the nonnalization con­
straint 

f W(l)dl = 1 (11) 
0 

Here I is the distribution variable such as relative molar mass or chain length. Solvent o is a 
discrete component as usual, while the infinite number of polymer species is represented by 
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distribution function W (!). In the functional approach, «b., W (I) is comparable to fb; in the 
discrete approach. In eq.(lO), l1m&xA is a functional. 

Similar to eq.(5), g (I) can be rewritten: 

g(f) = 1.2 (-1 __ 1_)2 + Zt.(l) + t(/) «b.r + t(/) (1-41»6) _·1_1.074 t2(I)cl»,(l-«b.r) (12) 
9 r0 r(l) r0 r(l) 2 

where t(l) depends on chain length. An empirical dependence is given by 

t(l) = e0 + e,[r(I)r" (13) 

where n is a positive number and e0 and e, are adjustable parameters. The longer r, i.e., the 
larger the molar mass, the weaker is the chain-length dependence oft. In principle, parameters 
c, e0 and e, can be temperature-dependent 

2.2. Expressions for Chemical Potentials 

For the discrete solvent component o, the chemical potential can be derived directly. It is 
·. (" 

OJ.o-J4)1kT = O{l1m&xAikT) I CJN0 

= ln(l-41»1 ) + «b8 (1-r0 1r,.) + r0 «b}[ J g(I)W(I)dl- (1-41»8 ) J g'(I)W(I)dl] (14) 
0 0 

where g' (I) = CJg (I)ICJcfJ,. Superscript * stands for the reference state, which is the close"'packed .. ~ 

pure component at system temperature. The number-average chain length is denoted by r,.. ·:' 
For continuous components, the chemical potential of solute I is defined as: <, 

. J.L(I) = CJA I CJ[N,«b8 W (f)lr(I)] (15) 

where the denominator is physically comparable with dN; in the discrete approach. But now it 
is a variation of a functional. When applying eq.(l5) to eq.(lO), we meet the problem of taJWtg 
derivatives for an integral with respect to a functional. In the theory of functionals, fo(an 
integral '¥ = J f (N1 )di, the derivative of '¥ with respect to the functional N1 is defined by 

a'¥ of(NJ) 
-= (16) 

Taking the first integral on the right side of eq.(lO) as an example, we first set 
N,«b8 W(I)Ir(I) = N1 for abbreviation. The integral (times N,) is then rearranged as 
I N1 [lnN1+1nr(I}-InN,]dl. Applying eq.(16), we obtain ln[«b,W(/)]+1-r(I)j«b,r-1 (I~W(I~dr. 
Here we have used oN,ICJN1 = r(f) and o«b8 loN1 = -CJc'P0 IoN1 = r(I)(1-4>1 )IN, . 

An expression for the chemical potential of a continuous component I can then be 
derived. It is 

[J.L(I}-J.L• (l)]lkT = O{l1,.;zAikT) I o[N,«b8 W(l)!r(I)] 

= ln[«b8 W(I)] + 1- r(I)Ir0 + r(f)«b8 (1-r0 1r,.)lr0 + (1-4>8 )r(l)g(l) 

-r(/)«b8 (1-4>8 )[ I g(I+-yW(I~d/+- (l-4>8 ) I g'(I+-yW(I+-yd/1 
0 0 

(17) 
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2.3. Spinodal Criterion 

From the theory of stability, the boundary between the metastable and unstable regions 
satisfies the condition that the second-order variation for the Gibbs function of mixing with 
composition equals zero. For a close-packed lattice, the Gibbs and Helmholtz functions are vir­
tually the same. We define the reduced Gibbs function of mixing per site as: 

(18) 

where Gv is a functional. We now need to derive an expression for 82(;" as the spinodal cri­
terion. 

For deriving a high-order variation for functionalS, Kehlen, Rlitzsch, Bergmann and Beer­
baum [14,15] suggested 

(19) 

Then they used the Lagrange method of undetermined multipliers to determine the relation 
.between the two dependent variations 8cl>0 and 8[Cl>,W(l)] in eq.(l9). Fmally, 81 G" I (8cl>oi can 
be obtained. Details are given in Appendix 1. For k =2, we obtain: 

82Gv · 1 1 (<gr>-4)o<g'r>)2 <gr>--<J)o<g'r> 
-~2 = -- + -- + Cl>, - 2-----
(8cl>o) T0 fll0 Twfll.r Tw Tw 

- Cl>,(<g"r>-2Cl>0 <gg'r>+Cl>;<g'2r>)- 2Cl>8 (<g'>-4)0 <g">l2) 

where r w is the weight average chain length. 

<g1 g'm g" 11 r> = Jg 1 (I)g'm (I)g" 11 (/)r(I)W(I)dl 
0 

Here, g' (I) = CJg (I)ICJCl>8 , g" (I) = CJ2g (1)/CJCl>i. We then have the spinodal criterion, 

fJ2(;y 

Fsp = (8cl>o)2 = 0 

The same results can be obtained from the discrete appoach; as shown in Appendix 3. 

2.4. Critical-Point Criterion 

(20) 

(21) 

(22) 

For the critical point, it is necessary that the third-order variation of the Gibbs function of 
mixing equalS zero.· Using a procedure similar to that used for the derivation for the spinodal, 

. fJ3(;y . . . . • 
we obtain 

3 
• The lengthy expressiOn 1S gtven m Appendxx 2. We then have the critical-

(8cl>o) . 
point criterion, 

(23) 

Again, the same results cari be obtained from the discrete approach, as shown in Appen­
dix 3. 
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3. PHASE-EQUILIDRIA 

3.1. Fundamental Equations for Phase-Equilibrium Calculations 

When phases a and ~ are at equilibrium, 

fJ. (a) - fJ. @) 
0 - 0 

To solve eqs.(24) and (25), we define 

So = [g(I)W(I)d/- (1--ct»,) [ g'(l)W(I)d/ . 

Substitution into eqs.(14) and (17) yields 

~ -JJ.~/ kT = CJ0 

ljl{I)-JJ.• (1)]/kT =In[~ .. W(l)] + 1- r(l)lr0 + (1--ct»,)r(l)g(l) 

Eqs.(24) and (25) become 

,..(a)-,..@) 
vo - vo 

~@>w@>q> 
InK(/) = In_;;,. .. ..,..-.,.....,..;.." ..;_ 

~;a>wca>(l) 

= r(/){[(1~1 )g (/)-r0-1ln(1~ .. )-cl» .. S0 ](a) - [(1-cl»8 )g (/)-r;1ln(1-cl»8 )-cl»,.S0 ]@>) 

We also define 

M~ = f K(I)Wca>(l)dl 
0 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
-';.... 

(31) 

(32) 

·t 

.... ~ 
• y ··~t 

J . 
·t 
~~ 

Substituting K (I) = ~ .. @>w@>(I)t~Ja>wca>(I) into eq.(32) and accounting for the nonnalization ,,. .- ~\, ~ 
constraint, [eq.(ll)], we have 

(33) 

Eqs.(30) and (33) pennit us to establish two fundamental equations for phase-equilibrium 
calculations for binary polymer solutions with a polydisperse polymer. 

F0 = 1 - aJa>taJf'> = 0 

F.s = 1- M~~}a>t~ .. @> = 0 

(34) 

(35) 

The fonner is for the solvent, while the latter is for the polymer. By solving these two equa­
tions, we can obtain cloud-point and shadow curves. 

We can obtain spinodals and critical points by solving eq.(22) and eq. (23). 

3.2. Derivative Method for Arbitrary Distribution 

To use eqs.(34) and (35), we encounter several integrations with respect to th.e molar­
mass or chain-length distribution, such as M; of eq.(32) and various <g 1 g'"' g"" r> in eq.(21). 
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Because energy parameter t in g can be molar-mass or chain-length dependent, [see eq.(13)], 
in some integrations chain length r may rise to a power different from 1. 1berefore, in general, 
we may need to calculate the following integral, 

S = f rk (I)K (I)W (l)dl (36} 
0 

where W (I) is the distribution function. 

Sometimes we can use a standard distribution function such as a gamma distribution or a 
log-normal distribution. The advantage of using a standard distribution comes from simplified 
computation. In some fornmate cases, we can obtain analytically the distribution parameters for 
a conjugate phase from the corresponding parameters for the principal phase [16]. 

However, when the polymer chain length has an arbitrary distribution, or when the 
energy parameter is molar-mass dependent, ~s advantage disappears. In that more general 
case, the previously presented derivative. method [18] should be used. 

The derivative. method rep~~Qts .distribution data by an interpolation polynomial .with 
derivatives, i.e., a Hermite polynolnial, 

Y(x) = [_l_(x· ~-x)2-2_-(x· ~-x)3] Y· + [_l_(x-x·f-2-(x-x-)3] Y· 1 h·2 J+ h·3 J+ I h·2 J h·3 J 1+ 
I I I 'I 

1 )21 )3, 1 )21· 3, 
+hi[ h·2 (xi+l-x -~-(xi+1-x ] Yi -hi[ J;J(x-xi -~(x-xi)] Yi+l 

J J 'I J 

(37) 

where 

(38) 

In eq.(37), xi, Yi and Yi' are, respectively, the independent variable, the value of the function 
and the corresponding first-order derivative with respect to x at data point j. A third-order 
spline function is always used to obtain those derivatives from the scattered data of xi and Yi. 
The integral of eq.(37) can be obtained by · 

Applying to eq.(36), x-+r(l), 

y(l) = rk(l)K(I)W(I) 

, k K' (!) W (I) 
y (I)= y(l)[ r(I) + K(l) + W(l)] 

(39) 

(40) 

(41) 

where K'(l) and W'(l) are corresponding derivatives for K(I) [defined by eq.(31)] and W(l) 

with respect to r(l). 

3.3. Dlustration: Liquid-Liquid Equilibria for Cyclohexane-Polystyrene Systems 

Koningsveld, Kleintjens and Shultz [24] reported high-quality experimental liquid-liquid­
equilibrium data for cyclohexane-polydisperse polystyrene systems. Data reported by 
Koningsveld et a1 include critical coordinates for nine samples with different number-average, 
weight-average and z-average molar masses, M,., Mw and Mz shown in Table 1. 



-9-

We use two parameters in our lattice model, a temperature-dependent size parameter cr in 
eq.(9), and in eq.(4), an energy parameter t which depends on temperature and chain length by 
eq.(13), where n = 113. They can be expressed as: 

Cr = Cro + Crtl
1 

£/k =eo+ et11 + err-113 

Using eqs.(22) and (23) for each pair of critical coordinates Tc and <~>.rc, 

Fer= 0 . 

(42) 

(43) 

We can then obtain cr and £/k for each sample. For altogether nine samples, we then estimate 
all model parameters. For cyclohexane-polystyrene systems, results are: 

Cro = -1.51890 , Crt = 61.4300K 
·eo= 44.5297 , · e1 = 1074.88K , er = 9.84750 

Standard deviations of fitting for critical temperab.lreS and ·critical volume fractions, respec­
tively, are: 

RMS(Tc) = 0.44 K , RMS(<~>c) = 0.0016 
For details, see Table 1. 

Using these parameters, we can calculate spinodals using eq.(22). Figure 2 shows calcu­
lated spinodals for samples 1,3,5,7 and 9. Cloud-point cwves and shadow curves are obtained 
by solving eqs.(34) and (35). An arbitrary example with M11 =209kg/mol, Mw=346kg/mol and 
Mz=482kg/mol is chosen. Rehage et al [25] have reported experimental cloud-point and shadow 
cwves for a similar sample. Figure 3 shows calculated cloud-point and shadow cwves and the 
spinodal curve for that sample. Figure 4 shows Rehage's experimental results for comparison. 
In view of the uncertainties in parameter estimation, and the subtle difference between the Mz 
of the calculated sample and that of Rehage, general agreement with experiment is satisfactory. 
Figure· 5 shows typical distributions for a principal phase and an equilibrated conjugate phase. 
These two distributionS differ marlcedly from each other. 

The preceeding calculations only serve as an example. For that example, a chain-length­
dependent parameter is not needed. Similar good results can be obtained when the energy 
parameter £/k is only temperature-dependent Chain-length dependence, however, will play a 
vital role when the chain-length distribution of the polymer includes short chains. 

4. DISCUSSION AND CONCLUSIONS 

Although cqntinuous thermodynamics has been widely accepted for phase-equilibrium 
calculations for systems with very many components, some computational problems remain, 
especially for systems containing polymers. One of those problems is how to obtain analytical 
expressions for spinodals and critical points, which are often more important in phase equilibria 
for polymer systems than for ordinary systems. These problems are minimal for simple Fiery­
Huggins theory, but these problems are not trivial when we choose a better model, such as the 
Freed model, especially when we account for the molar-mass dependence of the parameters. 

' 
The functional approach gives us new impetus not only because of its theoretical 

integrity, and its consistent framework. for multicomponent systems, but also because it 
requires a comparatively simple mathematical procedure in comparison with the tedious deter­
minant derivations in the usual discrete approach wheil calculating the spinodal and the 
critical-point criteria. However, the functional approach is still in an early stage. Some 

'..;~ :j ~1 

~'~ _, 



- 10-

simplifications have been introduced, such as the suggested method of obtaining variations of. 
functionals using Lagrange undetermined multipliers. In the present stage of development, 
everything obtained by the functional approach mu~t be checked with calculations based on the 
discrete approach. The latter is rigorous. In this work., we have derived expressions for chemi­
cal potentials for the revised Freed model with a molar-mass-dependent energy parameter. The 
reliability of these equations follows because no approximation has been used. We have also 
derived expressions for spinodals and critical points; their reliability is subject to test For­
tunately, the result of the test is successful. Therefore, we can reach the conclusion that the 
thermodynamic framework. developed here is a general one which can be used for other 
polymer-solution models. 

Phase-equilibrium calculations for polydisperse polymer solutions requires a molar-mass 
or chain-length distribution for the polymer. Standard distributions such. as the gamma distribu­
tion or the log-normal distribution are often used tp approximate the chracteristics of polymer 
systems. We can now determine experimentally all the average molar masses, such as M,., Mw 
and Mz. However, Mz predicted by those standard distributions with their parameters obtained 
by fitting M,. and Mw may differ appreciably from the experimental value. The derivative 
method used in this work does not have this deficiency. It offers a more accurate description of 
the distribution of polymer species at a reasonable cost of slightly longer computation time. 

In this work., the model is limited tO a close-packed lattice where r0 is arbitrarily set at 
unity. Therfore, it cannot be used for polymer blends. In a next article, the volume effect is 
taken into account with an equation of state and the restraint r 0 =l is eliminated .. 
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Appendix 1 :Derivation of the Spinodal Criterion 

We first express eq.(l8) or eq.(lO) for the reduced Gibbs function of mixing per site as a 
functional of variations M>o, ~[<1>1 W(l)] and variable t as follows: 

- <l>o+tM>o 
Gv = ln(<l>o +t 0<1>0 ) 

ro 

+I <l>.r W(lr:r(~~<l>.r W(l)] ln{<l>.r W(l)+t~[<l>.r W(/)]}dl 

+ (<l>0 +tM>0 ) j {<l>.r W(l)+t~[<l>.s W(l)]}[g(l)+t d~/) &1>0 + ~ t2 az!,_(~) (M>0 )
2]dl (AI) 

0 o U'l<'o 

Substitution of this equation into eq.(l9) for k~2. gives the second-order variation, 

~z- (M>o)2 -J {~[<l>.r W(/)]}2 
uG - + dl 

v- ro<l>o o r(l)<l>.sW(I) 

+ 2[ ~0 ~[<1>8 W(I)][g(l)-4>0 g'(l)]dl- 2 [ (M>0 )~sW(I)[g'(l)-4>0 g"(l)/2 ]dl (A2) 

where g"(I):=if-g(l)ld<l>'f. Variations 0<1>0 and ~[<l>,W(I)] are not independent. For obtaining 
their relation, Kehlen et a1 [14,15] suggested that ~2(;v should be a minimum when M>o and 
~[<1>8 W(l)] are correctly related. On the other hand, they are also subjected to the following 
constraint, 

J ~[<1>1 W(l)]dl = 0<1>, = --M>o 
0 

(A3) 

Using this equation as constraint, the relation between two variations can be obtained by seek­
ing the conditional extremum for ~2Gv by applying the Lagrange undetermined-multiplier 
method 

We first take derivative for ~2Gv in eq.(A2) with respect to the variation ~[<1>8 W(l)] , 

according to eq.(l6), keeping &1>0 unchanged. We obtain 

(A4) 

We then introduce undetermined multiplier -21... to eq.(A3). After taking the derivative and 
adding to eq.(A4), we set it equal to zero. We obtain 

~[<I> .. w (/)] . , 
A= r(/)<1>,. W(l) + M>o [g(l)-4>og (/)] (AS) 

Substituting this equation into eq.(A3), we can solve for A., 

(A6) 

where 

<gr> =I g(l)r(J)W(I)dl (A7) 

<g' r > = I g' (J)r (I) W (J)dl (A8) 
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rw = <.r> = [r(l)W(I)dl (A9) 

rw is usually called the weight-average chain length. Combine eq.(A6) and eq.(A5). We obtain 
the relation between two variations, 

<gr>-4.> <g'r> 
0[<%»,. W(l)] = (O<l»0 )<l>,.r(l)W(l)[ 0 

rw 
(AlO) 

Substituting this equation into eq.(A2), we have eq.(20). 

Appendix 2 : Critical-Point Criterion 

o3G;, 1 ci> ... <.r~ 3 

(O<l»o)3 =- ro<I»1 - <.r>3 (<gr>-4->o<g'r>) 

+ «1><:{~3 + (<g 3r~3«l>0 <g2lr~3«l>1<gg'lr~!<g'3r~)<l» .. .. 
. .~ 

<r~ <gr~0<g'r~ + 3--3 (<gr>-4>0 <g'r>)2 + 3<I».r 2 (<gr>-4>0 <g'r>)2 

<.r> <.r> 

<.r~ <glr~2<l»0 <gg'r~i<g'lr~ - 3 (<gr>-4>0 <g'r>)- 3<%»,. (<gr>-4>0 <g'r>) 
<.r>3«l>.. <.r> 

<gr~0<g'r~ <glr'>-2«l>0 <gg'r~1<g'2r~ <gr>-4>0 <g'r> . ,_ .... ,_. 
+ 3 2cl> + 3 -6 2 (<gr~0 g'r~) 

~ 

<.r> .r <.T> . <r> 

<gr>-4->o<g"r> <g'r> 
- 64>8 <g'r> · + 6 + 3«l> ... <g"> + 6Cl>,.(<gg'r>-4>0 <g'2r>) 

<r> <.T> 

<gr>-4>0 <g'r> <g"r> 
+ 3«l>0 «l>8 <g"r> - 3«1>0 --- 3<l»0 «l>8 (<gg"r>-4>0 <g'g"r>) (Bl) 

<.r> <.r> 

The meaning of terms< ... > in this equation is similar to those in eq.(20) as defined by eq.(21).''~ 

Appendix 3 : Comparison with the results derived by discrete approach. 

For testing the reliability of derivations for the spinodal and the critical-point criteria, we 
set relations between some terms and their corresponding terms in the discrete approach as fol-
lows: . 

Then we have 

r-1«1>-1- 2«1> <g'> + Cl> <It <g">-+ J. 
0 0 s 0 s 

-g (/) + <l»og' (I) -+ Ji 

l![r(I)<I» .. W(I)] -+A; 

cl>..rw = J «l> .. r(I)W(I)dl =LA; -1 

0 j 

--4?s(<gr>-<1>0 <g'r>) = L/iA.;-1 

j 

(Cl) 

(C2) 

(C3) 

(C4) 

(C5) 

(C6) 
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Substitution into eq.(20) and defining a new F zp, 

F ~-I -1 F ' 
sp....,s Tw -+ zp 

We have the spinodal criterion with a discrete version, 

1 l; 2 ~ '1 ~ l;l; ~ l; 
F sp = 1 + JL,- + (L,-) - ~-~- + 2~-

i A; j A; i A; j A; i A; 

This equation can be derived from the discrete approach. 

For the critical point, we set two further relations as follows: 

r;t~;2- 3~s<g">-+ J' 

-2g'(I) + c'bog''(l}-+ J;' 

(C7) 

(C8) 

(C9) 

(C10) 

Upon substitution of the above equations into eq.(B 1), we have the critical-point criterion in a 
discrete version 

1+LJ;A.;-1 
F = ~ r.3r. 'l :-1 + J' _ 3~ T.J. ?.,:-1 _ 3(~ r.;.. 'l :-1)--i __ 

cr k.J' • a "i k.l'' ' ' k.l'' '"i ~'l :-1 
i ; i ~ 

1+LJ;~-1 1+LJ;A;l 

+ 3t';r;A.;-1( iA-1 )2- ¥;A;-!( iA-1 )3 

1bis equation can also be derived from the discrete approach. 

Figure Captions 

(C11) 

Figure 1. Schematic phase diagram for liquid-liquid equilibria of a polymer solution with (a) 
monodisperse polymer sample and (b) polydisperse polymer sample. Small squares. on 
upper part are corresponding distribution cwves for polymers. 

Figure 2. Spinodals calculated for the system cyclohexane-polystyrene, corresponding to sam­
ple nUmbers in Table 1. 

Figure 3. Cloud-point cmve, shadow cwve and spinodal curve for system cyclohexane­
polystyrene. M,.=209kg/mol, Mw=346kg/mol, Mz=482kg/mol. 

Figure 4. Cloud-point curve and shadow curve for the system cyclohexane-polystyrene. Com­
parison with experimental results by Rehage et a1. 

calc. M,. =209kg/mol, Mw =346kg/mol, Mz =482kg/mol. 

expt. M,.=210kg/mol, M,..=346kg/mol, Mz=550kg/mol. 

Figure 5. Molar-mass distributions of conjugate phases in liquid-liquid equilibrium for the sys­
tem cyclohexane-polystyrene. 



- 15 -

Table 1. Critical coordinates for system cyclohexane-polystyrene 

Tc /K 
No. M,. 103 Mw 103 Mz 103 

expt calc. expt 
1 1250 1500 1700 303.20 303.87 0.0305 
2' 490 527 593 301.15 301.32 0.0470 
3 375 394 423 300.70 300.36 0.0510 
4 200 286 438 298.70 298.90 0.0700 
5 154 166 181 296.60 296.58 0.0735 
6 91 93 96 293.65 293.15 0.0875 
7 55 61.5 70.5 290.45 290.07 0.1070 
8 49 51 55 287.85 288.57 0.1100 
9 27 35.4 45.5 284.60 285.04 0.1360 

RMS(1)=0.44K, RMS(<l>)=0.0016 

<l>sc 

calc. 
0.0293 
0.0464 
0.0515 
0.0673 
0.0731 
0.0884 
0.1062 
0.1102 
0.1325 
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