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A study is made of the single particle dynamics of an electron

positron storage ring where the phase slip factor is made small in order to 

make the ring nearly isochronous and reduce the bunch length. What is 

found is that a quasi-isochronous ring makes it possible to obtain a bunch 

length in the millimeter range, about one order of magnitude shorter than 

present values. 

In this study we have extended the work of others on isochronous 

storage rings by quantitatively including ~igher-order terms in the 

longitudinal equations of motion. Scaling laws are then derived relating the 

linear term with the next highest order term. These scaling laws which are 

derived from a ,2-dimensional Hamiltonian (1 dimension of position and 1 

of momentum) establish criteria for stability. These scaling laws are then 

checked with full &-dimensional tracking on one particular lattice. 

PACS numbers: 29.27.Bd, 41.85.Gy 
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I. INTRODUCTION 

The exploration of the structure of matter at smaller and smaller distances follows 

two paths. The first is the construction of higher energy accelerators, like SSC, LEP and 

future linear colliders, to allow for a direct investigation of very short distances and more 

massive particles; the second is the study, usually at lower energies, of the violation of 

symmetry principles, or detailed tests of the validity of the standard model. Examples of 

this second approach are the study· of CP violation in K meson orB meson systems, and 

the related proposals of K factories, B factories and 4> factories. In these factories the most 

important parameter is the collider luminosity. To reach their goal these systems must have 

an ever larger luminosity; in the case of B factories the required value is greater then 1033 

em -2s -1, and values in excess of 1034 em -2s -1 would be desirable. 

One strategy for increasing the collider luminosity is to increase the average electron 
' 

and positron beam current. An alternative to this approach is to make the luminosity larger 

by increasing the beam densities at the interaction point [1]. This requires a reduction in the 

bunch length and a strong beam transverse focusing to a beta function of the order of the 

bunch length. In this case the luminosity scales like the inverse of the bunch length. 

In this paper we focus on the possibility of reducing the bunch length in an 

electron-positron storage ring collider by making the storage ring nearly isochronous, i.e. . . . 

with a revolution time independent of particle energy. This is done by reducing the linear 

term in the ring phase slip factor to nearly zero. We study the beam dynamics in this 

essentially nonlinear situation and establish the condition for stable single particle motion. 

We find that by considering only the longitudinal degree of freedom (corresponding 

to the direction in which the beam is travelling) it is possible to arrive at an analytical 

formula which describes the size of the stable longitudinal phase space area, including the 

effects of nonlinear terms. The size of the stable phase space area in an accelerator is · 

important because it has a direct bearing on the lifetime of a beam of particles in a storage 
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ring. The larger this area is, the smaller the chance that a particle can "visit" an unstable 

region of phase space and get lost from the beam. 

From this analytical formula we derive scaling laws which determine how large the 

nonlinear terms can be and still provide a sufficiently large enough stable phase space area 

for a good beam lifetime. We also show how it is possible to control the nonlinear terms in 

the equations of motion with sextupoles and higher order magnets. 

Finally our scaling laws which, are derived from a two dimensional Hamiltonian 

are checked on a specific accelerator lattice with 6-dimensional tracking. The. accelerator 

lattice which we chose as an example of a quasi-isochronous ring is the synchrotron at the. 

UVSOR facility at the Institute for Molecular Science in Okazaki, Japan [2]. The results of 

the 6-dimensional tracking code give us confidence that the scaling laws do give a good 

measure of the size of the stable phase space area for that lattice. 

A. Reference frame 

Prior to beginlting a discussion of the equations of motion of a particle in a storage 

ring collider we will first defme the reference frame to be used throughout this discussion. 

There exists in all storage rings a closed orbit called the ideal or reference or design orbit of 

the ring. This design orbit is the orbit of the "ideal" particle for w~ch the machine is 

designed. The ideal particle has the reference energy, Eo, and the proper phase with respect 

to the radio frequency cavity, and follows this design orbit. It is convenient to use a 

coordinate system where a particle's position is ~easured with respect to this design orbit. 

The instantaneous position of a particle in the ring can be specified in terms of (s,x,y), 

where sis the azimuthal coordinate of the particle measured along the design orbit from 
r 

some reference point, x andy are the respective radial and vertical distances of the particle 

from the design orbit This coordinate system is illustrated in Fig. 1. 
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II. LONGITUDINAL EQUATIONS OF MOTION (2-DIMENSIONAL 

THEORY) 

Our discussion of quasi-isochronous storage rings will. be preceded by a short 

summary of the general equations of motion for the longitudinal degree of freedom of a 

storage ring, after which the differences between conventional rings and quasi-isochronous 

· rings may be more clearly illustrated. The main difference between a conventional and a 

' quasi-isochronous storage ring lies in the longitudinal beam dynamics; the transverse beam 

dynamics are not strongly influenced, except for the synchrobetatron coupling effects. In 

particular the synchrotron oscillation frequency is assumed to be very small. Defining what 

we mean by very small is one of the key questions to be addressed here. 

Let's first define what we mean when we say that a storage f4lg is isochronous. A 

storage ring is isochronous when the time it takes for a particle to make one revolution 

around the ring is independent of its energy. The degree to which a storage ring approaches 

~e isochronous condition is described by the parameter 71, the phase slip factor. The phase 

slip factor is defmed as the relative difference of the revolution time which an arbitrary 

particle and the reference particle take to go around the ring, divided by the arbitrary 

particle's relative energy deviation from .the reference particle: 

17 
= (Ta- ToYFo 

(Ea-EoYEo 
(1) 

In the limit that 11 goes to zero, the machine is operating in an isochronous mode. 

When 11 is small, we say the machine is operating in a "quasi-isochronous" mode. What we 

mean by small is several orders of magnitud~ smaller than what exists in machines 

presently. This means values of the first order phase slip factor, 71c1 (see equations 11 and 

12) of lo-4 to 1o-6. The bunch length in a storage ring is proportional to the square root 
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of 7Jq [1]. Reducing 7Jq by two orders of magnitude results in a bunch length reduction 

of one order of magnitude. Reducing the phase slip factor is the method by which the 

quasi-isochronous ring accomplishes the decrease in the bunch length. Of interest is the fact 

that when we make 7Jq small, nonlinear terms which are usually neglected in the 

equations of motion can become important. To allow for this possibility we assume in the 

equation of motion that 77 is a function of the particle energy, 77 =77 ( 8 ), where 8 = (Ea -

Eo)! Eo is an arbitrary particle's relative energy deviation from the reference particle. We 

define the phase distance, 'l', as the difference between the arbitrary particle's and the 

reference particle's time of arrival at the RF cavity multiplied by 2trffo. Therefore, in one 

tum the change in the phase distance is A 'I'= 21t(Ta- To)fl'o). Using as v~ables 8 and 

'l' we can write the equations of motion for electrons in the presence of synchrotron 

radiation energy losses and a radio frequency system that can compensate these losses as 

p' = 77{8 )8 (2) 

8' = {~0 sin (h 'l' + ¢o)-
2

r:J;
0 

( 1 + J £8) +fluctuations (3) 

where Vo is the RF peak voltage, Uo is the energy radiated per turn from the reference 

particle, lE is the radiation damping partition number [3], and withjluctuations we indicate 

the term arising from quantum fluctuations in the emission of synchrotron radiation. The 

prime superscript implies a derivative with respect to~. where tis time and~ =27dTo 

is the revolution frequency of the reference particle around the ring. The harmonic number 

. his the ratio of the RF frequency to the revolution frequency (h = CIJRF/~). 

A. Phase slip factor 
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The phase slip factor, 17 ( o ), as discussed earlier is dependent upon two quantities: 

the difference in velocity between the test particle and theideal particle and the difference in 

path length between the test particle and the ideal particle as they travel around the ring. The 

faster the test particle moves, the farther it moves, tending to decrease '¥; however, the 

longer the path length, the longer it will take to move around the ring, tending to increase 

'¥. The information concerning these effects is embodied in the phase slip factor and can be 

rewritten as 

11 = (Ta- ToYTo = t1T{l'o = 4'f'121k 
(Ea- Eo 'YEo &/Eo t1E!Eo . 

where t1'¥is the change in '¥per tum for given t1E. 

The full expression for 7J is [4] 

11 = _1 J,Lo ds [v (1 + x.y + (x·f + (y'f -1) -~ 
LQ8 . , Ps {3po 

0 

(4) 

(5) 

where Psis the local radius of curvature of the design trajectory and /3p is the velocity of 

the particles in the-laboratory frame divided by the velocity of light. To simplify this initial 

discussion of a quasi-isochronous ring, we will expand 7J in successive orders of 8 and 

assume that o is constant for each particle during one revolution. This is a reasonable 

assumption in the absence of synchrotron radiation and in the limit that the synchrotron 

oscillation frequency, v.SO (see equation 23), is small. We do this in two steps. First, x, y, 

x : andy ' are written in terms of a series expansion in .powers of o 

. . 2 
x = xp + Dxoo + Dx1 o + ... (6)_ 
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(7) 

(8) 

I 

y =yp (9) 

where xp is the betatron amplitude of the oscillation and DXo and D x
1 

are the flrst and 

second order components of the dispersion function. We assume for simplicity that the 

dispersion is zero in the vertical (y) direction. Second, the square root in equation 5 is 

expanded in powers of 8. The phase slip factor can then be written 

710 
71 = -+ 711 + 7120+ ... (10) 

0 

I 

. At this point we defme the closed orbit phase slip factor, 71c, which is the phase slip 

factor without any betatron oscillation terms (i.e. xp = yp = 0). In other words 71c is the 

difference in revolution time that a particle with an energy offset ,8, travelling on its closed 

orbit takes to circulate around the ring relative to the reference particle. For the remainder of 

this discussion we will only discuss 71c , neglecting betatron oscillations. However betatron 

oscillations will be introduced in the numerical tracking. 

The closed orbit phase slip factor, 71c, can be expressed as a power series expansion · 

in 8 

(11) 

The term 71c
1 

is given by 
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. (12) 

The 7J '2 term is given by 

D' 2 D D f
Lo ' . 

71C2 =_]_ ds _&_+~--1-~ + 3 1 
Lo o [ 2 Ps 136m Ps ] 2136 m [ + pjmJ (13) 

Normally the 7Jc
1 

term is the dominant term in determi¢ng the particle's motion. 

For highly relativistic particles it is usually positive but can be made nearly zero or negative 

, ·by having in the ring regions of inverted bending, Ps < 0, or of negative dispersion, Dx 

0 < 0 [5]. 

As an example of what typical values of the emittance, first order phase slip factor, 

dispersion and f3x are, we give their values in the smooth approximation [3]. In the 

smooth approximation the emittance, e, the phase slip factor 7Jc1, the dispersion D xo, 

and the horizontal beta function f3x are 

(14) 

(15) 

(16) 

f3x = lL 
Vx 

(17). 
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where Vx is the horizontal tune of the ring, R is the average radius of the ring, J x is the 

horizontal betatron radiation damping partition and 8rms is the relative rms energy spread 

of particles in the ring. 

For a ring which has an 8 meter radius, an rms energy spread of 3.5 X 1o-4 and a 

horizontal tune of 3: E = 7.3 X 10-8 m·rad, Dxo = 0.89m, 17cl = 0.11, and f3x = 2.67m 

having assumedlEilx = 2. 

III. QUASI-~SOCHRONOUS STORAGE RINGS 

The value of 17cl can be adjusted to be zero or negative by having regions of 

negative dispersion or inverted bending in the ring (see equation 12). The effects of the 

higher order terms of the phase slip factor become important when the linear phase slip 

factor, 17c1• is made small. 

As a first step toward understanding the behavior of a quasi-isochronous storage 

ring, we study the equations of motion where the phase slip factor is given as 

(18) 

and ignore higher order terms in 8. 

We begin with a discussion of what is important for good beam stability and 

lifetime in the ring from a single particle dynamics point of view. A serious consideration 

when designing a storage ring which has good beam lifetime is that there should be a 

"large" three-dimensional volume, the dynamic aperture, in which particles can stably 

circulate around the ring, oscillating around the reference trajectory. For a ring circulating 

electrons or positrons, this volume should at least be ten times the rms value in all three 

dimensions [3]. The reason for this is that sudden changes in the momentum of a particle 

can result from the emission of a photon, and this change can shift the particle to a much 
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different region of phase space than it occupied previously. The particle will then tend to 

damp down to the reference particle's position because·of radiation damping. The whole 

region in which the particle "~ives" must be stable or the particle will b~ lost. Because the 

longitudinal equations of motion can be rather nonlinear in a quasi-isochronous storage 

ring, we had concerns about the size of the stable longitudinal phase space area. We have 

derived general scaling laws which give the size of the longitudinal phase space in terms of 

1Jc and 1Jc • 
1 2 

In the development of these scaling laws four approximations are made. The first 

approximation is that the longitudinal and transverse motion. are uncoupled. So when 

looking at longitudinal phase space only the longitudinal equations of motions, equations 2 

and 3, need to be considered. The second approximation made is that the transverse 

displacement of a particle is only a function of its energy and can be written 

(19) 

In other words, the particle's betatron oscillations are ignored (i.e. 1J = 1Jc). The third 

approximation is based upon the assumption that there are no longitudinal damping in the 

system. The fourth approximation is that there are no energy fluctuations due to photon 

emissions. 

These approximations are made for several reasons. The first reason is that treating 

the motion as completely decoupled makes arriving at an analytical expression for the size 

of the dynamic aperture possible. This assumption of decoupled motion is reasonable, 

especially if the trimsverse motion is relatively linear and the betatron oscillations are small. 

The second reason is that the particles in the ring will perform synchrotron 

oscillations about a stable fixed point. This stable fixed point varies for particles with 

betatron oscillations of different amplitudes. Particles with a large betatron oscillation will 

oscillate about a point with a larger value of 8 than particles with small betatron oscillations. 

10 



As long as the stable fixed point is not shifted too much, the assumption of zero betatron 

amplitude shouldn't affect the stable phase space area. 

The third reason for making these approximations is that longitudinal damping 

provides a stabilizing presence. In our calculations we are concerned with beam loss due to 

leaving the dynamic aperture. In suc\1 a case this would lead to rapid particle loss, usually 

in a time much less then a damping time. Hence we neglect damping and stochastic 

fluctuation processes because they operate on a slower time scale. This is justifiable if the 

dynamic aperture is much larger then the beam emittances. The results which have been 

derived from this analysis should serve as guidelines. 

The longitudinal equations of motion (equations 2 and 3) in the absence of damping 

and fluctuations can be rewritten as 

(20) 

(21) 

where tfJ = h '¥. In this case the system can be described by the Hamiltonian 

(22) 

From the Hamiltonian it is now possible to distinguish stable from the unstable 

regions of phase space. Now we would like to single out two different longitudinal phase 

space regimes: the RF bucket and the Alfa bucket regime. 

A. RF bucket 
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For accelerators with a large 7Jc
1

, 7J c 
2 

can be ignored in the equations of 

motion. The stable phase space is bounded by a separatrix which can be seen in Fig. 2. The 

trajectories are characterized by one stable and one unstable fixed point 

For the sake of an example, let's assume that the ring is operating above transition, 

i.e. 7J c 
1 

> 0. That means that the higher-energy particles have a smaller revolution 

frequency than the lower-energy particles. In this case cos t/Jo < 0. The synchrotron 

frequency or small oscillation frequency around the stable fixed point is 

_ ~ h17q eVdcos qij 
v so - 27rE 

0 
(23) 

The separatrix which passes through the unstable fixed point encloses the stable 

phase space area (see Fig. 2). The fixed point is located at ¢ = 1t - 2t/>o and S = 0 . The 

maximum stable energy displacement is 

. (24) 

Now that the stable phase space area·is defined it can be compared with the rms 

bunch length and rms energy spread. In this RF bucket regime, where 17c
1 

is large and 

7J c 
2 

is small, the conditions. for a good lifetime are 

(25) 

(26) 

B. Alfa bucket 
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What happens as we decrease 77c
1
? When we reduce the value of 77c

1
, the 

energy acceptance given by equation 24 becomes larger. However the longitudinal 

chromaticity term, 17~, if non zero, becomes important, and the phase-space trajectories 

are modified. With a non zero value of 17C1. there are now· two stable fixed points and two 

unstable ones. The stable fixed points are ( 4> = 0, o = 0) and ( tf> = 1r - '24>0 , o = -

11 c 
1 

I 11 c 
2

) • The unstable fixed points are ( tf> = 1C - 2 t/>0, o = 0) and ( 4> = 0, 0 = -

1Jc 1 117c 2 ) · 

There are two phase-space regimes corresponding to whether the distance between 

the stable and unstable fixed points is larger or smaller than the linear maximum energy 

displacement defined in equation 24 and they are separated by the condition 

11ct = ~ { 2eVo [(K.- <ro)sin <ro ...:.·cos rol} 
17c2 · 1Ch1Jq Eo 2 ~ 

(27) 

These two regimes can be seen in Figs. 3a and 3c respectively, where 3b is the case which 

lies on the boundary between the two regimes and occurs when equation 27 is satisfied. 

The first regime is the RF bucket regime where there are two stable phase space 

areas which lie over each other (see Fig. 3a). One bucket is just that which is illustrated in 
l 

Fig. 2 and the other is one which is directly below it. These stable phase-space buckets are 

sometimes described as "fish," where the stable fixed points represents the eye and the 

unstable fixed points represents the taiL If the machine is operated above transition, the 

upper fish is "swimming" in the negative 4> direction, while the lower fish is "swimming" 

in the positive 4> direction. 

The effect of decreasing the ratio of 1Jc
1 

I 11 c 
2 

is that the lower fish will rise 

towards the upper fish. At the point where 1Jc / 1J c 
2 

= · o;, the two fish are both 

"sharing" the two unstable fixed points. Each separatrix goes through the two unstable 

fixed points. By decreasing the ratio still further, the result is that the fish "exchange" tails. 
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Now the fish are "swimming" up and down. The fish whose "eye" is at (0,0) is 

"swimming" in the positive S direction and the fish whose "eye" is at (~ - 2¢o,-

77 c 
1 
I 77 c

2
) is "swimming" in the negative S direction. 

The regime in which the fish are "swimming" up and down we refer to as the alfa 

bucket regime (see Fig. 3c). In the RF bucket regime the RF cavity determines the size of 

the buckets, whereas in the alfa bucket regime the phase slip factor determines the size of 

the buckets. 

In the alfa bucket regime the condition for a good lifetime is 

(28) 

For ~ given value 77c
2 

this gives a limit for the smallest value of 77c1 which the ring 

can support with a good lifetime. In order to have a smaller value of 7Jc
1 

we would need 

.·to first reduce the value· of 77~ • In other words the longitudinal chromaticity needs to be 
. . 

reduced in order to decrease 7Jc
1

• For a given 77c
1

, the phase space will be largest when 

77 c 
2 

= 0 . Therefore it, is desirable to set 77~ to zero. 

The term 17~ acts as a change tn the longitudinal or synchrotron tune of 'a particle 

in the ring as a function of its energy. The term 77c
2 

is _related to what we call the 

· "longitudinal chromaticity" of the ring and it corresponds to a change in the synchrotron 

tune with energy 

(29) 

The first and last two terms in the expression (equation 13) for 77c
2 

are always 

positive. In the absence of sextupoles the first term in equation 13 which is a function of 
'2 

D x 0 is always positive and for highly relativistic particles is the dominant term for 

14 



determining 7J~· The second term in equation 13 which is a function of Dx
1 

can be 

made positive or negative with sextupoles and can balance out the other terms. Therefore 

the longitudinal chromaticity can be set to zero with sextupoles (setting 7Jc
2 

= 0) in the 

same manner as transverse chromaticity. The use of sextupoles to control 7Jc
2 

has been 

suggested by others in connection with minimizing beam loss during transition crossing in 

hadron synchrotrons [6]. 

We have derived an expression (see Appendix A) to determine how effective a 

sextupole is at changing the value of 7Jc
2

. The change in 7Jc
2 

resulting _from a thin 

sextupole with an integrated strength of S located at a longitudinal position s(S) where 

D x
0 

and Dy
0 

are the respective horizontal and vertical dispersion at s(S) is 

(30) 

where Lo is the length of the trajectory around the ring of the reference particle. 

In order to control independently the chromaticity both transversely and 

longitudinally without effecting the linear lattice functions, three families of sextupoles are 

needed. This third family of sextupo1es is important if the machine is going to operate at 

very small values of 7Jc
1

. In equation 30 we give an expression for the effect of a 

sextupole on 11~· One can also determine the proper field strengths for all three sextupole 

families from the one-turn transfer map of the ring [7]. 

The two dimensional theory can be generalized to include higher order o terms in 

the phase slip factor. The unstable fixed point in the alfa bucket regime is found by setting 

7Jc = 0. The maximum value of Oin which is stable is the smallest solution of equation 31 

which is real. 

(31) 
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In the development of these laws we have ignored any synchrobetatron coupling. 

Therefore these results need to be verified for any given quasi-isochronous lattice with full 

6-D tracking . 

. IV. COMPARISON OF THE TWO DIMENSIONAL THEORY WITH SIX 

DIMESIONAL TRACKING 

We have made a comparison of the two dimensional theory with six dimensional 

tracking for one particular lattice. As mentioned earlier, the storage ring which we.chose as 

an example· of a quasi-isochronous ring is the lattice of the UVSOR ring [8]. A list of 

· parameters of the ring in a normal and low 1Jc operation are given in table I. 

The lattice of the ring is a double bend achromat of periodicity four. There are four 

families of quadrupoles and two families of sextupoles. When going from the normal to the 

low 1J c
1 

configuration, the four families of quadrupoles were adjusted to keep the 

transverse tunes constant, to· keep the beta functions at the end of each peripd nearly 

constant, and to vary 7Jc
1

• The sextupoles were adjusted to keep the transverse 

chromaticities 'constant. In the low 7Jc1c~nfiguration, 7Jc
1 

is 1.3 x 1Q-3 and 7]~ 2 is 

0.16. The first order phase slip factor in the low 7Jc
1 

is one thirtieth of the normal 

configuration. We used this low 7Jc
1 

configuration for our tracking comparison. 

The tracking was done with an explicit symplectic integrator [9]. The integrator was 

derived from the full six dimensional. Hamiltonian [10] for a particle in an isomagnetic 

guide field with a thin lens cavity. Also this code utilizes automatic differentiation [11] to 

calculate Taylor series relative to the synchronous particle making one revolution around 

the ring. From these Taylor series or one turn map, we can extract both linear and nonlinear 

properties of the map such as chromaticity, 7Jc
1

, 1J c 
2

, 1J c 
3

, and ... [7]. 

We chose the following criteria for determining whether or not a particle is outside 

of the dynamic aperture: A particle which ventures more then 1m transvers.ely from the 

reference orbit is considered lost and is thus outside of the dynamic aperture. 
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We used the following procedure when tracking. Particles were launched with 

initial transverse coordina.tes, x andy, and an initial relative energy offset 8 but no initial 

transverse momenta (px = Py = 0) or initial longitudinal offset (s = 0). These particles were 

"pushed" around ·the ring until they were either lost from the dynamic aperture or survived 

5 synchrotron oscillations (10,000 turns). The particles with the largest initial values of x 

and y which survived were recorded. This gives us a fairly good idea of the size of the 

dynamic aperture. 

We initially tracked particles with small betatron oscillations. The results can be 

seen in Fig. 4. The cusp of.the "fish" is at 8 = 0.008 which i~ the value predicted by. 

1Jc /7Jc. This means that the higher order terms in 7Jc i.e. 7Jc 3 • 1Jc 4 • •.• ,do not 
. 1 2 

contribute significantly to the bucket shape. 

The results of tracking particles with large betatron oscillations can be seen in Fig. 

5. In Fig. 5 one can see a three dimensional closed surface viewed from three different 

angles. Particles that had initial coordinates inside the aperture survived and those outside 

were lost. This surface gives a rough idea of how large the dynamic aperture is. What is 

found is that the scaling laws give an accurate prediction of the length of the stable phase 

space area in 8. The longitudal aperture does begin to shrink appreciably only at very large 

betatron amplitudes. 

We can conclude from these results that the emittance of the ring contributed very 

little to determining the size of the longitudinal phase space area. The longitudinal phase 
' . 

space in this ring is determined primarily by the 17c and 77 c terms. This gives us 
1 2 . 

confidence that for the ring, the simple scaling law, equation 28, agrees well with the 6 

dimensional tracking and is thus a good guide to determining the size of the stable 

·longitudinal phase space area for that particular lattice. 

In order to proceed to lower values of 77c1 it is necessary to adjust the sextupoles 

in the ring to lower 77c2. At UVSOR they were experimentally able to adjust 77c2 by 
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varying sextupole strengths [12l Being able to contolryc
2 

allowed them to operate the 

ring at a lower value of 11c 1 . 

V. CONCLUSION 

We have demonstrated that the size of the longitudinal phase space is governed by 

t~e strengths of the higher order 8 terms of the phase slip factor. We derived simple scaling 

laws to give a quantitative estimate of how large this phase space area is. We also showed 

-·that it is possible to correct the higher order terms in the equatio~ of motion with higher 

order magnets and to give an expression for .the effect of a sextupole on 7Jc2. It is thus 

possible from the point of single particle· dynamics to operate a ring with a small value of 

11 c 1 and still haye a sufficiently large stable longitudinal phase space area. Therefore 

storage rings should be able to produce short bunch lengths by just decreasing 7Jc 1 • 

We have previously studied the effect of the longitudinal microwave instability on 

the collective stability of the beam [1]. We found that the threshold peak current should not 

decrease as we lower 7Jc
1• In fact with the inclusion of radiation damping, the bunch 

should be able to tolerate a larger peak current than when operating in a larger 7Jc1 regime. 

This work was done assuming a broad band impedence and SPEAR scaling. We are in the 

process of studying the effect of the vacuum impedence [13] or the effect of coherent 

radiation which increases as the bunch length decreases. We hope to report on this soon. 
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APPENDIX A THE EFFECT OF A THIN LENS SEXTUPOLE ON Tic 2 

Let us assume that there exists a 6-dimensional phase space where a vector z in this . . 

space is of the form 

z = (x,px. y,py,'r = ct,pt= -8) (Al) 

and where c is the speed of light, Px• Py. and P-r are the canonical momenta of x, y, and 'r. 

Let's also assume a thin lens sextupole is located at a position ss in the ring. Let M be the 

one turn map of the ring (without an RF cavity) about the on energy closed orbit originating 

at s(S). The map M has the effect of taking a ray Zi at position ss and maping it into a ray 

ZJ 

(A2) 

which is just the ray .after one turn. 

Let us also defme the maps Mo and M s as the maps· of the ring without the 

sextupole and the map of the sextupole respectively. The map M is just 

M=MoMs (A3) 

We can write the Hamiltonian for a thin lens sextupole as 

(A4) 

where S is the integrated strength of the sextupole. The map Ms can be written as 
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(AS) 

where : Hs: is a Lie operator (we are using the notation of Dragt)~ The Lie operator :f: is 
0 ° 

defined 

:f:g = [f, g] (A6) 

where/ and g are functions of z and[/, g] is the Poisson bracket off and g. We now 

compare maps M and Mo to see how map Ms changes the one turn map and thus 17c
2 

to 

first order in sextupole strength. 

First we make a canonical transformation on the maps M and M o bringing them 

into their normal forms. By transforming to normal form variables (Floquet or action angle 

variables), one flushes out all the characteristics of the map such as beta functions, 

dispersion, ... and is left with only global properties of the map such as tune, chromaticity, 

17 c , 11 ~ , ... We write the transformation of the maps into their normal forms No and N 
1 2 . 

as 

. 1 
No=A0 MA0 (A7) 

N = AMA-1= A 1AoMA0
1A11 (A8) 

The canonical transformation A1 is the "extra" transformation one needed to bring the map 

M into its normal form as a result of putting in a sextupole. It is to be treated as a 

perturbation on the map and in the limit that the strength of the sextupole goes to zero, A 1 

goes to the identity map. Since we are interested in studying 7Jc
2

• we need only to study 

the maps to cubic degree iri the Lie exponent (which is quadratic in the equations of 

motion). The map No written in a single Lie exponent is 
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j I ~ I ~ Lo1Jq ~2 Lo1Jc2 ~3 } No=exP\=-J.Lxlx-J.Lyly-J.Lxlxu-J.Lyfyu +-
2
-u +-

3
-u : (A9) 

I , I 

where Jlx and Jly are the horizontal and vertical tune, J.i; and J1 are the horizontal vertical 
. . X y 

chromaticity, J x and J y are the horizontal and vertical action and Lois the length of the on- , 

energy closed orbit. We can write the transformation matric A 1 to third order as 

(AlO) 

where the term A12 is the "extra" transformation needed to transform the map Minto a 

linear rotation and the term exp(:F3:) is the "extra" transformation needed to transform the 

map M into a rotation to second order. The function F3 is a third order polynomial. 

The map of the ring to third order including the sextupole in its normal form is then 

calculated: 

N=AMoMsA-1 (All a) 

= A1No(AoMsA()1}\11 (All b) 

Because Ms is third order in the Lie exponent it has no effect on the second order 

terms in the exponent. In other words the introduction of a thin lens sextupole has no effect 

. on the tunes or 7Jct. Therefore the transf~rmation that normalizes No to first order is the 

same transformation that normalizes N (i.e. A12 is the identity map). The map N can now 

be written as 

(Al2) 
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The tradsformatibn (AoMsA0
1

) brings the map Ms into linear Floquet space 

AoMsA0
1 = Ao(exp(: Hs :})A01 

= exJAo: Hs :A0
1

) 

= exp(: AoHs :) 

= exp(: Hsp :) 

(Al3a) 

(A13b) 

(A13c) 

(A13d) 

where the term Hsp is the Hamiltonian of the sextupole transformed into linear Floquet 

space. The transformation shifts the coordinate to one relative to the energy closed orbit to 

first order and then scales the axis transforming the phase space ellipse into a circle: 

Xold =~X new + DxoS 

Yozd=~Ynew +DyoS 

The expression for Hsp is then just 

(A14) 

. (A15) 

(A16) 

The next step in normalizing the map is to factotout the nonlinear part of the map 

and to look at the exponent. We do this by writing the map No in terms of a linear rotation 

Ro and a nonlinear rotation, exp(: FN 
0

:). 

No= Roexp(:F~0:) (A17) 

The exponent can be expressed to lowest order in sextupole strength as 

(A18) 

24 



The purpose ofF3 is to perform a'phase average over the monomials in the exponent. 

Since the pure 8 terms are independent of phase, they remain unchanged by F3. Because 

7Jc results from pure 8 3 terms we only need to collect the terms in 8 3. The only new 
2 ' . . 

terms (i.e. terms not coming from FN ) are from HsF. As a result of these terms we find 
. 0 

that the change in 77c
2 

is 

(Al9) 
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TABLE 1: Uvsor ring parameters in normal operation and small 71 configurations a 

PARAMETERS NORMAL77 SMAIL77 

length of the ring (m) 52.3 52.3 

Energy of the beam (MeV) 600 600 

Horizontal Tune (Qx) 3.16 3.16 

Vertical Tune (Qy) 2.62 2.62 

phase slip factoi, 7Jc 3.5 X 1Q-2 1.297x 1Q-3 
1 

peak voltage of rf cavity (V) 47.5 X 1Q3 47.5 X 103 

central frequency (Mhz) 90.115 90.115 

harmonic number 16 16 
' 

synchronous angle (rad) -0.111. -0.111 

Energy loss/tum (eV) 5.2 X 1Q3 5.2 X 103 

Synchrotron tune (Khz) 14.8 2.849 

Synchrotron period (#turns) 381 1979 

RMS Energy Spread (rel) 3.46 X 1fr-4 3.46x1o-4 

Bunch Length (mm) 39 8 

a Parameters supplied by H. Hama 
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