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CAPILLARY SURFACES IN A WEDGE: 
DIFFERING CONTACT ANGLES* 

Paul Concust and Robert Finn+ 

Abstract 

The possible zero-gravity equilibrium configurations of capillary surfaces u(x, y) in 
cylindrical containers whose sections are (wedge) domains with corners are investigated 
mathematically, for the case in which the contact angles on the two sides of the wedge may 
differ. In such a situation the behavior can depart in significant qualitative ways from that 
for which the contact angles on the two sides are the same. Conditions are described under 
which such qualitative changes must ocqrr. Numerically computed surfaces are depicted 
to indicate the behavior. 

Introduction and Formulation· 

In an earlier note [1] we announced results concerning behavior of the free surface 

of a liquid partly filling a wedge container in the absence of gravity, when the contact 

angles on the two sides of the wedge are allowed to have different (constant) values. The 

mathematical results are presented in detail in [2]: Here we summarize the main findings 

and by means of numerically computed examples illustrate the physical behavior, which 

can differ markedly from that for the single-angle case. 

We consider a cylindrical capillary tube in the absence of gravity with section D, closed 

at one end and partly filled with fluid forming a free surface S. We suppose the boundary 

E of D to be piecewise smooth and to have ~n isolated corner P of opening 2a, 0 < 2a < 1r, 

forming a local "wedge domain" at P, see Fig. 1. We seek conditions under which, for 

prescribed constant (contact) angles/land 12 in the interval [0,1r], there will exist anS 

that can be (locally) represented by a function z = u(x,y) over some neighborhood D* of 
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of Energy Research, ·U. S. Department of Energy, under Contract Number DE-AC03-76SF00098, by the 
National Aeronautics and Space Administration under Grant NAG3-1143, and by the National Science 
Foundation under Grant DMS89-02831. 
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Fig. 1. The wedge configuration 

Pin n, and which meets the walls Z1 and Z2, over adjacent segments ~1 and ~2 of &n 
that abut at P, in the angles 11 and /2· 

Specifically, we seek a solution of 

div Tu = 2H 

in some 0*, with 

and Han arbitrary prescribed constant, such that 

V · Tu = cos 11 on ~1 
v · Tu = cos12 on ~2, 

(1) 

(2) 

(3) 

v being the unit exterior normal vector to 0* [3]. Geometrically, H is the mean curvature 

of S; when H = 0, S becomes a minimal surface. In a physical situation, His determined 
J 
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by the global configuration of n and by the boundary conditions over its entire boundary. 

One sees easily that meaningful physical conditions can give rise to any desired value of 

H. It is worth noting that if 1'1 = 12 = 1 over the entire boundary, then if 1 i= 1r /2 there 

holds H i= 0; if 1 = n /2, then the global problem admits the solution u = 0 in n, which is 

unique up to an additive constant. 

It is important to observe that in the statement of the problem, Sis not assumed to 

be defined over P, and no growth conditions are imposed on u(x, y) a~ Pis approached 

from within n. 

Previous Work 

In earlier work [4, 5], we have shown that for the equal-angle case 1 1 = 12 = 1 and for 

any constant H, a. solution of (1), (2), (3) in any neighborhood of the vertex P can exist 

only if~ -a ~ 1 < ~ +a (the shaded interval in Fig. 2); if H i= 0 and if ~1 , ~2 are linear 

segments {Z1 and Z 2 are planes), then the condition is also sufficient, . while if H = 0 then 

~ - a < 1 < ~ + a suffices for existence. Again we emphasize that no growth restriction 

is required at P. Tam [6] showed that whenever a solution exists, then the surface S 

is continuous and has a continuous unit normal n up to P, see also Miersemann [7] and 

Lieberman [8] for further developments. This remarkable behavior is the underlyingreason 

that Vreeburg obtained in [9] the identical expression ~ - a ~ 1 ~ ~ + a as condition for 

existence of a surface with normal vector continuous to the vertex, without any use of the 

differential equation (1), (2), i. e., without reference as to whether or not the surface is a 

capillary surface. 

0 n/2-a n/2+a 1t 

Fig. 2. Existence and non-existence intervals. 
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Subsequently Keller, King, and Merchant [10, §2] studied again the question of a 

capillary surface u(x, y) defined in a wedge, with (possibly) differing angles 11 ,12 on the 

two sides. They assume that the sides are planes extending to infinity and that the surface 

u( x, y) extends to the entire infinite wedge with the same boundary condition; this is 

possible only in the particular case H = 0, thus limiting the physical interest of their 

discussion. Their paper has additional shortcomings, which are discussed in [2]. Iri both 

[9] and [10, §2], by unduly restricting the class of surfaces admitted into consideration, the 

authors eliminate from their studies solutions of the equation and boundary conditions that 

are mathematically (and also physically) significant. It is a curious accident that when the 

contact angles on the two wedge sides are equal, all the procedures lead to criteria that look 

formally similar. Despite the apparent similarities, the criteria do differ in an important 

way, even in that case. When .differing contact angles on the two sides are contemplated, 

the distinctions become still more marked, and a whole range of solutions appears that 

is included neither in [9] nor in [10, §2]. The criteria for existence of these solutions are 

different from the ones established in those references, and lead in particular to different 

predictions as to results of experiments. It should be of considerable interest to design 

such experiments, which could be car:ried out in a suitable microgravity environment. 

Mathematical Results 

For the equal-angle case the explicit closed-form solution of a hemisphere for the wedge 

with planar sides provides a model to indicate the qualitative behavior in general. At 1' = 
~-a, the lower hemisphere, which is vertical over the vertex, yields a solution, for which 

H > 0. At 1' = ~+a, the upper hemisphere does (H < 0). For 1' interior to the shaded 

interval in Fig. 2, a lesser portion of a sphere than a hemisphere is a solution. Outside the 

interval no solution is possible. In general, for a solution in any wedge configuration the 

unit normal is :horizontal (the surface becomes vertical over P) for the end points 1' = ~ -a 

and/'=~ +a. -· 

The results, derived in [2], that allow for differing contact angles can be described in t 

terms of Fig. 3. The shaded rectangle R in the 11-1'2 plane cuts off triangular domains 

v1 +' v1-' v2 +' v2- in the 1f X 1f square, as indicated. The rectangle is inclined at 45° to 
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Fig. 3. Existence and non-existence regions. 

the axes. In the statements of the results below, oR n oV1 + and oR n oV1 - refer to the 

interior of the specified edges of the rectangle (the corner points of R, where R intersects 

the boundary of the 1r x 1r square, require special consideration): In [2] it is shown that: 

(i) A necessary condition for existence of a solution surfaceS : u(x, y) of (1), (2), (3), 

with unit normal n continuous up to P is that ( 1'1, /'2) lie in the closed rectangle R 

indicated in Fig. 3; the boundary of R corresponds to those configurations for which 

S is vertical (n horizontal) at P. If ~1 and :E2 are linear segments (Z1 and Z2 are 

planes), then if (1'1, 1'2 ) lies interior toR, a solution will exist, for any H; if H > 0 

then a solution will exist when ( 1'1 , 1'2 ) lies on the boundary oR n oV1 +, while if H < 0 

then a solution will exist when ( 1'1, /'2) lies on the boundary oR n oV1-. 

(ii) Any solution u(x, y) corresponding to interior points of R or to oR n oV1 + or oR n 

oV1 - is continuous and admits a continuous unit normal vector up to P. For ( 1'1, /'2) 

lying in the regions V 1 + or V 1 - exterior to R, no solution is possible. 
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The above properties (i) and (ii) are straightforward generalizations of the equal-angle 

case (Fig. 2 shows the diagonal /'1 = 12 of Fig. 3). The new features that can appear when 

/1 =I= /'2 do so for values of ( /'1' /'2) in v2 + and v2-: 

(iii) For (1'1, 12) lying in the regions V2 + or V2- exterior to R, solutions of (1), (2), (3) 

may exist, but they cannot have continuous unit normal up toP. 

Examples of these last solutions for any a are provided by "moon-domain" surfaces, 

whose existence is proved in [11]. These surfaces have 11 = 0, 12 = 1r on adjacent circular 

arcs of differing radius. The existence proof in [11] can be modified without essential 

change to extend to boundary data 11 = /', /'2 = 1r- /', for any 0 ::; 1 ::; 1rj2 (Fig. 4). 

Thus one obtains a solution of the capillary problem for any value of 1; these solution 

surfaces have unit normal vectors discontinuous at P if 1 is such that (1'1 , 12 ) lies outside 

the shaded rectangle R in Fig. 3. It can be shown that if 1 > 0 then the surface is bounded 

above and below in 0; if"Y = 0 then u(x,y) ---7 -oo for any approach to the smaller circle, 

but remains bounded below on the larger one, and thus has an infinite jump discontinuity 

at P. 

p 

Fig. 4. Moon domain. 
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Thus, in a configuration with differing contact angles, solutions may appear whose 

behavior at P is very q_ifferent from that which can occur in the equal-angle case. These 

solutions could not have been obtained by the procedures used for deriving results (i) and 

(ii). 

Computed Surfaces 

We illustrate with numerical examples the behavior that can be exhibited by solu

tion surfaces with contact-angle values in V2 + or V2 ~. In these examples the numerical 

solutions of (1), (2), (3) are obtained using the adaptive-grid finite-elemE:mt software pack

age PLTMG [12]. The adaptive mesh refinement, which is based on computed H 1 error 

estimates, permits the program to be effective even for non-smooth solutions. The mesh 

refinement and built-in graphical displays allow the user to infer the presence of discon

tinuities, such as those of interest for our problem, and permit a satisfactory numerical 

approximation. to be obtained. 

We take for the first example the moon domain depicted in Fig. 4. The radii of the 

larger and smaller circles are taken to be 1.5 and 1, respectively, with the centers located 

so that 2a = 60°. The computed surface z = u(x, y) is shown in Fig. 5 for the three values 

'Y = 40°, 20°, and 10°. For 'Y = 40°, the point ('Y1, "(2) lies inside R, and for 'Y = 20° and 

10°, ( 'YI , "(2 ) lies inside V2 - . The boundary between the two domains corresponds to the 

critical value 'Y = 30°. The problem is solved numerically on the half-domain above the 

symmetry line y = 0 (Fig. 4), with the boundary condition that 8uj8v = 0 on that line. 

The solutions are normalized to have u = 0 at the x-y origin 0 (the center of the larger 

circle). In Fig. 5 the surfaces are showp. from a viewing position x = 0, y = -1, z = 1. 

The lowest point in the computed surfaces corresponds to the point at which the smaller 

circular arc in the moon-domain boundary intersects the symmetry line. The solution edge 

upward and to the left of the lowest point is the one over the symmetry line. The contour 

levels are depicted by shading, as indicated. 

The difference between the behavior of the surfaces at P is readily seen. For 'Y = 40° 

the solution appears to be smooth. In contrast, the 'Y = -,20° and 10° surfaces appear to 

have a jump discontinuity at P, substantially. larger for 10° than for 20°. These properties 
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Fig. 5. Numerically computed solutions in the moon domain for"/= 40° (upper left), 

"/ = 20° (lower left), and "/ = 10° (lower right). 
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were evidenced also by the behavior of the adaptive mesh refinement; for 1 = 40° the 

refinement was spread out over the domain, whereas for 1 = 20° and 10° the refinement, 

beyond a certain level, occurred only in successively smaller neighborhoods of P. The 

jump discontinuity for 10° is seen as being substantially larger than for 20°; according to· 

the mathematical results in [11], the discontinuity would become infinitely large as 'Y ~ 0. 

Fig. 6. Circular sector domain. 

For the second example we solve (1), (2), (3) numerically for the circular sector domain 

shown in Fig. 6. We take 2a = 150°, 12 = ~, and the contact angle on· the circular arc to 

be 1 1 , the same as that on :E1 . Reference to Fig. 3 shows that a smooth solution can exist 

if 1 1 lies in the interval 60° < 11 < 120°, but that a solution smooth up to P will not be 

possible for values outside the interval. The radius of the circular arc is taken to be 1.5. 

The solutions are normalized to have height u = 0.1 at x = -.75, y = 0, and are shown 

from a viewing point x = 1,y = O,z =·1. (The x-y origin is at P, which is the center of 

the circle.) 

Computed solution surfaces are shown in Fig. 7 for 'Yl = 70° and for 11 = 50°. The 

. surfaces are depicted in the larger boxes, and magnifications of the portions indicated 

in the smaller boxes enclosing a neighborhood of P are shown to the left. The surface 

height ranges only through the first few indicated contour intervals in these cases. For 

the 11 = 70° case, the local behavior near P is seen to be smooth in accordance with the 

mathematical results ((11, 12 ) lies inside R). In contrast, for 11 = 50° the surface can be 
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Fig. 7. Numerically computed solutions in the circular sector domain for 11 

(upper) and 11 = 50° (lower). 
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seen to have a more complicated, _non-smooth behavior at P. For this case the adaptive 

mesh refinement did not give evidence of a jump discontinuity in surface height at P, as it 

did for the moon surface example. A graphical display of the gradient vector did indicate 

a non-smooth behavior of the unit normal there, however. (At the other two corners of the 

domain, the behavior is smooth in accordance with the contact angle pairs lying inside R 

for both ')'1 = 50° and 1 1 = 70°.) 

By reflecting this example across :E2 , one obtains an approximate solution in a circular 

sector with constant contact angle 11 on the entire boundary. This provides a connection 

between an example with differing contact angles and the case of a single contact angle 

for a domain with 2a > 1r. In a forthcoming work, Lancaster and Siegel characterize the 

local qualitative behavior of solutions at such corners [13]. Other numerically computed 

examples exhibiting discontinuous behavior at re-entrant corners for a single contact angle 

can be found ih [14]. 

Concluding Remarks 

The numerical experiments have indicated examples of capillary surfaces for particular 

1'1' 1'2 pairs lying in the regions v2 + or v2-' and the non-smooth behavior exhibited by 

them at the wedge vertex. We conjecture that for any interior. wedge angle 2a in the 

range 0 < 2a < 1r considered, there exist wedge domains for which such solutions (with 

discontinuous normal) will exist for any '/'1' '/'2 pair in v2 + or v2-. 
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