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ABSTRACI' 

A continuous-thermodynamics framework is presented for phase
equilibrium calculations for solutions of polydisperse polymers using a lattice
fluid model. A two-step process is designed to form a real solution containing 
a solvent and a polydisperse polymer solute at fixed temperature and pressure. 
In the first step, close-packed pure components are mixed to form a close
packed polymer solution. In the second step, the close-packed mixture, con
sidered tO be a pseudo-pure substance, is mixed with holes to form a real poly
mer solution whose volume depends on temperature and pressure. The 
simplified Freed model developed previously is adopted for both steps. Besides 
pure-component parameters; the theory uses a binary size parameter cr and a 
binary energy parameter £ 12; these binary pru;ameters may be temperature
dependent The functional approach is adopted to derive expressions for chemi
cal potentials, spinodals and critical points. Computation procedures are esta
blished for cloud-point-curve, shadow-curve, spinodal and critical-point calcula
tions for polymer solutions using either a standard distribution or an arbitrary 
distribution for the polymer molar masses or chain lengths. Calculations are 
shown for the effect of polydispersity on upper-critical-solution temperature 
(UCST), lower-critical-solution temperature (LCST) and hour-glass-shaped 
phase bChavior for the system acetone-polydisperse polystyrene. 



- 2-

INTRODUCTION 

Synthetic polymers are almost always polydisperse. They consist of a large number of 
similar chemical species but with different molar masses or chain lengths. An apparent binary 
solution containing a solvent and a polydisperse polymer is, in fact, a multicomponent system 
with very many components. Some properties of polymer solutions are not sensitive to the 
polydispersity of polymers; while vapor-liquid equilibria are nearly independent of polydisper
sity whenever all chain lengths are large (Krigbaum and Geymer, 1959; Wang et al, 1993), 
liquid-liquid equilibria are seriously influenced by polymer chain lengths. Not only do critiCal 
coordinates vary appreciably, but also the cloud-point curve does not coincide with the coexis
tance plot for conjugate phases. The latter plot is often called the shadow curve. To character
ize a polymer solution with a polydisperse solute, it is necessary to separate the shadow curve 
from the cloud-point curve. 

In many cases, polymer solutions exhibit not only an upper-critical-solution temperature 
I 

(UCST), but also, at higher temperature, a lower-critical-solution temperature (LCST) and, at 
different pressures, an hour-glass-shaped phase diagram. It is generally recognized that high
temperature LCSTs and hour-glass-shaped coexistence curves originate from the free-volume 
effect, which causes demixing at higher temperatures where the solulibity of the polymer is 
diminished in an expanded solvent (Patterson, 1969). 

Although a variety of theories based . on an equation of state have been used for describ
ing the phase behavior of polymer solutions at higher temperatures and pressures (Flory et al, 
1964; Flory, 1965, 1970; Patterson and Delmas, 1970; Sanchez and Lacombe, 1976, 1978; 
Kleintjens and Koningsveld, 1980; Kleintjens, 1989; Donohue and Prausnitz, 1978), the litera
ture . is sparse in extensions of theories to solutions with a polydisperse polymer solute. 
Recently, we described a lattice-fluid model (Hu et al, 1991, 1993) based on Freed's theory, 

. which can be used to describe UCST, LCST, miscibility-loop, and hour-glass-shaped phase 
diagrams for polymer solutions, as well as the molar-mass dependence and the pressure depen
dence of coexistence curves. In this worlc, we extend this model to solutions with a 
polydisperse polymer solute. 

In the development of the frameworlc, we use the functional approach pioneered by 
Kehlen, Ratzsch and Bergmann (1987), Beerbaum et al (1987), Cotterman and Prausnitz 
(1985), Willman and Teja (1986), and Kang, Lee and Sandler (1989). The derivative method 
developed previously (Ying Ye and Hu, 1989) is used for polymer solutions with any arbitrary 
distribution of polymer molar masses or chain lengths. A review of continuous thermodynam
ics and its applications was published by Cotterman and Prausnitz (1991). 

First we introduce the molecular-thermodynamic model and the corresponding equation of 
state. Then we present the thermodynamic framework to obtain expressions for the Helmholtz 
and Gibbs energies of mixing, chemical potentials, spinodals and critical points. Finally we 
present some illustrative examples. 

MOLECULAR-THERMODYNAMIC MODEL 

Lattice-Fluid Model 

Similar to our previous worlc for a polymer solution with a monodisperse polymer (Hu et 
al 1991, 1993), we use a two-step process to form a polymer solution containing solvent and 
polydisperse polymer at a fixed temperature and pressure. In the first step, we form a close-

t,;l 



- 3 -

packed mixture from the close-packed pure components. In the second step, we introduce 
holes, as indicated below: 

N
0 

"solvent" + N 8 W(l)dl "polymer/", I= 0- oo 

close-packed pure components 
tea) 

close-packed polymer solution 

N11 "hole" -!
(b) 

polymer solution, V, T, P 

In the first step (a), we mix No molecules of solvent with N1 W(I)dl molecules of polymer 
species characterized by I where I may vary continuously from zero to infinity. Here N8 stands 
for the total number of polymer molecules; W(/) is the distribution function for the 
polydisperse polymer species; I is the distribution variable such as relative molar mass M or 
chain length r. In the second step (b), the close-packed polymer solution, considered to be a 

. pseudo-pure fluid "u ", is mixed with N11 holes to form a real polymer solution with volume V 

at temperature T and pressure P. Each molecule of solvent, polymer species I occupies r0 and 
r(l) sites, .while each hole occupies one site (r11 =1). ., 

. -~~~ 
To make the model flexible, r0 and r(I) are treated as effective chain lengths dependent 

on concentration by ·~r 

r0 = r~ (1 + c,<%»8~ 

r(l) = r 0(1) (1 - c,<l»~ 

i 
.;.: (1) 

'(2) 

where r0° and r0(1) are numbers of sites occupied by a solvent molecule and a molecule of 
polymer species I in the pure state, respectively. Volume fractions <%»~and <%»~refer to the',sol
vent and total polymer; they are defined by 

<%»~ = N1 [r0(I)W(l)dl IN, 

where N,, the total number of sites occupied by all molecules, is given by 

N, = N0 r 0° + N8 Jr0(J)W(l)dl 
0 

Substitution of eqs.(l) and (2) into eq.(5) yields 

N, = N0 r0 + N8 Jr(I)W(I)dl 
0 

(3) 

(4) 

(5) 

(6) 

Eq.(6) says that the total number of sites occupied by all molecules remains unchanged during 
mixing. In eqs.(l) and (2) c, is a binary size parameter. 

. 
4. 
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Helmholtz Energy of Mixing 

The total Helmholtz energy of mixing -1....:.:A contains two tenns, one contributed by the 
first, and the other by the second step: 

(7) 

where subscripts a and b stand for the first and the second steps. 

The close-packing contribution of the first step is expressed using the simplified Freed 
model on a cubic lattice developed previously (Hu et al, 1991): 

l1....:.:Aa <l> - <l> W (!) - · 
· N,kT = r: ln<l>o +I ~(!) ln[<l>8 W(I)]dl + <1>0 ! <l»8 W(I)ga(l)dl (8) 

where 

1.2 1 1 2 "t.a(/) "t.a (/) 3 2 
ga(I) = g-<-;;- r(l)) + 2"t.a(l) + -;:-<~>.r + r(I) {1--<l>.r)- 21.074ta(l)<l>1 (1--<l>8 ) • (9) 

Parameter ea(/) can be molar-mass (or chain-length) dependent. Effective volume fractions <1>0 

and <I>.r refer to the solvent and to the total polymer, respectively. They are defined by 

From eqs(l) and (2), we have 

<1>8 =N .. [r(/)W(I)d/IN, 

<1>0 = <~>2 (1 + c,<I>:» 

<1>8 = <l>~ (1 - c,<l>~ 

If "t.a is independent of molar mass (or chain length), 

"t.a(/) = "t.a = EafkT = (£00 +£u-2£08 )/kT 

(10) 

(11) 

(12) 

(13) 

(14) 

where £00 , e.u are (positive) energy parameters for pure solvent and pure polymer, respectively, 
while £08 is a binary interaction energy parameter. These parameters may be temperature
dependent 

The contribution of the second step can also be expressed by the simplified Freed model 
for a pseudo binary of the pseudo-pure substance "u" and holes. 

(15) 

(16) 

where N1 is the total number of sites occupied by molecules and holes, 

N1 =N, +N11 (17) 

Here q,,. and q,,. are volume fractions of holes and pseudo substance, respectively. They are 
defined by 

(18) 

The chain length of the pseudo substance r,. can be estimated by the following mixing rule, 

\,; . 
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r,.-1 =~oro-!+ ~~Jr-1(/)W(I)d/ = ~~(ro~-l + ~~0J[r0(I)r1 W(I)dl 
0 0 

Because r(I) is much larger than r0 , eq.(19) can be simplified to 

r,.-1 =~oro-!= ~~(ro~-1 

Parameter ~b is estimated by the mixing rule 

~b = eblkT 

= (~}Eoo + 2~o~zEo.r + ~ie.r.r)(~} + 2~0 ~8 l; + ~~'JikT 

(19) 

(20) 

(21) 

where l; is a binary parameter close to unity. Calculated results are not sensitive to l; provided 
that it lies within a fairly broad specified range. 

Eqs.(15) and (16) are rearranged to the following form: 

where 

0 1 2( -1 -1)2/9 a 10 = . r4 -r,. , 0 0 
a20 = -a1o 

a o _ -ao -ao 
31 - 11 21 

(22) 

(23) 

All a,.,. other than those listed above are zero. Coefficients in eq.(23) can be further simplified 
by setting af1 = 3 and aft = -3 with all others equal to zero. This means using the Flory-· 
Huggin theory for the second step. 

In summary, this model uses pure-component size parameters r0 , r(I), pure-componenc 
energy parameters £00 , E.r.r, and binary size parameter c, binary energy parameter £08 , and an' 
additional binary parameter ;. 

Equation of State 

We first define reduced temperature t, reduced pressure P and reduced desity p: 

t = kTieb = lftb 

P =PIP• =Pv*leb 

p = v• IV = N, v • IV 

(24) 

(25) 

(26) 

where v· is the volume of one site and v• is the hard:core volume of all molecules. Because 
the close-packed first step makes no contribution to volume-dependent properties, only eb , an 
energy parameter in the second step, appears in eqs(24) and (25). Combining with eq.(18), we 
have 

(27) 

The reduced Helmholtz energy of mixing Mb for the second step, and the reduced Gibbs 
energy of mixing AG for the second step, are defined by 

(28) 

Substitution of eqs.(24) and (26) into eq.(22) yields 
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Using eq.(27) and r 11 =1, eq.(29) becomes 

~Ab = ~ln(1-p) + _!_Inp + LD!f-p"'-1 
N,.kT p r., ,. 11 

The reduced Helmholtz energy of mixing for the second step can then be expressed as 

.Mb = t f (1-p) In(l-p) + _!_~np + LD!T""p"'-1} 
P r., ,. 11 

We notice that Mb is volume-dependent but .M .. is not 

From thermodynamics, 

We then have the equation of state, 

i' = t f-InC1-p)- C1-1/r.,)p + LD.!t-p"' J 
Ill II 

FRAMEWORK FOR USING CONTINUOUS THERMODYNAMICS 

Helmholtz and Gibbs Energies of Mixing 

(29) 

(30) 

(31) 

(32) 

(33) 

We now make a further rearrangement for ~...aA. For converting effective volume frac
tions <l>0 and <l>.s into normal volume fractions <l>~ and <l>8°, we substitute eqs.(l2) and (13) into 
eq.(8) of the first step. We obtain 

~...aA.. <l>2 0 -f <l>~W (I) 0 <l>2 lh 
N kT = - 0 ln<l>o + 0 ln[<l>8 W (l)]dl + - 0 ln(l+c,.cl>8 1 

,. ro o r (I) ro 

. (34) 

where 

(35) 

For the second step, if we take the simplified eq.(20) for r.,, the equation of state 
[eq.(33)] and the Helmholtz energy of mixing [eq.(30)] are then independent of the distribution 
of polymer species. 

Therefore, the . total Helmholtz energy of mixing can be expressed in a form that is the 
same as that for the close-packed first step, i.e., eq.(34). 

~ . A <l>o - <l>oW(I) -
~ = ~lncl>g + J s 0 ln[cl>s0W(l)]d/ + <l>~J cl>8°W(I)g • (l)d/ (36) 
N,.kT r0 o r (I) o 

where 
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(37) 

For the Gibbs function of mixing, 

t::.mizG t::.mizA t::.pV !::.,;,.A _ -:..1 _1 --=--+ =--+pT p 
N,kT N,kT N,kT N,kT 

(38) 

The contribution of the close-packed lattice to the pressure is zero. Both t::....izA and !::.mG are 
functionals. 

Chemical Potentials 

For the discrete solvent component o , the chemical potential can be derived by 

UJ.o;4)1kT = o(t::.mizAikT) I CJN0 

= lncl>2 + 4>~(1-r0°1r,.') + 70°(4>~?£ J g• (I)W(I)dl- (1-cl>,!'> J g•'(I)W(I)dl ] (39) 
0 0 

where g.'(/) = [og. (I) I ocl>s~T.V. 

For continuous components, the chemical potential of solute I is defined as: 

J.L(/) = oA I o[N,cl>sW(I)Ir(I)] (40) 

where the denominator is physically comparable with aNi in the discrete approach. But now it? 
is a variation of a functional. In the theory of functionals, for an integral '¥ = J f (N1 )dl, the ,. 
derivative of'¥ with respect to the functional N1 is defined by ·' 

a'¥ ofCN1) 
-= (41) 

An expression for the chemical potential of a continuous component I can then be derived by 

[JJ.(/}-Jl• (/)]lkT = o(t::.mAikT) I o[N,cl>,!>w (I)Ir 0(/)] 

= ln[cl>,!W (/)] + 1 - r0(I)Ir0° + r0(1)4>~(1-r0°1r,.~lr0° + (1--4>~r0(I)g • (I) 

-r0(1)4>s0(l-cl>s')[! g • (I~W(I-+w+- (1-cl>s') I g • '(I~W(I-+w~ 

where r,.0 is the number-average chain length. 

Spinodal Criterion and Critical-Point Criterion 

(42) 

We need the reduced Gibbs energy of mixing per site, G. = !::.,.,uG 1 N,kT . We rearrange 
eq.(38): 

- !::.mG <l>~ o .-f cl>~W(I) o o-f o •• · 
Gv = N kT = - 0 lncl>0 + 0 ln[cl>s W(l)]dl + 4>0 <l>s W(I)g (/)dl 

, ro o r (/) o 
(43) 

where 

(44) 

G. is also a functional. For deriving the spinodal criterion and the critical-point criterion, we 
need expressions for o2G. and o3G •. Kehlen, Ratzsch, Bergmann (1987) and Beerbaum et a1 
(1987) suggested 
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(45) 

The relation between the two dependent variations M>~ and o[<l>:W(I)] in eq.(45) is determined 
by using the Lagrange method of undetermined multipliers. Finally, o"-Gv 1 (M>~l can be 
obtained. 

For the spinodal criterion, we obtain: 

o2Gv 1 1 0 (<g··r>-4>~<g··'r>f _ 2 <g"r>-4>~<g""'r> 
F.= =--+--+<!> -------

sp (0<1>0\2 r o<l>o r o<l>o s r o r o 
ol o o w s , w w 

- <l>~(<g"" 2r>-2<l>~<g"" g••'r>+(<l>~i<g•• 12r>)- 2<l>8°(<g •• '>-4>~<g••">l2) = 0 (46) 

where r~ is the weight-average chain length. 

<g ••I g •• 'm g •• '"' r> = Ig ••I (l)g •• •m (l)g •• ""(l)r(l)W(l)dl (47) 

Here, g ··'(I) = rag·· (l)Ja<l>~r, , g •• "(I) = [~g •• (I)Ja(<l>~~'2jr,. Notice that g •• '(I) and g •• "(I) 

are different from g • '(!) in eqs(39) and (42) for chemical potentials. The subscript of the latter 
derivative is T,V, while that of the former is T ,P. For obtaining partial derivatives g •• '(!) and 
g •• "(!), we need partial derivative (ap 1 a<l>~r,. For details see Appendix. 

Similar expression can be obtained for the critical-point criterion 

o3Gv 
Fer= ()cf)0\3 = 0 

( oJ 

PHASE-EQUILmRIUM CALCULATIONS 

When two liquid phases a and f3 are at equilibrium, 

Jl (a)- Jl@) 
0 - 0 

We define 

So = f g" (l)W(l)dl- (1--<l>~ f g•'(l)W(l)dl 
0 0 

and 

CJ0 = ln{l--<1>~ + <l>~(l-r0°1r,.~ + r0°(<l>~2S0 
Substitution into eqs.(39) and (42) yields 

{J..t.., -J,J.:)I kT = cr o 

[j.J.(l)-J,J.• (l)]lkT = ln[<l>~W (/)] .+ l - r 0(l)lr0° + (l--<l>~r0(l)g • (I) 

- r0(l)<l>~S0 + r 0(l)(cr0 -ln<l>~lr0° . 

Eqs.(49) and (50) become 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 
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= r 0(I){[(1--4>
1
!)g • (I)-(r0<)-1In(1--4>~s0So ]<a> - [(1--4>s')g • (I)-(r0!)-lln(l--4>~:so ]$>) . (56) 

where K (I) is the partition coefficient for polymer species I. We also define 

1C = f K (I) w<a>(I )d/ (57) 
0 

Substituting K(I) = c;t>:<P>w@>(I)Ic;t>_!>(a>w<a>(I) into eq.(57) and accounting for the nonnalization 

constraint J W (I )di = 1 , we have 
0 

1(c;l> O(a) /c;l> 0@) - 1 
$ s -

We then define two objective functions Fo and Fs. 

F = 1 - cr<a>/cr$> = 0 
0 0 0 

F8 = 1 - l(c;l>_!>{a>/c;t>~> = 0 

By solving eqs.(61) and (62), we can obtain the cloud-point curve and the shadow curve. 

(58) 

(59) 

(60) 

If we want spinodals and critical points, we solve eq.(46) F• = 0 and eq.(48) Fer= 0. 

Computation programs have been established for systems having a standard distribution 
for I and for systems having an arbitrary distribution for I. In the latter case, the derivative 
method developed previously (Ying, Ye and Hu, 1989) is used. 

Calculations for the system acetone-polydisperse polystyrene provide an example. Binary 
parameters cr ,£01 and ~ as well as corresponding pure-component parameters are taken from 
our previous work (Hu et al, 1993): 

r0° = 4.7340, r(I) = M(/)/0.0165435 
£00 /k = 167.626 + 15619.98/T , £81 /k = 263.279 

Cr = 4.94309- 4078.12/T + 1166686/T2
- 111546900'T3 

£08 /k = 206.124 + 7826.574/T - 1844821T2 + 56521010/T3 

~ = 1.04489 

where T and elk are in kelvins. These parameters, obtained from data for the same system with 
monodisperse polystyrene, can accurately simulate the experimental liquid/monodisperse-liquid 
equilibria including UCST, LCST and hour-glass phase diagrams covering a temperature range 
260-460K and a pressure range 0 to 10 MPa. 

Figures 1, 2 and 3 show the dependence of spinodals on the polydispersity expressed by 
Mw I M,. at different pressures. Calculation results show that the shape and location of spinodal 
curves are dependent on polydispersity. When Mw is kept constant, the location of the spinodal 
curve is virtually independent of polydispersity. Figures 4,5 and 6 show the dependence of 
cloud-point curves and shadow curves on the polydispersity at different pres~res. Generally, 
the lower the pressure, the closer the UCST is to the LCST. On the other hand, the greater the 
polydispersity, the wider the coexistence curve. 

CONCLUSION 

It has been known for about 25 years that the free-volume effect plays an important role 
in phase equilibria of polymer solutions and polymer blends. Even at moderate temperatures 

. the free-volume effect cannot be neglected. LCST and hour-glass-shaped phase diagrams can 
only be reasonably interpreted by thennal volume expansion, which causes a decrease in the 
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solubility of the polymer in the solvent. The effect of volume expansion depends on the pres
sure and on the molar mass of the polymer. Generally, the higher the molar mass of the poly
mer, the higher the UCST and the lower the LCST and correspondingly, the narrower the inter
mediate soluble region. On the other hand, increasing the pressure increases the region of 
mutual solubility. 

Introducing both the volume effect and polydispersity very much complicates the theoreti
cal framework. However, the functional method described here offers a procedure for generat
ing cloud-point and shadow curves. That procedure may be particularly useful for determining 
characteristic binary parameters from experimental cloud-point and shadow-cwve data. It may 
also be useful for predicting the effect of the molar-mass distribution on a polymer-solvent 
phase diagram as required for process design. 
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List of Symbols t{ 

A Helmholtz energy 

a...,. coefficient in expression for .1-...aA 

Cr binary size parameter 

F criterion for stability 

G Gibbs energy 

g Aory parameter 

I distribution variable 

K partition coefficient 

k Boltzmann constant 

M molar mass 

N number of molecules or number of sites 

Nr total number of sites, holes not accountd 

N, total number of sites including holes 

(~~~~:s~ 
~:', -~;~~'; 
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p pressure 

r chain length 

T temperature 

v volume 
• volume of one site v 

w distribution function 

Greek 

~ compressibility 

e binary energy parameter or interaction energy 

ell volume fraction not accounting for holes 

cj> volume fraction accounting for holes 

A. defined by eq.(A2) 

x: defined by eq.(57) 

'P defined by eq.(A6) 

p density 

a reduced solvent chemical potential 

Jl chemical potential 

l; additional binary parameter 

subscripts 

a first step 

b second step 

cr critical point 

h hole 

n number average 

0 solvent 

s total polymer 

sp spinodal 

u pseudo-pure fluid 

v per site 

w weight average 

superscripts 

0 pure component, second step 

a, ~ liquid phase 

reduced function 
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" 

first-order derivative with respect to cl>, 

second-order derivative with respect to cl> .. 

Appendix : Derivation of ( ~ )r .P 
aci>.r 

We first take the derivative of P in eq.(33) with respect to cl>~ at Constant temperature and 
pressure. 

where 

(A2) 

On the other hand, because P = Pv • leb = Pv • t lkT from eq.(25), that derivative can be obtained 
directly. 

aft --(-)p =-PT'J... 
aci>~ .. 

Combine eqs. (Al) and (A2), we have 

(~)T.P = fp2~p·"' 
Ocl>.r 

where 

~· = ~ (~)T 
= (pf[-1- -1+-1 + LDz(m-1)a,?,.rpm-1]}-1 

1-j) ra m ,. 

'V= ~- :I:Lfn(m-1)a,?,.r+1pm-l'J...+ (m-1)(~~ )t-pm-1] 
~ mn 8 

Figure Captions 

Figure 1. Dependence of spinodals on the polydispersity of the polymer 
polystyrene systems, P = 2MPa, M,. = 20.4kg/mol. 

Figure 2. Dependence of spinodals on the polydispersity of the polymer 
polystyrene systems, P = 5MPa, M,. = 20.4kg/mol. 

Figure 3. Dependence of spinodals on the polydispersity of the polymer 
polystyrene systems, P = lOMPa, M, = 20.4kg/mol. 

for 

for 

for 

;• ... ,,;: _, 
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acetone-

acetone-

acetone-

Figure 4. Dependence of cloud-point curves and shadow curves on the polydispersity of the 
polymer for acetone-polystyrene systems, P = 2MPa, Mw = 20.4kg/mol. 

. 
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Figure 5. Dependence of cloud-point curves and shadow curves on the polydispersity of the 
polymer for acetone-polystyrene systems, P = 5MPa, M.., == 20.4kg/mol. 

Figure 6. Dependence of cloud-point curves and shadow curves on the polydispersity of the 
polymer for acetone-polystyrene systems, P = lO.MPa, M.., == 20.4kg/mol. 

'· 
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