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ABSTRACT 

Generalized associ at ion models for fluids require a large number of 

adjustable parameters (equilibrium constants) unless some effort is made to 

interrelate the different association constants. An association model has been 

developed by considering the probabi 1 i ty of consecutive association reactions 

and the effect of that probabi 1 i ty on the entropy of as soc iat ion. The 

relationship between the equilibrium constants of these reactions has been 

expressed by a function related to the Poisson distribution. When combined 

with an equation of state, the model accurately represents the properties of 

hydrogen fluoride and its mixtures with halogenated hydrocarbons. The Poisson

distribution model is compared with the ·classical continuous linear 

association model. While the Poisson-distribution model is superior for 

molecules that preferentially form associates of moderate size, the continuous 

linear model is more appropriate for molecules that can form polymers with a 

high degree of polymerization. 

INTRODUCTION 

Association models are frequently used in conjunction with equations of 

state or activity-coefficient expressions to reproduce the properties of 

strongly nonideal mixtures; Among the numerous associ at ion models proposed in 
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the literature, the monomer - dimer model is most popular for carboxylic acids 

and the continuous linear model is often used for hydrogen-bonding fluids such 

as alcohols, amines or phenols. These models represent the appropriate balance 

between physical reality and computational simplicity. Recently, Lencka and 

Anderko ( 1993) proposed a simple accurate model for hydrogen fluoride. This 

model agrees with simulation data for the multimers of HF and predicts the 

preferential formation of multimers of intermediate size while allowing for 

the formation of any multimers. 

In this study, we formulate an alternate association model by deriving 

the relationship between the equilibrium constants of consecutive. association 

reactions on the basis of probabilistic considerations. Subsequently, the 

model is applied to pure HF and to mixtures containing HF and refrigerants. 

Finally, it is compared with other association models to determine relative 

advantages and disadvantages. 

ASSOCIATION MODEL 

We focus on the relationship between the equilibrium constants of 
.;... 

consecutive association reactions: 

A + A =·A 
j 1 j + 1 

j = 1,2, ... 00 (1) 

The equilibrium constants of reactions· (1) depend, in general, on j and can be 

expressed as 

K = f(j) K 
j,j+1 

(2) 

where f(j) is a distribution function that depends on the nature of the 

associating compound. Since all values of the .function f(j) are multiplied by 

a common factor (i.e., K), it is convenient to normalize f(j) so that f(l)=l. 

In that event, K is the dimerization constant (i.e., K =K). If this 
1,2 

distribution function is known, the ratio of the total number of moles of all 

species in an associated system (n ) to the number of moles that would. exist 
T 

iri the absence of association (n ) can be evaluated in the form (Anderko, 
0 

1991): 

X 
B 

k 

(13) 

where (ch) stands for chemical, x is the analytical (apparent) mole fraction, 
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and indices A and B denote the associating component and the k-th 
k 

nonassociating component, respectively. F denotes an algebraic function that 

depends on the functional. form of f(j) (eq. 2). 

important quantity that enters the equation of state 

PV 
n RT 

0 
= 2 = 2 < Ph 1 · + n /n - 1 

T 0 

The ratio n /n 
T 0 

is an 

(4) 

where p is the total pressure and v is the total volume; 2(ph) is equivalent 

to an equation of state for nonreacting monomeric species and can be expressed 

by a simple {e.g., cubic) equation of state. Here, (ph) stands for physical. 

To postulate a probabilistic expression for f(j) for pure fluids, let us 

imagine a central molecule surrounded by n molecules. We assume that the 

probabi 1 i ty that another molecule wi 11 join the central one and form an 

associate is p. Further, we assume that this probability is the same for all 

molecules surrounding the central molecule and the probability of the central 

molecule being joined by the k-th molecule is independent of the probability 

of the central molecule being joined by the 1-th molecule (k, 1 = 1, ... , n). 

Therefore, IT(j), the probability that j molecules will join the central 

molecule, is given by the binomial distribution: 

IT(j) = ( ~ ) pj (1 - p)n-j (5) 

This is a two-parameter (n and p) distribution. Neither n nor p are known a 

priori. Therefore, it is necessary to simplify the distribution. 

We assume that n is large and finite. Also, the quantity p is 

necessarily between zero and unity. Thus, the conditions that are necessary to 

apply the Poisson distribution are satisfied and eq. (5) can be simplified to 

{np) J 
IT{j) = -- e-np = 

j! 
-- e 

"I J. 

-K 

where the product (np) is denoted by K. 

{6) 

For the elementary association reaction (1), the entropy change has a 

component that results from the probability that j molecules form an aggregate 

with the central molecule: 

~s = ~s<t> + RlnP{j) 
j,j+l = 

Kj 

( t) [ -K ] ~s + Rln --.-
1 

e 
J. 

= (7) 

( t) 
where ~s is the component of the association entropy that is not related to 
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the size of the multimer and llst=lls<tl+Rln(e-K). Therefore, the Gibbs energy 

change for reaction (1) is: 

llg = llh - Tlls 
j,j+l j,j+l j,j+l 

= t t 
llh - Ills - RTln 

Kj 

[-.,] 
J. 

= 

= Agt - RTln 

Kj 

[-.,] 
J. 

(8) 

The consecutive association constant K then becomes 
j,j+l 

Agt . Kj 

KJ,J+l = exp [ -· RT ] [ -., ] (9) 
J. 

For normalization, it is convenient to introduce the dimerization constant 

K =K. 
1,2 

ll t 

K1 , 2 = K = exp [ - R~ ] K 

The distribution function defined by eq. (2) becomes then: 

j-1 
K 

f(j) = 
j! 

(10) 

(11) 

Eq. (11) is similar, although not identical, to the equation proposed by 

Lencka and Anderko (1993) for HF on the basis of simulation data: 

Kj-1 

f(j) = -
(j-1)! 

RESULTS 

(12) 

For the phy-sical contribution to the compressibility factor z<phl (eq. 

4), the Peng-Robinson (1976) equation of state has been adopted because of its 

popularity in practical calculations: 

RT [v(v+b) + b(v-b)] 
a(T) v 

(13) 

The ratio n /n is calculated from the f(j) distribution function 
T 0 

according to a procedure described by Anderko ( 1991). Thus, the complete 

equation of state is defined by eq. (4) and characterized by four parameters: 
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a(T), b, K, and K(T). 

The parameters of the equation of state have been determined for pure HF 

by fitting the equation to PVT data in the one- and two-phase regions as well 

as vapor-pressure data. The algorithm has been described in detail by l:.encka 

and Anderko (1993) and will not be repeated here. 

For the distribution function (11), the parameter K has been found to be 

6.0. The distribution function f(j) (eq. 11) with K=6.0 is plotted in Fig. 1 · 

for the initial 20 multimers and compared with the. distribution function 

prop9sed earlier by Lencka and Anderko (1993). Although both distribution 

functions are qualitatively s.imilar, the probabilistic distribution (eq. 11) 

shows a less pronounced maximum. 

To simplify the numerical calculations, an analytic function was found to 
1 (ch) • 

reproduce the 2 . values that were obta1ned from the proposed distribution 

function: 

F(q) = z<ch> 
pure 

= 

8 
k 

1 + L akq 
k=l (14) 

Parameters a (i = 1, ... ,8) are listed in Table 1. Figure 2 shows function 
i 

F(q), which is equal to the chemical contribution to the compressibi 1 ity 

factor of a pure fluid. For comparison, Fig. 2 also shows the function F(q) 

obtained by l:.encka and Anderko (1993). 

The temperature dependence of the dimerization constant K is given by: 

ll 0 - g -llh0 + !leo T !leo 
1 lnK = 

p 0 (lls0 !leo - !leo lnT )· + 
p 

lnT. ( 15} R T - + R - -R-R T p p 0 

The standard Gibbs energy of dimerization llg0 (eq. 

quantity llgt (eqs. 8 - 10) by llg0 = llgt -RTlnK. · For HF, 
0 0 . 

273. 15 K, llh =-35. 938 kJ/mol, lls =-136. 51 J/molK, and 

. the z<ph) contribution, eq. (13) has been used with 

3 -1 
b/(cm mol ) = 9.88 

15) is 1 related to the 

when T is chosen to be 
0 

llc'0 =58. 44 J/molK. For 
p 

(16) 

a/(bar cm6 mol-2
) = 106 [0.5530 + 0.2133 exp (-0.7003 {T/100- 4.02)

2
)]. (17) 

Equation (4), c~upled with eq. (11), accurately reproduces the properties of 

pure HF as i 11 ustrated in Fig. 3 .which·. compares calculated and experimental 

gas-phase compressibility factors. Fig. 4 shows the two-phase vapor + liquid 

region for pure HF. 
' The equation of state has been applied to mixtures using the classical 
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quadratic mixing rules for the z'Ph> contribution: 

(X) (X) 

a = [ [ X X (a a ) 112(1 - e ) 
i j i j ij 

1=1 j =1 

(18) 

(X) 

b = [ X b 
i . i 

(19) 

1 =1 

where e is the only required binary parameter. Vapor-liquid equilibria have 
lj 

been calculated for three binary systems related to the separation of 

refrigerants. Binary parameters are 1 isted in Table 2 and the quality of 

reproducing the VLE data is illustrated in Figs. 5 and 6. As shown in Figs. 5 

and 6, the equation of state outlined here,.coupled withEq. (11), accurately 

represents vapor-liquid and vapor-liquid-liquid equilibria in binary systems 

containing HF. 

COMPARISON WITH THE CONTINUOUS LINEAR MODEL 

The properties of associating fluids such as aliphatic alcohols, 

phenols or amines can be represented using the classical continuous linear 

model. Therefore, it is instructi:ve to examine the differences between the 

continuous model and that based on the Poisson distribution. 

Unlike the Poisson model, the continuous linear association model assumes 

that the probability of reaction (1) is independent of j. Subsequently, all 

the consecutive association constants K (eq. 2) are equal to each other. 
j,j+l 

For association reactions where j is not limited and may be very large (i.e., 

polymerization), the continuous 1 inear model is physically more appropriate. 

Therefore, we expect that the continuous model provides a good approximation 

for fluids that form primarily linear associated structures. 

The model based on the Poisson distribution is more appropriate when j is 

1 imi ted. This is usually the case when ring structures predominate iri the 

system. Hydrogen fluoride is an example of a compound for which the Poisson 

model leads to satisfactory results whereas the linear model does not. A model 

based on the binomial. distribution is particularly useful for ion solvation 

where the maximum number of solvating. molecules is small (typically 6 for 

monovalent and 12 for bivalent. ions), as shown by Schonert ( 1990). 

sigure 7 presents a quantitative comparison of the two models. ln this 

figure, the consecutive association constants K are shown for HF and two 
j,j+l 

hydroxyl derivatives, which can be represented by the continuous linear model. 

Similar values of K are ,observed for small values of j (j = 1, 2) which 
j,j+l 

correspond to dimerization and trimerization. However, significant deviations 
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appear for higher j's. The association constants for the continuous linear 

model remain constant for all values of j ranging from one to infinity. Since 

the Poisson model favons the formation of associates of moderate size (such as 

pentamers, hexamers or heptamers), the Poisson K constants show a .maximum 
j,j+l 

at j = 5 and 6. For these values of j, the Poisson associatio.n constants are 

much higher than those for the continuous model. However, for the Poisson 

model, the K constants drop rapidly and become insignificant at higher 
j,j+l 

values of j (j ?; 10 - 12) because continuous polymerization is essentially 

prohibited by the Poisson model. 

Figure 8 illustrates how the differences between the two association 

models manifest themselves in the chemical contribution to the compressibility 

factor (z(chl). Since infinite polymerization is allowed by the continuous 
(ch) 

model, z tends to zero for very large values of the dimerization constant 

K. On the other hand, the z(chl term calculated from the Poisson distribution 

reaches a nearly constant value for high K constants because the Poisson 

distribution predicts formation of multimers of moderate size. 

CONCLUSIONS 

The Poisson distribution function (eq. 11) provides an appropriate basis 

for interrelating the equilibrium constants of consecutive association 

reactions when multimers of small or moderate size are preferentially formed. 

When combined. with an equation of state, the Poisson distribution function 

·makes it possible to represent accurately the properties of both pure hydrogen 

fluoride and its mixtures with nonassociating components. Vapor-liquid and 

vapor-:-liquid-liquid equilibria can be represented using only one binary 

physical parameter. While the Poisson model gives accurate results for 

hydrogen fluoride, it is not appropriate for fluids that form multimers of 

unlimited size. For those fluids, the classical linear continuous association 

model provides a better representation. 
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Table 1. Parameters for eq. (13). 

·, 

a 7.4406 a -52.8696 
1 5 

a 4.0483 a 19.3785 
2 6 

a -12.9523 a 0.4612 
3 7 

a 105.2042 a 0. 10653 
4 8 

Table 2. Binary parameters a used for mixture calculations and 
12 

deviations between experimental and calculated total pressures. 

Mixture 

HF - CHF Cl 
2 

· HF - CF CCI 
3 3 

HF - HCl 

* oP = 1~0 E I 
points 

* Ref. a oP, Percent 
12 

. Wilson et al.. (1989) - 0.01 1.1 

Knapp et al. . ( 1991) - 0.02 1.9 

Gillespie et al. (1985) 0.05 2.8 

Pexp)/Pexp I, where N is the number of experimental 
1 1 
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FIGURE CAPTIONS 

Figure 1. Distribution functions f(j) obtained from the Poisson distribution 

(eq. 11, solid circles) and proposed ·by l:..encka and Anderko (1993) 

on the basis of simulation data (eq. 12, hollow circles)·. 

Figure 2. The function F(q) = z<ch> (eq. 13) derived from the Poisson 
pure 

distribution (solid line) and that obtained by l:..encka and Anderko 

(1993) on the basis of simulation data (dotted line). 

Figure 3. Gas-phase compressibility factors of pure hydrogen fluoride at 

273. 15 K (lower curve), 299. 15 K (middle curve) and 311. 15 K (upper 

curve). Experimental data: • - Long et al. (1943); + - Jarry and 

Davis (1953); • - Fredenhagen (1934) and o - Strohmeier and 

Briegleb (1953). The lines show results obtained from the equation 

of state proposed in this work. 

Figure 4. Vapor-liquid coexistence curve of pure HF calculated from the EOS 

(lines) and measured by Franck and Spalthoff (1957, circles). 

Figure 5. Vapor-liquid equilibria in the system HF- CHF Cl at 258.15 K. Solid 
2 

lines show results obtained from the equation of state proposed in 

this work by fitting one binary parameter e 
12 

Figure 6. Vapor-liquid-liquid equilibria in the system HF - CF CCl at 383.15 
3 3 

K. Solid lines show results obtained from the equation of state by 

fitting one binary parameter e . 
12 

Figure 7. Consecutive association constants K (eq. 2) for hydrogen 
j,j+l 

fluoride (•), ethanol (o), and phenol (o) at 300 K and 400 K. The 

constants for ethanol and phenol are fr~m Anderko (1990). 

Figure 8. Comparison of the function z<ch>(RTK/v) based on the Poisson 
pure 

distribution (solid line) with that obtained from the conti.nuous 

linear association model (dashed line). 

10 



16 0 

0 0 

12 

f(j) 0 ••o 
• • 8 

• 
•4 0 ... 

0 • • o. 
0 

0 

0 2 4 6 8 10 12 14 16 18 20 
• 
J 

11 



0.8 

Q) 
. '-

::J 
_c. 0.6 
.r:. 
0 -N 

II 
. ....-.. 
~0.4 
LL 

0.2 

. . . . 
·• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . 

................. 

0.0 ............... ~~~-..............~~~~~~ 
1 o-4 1. o-3 1 o-2 1 o-1 10° 1 o 1 1 02 1 03 1 04 

q = RTK/v 

12 

... 



N 

1.0 

' 0.8 

0.6 

0.4 

0.2 

0. 0 ~__.... _ ____,__._.L.-. _ __,._ _ _._____. 

' 0.00 0.03. 0.06 0.09 0.12 0.15 0.18 
d I mol dm-3 

13 



450 

400 

I-

350 

300 

0.0 0.2 0.4 0.6 0.8 1.0 ' 

z 

14 



. .• 

3 

0 .____---'-...___;.,___,__ __ ...~--. _ ___._ __ ___. 
0.0 0.2 0.4 0.6 0.8 1.0 

15 



20 

15 

0.. 10 

0 ~--~~--~----~--~----~ 
0.0 0.2 0.4 0.6 0.8 1.0 

16 



. ~ •• 
• • 1.2 

T = 300 K 

• 
K 0.8 • 

• 
• 

i~~~~~~~~~!;~~~~~~~ 
0. 0 &.......L.....L-.1'--1--'---L-1.... .......... ~.___._~ ............. ~ .... 

0 2 4 6 8 1 0 12 14 16 18 20 . 
J 

0.06 ••• 
• • T = 400 K 

. K 0.04 • • 
• 

0.02 .DDDDDDDDDDDDDOOD 

000000000~000000000 

• • • 
6 8 1 0 12 14 16 18 20 

17 • 
J r-:·r 7 . '1 • 

~· 



0 

0.8 

(]) 
'-
::J 
c. --5 0.6 -N 

II 
.-..... e-
LL 0.4 

0.2 

' ' ' ' ' ' ' \ 
\ 
\· 
\ 

\ 
\ 
\ 
\ 
I 
I 
I 
I 
I 
I 
\ 
\ 
I 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

. \ 
\ 
\ 
\ 
\ 

' \ 
\ 
\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

' ', 
' 

o.o~~~~~~~~~~~~~~ 

1 o-4 1 o-3 1 o-2 1 o-1 1 0° 1 o 1 1 02 .1 03 1 04 · 

~ q = RTK/v 

18 



.... 

LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
TECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 


