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We explore an algorithm for construction of symplectic maps to describe non-

linear particle motion in circular accelerators. We emphasize maps for motion 

over one or a few full turns, which may provide an economical way of studying 

long-term stability in large machines such as the Superconducting Super Collider 

(SSC). The map is defined implicitly by a mixed-variable generating function, rep-

resented as a Fourier series in betatron angle variables, with coefficients given as 

B-spline functions of action variables and the total energy. Despite the implicit 

definition, iteration of the map proves to be a fast process. The method is illus-

trated with a realistic model of the SSC. We report extensive tests of accuracy and 

iteration time in various regions of phase space, and demonstrate results by using 

single-turn maps to follow trajectories symplectically for 107 turns on a worksta

tion computer. The same method may be used to construct the Poincare map of 

Hamiltonian systems in other fields of physics. 
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1. Introduction 

For analysis of multidimensional Hamiltonian systems, especially for examining 

stability of orbits, it is useful to study the Poincare return map (1,2]. In the case of 

an autonomous system with d degrees offreedom, consider motion on the (2d- 1 )

dimensional energy sudace. Let Z 0 be a point on a periodic orbit"{ of period T, and 

E a surface of dimension 2d- 2 cutting through the orbit transversely at z0 • Any 

orbit beginning in a sufficiently small neighborhood U of z0 in E returns to E after 

a time t('Y) close to T. The time-evolution map restricted to U is the Poincare 

return map, and E is called a Poincare section. The choice of the surface E is 

largely optional; it is often defined by fixing the value of one appropriate angular 

coordinate, modulo 21r. Like the full evolution map in the 2d-dimensional phase 

space, the return map is symplectic, which is to say that its Jacobian is a symplectic 

matrix. This implies that the map preserves volume, and in addition that all other 

members of the hierarchy of Poincare integral invariants are preserved. In most 

circumstances, the return map contains in principle all that one needs to know 

about stability of orbits near 'Y· Thus the return map simplifies the problem by 

allowing us to work in a space of reduced dimension. 

For a non-autonomous system, described by a Hamiltonian with periodic time 

dependence, we think of an extended phase space of dimension 2d + 1, in which 

the time is a coordinate along with position x and momentum p. We define the 

Poincare section as the set of all points with t = t(o) (mod T), where T is the 

period of the Hamiltonian. The Poincare map, now defined on the full section, is 

the time evolution of (x, p) over a time T, and as such is obviously symplectic. 

The Poincare map in the non-autonomous case arises naturally in accelerator 

theory, and has long been used (under another name, full-turn transfer matrix) 
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to discuss linear aspects of the motion. Under appropriate conditions (valid for 

large machines), the accelerator Hamiltonian (3,5,6] may be defined in terms of a 

closed reference orbit, with a coordinates representing arc-length along this orbit, 

coordinates x1 and x2 representing transverse displacements with respect to the 

reference orbit, and a time-of-flight coordinate r = t- t0 , where t(s) is the time 

at which a particle arrives at location s and t 0 ( s) is the corresponding time for a 

particle following the reference orbit. The corresponding canonical momenta are 

Pl, p2, and Pr = -6 = -(E- Eo)/ Eo, the relative deviation of the particle's total 

energy E from a nominal value Eo, the latter being the unique energy of a particle 

moving on the reference orbit (4]. The p; are related to the slopes dx;f ds; for 

the exact definition see (5] and (6]. In this Hamiltonian description, we of course 

neglect dissipative effects, which are primarily due to synchrotron radiation and 

are very small in proton accelerators. The time-like azimuthal coordinate s is the 

independent variable in Hamilton's equations. Since the reference orbit is a closed 

curve, the magnetic fields that determine the Hamiltonian are periodic in s, with 

period equal to the circumference C of the reference orbit. Thus we have a non

autonomous system in three degrees of freedom, with the Hamiltonian depending 

periodically on the independent variable s (sometimes called a system in "3 1/2 

degrees of freedom"). The Poincare section in this problem has the appealing 

feature of corresponding to a fixed spatial location in the machine; it consists of all 

points in the extended phase space with s = s(o) (mod C). The return map gives 

the evolution of z = (XI,Pl,X2,P2,T,6) over one turn, and is called the full-turn 

map. We shall also be interested inn-turn maps with n a small integer. 

In practice, the best developed way to compute full-turn evolution is track

ing (7,8,9,10], in which the equations of motion are integrated in small steps of s 
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through the lattice of magnets, using a numerical algorithm that guarantees the 

symplectic condition, a symplectic integrator [11]. Tracking is expensive in com

puter time, especially in large machines where there may be thousands of supercon

ducting magnets that produce (often inadvertently) nonlinear forces. Some small 

machines also are expensive to simulate, owing to relatively complicated magnetic 

fields and failure of small-angle approximations. Since we wish to study the fates 

of many different orbits for different initial conditions, it would be desirable to 

summarize the full-turn map in a single formula, rather than defining the map as 

the result of tracking. If one evaluation of the formula could be done in much less 

time than it would take to track a particle for one turn, we could save a great deal 

of computer time in studying long-term stability of orbits. This possible advantage 

has to be weighed against the cost of constructing the map. 

There is evidence from tracking that the full-turn map is usually a relatively 

simple and smooth function of appropriate phase space coordinates. This can be 

true even if the accelerator ring is very large, and in fact is more the case in the 

sse, which is conservatively designed to be fairly linear, than in small but highly 

nonlinear rings typical of advanced synchrotron light sources. Thus, the prob

lem of representing the map should not be formidable. In our view, it should be 

approached in the spirit of modern numerical analysis, relying on theory and expe

rience in approximation and interpolation. On the other hand, much of the work to 

date on maps for accelerators has relied on a simple Taylor expansion [12,13,15,16). 

A truncated Taylor expansion has two serious shortcomings: (a) it cannot satisfy 

the symplectic condition exactly, and (b) it is not suitable for global representa

tion of an arbitrary smooth function, being useful only for analytic functions with 

singularities not too close to the region of interest [17). Although point (a) has 
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received the most comment [14,15,16), we think that (b) is also noteworthy. There 

exist various convenient means to approximate functions of a much wider class; 

these deserve to be investigated. 

The Taylor series may be viewed as an extrapolation, using properties of the 

function at a single point. Better results can be expected from a representation 

using properties of the function at many points. This representation can either 

interpolate values of the function (perhaps values of derivatives as well), or else 

approximate many values without strict interpolation, say in a least squares sense 

[18]. For instance, interpolation by spline functions is a robust and well-studied 

technique, backed up by precise convergence theorems [19,20,21,18]. A cubic spline 

approximation of a function with a continuous second derivative converges uni

formly (with useful estimates on the rate of convergence) as the maximum dis

tance between interpolation points goes to zero. The first two derivatives of the 

spline converge uniformly to the derivatives of the function. Since analyticity is 

not required, a spline representation is possible under conditions such that the 

Taylor expansion would diverge. Another possibility is to use approximation by 

polynomials, either interpolating or non-interpolating. Again, there are conver

gence theorems that avoid analyticity, requiring at most a little smoothness. An 

example of a non-interpolating approximation is the truncated Fourier series, an 

expansion in orthogonal trigonometric polynomials that gives approximation in a 

least-squares sense over an interval [18]. In the following, we propose a combination 

of truncated Fourier series in angle variables and spline interpolation, the latter 

for the action and 6 dependence of the Fourier coefficients. 

In this paper our aim is to find an approximation to the map satisfying three 

criteria: (a) it should represent the full-turn evolution of the assumed Hamiltonian 
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to high accuracy; (b) it should satisfy the symplectic condition exactly; and (c) it 

should be possible to iterate the map quickly, with reasonable computer storage 

requirements. 

Criterion (a) is problematical, since there is no clear notion of how much ac-

curacy is sufficient, and the issue is clouded by the fact that the Hamiltonian itself 

is not known precisely, especially in machines with superconducting magnets that 

have substantial unpredictable fields due to variations in conductor placement. 

Nevertheless, we think that the map for a particular Hamiltonian should agree 

well enough with accurate tracking of that Hamiltonian to give the same reso-

nances and invariant surfaces down to some fine scale. Future work should try to 

determine the necessary scale for agreement. We are not ready to take the view 

that a discrepancy comparable in magnitude to the uncertainty in the Hamiltonian 

is acceptable, since the discrepancy could be an artifact of the map construction 
\ 

technique, and might not have the physical character of a change in the map due 

to a change in field strength. 

Criterion (b) is straightforward. In practice, "exactly symplectic" means "sym-

plectic to computer precision," and the latter can be given various precise meanings. 

(For now, we shall not consider recent proposals to eliminate round-off error by 

working in integer arithmetic on a finite lattice; see [22] and [23].) Symplecticity in 

this sense is achieved at a certain cost. In certain applications, it may be sufficient 

to meet the symplectic condition less exactly: for instance, when only a few thou-

sand iterates of the map are needed. The construction of approximate invariants 

along the lines of [24] is one such application. Approximately symplectic maps 

amenable to fast evaluation, in explicit rather than implicit form, are easily ob

tained in a simpler version of our treatment [25]. In applications where one wishes 
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to study long-term stability of single orbits, say for the 107 turns or so required 

for injection in the sse, it seems important to maintain the symplectic condition 

as well as possible. It is well known that nonsymplectic integration algorithms or 

maps lead to spurious long-term behavior, for instance an eventual smearing of 

what first appeared to be an invariant curve [26]. 

There are two ways to enforce the symplectic condition. The first method, 

which we adopt, is to construct a mixed-variable generating function (also called 

a generator) that defines implicitly the canonical transformation corresponding 

to full-turn evolution. It is necessary to solve a nonlinear equation to find the 

explicit evolution, but that is quickly accomplished by Newton's method since 

there is a good guess for the answer in the form of an approximate explicit map. 

The situation is similar for implicit integrators (predictor-corrector methods) for 

ordinary differential equations, in which certain good stability properties of implicit 

methods are obtained at the modest additional cost of dealing with a nonlinear 

equation. Although the result is not an explicit formula for the map, the practical 

effect is the same as if it were, since the Newton iteration is a sufficiently fast 

process. 

The second method is to write the map as a composition of many simple maps, 

each being obviously symplectic and in explicit form. This is exactly what is done 

in computing full-turn evolution by an explicit symplectic integrator, with the 

number of composed simple maps being very large in that case. Irwin [27] has 

put forth a different and interesting idea in this vein, in which the map is again 

written as a composition of simple symplectic maps (kicks and rotations, in the 

language of accelerator physics), but the simple maps are fewer in number and do 

not correspond to small time steps as they do in symplectic integrators. Rather, 
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they somehow represent lumped effects of many .time steps. We make further 

comments on this approach in Sec. 6. 

Our method begins with a given map, 

z';, To(z; n) (1.1) 

Here z is the initial 6-dimensional point in phase space, and z' its image under the 

n-turn evolution. The map T0 , called the source map, need not be represented by a 

closed formula; it is merely some available algorithm giving the n-turn evolution, 

and can be defined as the result of applying a symplectic tracking code. In any 

case, T0 is assumed to represent the motion of interest with adequate accuracy. 

Our goal is to find a generating function that defines a map in close agreement 

with T0 • If T0 is not exactly symplectic, we of course cannot achieve arbitrarily 

close agreement. 

For convenience and economy in the calculations reported, we have taken the 

source map to be a 12th-order Taylor series that gives an accurate (but not exactly 

symplectic) representation of a realistic model of the SSe [13). This map was 

derived from a tracking code [8) by the method of automatic differentiation [12]. 

Our construction "symplectifies" this map. In general it would be preferable to 

define T0 by a symplectic tracking code, so as to exclude nonsymplectic effects 

throughout. We anticipate such a course in future work. Fig. 1 shows a parameter 

1J measuring violation of the symplectic condition for the source map, plotted as a 

function of transverse displacements x1,x2. The definition of 1J is 

1J = maxi(JTSJ- S);jl 
I,J 

(1.2) 

where J is the Jacobian of the tranformation and JT its transpose, and S is the 
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symplectic matrix. Notice that 1J turns up rather sharply at large displacements, 

and in fact reaches unacceptable levels in the domain of interest [15). Since Tay

lor series maps of order much beyond the 12th are too expensive to construct 

and iterate, we see a clear need to supplant the Taylor method [13). Faced with 

nonsymplectic behavior of Taylor series, some authors have attempted to suppress 

the most egregious effects by simple expedients; for instance, the "dynamic rescal

ing" of Ref. [15), and a procedure of expanding the exponential of a Lie generator 

to an order much higher than that of the generator itself [16). 

Since the generating function can be obtained from any tracking code, without 

any internal modification of that code, our method is quite general and can take 

advantage of earlier extensive work in which codes for particular accelerators have 

been developed. It can work with codes that do not invoke the global Hamiltonian 

for the accelerator as described above. As has been emphasized by one of the 

authors [10), the global Hamiltonian is an approximation that is conventional but 

not suitable for modeling all accelerators. It fails particularly for small rings with 

magnetic fields that are not so sharply localized as those in large proton rings. 

In Sec. 2, we define notation and set the stage for constructing the generating 

function; the Appendix supplements Sec. 2. In Sec. 3, we show how to construct 

the generating function, including details of numerical methods. The scheme of 

Sees. 2 and 3 applies in any dimension, and in principle could be applied to find 

the Poincare map of any problem in Hamiltonian mechanics. A treatment of the 

third degree of freedom especially efficient for the accelerator problem is described 

in Sec. 4. In Sec. 5, we report numerical results in two and three degrees of freedom 

for the SSe. In Sec. 6, we give conclusions, discuss the outlook for further work, 

and give a brief survey of related work. 
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2. Generating Function of a Poincare Map 

in Action-Angle Coordinates 

In this and the following section, we show how to construct the generator of 

a map that approximates the source map. The method is described for a general 

map in d degrees of freedom (on a 2d-dimensional Poincare section). In the accel

erator problem, the method will usually be applied with d = 2, for the two degrees 

of freedom of motion transverse to the reference orbit (betatron oscillations). Al

though the third degree of freedom associated with energy variations (synchrotron 

oscillations) could be included in the same way, it is usually more efficient to treat 

it by a method specially adapted to the accelerator problem, as explained in Sec. 4. 

We begin with the given n-turn source map To as notated in Eq. (1.1). Hence

forth, we suppress the index n, which does not affect the map construction tech

nique. As was mentioned above, T0 is preferably defined as the result of applying 

a symplectic tracking code. We assume that z = 0 is a fixed point of the map, 

To(O) = 0. (In general a tracking code will have a fixed point close to the origin, 

which can be moved to the origin by a canonical translation of coordinates.) The 

accelerator is designed so that the fixed point is linearly stable. Orbits beginning 

near the fixed point correspond to small deviations from a desired "ideal orbit." 

Before going on to construct the generating function, we shall sometimes elect 

(or be required) to make a preliminary canonical transformation, 

Z = A(z) , (2.1) 

and thereby obtain a map Ton the new variables Z = (X (I), p{l), · · ·, X(d), p(dl). 
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T is called the preconditioned source map, and has the form 

T=AoT0 oA-1 
. (2.2) 

The preconditioning transform A is chosen so that the origin Z = 0 is again a 

fixed point ofT, and so that T satisfies a technical condition C that arises when we 

determine Fourier coefficients of the generator. To describe the condition, let us 

make a further canonical transformation to action-angle variables (more properly 

called canonical polar coordinates, since this action is not invariant as in classical 

action-angle theory). The action J(i) and angle CI>(i) are defined by 

x(il = (u<il)l/2 cos <I>(i), p(i) = -(2/(i))I/2 sin Cl>(i), i=l,2,···,d. (2.3) 

Henceforth, we include the change to polar coordinates as part of A. We seek to 

approximate Ton a product of annuli in the (X(i),p(i)) planes, namely on a set 

U E S defined by actions in intervals bounded away from zero: 

u = { 1,~ I 0 < I£il < J(i) <Iii)' CI>(i) E [0,211"], i = 1,··· ,d }. (2.4) 

The required condition Cis that the image of U under T lie within a similar (bigger) 

product of annuli, again bounded away from zero. In many cases, the source map 

T0 will satisfy condition C without preconditioning, if the set U is appropriately 

restricted. 

In Figs. 2 and 3, we show numerical results indicating that this condition is 

met for the preconditioned map used in our later calculations. Figs. 4 and 5 show 

results for another map (not encountered in the present study) that does not satisfy 

condition C. Note that this bad behavior occurred in a region where one action 
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was much larger than the other. The image of U is not bounded away fr~m the the fact that the given functions are ex~ressed as functions of I and ~' while the 

origin, and that creates an awkward situation for our method, which depends on solution is to be expressed as a function of I and ~'. Since the givens R, e are 

the use of polar coordinates. Appropriate preconditioning can sometimes remove vectors and the unknown G a scalar, there is redundant information; we shall not 

this behavior. be required to use all components of the given vectors. 

Our algorithm will produce an approximation Ta toT over the domain U. We By the definition of the angle variable, G must be periodic in ~' with period 

expect, and find in practice, that orbits of Ta beginning on some subset Uo C U 21r. It therefore makes sense to represent Gas a Fourier series in that variable: 

stay within U0 over many iterations. Typically, U0 is a product of annuli somewhat 

smaller than those defining U; thus, the approximation is useful for long-term 

evolution of orbits beginning on U0 • 

We define a special notation for the map in polar coordinates. If the map T 

takes (1, ~) to (I',~') then 

I' = I+ R(I, ~) , ~' = ~ + e(I, ~) . (2.5) 

Here bold-faced letters represent d-dimensional vectors. Since time evolution is 

a canonical transformation, there is a canonical generating function that defines 

implicitly the same map. We choose the generating function F to be a function of 

I and ~', and write F(I, ~') = I· ~' + G(I, ~'), where the first term induces the 

identity transformation. The map is defined by the equations 

I'= I+ G+·(l, ~') , ~ = ~' + G1(I, ~') , (2.6) 

where subscripts indicate partial derivatives (28]. 

Comparing (2.5) and (2.6), we see that 

G+·(l, ~') = R(I, ~) , G1(1, ~') = -e(I, ~) . (2.7) 

Our task is to integrate these differential equations to determine G, accounting for 
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G(I,~') = LYm(I)eim·+' (2.8) 
m 

The Fourier expansion facilitates solution of the differential equations. 

3. Method of Constructing the Generating Function 

3.1 COMPUTING 9m (1), m # 0, FOR FIXED I 

Referring to Eqs. (2. 7) and (2.8), we compute 9m (I) for m # 0 at fixed I. 

This is given by 

2.-

9m (I)= ! . J d~' Ra (1, ~) e-im·+' 
(27r) zma ' 

0 

(3.1) 

where the only constraint on the choice of a is that rna # 0. Since we know the 

above integrand as a function of ~ and not ~', we change to ~ as the integration 

variable: 

2.-

9m (I)= ! . Jd~Ra (1,~) e-im·+e-im·S(I,+)det(l + e+ (1, ~)). (3.2) 
(27r) zma 

0 

We assume, and verify in applications, that det (1 + e+ (I,~)) # 0, so that the 

transformation is one-to-one. 
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Since the source map gives us the value of R (I,_~) and e (I, ~) at any desired 

points, we can turn these integrals into discrete summations, and evaluate the 

source map on a uniform mesh in ~ to find the coefficients (m '/= 0): 

9m (I) = . ~ J L Ra (I, ~j) e-im·•Je-im·S(I,+J) det (1 +e. (I, ~j)) . 
'ma p p j 

(3.3) 

Here, ~~>}a)= 27rja/la, and the summation covers the points ia E {0, ... , la- 1}. 

Note that in Eq. (3.3), we have applied the rule that is usually used in com

puting a discrete Fourier transformation. While this discretization is justifiable (it 

is trapezoid rule integration), the reasoning is not identical to the reasoning be-

hind the discrete Fourier transformation, because there is dependence on m that 

is outside of the factor e-im·+. 

In choosing the number of mesh points, we typically take la to be approxi-

mately four times the largest value of lmal, which is about twice what the analog 

of the Nyquist criterion for this problem would require. 

Since the source map typically returns~' values on [0, 21r], simply taking e = 

~' - ~ will result in a discontinuity when ~' crosses a boundary of the interval 

[0, 27r]. Thus the map creation routine is arranged to add or subtract 27r from e, 

such that there is never a jump of more than 1r, say, from one adjacent ~ mesh 

point to the next. Then ~' does not change abruptly as _a function of ~, and is 

suitable for Fourier analysis. 
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3.1.1 Computing e. 

The derivative e. at the mesh points may be expressed directly in terms of 

e evaluated at mesh points. Suppose that a: function f ( ~) is given exactly as 

f(~) = Lfmeim·+, 
m (3.4) 

maE {-Ma, ... ,Ma}, 2Ma + 1 = la. 

A little computation then yields 

8J I 1 Ja-1 ( -1)ka-ia 

8~I>(a) + =2 L f(~j')sin(7r(ka-ia)/Ja)' 
k Ja=O 

(3.5) 

ia#ka 

wherej' = (k1, ... ,ka-bia,ka+b···)· 

3.2 ACTION INTERPOLATION 

The action dependence of the coefficients is assumed to be of the form 

9m (I)= ~9m,j II ntl (I(a))' 
J a 

(3.6) 

where { BJa)} ;:
1 

are sets of linearly independent basis functions. We have cho

sen to use B-splines in all dimensions, but any linearly independent set of basis 

functions will be the same in formal aspects. 

We compute 9m (I) using Eq. (3.3) for every action point in the set 

I= {I I J(a) E Sa}, where Sa = { Ika)} ::
1

. Computing 9m,j then only involves 

inverting the matrices A~'j) = BJa) (1ia)), which are small matrices. 
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3.2.1 B-splines 

The reason for choosing B-splines is that they have "restricted support" [19]. 

In other words, they are nonzero only over a small subset of our entire domain. 

In a sum over basis functions at a single point, only a few terms are nonzero. 

For example, for quadratic B-splines in one dimension, only three basis functions 

are nonzero at any given point. This greatly speeds evaluation of the map. We 

evaluate the B-Splines using the recursion relation in deBoor, p. 131 [19]. 

3.3 COMPUTING go 

Form= 0, we must use information from the angular part of the map, 8 (1, «P ). 

For go, the method described in Sec. (3.1) yields: 

8go 1 
81 = - IJp Jp 4= 8 (1, «Pj) det (1 + e~ (I, «Pj)). 

J 

(3.7) 

For any sensible set of basis functions, there should be unique sets of constants 

( 
(a) (a)) h h CI , ... , Cna SUC t at 

'"'c(a) B(a) = 1 
L J ; • 

j 

(3.8) 

In other words, it should be possible to represent the constant function exactly. 

For example: for B-splines all the c; are 1; for the polynomial basis { 1, x, x 2 , ••. } , 

the coefficient of 1 would be I, the others would be zero. 

By performing the summations in {3.7), we can obtain the values of 8gof81 

. . (I) (2) (d) { at the act10n mesh pomts lk = (Ik, , Ik
2 

, ••• , Ikd ), ka E 1 ... na}. For the first 
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component, the derivative of Eq. (3.6) becomes 

(P) 
8go I _ '"' . dB;~ I IT (a) ( (a)) 

8J(P) I - ~90,J dJ(P) Bia Ika . 
k J J!~l a~p 

·~ 

(3.9) 

Because the dB;~fdJ(P) are linearly dependent (see Eq. (3.8)), and since there 

are ITa na action points for equally many basis functions, this system is overde

termined. To remedy this, in the first dimension, choose a basis function B2) for 

which c~:) f; 0, and solve for it in terms of the others: 

B(I) = _1 (1- '"'c(I) B(I)) 
I, (I) L ) ) . 

cz, ;~z, 

Then, for (3 = 1, (3.9) becomes 

where 

~ _ . _;_, (a) (a) a I dB<I> 
8J(I) I - 4= lJ dJ{l) I IT Bia (Jka ) ' 

k J p> a~I 
j,~l, •• 

j' = (II,h,. ·. ,jd), 
(I) 

C· 
]1 

/j = go,j - (l)gO,j' . 
cz, 

{3.10) 

{3.11) 

We ignore data for one value of ki, call it PI, so that we have an invertible linear 

system for /j containing (ni- 1) · n2 · · · nd equations and equally many unknowns 

(strictly speaking, the only necessity is that for each value of (k2, k3, ... , kd), there 

is exactly one value of ki that is not used. It is merely simpler to choose the same 

value for all). This system can therefore be solved uniquely. 

Since the /j have been determined, to get all the go,j, we only need to solve for 

the go,j' (i.e., the go,j for which ii =II), of which there are clearly n2 · n 3 · · · nd. 
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Writing out (3.9) for the J(P) ((3 =f 1) derivative, rearranging things, and 

substituting what we have already found, we get 

( 
w ) (1) ogo dBitJ (<>) (<>) c~, {)J(P) I - I: 'Yj dJ(P) II Bia ( Ika ) 

Ik j /IJl <>~P 
•p 

d (P) 
" • BitJ I II B(<>) (!(<>)) L..- 90,J dJ(/3) )a /.:a . 

j J(/J) c:rt{l,/3} 
j,=l, ./J 

(3.12) 

Note that from the definition, 'Yj = 0 when h = l1. The left-hand side of this is 

known from the steps above. 

To obtain the requisite number of equations of the form (3.12), we choose 

n2 · na · · · nd distinct values of the vector (k2, ka, ... , kd)· The first index k1 may 

be chosen arbitrarily (it may be different for each choice of the (k2, ka, ... , kd)). 

Now (3.12) is simply the problem we started with (see Eq. (3.9)), only reduced by 

one dimension. We recursively apply the above procedure until only one dimension 

remains. We are then left with one free constant at the end of the process; this 

can be set to zero. We have now solved for all of the 9D,j· 

3.4 MODE CUTOFF 

To reduce iteration time without sacrificing symplecticity, we can remove all 

the nonzero Fourier modes whose size relative to the largest nonzero Fourier mode 

is less than a certain number at every action point. In other words, we first find 

the value of the largest nonzero Fourier mode at each action point, 

Mk = max IYm (Ik) I , 
m~O 

(3.13) 

and then for each mode we compute the largest value over all action points of the 
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ratio of the mode to this largest value: 

fm.= max 19m (Ik) I 
k Mk . (3.14) 

Given a "mode cutoff" x, we keep all modes of index m =f 0 such that fm > X· 

The m = 0 mode is always retained. 

3.5 ITERATION OF THE MAP 

Since the map is given implicitly in terms of (I, c.t>'), it must be evaluted using 

a Newton iteration. First, an initial guess must be supplied, using an explicit map 

to get a guess for c.t>'. Then, the Newton iteration is done to get c.t>' to machine 

precision. The step going from a guess i.l>~ to an improved guess C)~+ I is 

where 

il'~+l = il'~ - (1 + Glil>' (I, c.t>~) r1 
( i.l>~ + Gx (I, c.t>~) - i.l>) , 

fPC 

[ 

oJP)fJ~~·> 
a'c 

a'c 
(}]~ 

a'c 
f)J(2)()~~2) 

.. '] 

... 

(3.15) 

(3.16) 

The Newton iteration is stopped based on the value of the Euclidian norm of 

the error i.l>~ + G1 (I, i.l>~) - i.l>. Once the error is less than a given small value, 

the iteration will stop when the error reaches zero, or fails to decrease from one 

iteration to the next. The iteration will also be stopped if too many iterations are 

required. This is considered an error condition, and is treated as such in our code. 

The explicit map to initialize the Newton iteration can be fairly crude, requiring 

negligible time to evaluate. We typically take just the first few terms in a Fourier

spline expansion (usually x = 1). 

Once c.t>' has been obtained, I' is computed directly from (2.6). 
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3.6 POTENTIAL IMPROVEMENTS 

There are areas in which continuing research would be helpful for this method. 

3.6.1 Using more of the data 

Notice that we are effectively only using one component of R or e in com

puting the generating function coefficients. We could conceivably use the other 

component(s) in doing the action interpolation for the generating function coeffi-

cients. 

We shall briefly describe how to do this in two dimensions; it should be clear 

how to do it in higher dimensions. Let us say that we have data on an n x m 

grid in ( J{l), J(2)). We will treat three cases: (1) No component of m is zero; 

(2) One component of m is zero; and (3) m = 0. For each case, we will have 

a different set of basis functions, M and N of them for the two dimensions. The 

system will be solved in a least-squares sense, and so we will require at least as 

many equations as unknowns. 

If no component of m is zero, we have equations for both components of R and 

both components of e, giving 4mn equations. In this case, we need A1 N ::; 4mn. 

If only one component of m is zero, then we have equations for both components 

of e, but for only one component of R, and thus M N ::; 3mn. For m = 0, we 

only have data for e. We must recall that the derivatives of the basis functions 

are linearly dependent, so the relationship here becomes M N - 1 ::; 2mn. 

Construction of the map would require more time, but evaluation could poten-

tially be just as fast if B-Splines were used. Because more basis functions are being 

used for a given set of data, some improvement in accuracy could be expected. Or, 

for a given accuracy, it might be feasible to construct a map with less data. 
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3.6.2 Optimal basis function choice 

It can be seen that there is a significant variation in accuracy that is obtained 

by choosing various basis functions for a given number of mesh points. 

In the case of splines, there is a significant body of literature that deals with 

"optimal" choices for data points and spline knots for a given order of splines. It 

might be useful to implement these algorithms; see [19], Chapter XIII, and [29]. 

4. Three Degrees of Freedom, 

with Localized R.F. Acceleration 

In circular accelerators, the radio frequency accelerating fields are concentrated 

in a few short cavities; often there is only one cavity. Since we ignore synchrotron 

radiation, we then deal with particles that have constant energy over most of 

a turn. We can decompose the map into parts for constant energy, and parts 

corresponding to the cavities. The former are maps in two degrees of freedom, 

depending parametrically on the energy, and can be handled by the methods of 

Sees. 2 and 3. The latter have a simple, explicit description, since to a good 

approximation only the coordinate 6 is changed when the particle passes through 

a cavity, and the amount of change depends only on T. Thus, the cavity maps are 

almost trivial, and the only significant new problem is to represent the parametric 

energy dependence of the constant-energy maps. The resulting composite map will 

usually be much more efficient for practical purposes than a map with all three 

dimensions treated in action-angle coordinates by the technique of Sees. 2 and 3. 

This advantage arises because only two dimensions of Fourier analysis are required. 
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In this section, we give details of this description for the case of one r.f. cavity 

per turn. An extension to allow several cavities is possible, but has not yet been 

implemented numerically. Now the source map To will have the form 

To= Co oMo , ( 4.1) 

where Co represents the cavity and M0 the rest of the ring. It is usually a good 

approximation to suppose that the cavity has zero length in the s-direction. To 

take account of a nonzero cavity length L, and still deal with a full-turn ring map, 

one can redefine the cavity and ring maps to be 

D-1 o Coo D-1 , Do Mo o D , (4.2) 

respectively, where D is the map for a "drift" (force-free motion) over a distance 

L/2. The new ring map starts at the center of the cavity, proceeds force-free to 

the end of the cavity, then around the ring to the beginning of the cavity, then 

force-free to the center; thus, it represents a full turn as we require, albeit with 

some interludes of fictitious motion. The new cavity map starts at the center, 

proceeds force-free backward to the beginning of the cavity, then forward through 

the full cavity, then force-free backward to the center. 

The map Mo does not change 8, but depends on 8, since particles of different 

energies feel different transverse forces, owing to differential bending of trajectories 

in fixed magnetic fields. On the other hand, M0 changes r, since particles of 

different energies have different times of flight. The map C0 depends primarily on 

T (on the time of arrival in the cavity, which is equivalent to the phase of the r.f. 

voltage), and produces primarily a change in 8. In principle, it depends weakly on 
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x, p, and 8, since these variables determine the trajectory through the cavity, and 

the field is not completely uniform. There are also changes in x, p, and T during 

transit through the cavity, but for a typically short cavity, they are extremely 

small. Ignoring all these minor effects, we can write the maps as 

M0 (x, p, r, 8) = (x, p, r, 8) + Mo(X, p, 8) , (Mo)6 = 0 . ( 4.3) 

C0 (x,p,T,8)=(x,p,T,8)+Co(T), (Co)i=O, i=J6. (4.4) 

The four-dimensional origin (x, p) = 0 is a fixed point of Mo only at 5 = 0. 

In cases of interest, there is a nearby fixed point that is a function of 5, and that 

function is easily determined by an appropriate numerical or semi-analytic method. 

Since the map construction of Sees. 2 and 3 works best when the fixed point is at 

the origin, it is useful to make a preliminary translation of the origin to the fixed 

point before attempting the construction. 

Let (x0 (8),p0 (5)) be the fixed point of M0 • The translation of origin, 

X=X-Xo(8), f>=P-Po(8), (4.5) 

is induced by the canonical generator 

F(p,x,8) = -p · x- p · Xo(8) + x · p0 (8) , (4.6) 

where x = -Fp, p = -Fx.. Since F depends on 8, the canonical transform 

necessarily entails a change in r: 

'f = r- Fs = r + p · x~(5)- (x- Xo(8)) · p~(8) (4.7) 

The variable 'f lacks the direct physical interpretation of Tj it is merely the canonical 
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conjugate of -6, and must be treated as such when discussing the generating 

function of Mo in the new coordinates. 

Let T denote the map corresponding to the aforementioned translation of 

origin, where T(x, p, r, 6) = (X:, p, f, h). We now seek the generating function 

ofT o Moo T-1, the ring map expressed in coordinates centered on the fixed point. 

As explained in Sec. 2, the construction may require or be facilitated by a pre

conditioning transformation A. Since A is canonical and also dependent on h, it 

will produce a further change in the time-like coordinate f -+ f. Including the 

change to polar coordinates in A, we have 

A(x,p,r,6) = (c),I,f,h) . (4.8) 

The total map in fully transformed coordinates is now 

T=CoM, (4.9) 

C = A o To Coo T-1 o A-1 , M =A o To Moo T- 1 o A- 1 . (4.10) 

Since M 0 is independent of r, it follows that M is also independent of f. 

We are now prepared to find the generator of M = M (~,I, 6) by the method 

of Sees. 2 and 3. The construction of Fourier coefficients of G is carried out for 

each h on a suitable mesh. Our previous interpolation technique, extended to treat 

h and I on the same footing, then produces the desired coefficients gm (I, h). Note 

that for m = 0, it is necessary to use information from the source map on all three 

momentum derivatives: og0Joh,og0Johogofoh. The 6 derivative is obtained 
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from the f component of M, 

f' = f + Ms(I,~,6) , (4.11) 

and the corresponding relation for the generator map, 

f'=f+G6(I,~',h). (4.12) 

Computing the m = 0 coefficient with respect to ~· and discretizing, we find a 

result like (3. 7), but with the opposite sign: 

ago 1 fi6 = llpJp 4=Ms(I,~j,6)det(l + e~(I,c)j,h)) 
J 

(4.13) 

Now the method of Sec. 1.3, applied in three dimensions, integrates the three 

derivatives to yield the function go (I, h). 

In comparing iteration time for the map T with that for the corresponding 

map in two dimensions, we note first that evaluation of the map C, even allowing 

for the necessity of computing AoT and its inverse, is not costly. (We assume that 

A is not very complicated, as is true for our SSC map, and probably true in any 

successful application). The main new cost is in M, for the extra time required to 

interpolate the Fourier coefficients of G in 6. Fortunately, that cost is moderate, 

as is shown by the results of Sec. 5. 

Finally, we mention an approximation that gives a further simplification in 

treating the third degree of freedom. The synchrotron oscillations, corresponding 

to motion in the ( 6, r) plane, are often not much affected by the transverse degrees 

of freedom, although they have an important affect on the latter in the long term. 
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The synchrotron motion is then well described as an autonomous oscillator; in a 

first approximation, it is harmonic and follows an ellipse in the ( h, T) plane. Thus we 

are led to a model in which h(s) is a given function that appears in the Hamiltonian 

for betatron motion, giving the Hamiltonian a new explicit s-dependence. In all 

other respects, the synchrotron motion drops out of the problem, and the time-of

flight variable T can be ignored. The corresponding map is of course symplectic, 

since it derives from an s-dependent Hamiltonian in two degrees of freedom. Some 

tracking codes use this scheme, and avoid calculation of the time of flight. Note 

that the Hamiltonian is no longer periodic in s with period C, but we still study 

the map on the sections= 0 (mod C) of extended phase space. 

In the example treated in Sec. 5, we have in fact adopted this approximation, 

since it is quite sufficient to test our method in a realistic way. The main point is to 

demonstrate that realistic variations of h can be accommodated in the interpolation 

scheme, without excessively many interpolation points. Although the change of /j 

at each turn does not have exactly the value it would have if T were computed, it 

has approximately the same magnitude and a similar physical effect. For h at the 

n-th turn, we take the model of harmonic synchrotron oscillations, 

h(nC) = C0 sin(27rllsn + 1/Jo) , (4.14) 

where lis is the synchrotron tune. For the SSe, lis= 1/400, and bo = 5 · 10-4
• 
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5. Results for Map of the SSC 

Using a 12th-order Taylor series model of the SSe (for the previously considered 

4 em dipole bore) as the source map T0 , we have run several tests of our code. This 

source map agrees with the tracking code from which it was derived to about one 

part in 106 , out to the largest amplitudes that we consider. A preconditioning 

transformation as described in the Appendix was applied. All tests were run on 

an IBM RS6000 model 320 workstation. All code was written in e and compiled 

with the IBM compiler (OS version 3.1.7). 

5.1 Two DIMENSIONS 

5.1.1 Accuracy and iteration time 

We chose two different initial conditions at which to test the code: a large 

action (3.0, 3.0) and a small one (0.1, 0.1). Our arbitrary units of action are such 

that (3.0, 3.0) corresponds to a trajectory passing through x1 R: 4mm, x2 R: 2mm, 

Pl = 0, P2 = 0, at h = 5 · 10-4 • This point is close to the short term dynamic 

aperture for two-dimensional tracking at h = 5 · 10-4 , and just below the three

dimensional dynamic aperture reported in [13]. (At amplitudes beyond the short

term dynamic aperture, orbits are lost from the machine within a few thousand 

turns.) The initial condition is a point in action space centered in the domain of 

spline interpolation. To determine the interpolation domain, we started at that 

point in action space and \) = 0 in angle space, iterated the source map for 

1000 turns, and found the action range encountered in that many turns. We then 

added 10% of the range to the upper and lower bounds of the range. Figs. 6 

and 7 show pictures of the motion at the low and high actions respectively. For 
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each dimension, the square root of the action mesh points It) were taken to lie 

on "expanded Chebyshev points," as described in deBoor [19], p. 27. The spline 

knots are chosen to be at the points 

(n) I(n) I(n) 
(n) _ I; + i+l + · · · + i+k-2 

tk+i- k- 1 (5.1) 

where k is the spline order (3 for quadratic). This choice is motivated by deBoor 

p. 219 [19]. 

The relative accuracy of the map is plotted in Fig. 8, the iteration time in 

Fig. 9. Relative accuracy is defined to be 

where 

t: = sup ~ (zo), 
zoES 

(5.2) 

1 (I I(l) 1(1) I I I(2) i2) I ) ~ (zo) = 4 - If) o + ;p> o + lq~(I)- q~~I)I + lq~(2)- <P~2)1 . (5.3) 

The variables with subscript 0 refer to the result of applying the source map, and 

the unsubscripted variables refer to the result of applying the map that we have 

constructed. The set S consists of the points 

I (n) {I(n) n (I(n) I(n)) I - 9· k - } E ka + 10 ka+I - ka n - 0. . . , n - 1 ... nn , 

~ = 0, with the mesh points It) chosen as above. 

Both relative accuracy and iteration time are plotted versus the mode cutoff 

parameter x described above. Notice that for large cutoffs, the relative accuracy of 

the map is very roughly equal to the mode cutoff. For smaller cutoffs, the accuracy 

saturates at some value. There are two different causes for this. 
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For the low action, the saturation is caused by the fact that the limiting factor 

in the accuracy is the action interpolation. For more action points, or for a higher 

order spline, that saturation accuracy improves. When the action interpolation is 

accurate enough, the accuracy is limited only by the number of the Fourier modes 

that we keep. As can be seen from the plot, it appears that the accuracy of our 

maps is limited only by the machine precision (and storage requirements). 

For the high action, the accuracy does improve for more accurate action inter

polations, but the accuracy hits a "floor" at a few times 10-8 . This floor is caused 

by the fact that at the high action, the Taylor series map becomes nonsymplectic. 

A symplectic map can only approximate a nonsymplectic map to a certain accuracy 

(this maximum relative accuracy seems to be roughly equal to the symplecticity 

violation TJ defined in Eq. (1.2)). 

Fig. 9 shows the iteration time for the map. The curves for 10 action points 

and 20 action points coincide. This is a result of using B-splines; the time to 

evaluate the B-spline series is only dependent on the order of the splines, and not 

their number. However, the storage requirements and creation time for the map 

are both quadrupled when the number of action points per dimension is doubled. 

Notice that the iteration time increases slightly as the B-spline order is in

creased, as expected. Notice also that the map at the larger action takes more 

time to evaluate than the one at the lower action. This is because the complexity 

of the map increases at a higher action, and more modes are needed to compute 

that map to the same accuracy (or at least to keep modes to the same relative 

size). Finally, notice that on a log-log scale, the iteration time-versus-mode cutoff 

lines are roughly linear. This is in keeping with the fact that the Fourier modes 

for an analytic function drop off exponentially in value with mode number. 
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5.1.2 Wider action domain and long-term iteration 

We next constructed a map over a larger region, and tried to iterate that map 

for a long time (107 turns). The action domain of the map was chosen as follows: 

For each of the action values (2.0, 2.0), (2.0, 2.5), (2.0, 3.0), (2.5, 2.0), (2.5, 3.0), 

(3.0, 2.0), (3.0, 2.5), and (3.0, 3.0), we took the angle values (27ri/10, 271"j /10), i E 

{0, ... , 9} ,j E {0, ... , 9}, and iterated each of these 800 initial conditions for 1000 

turns. We took the minimum and maximum values of J(l) and J(2) found in the 

iteration, added 10% of the range to the maximum of each, and subtracted that 

same amount from the minimum of each. This gave the domain over which we 

would make the map. We made one map for h = 0, and another for h = 5 · 10-4• 

The accuracy and iteration time plots are shown in Figs. 10 through 13. 

We then iterated these maps for 107 turns using 10-4 as the cutoff and third 

order B-splines, starting at each of the values (J{ll, J(2l) and 4> = 0, where 

J{l), J(2) E {2.0, 2.5, 3.0}. Each took about half a day, and in each case the particle 

remained inside the domain of the map. 

5.1.3 Ten-turn map 

We constructed a ten-turn map by using the tenth power of the map con

structed above as the source map T. We used a map with third-order B-splines 

and a mode cutoff of X = 10-4• The results are shown in Figs. 14 and 15. We 

found that the ten-turn map has greater complexity, with a much larger number of 

significant Fourier modes. This increases the iteration time and compromises accu

racy, with the result that the ten-turn map has little advantage over the single-turn 

map in computing long-term evolution. 
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In general, it is expected that a map for a period longer than the minimum 

period in s of the Hamiltonian will be relatively difficult to construct. (The mini

mum period for our sse model, and for most accelerators including lattice errors, 

is one full turn.) An approximation to ann-turn map for n > 1 will usually not be 

the nth power of any map. For that reason, the basic period of the problem is not 

being accounted for, and spurious resonances can arise. The situation is similar 

to the well known effect of symmetry breaking imposed on a lattice with super

periods. Resonances that cannot be excited (in lowest order) in the symmetric 

lattice can be excited when errors break the symmetry, destroying superperiods. 

It may eventually be possible to represent an n-turn map with adequate accuracy, 

but extra caution is certainly called for. 

5.2 THREE DIMENSIONS 

5.2.1 Accuracy and iteration time 

The results for accuracy and iteration time in three dimensions are similar to 

those for two dimensions. The differences are mostly accounted for by the fact 

that there are three dimensions of spline interpolation occurring, but still only a 

two-dimensional Fourier analysis. All plots were made for 10 action interpolation 

points in each dimension. The range of h was taken to be -5 · 10-4 to 5 · 10-4 . 

We used expanded Chebyshev points for the h mesh. Otherwise, everything is as 

in two dimensions. 

In the plot showing accuracy (Fig. 16), notice that the saturation values for 

the accuracy are much larger than they are for the two dimensional map. This is 

accounted for by the fact that the third dimension introduces interpolation error 

in addition to that already present in two dimensions. Note that for the error 
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calculation, there are only 3 samples per dimension per mesh point instead of 10 

as in two dimensions. 

For the iteration time (Fig. 17), notice that the dependence of iteration time 

on spline order is larger (as expected, since more spline functions are evaluated), 

and there is less difference between the low and high actions (for the same reason). 

5.2.2 Wider action domain and long-term iteration 

We treated the three-dimensional case just as we did the two-dimensional case, 

only we had some additional initial conditions for determining the map domain: 

we took three values of 8 as initial conditions: 0.0, 5 · 10-4, and -0.5 · 10-4
, and 

iterated the source map for 1000 turns at each initial condition by varying 8 as a 

function of the turn according to 8o sin(2Jrn/400 +<Po). The accuracy and iteration 

time plots are shown in Figs. 18 and 19. 

We again ran for 107 turns, for the same initial conditions as for the two

dimensional case, but with 8 = 0 initially and varying as So sin(2Jrn/400 +<Po). A 

single particle took about a day to run on our workstations, and all the iterates 

stayed within the domain of the map for the full 107 turns. 

5.2.3 Survival plots for 106 turns 

We created "survival plots" [7) for both the Taylor series and a map approx

imating that Taylor series. The plot shows the number of turns survived by a 

particle started at the given x, x' = y' = 0, xfy = v'f3x//3y· The results are shown 

in Fig. 20. The plots for the Taylor series and our map agree well as far as the 

long-term behavior is concerned. Note that to cover a sufficiently large region for 

these plots, a map with a very large number of modes and twice as many action 
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points as before in each dimension was created. The iteration time was some

what longer than before (about 20 ms per iteration), though it is still faster than 

the Taylor series (about 34 ms). At these high amplitudes, the Taylor series is 

very nonsymplectic. The large number of terms in our map may arise from this 

nonsymplectic character. 

The results we get using the Taylor series differ slightly from those published 

by Yan et al. in [7). This discrepancy can easily be explained: our treatment of 

the 8-dependence is different, and our Taylor series is in fact different from the one 

used by Y an et a/. 

6. Conclusions, Outlook, and Related Work 

We have demonstrated a numerical technique for constructing the canonical 

generator of a given source map. In an application to the SSC, we found that the 

symplectic map induced by the generator can accurately represent the source map, 

and can be computed so efficiently as to allow iteration for 107 turns in reasonable 

time on a low-cost workstation computer. In three degrees of freedom, this map 

(the one using third-order B-splines and x = 10-4 ) has an iteration speed about 

three times that of the 12-th order Taylor series from which it was constructed. 

This is gratifying, especially when we recall that the Taylor map has a significant 

failure of symplecticity in the region considered, close to the dynamic aperture. 

The symplectic condition has been met to high accuracy, the only limitation on 

symplecticity being machine precision. No difficulty was encountered in using 

Newton's method to solve the evolution equations defined by the generator. 

Our advantage in speed over tracking with a symplectic integrator is certainly 

substantial, but we are not in a position to state a figure, since we have not run an 
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SSC tracking code on the same computer. Chao et al. (13] report that the 12-th 

order Taylor map is more than a factor of ten faster than the tracking code from 

which it is derived, on a Cray system. 

We conclude that the present method is successful in creating a symplectic 

map with good accuracy and high speed of iteration, at least for an accelerator 

resembling the sse. 

The present study has been limited in some respects by the use of a Taylor series 

as the source map. For further work, the source map should be defined directly 

as the result of a symplectic tracking code. This will allow greater accuracy at 

large action amplitudes, will allow clearer study of the crucial question of map 

representation near the dynamic aperture, and will give a framework for weighing 

the cost of map construction against its benefits. 

In judging the accuracy of our map, we have compared it only to the source 

map. A more reasonable test (even after the aforementioned use of a tracking code 

as the source map) is to see how well orbits of the map follow invariant tori. It 

is generally supposed that "phase error" builds up faster than "amplitude error" . 

along a numerical trajectory; i.e., an orbit may stay close to an invariant surface 

without being at the right place on that surface. If the constructed map stayed 

as close to the surface as the underlying tracking code, we would consider it a 

success, irrespective of turn-by-turn agreement of the map with tracking. Since 

highly accurate approximations to invariant tori are available (24], this is a test 

that is both feasible and important as a way to validate the mapping technique. 

A very interesting topic for further work is the treatment of random field errors 

in machines with superconducting magnets. These errors are so important that 

one is forced to study a statistical ensemble of machines. A single set of parameters 
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for the sse as embodied in our source map is inadequate as a guide to machine 

performance, since a change in magnetic fields within the range of uncertainty could 

lead to rather different results for the dynamic aperture. The cost of studying an 

adequate ensemble has been a heavy burden in dynamic aperture studies based 

on tracking. This burden might be lightened greatly by the method of maps, 

if the statistical scatter could be introduced in the expansion coefficients defining 

the map, rather than in the field strengths defining the Hamiltonian. Making a 

set of maps by perturbing the coefficients of a single map, one could generate an 

ensemble of mapping results at much less cost than a corresponding ensemble from 

tracking. On the other hand, to establish such a method one should study at least 

the linear change of map coefficients due to a change in field multipoles (totally 

random perturbation of map coefficients might be hard to justify). This would be 

difficult to do for all of the thousands of magnets in the sse, but it should be 

possible to do it for some typical or particularly dangerous multipoles. 

There are many other issues for future work, for instance: optimization of map 

construction, perhaps along the lines of Sec. (3.6); assessment of the usefulness 

of explicit (nonsymplectic) maps in the Fourier-spline basis, which allow very fast 

iteration; study of many-turn maps; applications to other accelerators, especially 

the LHC (Large Hadron Collider); application to the construction of invariant tori 

and long-term bounds on the motion (30]. 

There is also a possible range of applications quite different from the one treated 

here, namely to symplectify integrations that do not lend themselves to explicit 

symplectic integrators. Such integrations need to be done in certain small accel

erators, due to the presence of relatively complicated fields that arise from fringe 

fields of magnets, wiggler magnets, and the like. In such a case, one could integrate 
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by an accurate but nonsymplectic method for general differential equations, then 

find a generator to summarize the result in symplectic form. 

We close with some comments on earlier and current related work. The tech

nique of nonlinear maps for accelerators has a fairly long history. Early on, Brown 

and collaborators [31] introduced maps in polynomial form to describe the leading 

nonlinear effects in single optical elements of a beam transport line, and made such 

maps a part of the widely used code TRANSPORT [32]. In later work, Dragt, Finn, 

and collaborators [33] developed a systematic way to work out coefficients of poly

nomial maps using algebraic properties of Lie operators. Their code MARYLIE 

contains a library of maps for various common accelerator elements, and allows 

analytic composition of such maps to give a map for a string of elements, accurate 

to a certain order. In fact, polynomial maps (truncated Taylor series) for a full 

turn are obtained, up to the first few orders. Although the technique becomes 

impractical at higher orders, for a time it provided the best way of constructing 

polynomial maps. 

A big advance in the derivation of Taylor series maps came with the advent 

of automatic differentiation. This technique, which has been known to numerical 

analysis for a long time [34,35,36] was first implemented in accelerator physics 

by Berz [12] under the name differential algebra. (We think it best to keep the 

original name, for com-patibility with current practice in numerical analysis [36].) 

Michelotti [37] made an alternative implementation, programming in C++ Given 

any numerical algorithm to compute a function, with the requirement that the 

function can be represented formally as a composition of power series, automatic 

differentiation determines numerical values of any number of derivatives of the 

function (at the origin of the power series), to machine precision. This method 
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avoids conventional numerical differentiation (e.g., divided differences) by keeping 

track of all relevant terms in the composed power series; thus, the full-turn map 

defined by a tracking code can be differentiated at the origin to provide the Taylor 

coefficients of the map. The SSC map used in the present work was obtained by this 

method. Although one can go to much higher order than was previously achievable, 

for the sse it is still not possible with present computers and algorithms to include 

enough terms to achieve symplecticity to machine precision in all of the relevant 

phase space. Irwin has proposed a different organization of the calculation that 

should give a more efficient generation of Taylor coefficients [38]; to date it has not 

been implemented. 

The use of a mixed-variable generating function to meet the symplectic condi

tion was first implemented for accelerator maps by Dragt and collaborators [14,40], 

and was incorporated in MARYLIE. The map was written as a polynomial in 

Cartesian coordinates, and the generating function as a Taylor series in similar 

coordinates, with coefficients determined by solving the nonlinear equations relat

ing map and generator, term-by-term. Since in general a polynomial map implies 

a non-polynomial mixed-variable generating function, i.e., a function with singu

larities, the series may have a restricted domain of convergence. The resulting 

scheme, carried to high order with the help of automatic differentiation, has been 

successful in certain accelerator problems but not in others. For instance, Yan el 

al. report good results in an application to the SSC [39]. An application to the 

Berkeley Advanced Light Source (ALS) by one of the authors did not succeed. We 

speculate that the Taylor representation of the generator failed due to singularities 

arising from the strongly nonlinear character of this machine. Our own method 

of constructing the generator in action-angle coordinates, being valid for functions 
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that are smooth but not analytic, may have a better chance of success in cases 

with strong nonlinearity. 

Irwin's approach to enforcing the symplectic condition [27], by composing sim-

pie symplectic maps, was conceived in the framework of Taylor expansions. He 

constructs the symplectic representation so that it agrees with the Taylor map 

to a certain order. Applications of the Irwin representation to accelerators with 

comparisons to the Taylor maps have been carried out by Kleiss et al. [15) and 

Forest (41). Applications to one-dimensional models have been made by Dragt et 

al. [42). In some cases, the symplectic map agrees with tracking less well than 

the underlying Taylor series. The choice of the simple maps that are composed 

in Irwin's approach is not unique. Dragt, Rangarajan, and Abell are investigating 

variations in which Irwin's rotations are replaced by drifts, or more general linear 

symplectic transformations [43). Preliminary results indicate that certain isolated 

choices of the linear transformations greatly enhance accuracy. Another avenue, 

more in the spirit of the present work, is to fit the Irwin form directly to data from 

tracking. The approximation theory of such a fit (whether it converges, how it 

converges) is an open topic of considerable interest. 

The use of a mixed-variable generating function in polar coordinates was previ-

ously considered in the framework of the Hamilton-Jacobi equation. The generator 

G is the solution of the Hamilton-Jacobi partial differential equation treated as an 

initial value problem, say with G = 0 at s = 0. Integration of the equation to 

compute G presents no difficulty in principle. (The notorious small divisors do not 

arise in this initial value problem; they occur only when one looks for invariant tori, 

corresponding to G periodic ins). Raubenheimer and Ruth (44) investigated an 

integration by superconvergent perturbation theory, while Warnock and Ruth [45) 
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solved the equation iteratively in a Fourier basis, and Warnock, Ruth, and Gabel Ia 

(46) integrated with respect to s in a Fourier basis. These methods proved to be 

less efficient than our present technique, but sufficed to show that the generating 

function of the map could be a tractable object. The present method was proposed 

in [25), and first implemented for a simpler model of the sse in (47). It still seems 

likely that a more efficient integration of the Hamilton-Jacobi equation could be 

devised and could provide the most direct route to the generator. 

In summary, it appears that the method of generating functions, when im

plemented properly, can overcome earlier difficulties of the mapping technique. 

The resulting symplectic map can be used to study the difficult problem of long-

terr!l behavior of particle orbits in large proton accelerators. There are interesting 

prospects for further development of the technique and wider applications. 

APPENDIX 

We sketch a determination of the preconditioning transformation A by pertur

bation theory on Taylor series maps, the method actually used in our calculation. 

Various other methods, not restricted to the Taylor series approach, might be used 

as well. As explained at the end of Sec. 4, we work in the five-dimensional scheme. 

The source map is given as a Taylor series in z = (xi,PI,X2,P2,8), truncated at 

the k-th order: 

To(z) = T(l)z + T<2>(z) + · · · + T(k)(z) (A.l) 

By normal-form perturbation theory [48), we perform an approximate normaliza

tion of T0 through a transformation Z = B(z): 

8 o Too B-1(Z) ~ R(I) I; = (X[ + Pl)/2 (A.2) 
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This is a transformation in the first four dimensions, depending parametrically on 8. 

It is obtained as a Taylor series, which can be represented in Dragt-Finn form [33] 

as a product of exponentiated Lie operators, acting on the identity function: 

B(z) ~ e=h=e=/2: • · · e=f>+t'(z) (A.3) 

where the polynomial fp is of the pth degree in the transverse variables ( x, p), with 

coefficients as polynomial functions of 8. Now exp(: it :) is a linear transformation 

given in explicit form; it is the translation to the four-dimensional fixed point, 

called T in Sec. 4. The second factor exp(: h :) corresponds to finding linear 

combinations of Xi, Pi, i = 1, 2, that make circles under time evolution if nonlinear 

effects are dropped. For convenience we approximate this transformation by a 

mixed variable generating function (rather than by the infinite series that defines 

the ~xponential, which would take too much time to evaluate during map iteration). 

The transformation defined by the generator is identified with A of Sec. 4. We 

make no use of the higher factors in Eq. (A.3). The Dragt-Finn factorization was 

carried to high order only to obtain (by means of an existing computer code) all 

relevant powers of 8 in the coefficients of it and h. Except for its nontrivial 8 

dependence, the preconditioning of T0 is dynamically simple, amounting only to a 

translation to the fixed point and a normalization of linear motions. 

In problems with stronger nonlinearity, it might be useful to include an addi

tional factor or two in (A.3). One should not attempt to normalize the map very 

precisely, however. We know that an exact normalization does not exist globally, 

and we also know that a rather precise approximate normalization in a restricted 

region of phase space [49] results in a complicated map with small but rapid oscil

lations. We want the preconditioning to produce roughly circular motions in the 
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(Xi, Pi) planes; to ask for precisely circular behavior is self-defeating, since the <I> 

dependence of the map would involve excessively many Fourier modes. 
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FIGURE CAPTIONS 

1) Violation of symplecticity 1/ for 12th-order Tayl~r Map of sse, PI = pz = 0, 

c =5° 10-4 • 

2) Initial conditions in a product of annuli map into a slightly larger product of 

annuli, XI dimension. Circles show bounds of annuli. 

3) Initial conditions in a product of annuli map into a slightly larger product of 

annuli, x2 dimension. Circles show bounds of annuli. 

4) A map not satisfying conditions C: points are not mapped into a product of 

annuli, XI dimension. 

5) A map not satisfying conditions C: points are not mapped into a product of 

annuli, x2 dimension. 

6) Following a particle from a single initial condition, SSC 12th-order Taylor 

Map, I= (0.1,0.1). 

7) Following a particle from a single initial condition, SSC 12th-order Taylor 

Map, I = (3.0, 3.0). 

8) Relative accuracy of generating function map, 2-D, one initial condition. 

Solid lines are I=, (0.1, 0.1 ), dashed are I= (3.0, 3.0). 
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9) Iteration time of generating function map, 2-D, one initial condition. 

10) Accuracy for 2-D map over wider action domain, c = 0. 

11) Accuracy for 2-D map over wider action domain, c = 5 ·10-4 . 

12) Iteration time for 2-D map over wider action domain, c = 0. 

13) Iteration time for 2~D map over wider action domain, c = 5 · 10-4 . 

14) Accuracy for 2-D ten-turn map. 

15) Iteration time for 2-D ten-turn map. 

16) Accuracy of 3-D map, single initial condition. 

17) Iteration time for 3-D map, single initial condition. 

18) Accuracy of 3-D map, wider action domain. 

19) Iteration time for 3-D map, wider action domain. 

20) Survival plot, circles are Taylor series, crosses are the map. 
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