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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain conect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any wananty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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ABSTRACT 

Given an arbitrary symplectic tracking code, one can construct a full-turn symplectic map 
that approximates the result of the code to high accuracy. The map is defined implicitly by 
a mixed-variable generating function. The implicit definition is no great drawback in practice, 
thanks to an efficient use of Newton's method to solve for the explicit map at each iteration. 
The generator is represented by a Fourier series in angle variables, with coefficients given as 
B-spline functions of action variables. It is constructed by using results of single-turn tracking 
from many initial conditions. The method has been applied to a realistic model of the SSC in 
three degrees of freedom. Orbits can be mapped symplectically for 107 turns on an IBM RS6000 
model 320 workstation, in a run of about one day. 

INTRODUCTION 

Long term stability of orbits in circular accelerators is usually studied by tracking codes, 
which integrate the equations of motion through the lattice by some symplectic integration 
algorithm, proceeding element-by-element. There have been various attempts to summarize the 
full-turn evolution defined by a tracking code in an analytic formula, a full-turn map. If the 
map represented the code to sufficient accuracy, and could be evaluated in substantially less 
time than the time for tracking one turn, it could be used for economical studies of long-term 
evolution. 

The method of automatic differentiation [1] allows one to differentiate the tracking algo
rithm, so as to generate a large number of Taylor coefficients of the corresponding map. The 
resulting map, given as a truncated Taylor series, cannot be exactly symplectic. In a region of 
phase space close to the dynamic aperture, the failure of symplecticity may be so large as to 
raise doubt about the usefulness of the map. This is the case for the highest order Taylor maps 
generated for the SSC (Superconducting Super Collider). 

One possibility is to symplectify the map by producing a mixed- variable generating function 
that induces an exactly symplectic map that closely approximates the underlying map. This 
can be done by using formal power developments in Cartesian coordinates to solve the nonlinear 
equations that define the generator in terms of the map. This method was proposed and carried 
out long ago [2]. Because of convergence difficulties it proved not to be very useful for some 
accelerators (for instance the Berkeley Advanced Light Source and the Tevatron), but recently 
Yan, Channell, and Syphers have reported some success with an application to the SSC [3]. 

We describe a different way to construct a symplectic full-turn map from a tracking code 
or other "99urce map". We again define the map through a mixed-variable generating function, 
but given as a function of action-angle coordinates rather than Cartesian coordinates. We 
avoid the use of Taylor series in favor of methods based on Fourier developments and spline 
interpolation. We believe that these methods are more appropriate at large amplitudes, since 
they use information on the function to be represented at many points in the region of interest. 
By contrast, the Taylor method uses information on the function and its derivatives at one 
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point far from the region of interest, and tries to extrapolate from that point. A singularity at a 
complex point can cause divergence of the Taylor expansion, but does not necessarily spoil our 
Fourier-spline representation. An added bonus of the Fourier method is that a large fraction 
of the low Fourier modes (and all sufficiently high ones) prove to be negligible, and can be 
discarded without affecting symplecticity. This aids in fast evaluation of the map. 

This paper is a brief summary of our mapping method. Details and associated references 
can be found in [4]. 

CONSTRUCTING THE MAP 

The map is defined to be a transformation from the "old" variables (I, ~) to the "new" 
variables (I',~'). The generating function in this case will be in terms of old action and new 
angle variables: 

G (I, ~') = L Um (I) eim·+'. (1) 
m 

The transformation equations are then 

I' = I + G+' (I, ~') , ~ = ~' + GI (I,~') . (2a, b) 

We start with a "source map," which gives the final variables as an explicit function of the 
initial variables: 

I' = I + R (I, ~) , ~' = ~ + 0 (I,~). (3a, b) 

This map will usually be defined as the result of tracking over one turn, but in the numerical 
work reported here it was a 12th order Taylor series map. 

The Fourier coefficients are obtained from (2a) and (3a) as 

Um (I)= ,~. /
2

• d~'G~:,. (I,~') e-im·+' 
(211") ama Jo 

= ! . /2

• d~' Ra (I,~ (I,~')) e-im·+'. 
(211") ama Jo 

(4) 

Since we do not know R as a function of ~', we perform a change of variables in the integral to 
get an integral over ~: 

The integral is then discretized to obtain 

(6) 

where JfJ is the number of ~fJ mesh points in the {3 dimension, and the summation is over integer 
vectors j such that ifJ E {0, ... , JfJ- 1}. 

The m = 0 mode must be handled differently. We instead must use 0 values. The resulting 
summation is 

uo(I) = -n 1 
J L:e(I.~J)det(l +e. (I.~J)). 

fJ {3 j 
(7) 

To increase the speed of evaluation of the map, Fourier modes that are smaller than the 
expected or desired accuracy of the map can be removed from the generating function. 
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We obtain values of Ym (I) for values on a mesh in I. We then choose a set of basis functions 
BJa) (/) to use in interpolating the coefficients such that 

Ym (I)= LYmJil BJ:) (1(a)). (8) 
j a 

The index a labels the different degrees of freedom. For the m =/; 0 modes, the interpolation 
is straightforward. For the m = 0 mode, one must be careful to consider the fact that the 
derivatives of the basis functions are linearly dependent. Details of this can be found in [4]. It 
is advantageous to choose B-splines for the basis functions. Because they have a small region 
where they are nonzero, their use greatly increases the speed of evaluation of the map. 

EVALUATING THE MAP 

The map is evaluated by performing a Newton iteration to obtain 4' and then substituting 
into (2a) to get I'. An initial guess for the Newton iteration is provided by an explicit map with 
a small number of modes retained. 

THREE DIMENSIONS 

The method can be used in any number of dimensions. In a three dimensional accelerator 
problem, however, it is not advantageous to do the third dimension in action-angle variables. 
Instead, note that most of an accelerator ring is time independent. One can construct a map for 
the time independent part that has the energy deviation as an additional parameter, which is 
treated on equal footing with the actions. The time-dependent parts (usually r.f. cavities) can 
then be treated separately as the user chooses. Time-of-flight information is obtained by taking 
a derivative of the generating function with respect to energy deviation. 

PRECONDITIONING THE SOURCE MAP 

Finally, note that since one wants to perform the action interpolation over a finite domain 
that does not include the origin in each phase space plane, the plain source map is sometimes 
not well-suited for direct application of this method. This can be overcome by performing a 
preliminary canonical transformation on the source map so as to have the new source map take 
an annulus of initial conditions into a similar (larger) annulus. This can be done easily by a 
linear transformation or a low-order Taylor series mixed-variable generating function. 

RESULTS 

As an example, we take the source map to be a 12th order Taylor series map for a realistic 
model of the sse. Results for accuracy (agreement with the source map) and iteration time 
are shown in figures 1 through 4. The "mode cutoff'' is a measure of the maximum size of the 
Fourier modes that are being removed from the generating function. The number of actions 
indicates the number of mesh points in each dimension of action interpolation. The order refers 
to the order of B-splines use,d in action interpolation. The curves have approximately slope 1 
when the error is dominated by the number of Fourier modes being thrown away. They begin 
to level off when the error is dominated by the action interpolation (low actions) or failure of 
symplecticity of the source map (high actions). 

We have constructed maps at amplitudes near the dynamic aperature, and have found that 
we can track stable trajectories for 107 terms in about a half a day in 2 dimensions and about 
a day in three dimensions. Times are on an IBM RS6000 320H workstation . 

CONCLUSIONS 

A method has been devised that will allow the construction of exactly symplectic maps. 
These maps are highly accurate and can be evaluated in a very short time, sufficient to perform 
long-term tracking in a reasonable time. 
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