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ABSTRACT 

This report details the data, assumptions and methodology for end-use forecasting of appliance 
energy use in the U.S. residential sector. Our analysis uses the modeling framework provided by 
the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was 
developed by the Electric Power Research Institute (McMenamin et al. 1992). In this modeling 
framework, appliances include essentially all residential end~ uses other than space conditioning 
end-uses. We have defmed a distinct appliance model for each end-use based on a common 
modeling framework provided in the REEPS software. This report details our development of 
the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, 
dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for 
approximately 70% of electricity consumption and 30% of natural gas consumption in the U.S. 
residential sector (EIA 1993). Appliances are thus important to those residential sector policies 
or programs aimed at improving the efficiency of electricity and natural gas consumption. 

This report is primarily methodological in nature, taking the reader through the entire process of 
developing the baseline for residential appliance end-uses. Analysis steps documented in this 
report include: gathering technology and market data for each appliance end-use and specific 
technologies within those end-uses, developing cost data for the various technologies, and 
specifying decision models (both the functional form and equation parameters) to forecast future 
purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework 
draws on the extensive technology, cost and market data assembled by LBL for the purpose of 
analyzing federal energy conservation standards. The resulting residential appliance forecasting 
model offers a flexible and accurate tool for analyzing the effect of policies at the national level. 

The proliferation of models and model parameters and the lack of detailed documentation in the 
end-use forecasting area have been sources of considerable confusion for practitioners and 
policy-makers alike. By making explicit the data and assumptions behind our analysis, we seek 
to clear up some of this confusion and move the energy efficiency debate beyond simply the 
numerical results of models. 
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1. INTRODUCTION 

This report details the data, assumptions and methodology for end-use forecasting of appliance 
energy use in the U.S. residential sector. Our analysis uses the modeling framework provided by 
the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was 
developed by the Electric Power Research Institute (McMenaminet al. 1992). In this modeling 
framework, appliances include essentially all residential end;-uses other than space conditioning 
end-uses. The space conditioning end-uses include Heating, Ventilating and Air Conditioning 
(HV AC) and are discussed in a separate report (Johnson et al. 1994). For appliances, REEPS 
allows the user to define a distinct appliance model for each end-use based on a common 
modeling framework provided in the software. Each appliance model can then be configured for 
a given end.:use with its own structure, data, and functional relationships. This report details our 
development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes 
washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for 
approximately 70% of electricity consumption and 30% of natural gas consumption in the U.S. 
residential sector (EIA 1993). Appliances are thus important to those residential sector policies 
or programs aimed at improving the efficiency of electricity and natural gas consumption. The 
baseline forecast using the REEPS model described here is presented in a separate report 
(Koomey et al. 1994a). 

Engineering-economic models such as REEPS offer a means of assessing future trends in energy 
consumption at the end-use level under differing assumptions, scenarios or policies. Such 
models attempt to characterize the long-term structure and patterns of energy consumption in 
homes and are also called end-use forecasting models because they generally include 
considerable end-use detail. They rely on data regarding the building stock, the equipment 
available for supplying energy services, and historical patterns of end-use energy consumption in 
homes. For the analysis of appliances, which is the focus of this report, engineering data on 
energy-using equipment are combined with economic parameters regarding purchase and usage 
of the equipment. At the national level, these end-use forecasting models facilitate the analysis 
of energy conservation programs and policy initiatives that are widely applicable and broad in 
their scope such as residential appliance standards (US DOE 1989, US DOE 1990, US DOE 
1993b) and national energy policy initiatives (EIA 1990). Utilities rely on end-use forecasting 
models in order to assess market trends for new technologies (McMenamin et al. 1992) and in 
the development of Demand-Side Management (DSM) programs (Hummel and McMenamin 
1992). 

The report details the supporting data, model parameters, and methodology for appliance models 
developed for use with REEPS 2.1. In Section 2 we outline the modeling framework provided 
by REEPS and the end-use structure and assumptions we adopted for this analysis. In Section 
3, we discuss the structure and methodology we have adopted for the decision models that are 
used to forecast appliance purchases. In Section 4, we define the structure, data and model 
parameters for refrigerators, freezers, and dryers. In Section 5, we define appliance models for 
the three end-uses associated with water consumption, including water heaters, dishwashers, and 
clothes washers. Section 6 details the model structure and baseline data development for the 
lighting end-use. Section 7 provides a brief outline of the cooking and miscellaneous end-uses, 
which are characterized in a reduced-form representation. In Section 8, we discuss the 
technology data for those appliance models that we have characterized with specific technology 
options, including the refrigerator, freezer, water heater, clothes washer, dishwasher, and dryer 
models. In Section 9, we describe the historical stock of appliances and our methods for 
forecasting changes to that stock in future years. In Section 10, we outline areas for future work 
in the end-use forecasting of appliances that could not be included in the model due to data and 
time limitations. In Section 11 we summarize and conclude the report. 
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2. MODEL STRUCTURE AND ASSUMPTIONS 

In this section of the report we outline the REEPS modeling framework and the assumptions and 
data structure we have adopted in configuring the appliance models .. In Section 2.1, we briefly 
describe the general features of residential end-use forecasting and the particular features of the 
REEPS modeling framework, with special reference to those aspects which relate to appliances 
rather than HV AC. In Section 2.2, we detail the major steps in model execution and the general 
functional relationships among the various algorithmic components. lfl Section 2.3, we describe 
the end-use structure and conventions we adopted in configuring the appliance models. In 
Section 2.4, we provide an overview of the data sources we used to develop the structure, inputs 
and parameter estimates for the appliance models. In Section 2.5, we discuss some of the 
potential applications of the model in analyzing impacts of government policies, utility 
programs, changes in technology development and adoption, and economic scenarios. 

2.1. REEPS Modeling Framework 

The basic assumptions and structure of residential end-use forecasting are quite similar across 
both different modeling frameworks and different end-uses (Johnson et al. 1992). The household 
is considered the fundamental unit for energy consumption. The physical housing stock is 
defmed by its thermal properties, while energy-using equipment is described by variables such as 
size (or capacity) and efficiency. Macroeconomic and demographic variables that change over 
time include the housing stock, household size, fuel prices and household income. Technology 
data characterize the existing and/or future stock of equipment and allow the formulation of 
functional relationships to use in the forecast. Consumer data describe ownership patterns for 
equipment and appliances, generally segmented by housing type. Consumer attitudes toward 
energy efficiency investments are typically characterized by parameters that represent economic 
tradeoffs between purchase price and operating cost. Market shares are estimated for each 
technology or fuel for a given end-use and the models adjust these market shares over time as 
households retire and purchase equipment 

The EPRI-REEPS model is one of several prominent end-use forecasting models that have been 
developed since the mid-1970s. One of the earliest residential end-use forecasting models was 
developed at Oak Ridge National Laboratory (Hirst and Carney 1978). This model was later 
modified at the Lawrence Berkeley Laboratory (McMahon 1987) for the analysis of residential 
appliance standards. REEPS has been used since the early 1980s both as a tool for national 
policy analysis and subsequently as an analytical tool for electric utilities to forecast long..:term 
residential energy demand (EPRI 1982). The first version of the model, REEPS 1.0, relied on an 
econometric/micro simulation approach to estimate energy consumption for a given sample of 
households (Cowing and McFadden 1984). The newest version of the model, REEPS 2.1, is 
quite different in that it provides the user with a generalized modeling framework rather than 
attempting to simulate a particular set of households. As a result, REEPS 2.1 does not have the 
theoretical foundation and household-specific data enumeration offered by the micro simulation 
approach in REEPS 1.0 (Cowing 1992). 

This latest version of REEPS incorporates the basic features of residen,tial end-use forecasting 
into a generalized modeling framework in which the user has considerable control over the 
algorithms and model structure (McMenamin et al. 1992). All REEPS users work within a 
common software framework, which allows them to focus on the substantive aspects of the 
analysis and avoid potential programming errors introduced by changes in the software source 
code. This framework provides greater flexibility compared to traditional models which are 
"hardwired" for particular formulations of residential sector energy use. Rather than relying on a 
fixed set of equations and/or parameters, the user can precisely specify the equations used to 
forecast future appliance and housing characteristics. Both the functional form and parameters 
included in these equations are open to modification by the user. This enables modeling of a 
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wide range of scenarios and policies, at varying levels of disaggregation, without ever changing 
the computer program itself. This improved modeling flexibility, however, brings with it 
considerably more responsibility on the part of the user in configuring the input data. Each 
distinct set of data and parameters results in a different model, with the result that there can be 
considerable variation in the forecast results even when exogenous variables remain the same. In 
effect, the "model" consists of the structure, data, and algorithms developed by the user, with the 
REEPS computer program itself as a modeling shell that imparts a higher level structure and 
consistency to the analysis. 

The REEPS 2.1 Appliance Modell forecasts future purchases and energy consumption of 
appliances, using the modeling framework described above. the individual appliance end-use 
models in REEPS derive their higher-level structure from other input variables shown in Figure 
2.1. Exogenous variables include macroeconomic projections such as income and household 
size, along with other external parameters needed by the model. Fuel price projections are 
implemented as exogenous time series for each fuel and rate class used in the model. 
Households data allow the user to forecast changes to the housing stock based on separate decay 
rates for each housing type and vintage block. Demographic segmentation divides the appliance 
market into different segments based on household characteristics such as income or household 
size, allowing purchase decisions to be differentiated between the segments. These other input 
sets precede the specification of the appliance models themselves because they define important 
elements of appliance model structure, such as the housing types specified in the Households 
module. Data from these input sets are used as drivers in forecasting the size, characteristics, and 
usage of the appliance stock. In general, REEPS uses data in the form of an average value within 
a market segment (house type, income, etc.), rather than a distribution of values that would more 
closely approximate the actual situation. This data structure could potentially introduce 
aggregation bias into the forecasts, which the user may attempt to minimize by dividing the 
market into smaller segments (thus the average values input to REEPS represent fewer houses). 

2.2. Appliance Model Flow and Execution 

The REEPS 2.1 Appliance Model is a vintaged capital stock or stock flow-adjustment model that 
maintains accounts of appliances by vintage year. REEPS 2.1 uses a state-based approach to 
forecasting in which purchase decisions are explicitly modeled at the household level and depend 
upon the "state" (or characteristics) of the household and its existing appliance ownership status. 
This means that for each housing class a prototypical or average house is specified and purchase 
decisions for this house are assumed to apply to all houses in that class, additionally, the decision 
model may change based on the characteristics of this average house (Section 3 describes the 
various decision models in more detail). The state-based approach differs from a saturation 
approach to appliance modeling, in which the saturations or market shares are forecast as a 
function of population characteristics and the difference from the current ownership patterns are 
attributed to appliance purchases (EPRI 1990, p. A-3). 

1 We sometimes refer to the REEPS Appliance Model and other times to a particular appliance model. References 
to the former are capitalized in this report. The REEPS Appliance Model refers to the basic modeling structure 
provided to the user, and this structure is the same for all end-uses or appliances. A particular application of this 
Appliance Model for, say, refrigerators, results in a refrigerator appliance model. This distinction is quite important 
because REEPS allows the user considerable control over the structure, data, and functional equations. This means 
that a different input set can describe a completely different appliance model rather than simply differing only in the 
control data or in particular parameters. 
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Figure 2.1: Relationships among REEPS Input Sets 
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The decision models determine the value of four key variables for a particular appliance type 
throughout the course of the forecast: Size, Efficiency, Usage, Market Share. These variables, 
when combined with an exogenous forecast of the number of households, determine the 
residential-sector energy consumption for that specific appliance type. The five variables are 
related through the fundamental energy demand identity used in REEPS: 

E = ~ ~ (Usageb.s.g) (Sizeb.s,g) (Share )(HH ) 
g "'- "'- (EfficiencYh ) b,s,g b,s,g 

h s ,s,g 
(2.1) 

where E is the total sectoral energy consumption, g is the generic technology, his the housing 
type, s is the demographic segment, Usage is the intensity of use of the appliance (e.g., 
loads/yr.), Size is the appliance capacity, Efficiency is the level of end-use services delivered per 
unit of energy input, Share is the ownership share (saturation), and H H is the number of 
households in a particular market segment Appliance size, efficiency and usage are defined by 
the user in the units and values appropriate for a given end-use and/or appliance. The number of 
households is exogenous to the Appliance Model, having been derived in the Household Data 
module shown in Figure 2.1. 

The user specifies the characteristics of the existing stock of appliances so that Equation 2.1 can 
be evaluated in the base-year of the forecast. The characteristics include appliance efficiency, 
size and market share. The result of Equation 2.1 (without the "HH" term) is then compared to a 
known value of Unit Energy Consumption (UEC) as a check for input errors and to calibrate the 
model to empirically-observed trends. The user also specifies equipment lifetimes and optional 
vintage blocks to differentiate efficiencies across appliance vintages and to facilitate proper 
accounting for decay and replacement of appliances over time. 

The energy use characteristics of the appliance stocks are primarily affected by the efficiency of 
the new stock additions. The level of energy consumption for an appliance may also change as a 
result of changing appliance usage (measured as cycles/year or volume/day), based on a user
specified usage function. The user also specifies characteristics of new appliances purchased in 
the first forecast year, allowing the modeling of purchase decisions for new homes and for 
replacement of appliances in existing homes. These characteristics include the marginal (new 
equipment) efficiency, the purchase price of appliances, an equation for appliance size in future 
years, and the market shares of technologies in new homes in the first forecast year. 

Additional data on appliances depend on the choice between two modeling approaches, reduced
form and specific technology, as shown in Figure 2.2. The specification of generic technologies 
is the same for both approaches, as illustrated in Figure 2.2 and in Equation 2.1. Generic 
technologies are classes of appliances distinguished by fundamental features, such as gas vs. 
electric water heaters. For reduced-form specification, the user models efficiency changes as a 
function of exogenous variables (such as fuel prices) and demographic segmentation variables 
(such as housing type or income). Purchase price is modeled through a user-specified function 
based on size and efficiency. Consequently, there can be no feedback effect from purchase cost 
to efficiency because cost ·is determined after efficiency has already been calculated. The 
specific technology approach treats these changes differently by allowing the user to characterize 
technology options, with an associated purchase price, efficiency and availability. Availability 
includes specification of legal availability (appliance standards) and market availability, 
describing the relative penetration of the technology in the marketplace as constrained by 
maximum production capacity (among other possible causes) for a specific technology. The 
purchase decision models based on these characteristics are discussed in Section 3. 
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Figure 2.2: Specific Technology vs. Reduced-Form 
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Three general modeling steps are executed for each end-use: 1) base-year calibration, 2) 
decision-model calibration, and 3) forecast execution. In the base-year calibration, the Appliance 
Model is compared with the input housing stock and demographic characteristics to check for 
consistency. Base-year data on appliance saturations, sizes, efficiency levels and average UEC 
values are disaggregated by housing type and demographic segment. Usage is adjusted to be 
consistent with stock UEC values and vintage block information on vintage block shares, 
efficiencies and sizes. In the second step, decision-model calibration, the decision models are 
adjusted to fit the control (or "calibration") values specified in the first forecast year (1991 in this 
implementation of REEPS). These control values are referred to later as "control-year" data, and 
include the marginal appliance efficiencies and new home market shares. Finally, in the forecast 
execution step, decision models are used to predict new appliance ownership shares and 
efficiency choices. The algorithmic procedures in each of these three steps are detailed in the 
technical documentation for the Appliance Model (EPRI 1990). 

2.3 Appliance End-use Structure and Assumptions 

We used three housing types in configuring the appliance models: single-family •. multifamily and 
manufactured homes. In the baseline analysis presented in this report, there is no additional 
economic or demographic segmentation beyond housing type, to avoid added complexity. We 
analyzed a total of nine end-uses and developed appliance models for use with REEPS for each 
of these end-uses. We model six of these end-uses with the specific technology characterization: 
refrigerators, freezers, water heaters, dishwashers, clothes washers, and dryers. The decision 
models we developed for these end-uses are discussed in Section 3 and the base-year and control 
data are discussed in Sections 8 and 9. We model three end-uses using the reduced form 
representation: lighting, cooking and miscellaneous. We discuss these end-uses and provide the 
base-year and control data in Sections 6 and 7. Due to the lack of data and the reduced form 
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representation of the models, we have not estimated purchase decision models for these latter 
three end-uses. 

The REEPS 2.1 modeling framework is data intensive, particularly since it requires data at the 
household level. The primary sources of base-year (1990 stock) and control-year (1991 new 
units) ownership data are the Residential Energy Consumption Surveys (RECS) conducted by 
the U.S. Energy Information Administration (EIA 1989b, EIA 1992, EIA 1993). To estimate the 
marginal shares of new homes built in 1991, we use RECS data for homes built in 1985 through 
1990. For particular end-uses these data may differ somewhat from other published sources 
(such as the US Census Bureau American Housing Survey), but we have used RECS for all end
uses for the sake of consistency. For appliance stock data-- historic shipments, capacities and 
efficiencies -- we use data from the Association of Home Appliance Manufacturers (AHAM 
1991). For cost-efficiency option data for new technologies, we use information developed for 
the U.S. Department of Energy (US DOE 1989, US DOE 1990, US DOE 1993a) in support of 
the National Appliance Energy Conservation Act of 1987 (NAECA) appliance efficiency 
standards. For the lighting end-use, we have relied ori the results of monitored residential 
lighting usage in Washington state (Manclark 1991), lighting surveys from New York and New 
Jersey (Robinson 1992), and a recent residential lighting survey by Pacific Gas & Electric 
(Kelsey and Richardson 1992). 

2.4 Policy Modeling 

The flexibility of REEPS 2.1 allows the user to model a number of policies through the judicious 
modification of the appropriate parameters, equations, structure, and addition of new 
technologies. Government and utility policies have the potential to restrict the availability of 
certain appliance efficiency levels, energy prices, financial criteria for new equipment purchases, 
early retirement of appliances, and rates of technical innovation. The policy handles in REEPS 
2.1 include: energy prices; functional forms and coefficients for choice equations; pre-failure 
replacement/conversion decision algorithm; restrictions on legal or market availability of specific 
technologies; and modification of specific technologies' purchase price or efficiencies. Table 2.1 
lists policies by area of impact and the corresponding policy handles in REEPS 2.1. 
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Table 2.1: Policy Handles in EPRI-REEPS 2.1 

Area of Impact Policy Handle 

EFF1CIENCY LEVEL A V All..ABILITY Restrict "legal availability" of specific 
Minimum efficiency standards. technologies. 

Restrict "marlcet availability" of specific 
technologies. 

ENERGY PRICES Electricity and fuel prices. 
Taxes 

energy taxes 
carbon tax 

FINANCIAL CRITERIA FOR APPLIANCE Reduce purchase price of specific technologies. 
INVESTMENT 
Equipment Subsidies by Utility (via Rate-of-
Return Regulation) 

rebates 
low-interest loans 
installation at utility cost 
direct installation by utility 

Equipment Subsidies by Government 
performance based tax rebates 
investment tax credits 
direct government purchases 

Information Dissemination Implicit Discount Rate, via parameters in 
audit programs consumer utility function for efficiency or fuel 
extension services choice equations. 
advertising and labeling 
ttainin~ 

EARLY RETIREMENT OF APPLIANCES Add pre-failure replacement and conversion 
Equipment Subsidies by Utility (via Rate-of- purchase decision state. 
Return Regulation) 
Equipment Subsidies by Government 
Residential Enerl!V Conservation Ordinances 
RATE OF TECHNICAL INNOVATION Add new technologies to list of specific 
Research and Development Programs technologies. 
Demonstration Programs Reduce purchase price of specific technology 
"Golden Carrot" Programs options ("cost multiplier"). 
Patent Law Increase efficiency of specific technology 

options ("efficiency multiplier"). 

3. STRUCTURE OF APPLIANCE DECISION MODELS 

For those appliances modeled with the specific technology approach, we have configured one 
generic technology for each commonly-used fuel type, as shown in Figure 3.1. The refrigerator, 
freezer, dishwasher, and clothes washer models are limited to only one fuel type -- electric. The 
water heater model has three fuel types -- electric, gas and oil. The dryer model has two fuel 
types -- electric or gas. Each generic technology has an associated ownership model, discussed 
in Section 3.1. For each generic technology, there is also a set of associated specific 
technologies, that can be considered appliance "models" differing in their efficiency levels and 
purchase price. We adopt this structure, as shown in Figure 3.2, for each generic technology 
shown in Figure 3.1. We developed an efficiency choice model for each of these generic 
technology types, and these models are described in Section 3.2. The combined effect of the 
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ownership models and efficiency choice models determines the purchase decisions over the 
course of the forecast. 

3.1. Ownership Models 

Household ownership of appliances is determined through decision models which estimate the 
probability of ownership based on household characteristics and exogenous variables. For each 
year t during the course of the forecast, individual probabilities of ownership. are calculated using 
a multinomiallogit (MNL) equation: 

t exp(Uh,s,n,g) 
Probability of Ownershiph,s,n,g = 

I.exp(Uh,s,n,g') 
g' 

(3.1) 

where h is the housing type, s is the demographic segment, n is the decision state, g is the generic 
technology of interest, g' is the set of all generic technologies, and U is the "utility function" or 
"desirability index." 2 The desirability index is specified by the user and may be dependent upon 
attributes of the appliance (purchase price, operating cost, warranty, etc.) as well as attributes of 
the decision-maker (income, household type, rural or urban, etc.). The individual probabilities of 
ownership are aggregated to estimate the overall marginal market saturations for decision state n 
and market segment h, s. 

There are four user.:.specified decision states that can lead to the decision to acquire appliances: 
1) new home construction, 2) decay and replacement, 3) non-owner acquisition, and 4) pre
failure replacement and conversion. Decisions to acquire appliances are modeled at the 
household level, based upon household characteristics and existing ownership status, and 
depending on which of the four decision states are active for a particular end-use. If a 
replacement model is not specified, then the model assumes 100% replacement with the same 
generic technology. We have activated the new home decision state for all models and the non
owner acquisition model for those end-uses where the appliance saturation is significantly less 
than 100%, namely dishwashers and freezers. We generally assume 100% replacement, except 
for freezers (and fuel-switching for water heaters), based on a comparison of historical shipments 
(AHAM 1991) and 1990 stock data (EIA 1992). The "pre-failure replacement and conversion" 
decision state is not active for the baseline forecasts. This decision state could be used in a 
scenario where utilities have appliance "buy-back" programs, or to model some other tyJ}e of 
rebate program. 

We have adopted the REEPS 2.1 default ownership models for all appliances covered in this 
report, except for water heaters. For water heaters, we developed a new model and estimated the 
parameters using data from the 1987 RECS. We discuss the new water heater ownership model 
in Section 5, and the REEPS 2.1 default ownership models are presented in the appropriate end
use sections. 

2 The user also has the option in REEPS 2.1 of estimating market shares using a "n~.sted logit" or GEV (generalized 
extreme value) model that allows simultaneous modeling of ownership and efficiency choice. Estimation of the 
GEV model requires a highly detailed and disaggregated data set, which is not available at the national level. 
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Figure 3.1: Appliance Model Structure 

End-use 

Refrigerator 

Freezer 

Water Heater 

Dryer 

·• 

Generic Technology I 
Fuel 

Own 

None 

Own 

None 

Electric 

Specific 
Technology 

Efficiency 
Options 

Efficiency 
Options 

Efficiency 
Options 

Gas 1----11 Efficiency 
,__ ____ ..... Options 

Own 

None 

Electric 

Gas 

None 

10 

Efficiency 
Options 

EffiCiency 
Options 

EffiCiency 
Options 

Efficiency 
Options 



Figure 3.2: General Decision Model Structure 
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3.2. Efficiency Choice Models 

We use the specific technology approach to model efficiency choice for refrigerators, freezers, 
dryers, water heaters, clothes washers and dishwashers. Other end-uses are modeled using a 
reduced-form efficiency-choice equation. The lighting end-use has no efficiency choice model, 
although the REEPS lighting model has been set-up with specific technologies to allow modeling 
of prescriptive policies. With the specific technology approach, the user inputs a list of specific 
technology options and the model calculates individual probabilities of purchase for each year t 
using a multinomiallogit equation of the form: 

(3.2) 
t exp(Ub,s,n,ge) 

Probability of Ownershiph,s,n,ge = 
l:exp(Uh,s,n,ge') 
ge' 

where h is the housing type, s is the demographic segment, n is the decision state, ge is the 
specific efficiency option of interest, ge' is the set of all specific efficiency options, and U is the 
"utility function" or "desirability index." Our model specification for the utility function is 
discussed below. The probabilities are then aggregated to estimate the overall marginal market 
purchase shares for decision staten, housing type h, and·demographic segments. 

We characterize overall market efficiency outcomes using a concept similar to that of a market 
discount rate. Ruderman et al. (1987) describe the concept of a market discount rate: 

... the market discount rate characterizes the decisions of the market as a whole. Although different 
segments of the market do not necessarily make their decisions on the basis of minimum life-cycle cost, we 
can calculate the discount rate associated with a market that is treated in the aggregate as if it optimizes 
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efficiency decisions. In other words, we ask the question: if we treat the market conceptually as if the sum 
of all the appliance efficiency choices could be characterized by a type of life-cycle cost decision, what is 
the discount rate that would characterize the overall market? Decisions by manufacturers on which design 
options to produce, decisions by retailers and wholesalers on which models to advertise or discount, and the 
purchase decision affect the market discount rate. 

Unlike Ruderman et al.'s model, we use a multinomiallogit model that characterizes the market 
distribution of appliance efficiency choices, rather than just the overall market average. For the 
specification of the utility function used to choose among efficiency options, we use a standard 
model of consumer choice involving the implicit tradeoff between present purchase price and 
future operating cost (Train 1986). Confronted with j discrete appliance purchase options, a 
consumer selects the option that maximizes utility as a function of purchase price (P P) and 
operating cost ( OC) as well as other factors (Z)3. If one assumes a linear utility function, then the 
utility, U, of a particular purchase option can be represented as: 

(3.3) 

where bl, b2 and b3 are unknown parameters to be estimated. The implicit market discount rate 
is given by: 

bt r 
b2 = [1-(l+rtT] 

(3.4) 

where r is the implicit discount rate, and Tis the expected lifetime. If the lifetime is infinite, then 
the discount rate is simply the ratio of the cost coefficients, b1 and b2. We report the implicit 
discount rate for each decision model estimated in this analysis. These discount rates are 
provided solely as an intuitive interpretation of the logit parameters and cannot be reliably 
transferred to other consumer choice models, such as life-cycle cost minimization models. 

Ideally, the parameters of multinomiallogit models are estimated on household-level sample 
data. Unfortunately, such data do not exist at the national level for the application we are 
studying here. Thus, we have used aggregate, averaged national data to characterize overall 
market outcomes in terms of a "representative individual." To estimate the model parameters, 
we employed a least squares procedure developed by Berkson and described in Ben-Akiva and 
Lerman (Ben-Akiva and Lerman 1985). Berkson's procedure is based on the fact that a 
multinomial logit model with a linear-in-parameters utility function can be transformed into a 
form amenable to standard regression techniques. The MNL equation is transformed as follows: 

s· 
Iog(s ~) = bt (PPr-PPj)+b2(0Ci-OCj) 

J 
(3.5) 

where Si is the share of option i and j is a generic technology option used as a constant reference. 

Estimating the parameters in Equation 3.3 with aggregate and averaged data requires a data set of 
market share, purchase price and annual operating cost by efficiency level. We chose a single 
product class to represent each generic technology and chose a set of specific technology options 
from the supporting analysis for the federal energy conservation standards (US DOE 1989, US 
DOE 1990, US DOE 1993a). Purchase prices are estimated for each efficiency level by using a 

3 In the modeling framework adopted here, the "consumer" does not refer to specific purchasers or types of 
purchasers, but instead represents the behavior of the market for a particular appliance in aggregate, just as in 
Ruderman et al. (1987). 
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three-parameter curve that has· been fit to the cost-efficiency data for the specific technology 
options (listed in Tables B.1, C.1, D.1, D.2, D.3, E.1, F.1, 0.1 and 0.2 in the appendices). We 
assume that the models offered at different efficiency levels do not have any additional attributes 
that affect the efficiency choice outcome (i.e., Zj = 0 in Equation 3.3). Operating costs are 
estimated using the following equation: 

. (annual usa~e)(av~ size) 
Annual Operatmg Cost= ( ffi : ) (Avg energy cost) e 1c1ency (3.6) 

Shares of appliance purchases by efficiency level were adopted from the LBL-REM input data 
sets with the exception of refrigerators and freezers. The share distributions are estimated so that 
the average efficiency matches published efficiency data, either shipment-weighted energy 
factors (SWEFs) or model-weighted energy factors (MWEFs) (AHAM 1991, GAMA 1991). In 
some cases, they are a combination of SWEFs and MWEFs. Estimations of the model 
parameters are discussed in Sections 4.3. and 5.3. 

4. REFRIGERATOR, FREEZER AND DRYER MODELS 

4.1. General Structure 

Both the refrigerator/freezer model and the freezer model have one generic technology class. 
REEPS 2.1 normalizes all input saturations to unity, however, because refrigerator saturations 
are greater than one it is necessary to use two models, REF1 and REF2. For REF1, the new 
home and replacement shares are assumed to be 100% and no ownership model need be 
specified. For REF2, the base-year saturation for house type h is: 

Market ShareL?~r2 = Market ShareL?~ ref - 1. 0 (4.1) 

The ownership models for REF2 and freezers select between ownership or non-ownership. For 
dryers, there are three ownership choices: two generic technologies (electric and gas) and non-
ownership. · 

4.2. Ownership Models 

Data from RECS suggest the most important demographic factors affecting refrigerator and dryer 
ownership are income level and household size. For freezers, RECS suggests urban/rural status 
is also an important factor. We have adopted the REEPS 2.1 default market share equations, as 
shown in Table 4.1, which contain the appropriate factors. 
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Table 4.1: Appliance Ownership Models for Refrigerators, Freezers and Dryers 

Generic Model Type Utility Function 
Technolotff 

Refrigerators New Home Ub,ref2 = 0.02*Inch +0.5*HHSizeh - l.O*PVOC/1000 + Cb,ref2 
Replacement 100% Replacement 

Freezers New Home or Ub,n,frz = -2.2 + 0.01 *InCh+ 0.9*HHSizeh + 0.85*Rural -
Replacement 10* A vgE + Cb,n,frz 

Electric New Home or Uh,n,de = -S.O*LCC/1000 + 0.05*lnCb + 0.14*HHSizeh + Cb,n,de 
Dryers Acquisition 

Replacement 100% Replacement 
Gas Dryers New Home or Uh,n,dg = -S.O*LCC/1000 +-0.05*Inch + 0.18*HHSizeh + Ch,n,dg 

Acquisition 
Replacement 100% Reolacement 

Definitions: h is house type, 
n is the decision state, 
Inc is the average household income, 
HHSize is the average number of household members, 
PVOC is the present value of operating cost (averaged over all specific efficiency options) at a 
40% discount rate4, 
Rural is the fraction of rural household in the total population, 
AvgE is the average electricity price, 
LCC is the life cycle cost (average) at 40% discount rate, 
Ch.n.!! is the control-year calibration constant for generic technology g. 

4.3. Efficiency Choice Model 

4.3.1. Refrigerators and Freezers. 

To estimate the multinomiallogit efficiency choice model for refrigerators and freezers using 
aggregate data, we created disaggregate data sets of 1000 artificial observations using the 
following methodology. We chose 1989, the last year before the 1990 NAECA minimum 
efficiency standards, to characterize market decisions. Average efficiency choices for 
refrigerators and freezers are the 1989 AHAM shipment weighted efficiency for "Top mount 
freezer without ice" refrigerators and "Upright, Manual Defrost" freezers, respectively (AHAM 
1991). Purchase price and operating costs are described by a three-parameter curve that we fit to 
the LBL cost-efficiency option list for "Top mount freezer without ice" refrigerators (Table B.l) 
and "Upright, Manual Defrost" freezers (Table C.1) (US DOE 1990). We assume that the 
models offered at different efficiency levels do not have any additional attributes which affect the 
efficiency choice outcome (i.e., Zj = 0 in equation 3.3). 

We assumed normal distributions of efficiencies with standard deviations based upon 1984 
California shipments data for "Top mount freezer without ice refrigerators" and for all freezers 
(CEC 1987).5 The distributions of efficiencies were then parsed into seven efficiency bins 

4 Note that this discount rate is for the appliance ownership model and is distinct from the "market discount rate" 
used to characterize the efficiency choices. In practice, the REEPS default ownership models are relatively 
insensitive to the discount rate, so the 40% discount rate has been selected to be generally representative of the 
market discount rates observed in the appliance end-uses. 

5Despite the age and limited geographical extent of these data, we employ them because they are the only data that 
have been developed from true market surveys. 
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assuming a normal distribution, creating "market shares" for seven different efficiency levels. A 
data set of 1000 observations was created by assigning a market share of, say, 20% for option 2 
to be equivalent to 200 observed selections of option 2. Finally, we estimated the models with a 
statistical package, SST, that uses maximum likelihood estimation techniques (Dubin and Rivers 
1988). The results are presented in Table 4.2. Statistical measurements of goodness-of-fit, such 
as t-statistics, cannot be interpreted in a conventional manner from these results because the 
artificial observations do not contain variation within each efficiency bin with which to calculate 
such statistics, hence we do not report them here. 

Table 4.2: Estimated Coefficients of Refrigerator and 
Freezer Efficiency Choice Models 

Screen: AM· 6f 
End-use Variable Parameter 

Estimate 
Refrigerator 

Purchase Price (b1) -0.0829 
Operating Cost (b2) -0.1207 

Implicit discount rate* 69% 
Freezer 

Purchase Price (bJ) -0.0590 
Operating Cost (b2) -0.0651 

Implicit discount rate* 91% 
* Assuming infinite lifetime. 

4.3.2. Dryers 

No data on shares by efficiency level are available for dryers. We selected the efficiency choice 
parameters so that average efficiencies calculated from the predicted shares would match 1990 
SWEFs (AHAM 1991). Since there are an infinite number of combinations of parameters that 
will match the SWEFs, we normalized the operating cost parameter, b2, to equal-0.1. Then we 
selected the parameter b1 to be closest in absolute value to b2 while yielding an average 
efficiency that matches the 1990 SWEF (using Equations 3.2 and 3.3 to estimate market shares 
of specific efficiency options). The results are presented in Table 4.3. 

Table 4.3: Estimated Coefficients of Dryer Efficiency Choice Models 
Screen: AM· 6f 

Generic Technolo,zy Variable Parameter 
Estimate 

Electric, Standard 
Purchase Price (b1) -0.120 
Operating Cost (b2) -0.1 

Implicit discount rate* 120% 
Gas, Standard 

Purchase Price (b1) -0.062 
Operating Cost (b2) -0.1 

Implicit discount rate* 62% 
* Assuming infinite lifetime. 
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5. WATER REA TER, DISHWASHER AND CLOTHES WASHER MODELS 

5.1. Model Structure 

5.1.1. Water Heating and Space Heating Fuel Dependence 

There are three fuel choices for water heaters-- electric, gas or oil. A previous study, as well as 
analysis of RECS data, strongly suggest that water heater fuel choice is dependent upon space 
heating fuel choice (Dubin 1985, EIA 1989a) New homes with electric space heating rarely have 
piped gas service and therefore rarely have gas water heaters. New homes with gas space 
heating predominately have gas water heaters since, on average, gas-fired units have annual 
operating costs about half those of electric water heaters with comparable purchase prices. 
Figure 5.1 shows the dependency of the water heater fuel choice upon the space heating fuel 
choice in new homes. 

To implement this choice structure in REEPS, we first run the HV AC model to obtain national 
average shares of gas space heating in new homes. The shares are used in the appliance model as 
an exogenous vector for the gas availability variable. The gas availability variable subdivides the 
new home water heater market into those with and those without gas space heating. Only the 
new homes with gas space heating are allowed to choose between all three fuel types. Those 
with electric and other space heating fuel types are allowed to choose between electricity and oil, 
with only a small fraction of these (about 5%) choosing oil. 

As shown in Figure 5.2, the choice is similar for replacements. Those houses with gas space 
heating are highly likely to choose gas water heaters. The houses with electric space heating are 
highly likely to choose electric water heaters due to the lack of gas fuel hookup. Ideally~ the 
replacement fuel decision would be conditional on the space heating fuel type. The existing 
REEPS algorithm, however, does not allow this structure to be implemented. Instead, the 
replacement fuel type is conditional upon the old water heater fuel type, which is closely 
correlated with the space heating fuel type. 

Figure 5.1: Water Heater Model Structure for New 
Homes 

NewHome-

-E
elec water heater 
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Figure 5.2: Water Heater Model Structure for Replacements 
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5.1.2. Water Heater, Dishwasher and Clothes Washer Interactions 

Through hot water usage, the water heater, dishwasher and clothes washer models are 
interdependent. Figure 5.3 illustrates the influences these end-uses have on each other. Due to 
structural limitations in the REEPS algorithms, most of these influences cannot be modeled 
endogenously. Instead, they inust be modeled iteratively through exogenous vectors. Water 
heater fuel and efficiency choices are influenced by saturations and efficiency choices of both 
dishwashers and clothes washers. Dishwasher and clothes washer efficiency choice, in tum, is 
affected by the water heater fuel and efficiency choices. As shown in Figure 5.3, only one type 
of these interactions can be modeled endogenously in REEPS: the interaction between the load 
on the water heater and the saturations of dishwashers and clothes washers (the solid line labeled 
"share" in Figure 5.3). 

To implement this structure in REEPS, the model must be run iteratively. However, since the 
water heater fuel choice and efficiency choice models have relatively high discount rates (84% 
and 63 to 200%, respectively), their outcomes are relatively insensitive to the operating costs 
(and hence so are the hot water heat load outcomes from the dishwasher and clothes washers 
models). 6 Therefore, reasonable hot water loads can be inserted for the water heater hot water 
load and the results for the water heater shares and average efficiency choice can be used in the 
efficiency choice models for dishwashers and clothes washers (see Equation 5.4). The hot water 
load from dishwashers and clothes washers can then be fed back into· the water heater model 
using exogenous variables in the REEPS water heater usage equation (the exogenous variables 
are shown in Tables E.7 and F.7 in the Appendices). If significantly lower discount rates are 
used in the water heater fuel and efficiency choice models, this method may no longer be 
appropriate. 

6 Hot water load is, however, important in the calculation of overall water heater energy consumption. 
Furthermore, if the discount rates are lowered, then the efficiency choice will become more sensitive to operating 
cost 
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Figure 5.3 Water Heater, Dishwasher and Clothes Washer Model Interactions 
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Interaction Between Water Heater Load and Dishwashers and Clothes washers. Efficiency 
choice is partly a function of operating cost (Equation 3.3), which for water heaters is based on 
the following relationship 7: 

OCge = (Pj) ( HWLwh/Effge) 

where OCge = Annual water heating operating cost of specific option ge, $/year 
Pj = Energy price for fuel type j, $/kWh or $/MMBtu 

HWLwh =Average Hot Water Load, kWh.th/HH/year or Btu.th/HH-year8 
Effge =Efficiency of option ge, kWh.thlkWh.e or Btu.th/Btu.f 

(5.1) 

7Water heater efficiency is more accurately described by two terms: recovery efficiency and standby loss. REEPS 
2.1 allows specific technology options to be described by only one efficiency term, thus the efficiency parameter 
described here is a combined efficiency measure, Energy Factor. A forthcoming version of REEPS will allow water 
heater efficiency to be specified using two terms. 
8 We adopt the following conventions: 
1 kWh =3412 Btu 
kWh.th or Btu.th = thermal heat content of the outlet hot water, in kWh or Btu, 
kWh.e =energy content of input electricity, in kWh of electricity, 
B tu.f = energy content of input fuel, in Btu of natural gas or oil. 

18 



The average hot water load, in tum, is calculated as a function of dishwasher and clothes washer 
average hot water loads and shares as shown in Equation 5.2. 

HWLwh = B+ HWLdw + HWLcw 

where HWLwh = Average Hot Water Load, kWh;th/HH-year 

B = Average Base Hot Water Load, kWh.th/HH-year 

HWLdw =Average Dishwasher Hot Water Load, kWh.thiHH-year 
= <HWLdw) (Sharedw) 

HWLcw =Average Clothes Washer Hot Water Load, kWh.th/HH-year 
= <HWLcw) • (Shart;;w) 

(5.2) 

Derivation of the Base Hot Water Load. The base hot water load is all hot water uses other than 
dishwashers and clothes washers. It is calculated as follows: 

- . shflow ftflow 
B = 68.3 (19.71+10.9•HHstze) (X+ Y bshflow + Z bftlow) (5.3) 

where B =Average Base Hot Water Load, kWh.th/HH-yr, 
68.3 converts gal/day to kWh.thlyr @ 77 F temperature rise (kWh.th-day/gal-yr), 
(19.71+10.9•HHsize) is the average non-dishwasher/clothes washer household hot water usage {gal/day), 
HHsize =Number of household occupants (exogenously forecast), 
X= 0.36 (volume-dominated fraction of base load), 
Y = 0.54 (shower (flow-dominated) fraction of base load), 
Z = 0.10 (faucet (flow-dominated) fraction of base load), 
shflow = stock average showerhead flowrate in future years, 
bshflow = stock average showerhead flowrate in 1990, 
ftflow = stock average faucet flowrate in future years, and 
bftflow =stock average faucet flowrate in 1990. 

The derivation of Equation 5.3. has two major components: developing a relationship between 
household hot water usage and HHsize (the first part of the equation), and disaggregating this 
base usage into end-use points to allow modeling of water conservation policies (the latter part of 
the equation). The fundamental relationship between base household usage and HHsize is 
derived from the Bonneville Power Administration's Regional End-use Metering Project (REMP) 
(Taylor et al. 1991). This report provides metered usage of electricity for water heating (kWhlyr) 
as a function of HHsize for 201 homes in the Pacific Northwest. These electricity usage data 
were used to estimate total hot water usage (gal/day-household) as a function of HHsize9. 

To determine the base hot water usage, dishwasher and clothes washer hot water usage was 
removed from the usage levels determined from the REMP data. This process is illustrated in 
Table 5.1. Using appliance saturations stratified by HHsize from the 1987 RECS (EIA 1989b) 
and assuming that appliance hot water usage varies as a function of HHsize, we suptracted the 
weighted-average appliance hot water usage from the total hot water usage by HHsize. This 
yielded the base hot water load for each integer value of HHsize, which we then scaled so that 
the average usage equaled the base, non-appliance hot water usage (47.9 gaVday-household) 
reported in Koomey et al. (1994b). This usage estimate is based on the most internally consistent 
data and we therefore feel that their average usage value is representative of actual usage levels. 
We then used the scaled hot water usage to derive the linear regression values in Equation 5.3. 

9Because the sample of homes had electric resistance water heating, we assume 100% recovery efficiency to convert 
from electricity consumption to hot water usage. Hot water usage is a quadratic function of HHsize because the 
REMP report notes the non-linear relationship between HHsize and kWh. 
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Table 5.1: Water Heater Base Usage Data Summary 

%of Houses #of Predicted Total Hot Saturation-Wtd. Hot Base Hot Scaled 
in 1990 Household UEC(2) Warer Usage (3) Warer Use (gall day) (4) Water Use (5) BaseUse(6) 
stock (1) Occupants (kWblyr) (gal/day) CWash DWash (gal/day) (gal/day) 

0% 0 1,154 
25% 1 2,790 24.0 3.7 1.0 19.2 29.0 
33% 2 3',784 38.5 8.3 2.6 27.6 41.6 
17% 3 4,672 51.5 11.7 3.5 36.3 54.8 
15% 4 5,505 63.7 16.4 4.9 42.4 64.0 
7% 5 6,303 75.4 20.5 6.3 48.6 73.3 
4% 6 7,077 86.7 25.0 5.7 56.0 84.4 

Wgtd.Avg. 2.6 4,248 45.3 10.4 3.1 31.8 47.9 
Notes: 
(1) From 1990 RECS (EIA 1992). 
(2) Based on REMP data, assuming that hot water usage is a quadratic function of HHsize, of the form: 
STANDBYLOSS + a(HHsize) + b(HHsize-"0.5), where STANDBYLOSS=1154 kWhlyr, a=539, and b=1098. 
(3) Assumes 77F temperature rise, and 100% electric resistance warer hearer recovery efficiency. 
(4) Warer use is weighted by the saturation of clothes washers and dishwashers within each HHsize bin. Assumes 
that 3-member households use the average amount of hot water (14.19 gal/day for clothes washers and 7.39 gal/~y 
for dishwashers, based on 1990 stock average UEC (AHAM 1991)). 6-member households use 2x average, 1 
member ho~holds use O.Sx average. Other household sizes are linearly interpolated between these values. 
(5) Hot water used by faucets and showers, net of clothes washer and dishwasher use. 
(6) Base hot water use within each HHsize bin has been scaled so that weighted average matches 47.9 gal/day base 
usa~e estimated in Koomev et a1._{1994~). 

Household hot water usage is further disaggregated into household end-use points to allow 
modeling of the impacts of the showerhead and faucet efficiency standards in the Energy Policy 
Act of 1992 (EPAct 1992). We subdivided the base hot water load into flow-dominated 
endpoints (showerheads and some faucet use) and volume-dominated endpoints (filling of sinks 
and bathtubs). The flow-dominated endpoints will be impacted by future changes in flXture 
flowrates, whereas volume-dominated endpoints are not affected since usage in these cases is 
determined by volume. The household end-use point disaggregation is from Koomey et al. 
(1994b), who estimate the portion of base hot water usage that is volume-dominated (36%), 
flow-dominated for showers (54%), and flow-dominated for faucets (10%). 

Shflow and Ftflow, the estimates of average flowrates of the showerhead and faucet ("plumbing 
_fitting") stock in future years, are calculated outside of the model, and account for changes in the 
stock from new purchases and replacements. The average flowrates of the stock in 1990 are 
input as the denominators in the equation. We estimate that typical "high" flowrate fittings use 
3.5 gallons/minute (gpm), and that 10% of households already have low-flow fittings (2.5 gpm). 
Thus, the base average flowrates for each are 3.4 gpm (Koomey et al. 1994b). EPAct standards 
(EPAct 1992) mandate 2.5 gpm or less flowrates beginning in 1994. We calculate average stock 
flowrate in future years assuming a 20-year lifetime for the fittings and a constant replacement 
rate (implying that 5% of the fixture stock is replaced each year). Table 5.2 shows the resulting 
time series of average flowrate used as an exogenous input for the variables Shflow and Ftflow in 
Equation 5.3. 85% of the fitting stock existing in 1993 has been replaced by the year 2010, 
leading to a 21% reduction in total, non-appliance base hot water load from the 1990 level. 
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Table 5.2: Showerhead and Faucet Flowrates Resulting from 
EPAct Standard 

Showerhead & Faucet %Decline in 
Year Stock Average Base Hot Water Usage 

Flowrate as a Result of 
(mlm) EPAct Standard 

1990 3.40 0 
1991 3.40 0 
1992 3.40 0 
1993 3.40 0 
1994 3.34 2 
1995 3.27 3 
1996 3.21 5 
1997 3.16 6 
1998 3.10 7 
1999 3.05 9 
2000 2.99 10 
2001 2.94 11 
2002 2.89 13 
2003 2.84 14 
2004 2.80 15 
2005 2.75 16 
2006 2.71 17 
2007 2.66 18. 
2008 2.62 19 
2009 2.58 20 
2010 2.54 21 

Source: Hot water load disaggregated into end-use points based on 
data in Koomey et al. (1994b). 
(1) Stock turnover assumes 20 year fitting lifetime and constant 
replacement rate of 5% per year. EPAct plumbing standard does not 
take effect until1994. · · 
(2) Base hot water usage is total, non-appliance hot water usage, 
including sink- and bathtub-filling uses which are not affected by 
EP Act standard 

Interaction Between Dishwasher and Clothes Washer Efficiency Choice and Water Heaters. As 
indicated in Equation 3.3, the desirability index for the efficiency choice model is a linear 
function of purchase price (PP) and operating cost (OC) of the specific efficiency option. 
Operating cost for dishwashers and clothes washers can be expressed as: 

OCge = OCnhwge + OChwge 

where OCge =Average Operating Cost for efficiency option e of generic technology g, $/unit/year 

OCnhw ge = Average Operating Cost for non-hot water load, $/unit/year 

OChw ge = Average Operating Cost for hot water load, $/unit/year 

(5.4) 

The average operating cost of the non-hot water load is the motor operating cost for clothes 
washers, and the motor, heater and dryer operating costs for dishwashers. It is calculated from 
the efficiency data specified in the input data sets for the specific technologies (Tables E.l and 
F.l in the Appendices). We do not include the cost of water or detergent in these operating costs 
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because the units with which these parameters are. specified (gallons/cycle or $/cycle) are 
incompatible with the electrical energy operating costs specified above (cycles/kWh). The only 
significant impact of this simplification is on horizontal axis clothes washers, which consume 50-
75% less water and detergent than the other specific efficiency options. 

The average operating cost for the hot water load is estimated as a linear combination of the 
electric water heating and gas water heating costs ~ follows: 

OChw ge = (hwlgeNusage)• {Sharewhe•P e + Sharewhg•P g} 
· Eff whe Eff wbg 

where OChw ge = Average Operating Cost for efficiency option e of generic technology g, $/unit/year, 

hwlge =Hot water load for efficiency option e of generic technology g, kWh.th/year/unit, 
usage= Usage index normalized to 229 cycles/year for dishwashers and 380 for clothes washers, 
Effwhe,g =Efficiency (Energy Factor) of electric or gas water heater, 
Sharewhe,g =Average saturation of electric or gas water heater, 
P e,g = Price of electricity or gas. 

(5.5) 

The shares and efficiencies are exogenously specified variables, shown in Table 0.13, that vary 
over time and are determined as discussed in the water heater ownership and efficiency choice 
sections. The shares are based upon the average market shares of the water heater fuel types. 
The water heater efficiencies are average efficiencies for the electric or gas water heating stock. 
The fuel prices, Pe and Pg. are exogenously specified. 

Energy Sales Accounting. All hot water usage is accounted for under the water heater end-use. 
The energy consumption reported for dishwashers and clothes washers is for all other energy not 
associated with hot water heated by the hot water heater. For dishwashers, it is energy 
consumption for the motor, heater and dryer. For clothes washers, it is energy consumption for 
the motor only. 

5.2. Ownership Models 

5.2.1. Water Heaters 

We estimated an ownership model for water heaters with a desirability index of the same form as 
our efficiency choice model: 

Ug=b!PPg+b20Cg (5.6) 

PPg is now the average purchase price of generic technology g and OCg is the average operating 
cost of generic technology g. The costs are averages across the specific efficiency options using 
shares predicted by the efficiency choice modeL 

Our ownership model for water heaters has three generic technologies based on fuel choice: 
electric, gas and oiL Since these generic technologies are differentiated by fuel, and we assume 
that all households have a water heater, the ownership decision model reduces to a fuel choice 
model. Estimation of the model parameters requires data describing recent purchases of water 
heaters, including information on the households as well as information on the annual operating 
cost and purchase price of the water heaters in each household. Household-level price data are 
generally not available, so we chose a data set of households in the 1987 RECS who had 
purchased water heaters within the previous two years (i.e., 1986 or 1987). This data set 
included water heaters purchased for new homes and for replacement of existing water heaters. 
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There were a total of 575 households in this RECS sub-sample, which after weighting each 
sample by its statistical weight in the RECS, produces a weighted representation of 8. 77 million 
households. 

For each household in this sample, we extracted relevant information from RECS. This included 
the water heater fuel choice, space heating fuel, number of bathrooms, number of bedrooms, 
number of occupants, ownership of a clothes washer, and ownership of a dishwasher. We used 
this information to estimate the hot water usage and the capacity of the water heater for each 
household. The hot water usage is based on the DOE test procedure (64.3 gal!day-household)10, 
which has been disaggregated by household size according to the relationship described in 
Section 5.1.2. The annual operating cost is then based on this usage profile and 1986-87 fuel 
prices. Since the RECS does not have data on purchase prices, we estimated the purchase price 
as a function of the fuel type, capacity, and average efficiency for each water heater in the RECS 
sub-sample. We assigned a capacity to the water heater for each household based on the number 
of bedrooms, number of bathrooms and the number of occupants (ASHRAE 1991), assuming 
only three choices for water heater capacity: 30, 40, and 52 gallons. The relationship between 
cost and capacity (for each water heater fuel type) was derived from cost estimates published by 
R.S. MEANS (1991). The relationship between cost and efficiency was based on information 
used in analyzing federal energy conservation standards (US DOE 1993a). The operating cost 
and purchase price estimates were used in Equation 5.6 to estimate the ownership model 
parameters shown in Table 5.3. 

Table 5.3: Estimated Coefficients of Water 
Heater Fuel Choice Model 

Variable Parameter 
Estimate 

Purchase Price {bt) -0.0107 
Operating Cost (b2) -0.0127 

Implicit discount rate* 84.2% 
* Assuming infinite lifetime. 

To estimate the model parameters, we employed BerkSon's procedure as described in Section 3.2. 
The generic technology market shares (Si in Equation 3.5) are from the 1987 RECS purchase 
sample described above. 

5.2.2. Dishwashers and Clothes Washers. 

We adopt the REEPS 2.1 default ownership models for dishwashers and clothes washers, shown 
in Table 5.4. 

1Drhe OOE hot water usage level was initially used to estimate the water heater ownership model, but is not entirely 
consistent with the revised usage estimate (61.4 gal/day-household) described in Section 5.1.2. We did notre
estimate the water beater ownership model using the updated bot water usage because the effect on the ownership 
model parameters is minimal. 
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Table 5.4: Appliance Ownership Models for Dishwashers and Clothes Washers 

Generic Model Type Utility Function 
Technol02Y 

Dishwasher New Home Uh,dw = 0.045*Inch + 0.04*HHSizeh- 0.2*Rural- 3.0* AvgE + 

Replacement 
Cb,dw 

100% Replacement 
Acquisition Uh,dw ~ -3.5 + 0.045*Inch + 0.04HHSizeh- 0.2*Rural- 3.0* AvgE 

+Ch,dw 

Oothes Washer New Home or Uh,n,cw = 0.041nch + 0.262HHSiZeb + 0.041(Year-1987) + 
Replacement Cbncw 

Definitions: h is bouse type, 
n is the decision state (new construction, replacement, or non-owner acquisition), 
Inc is the average household income, 
HHSize is the average number of household members, 
Rural is the fraction of rural households in the total population, 
AvgE is the average electricity price, 
Ch,n,g is the control-year calibration constant for generic technology g. 

5.3. Efficiency Choice Model 

Efficiency choice model parameters were derived using data sets described in Section 3.2. For 
electric and gas water heaters, the efficiency data are shown in Table 5.5. No data on market 
share by efficiency level is available for oil water heaters. Thus, for oil water heaters we selected 
the efficiency choice parameters so that average efficiency calculated using the estimated market 
shares and the efficiency options in Appendix Table D.3 will match the shipment weighted 
energy factor (0.55) in the LBL-REM input set (US DOE 1993a). This is similar to the 
technique used for dryers described in Section 4.3.2. For dishwashers and clothes washers, the 
efficiency distribution data used to estimate the efficiency choice model are shown in Table 5.6. 
We employed Berkson's procedure, as described in Section 3.2, to estimate the efficiency choice 
parameters. The results are shown in Tables 5.7 and 5.8. 

Table 5.5: Water Heater Efficiency Distribution Data 

Electric Gas 
Ener~ Factor Market Share Ene~Factor Market Share 

0.74 0.2% 0.46 1.9% 
0.76 0.2% 0.47 1.5% 
0.78 1.9% 0.49 1.9% 
0.80 0.4% 0.53 0.2% 
0.87 3.9% 0.54 12.5% 
0.88 20.8% 0.55 26.4% 
0.89 12.0% 0.56 25.4% 
0.90 19.3% 0.57 5.1% 
0.91 3.0% 0.58 9.0% 
0.92 8.6% 0.59' 2.7% 
0.93 5.4% 0.60 4.3% 
0.94 11.6% 0.61 1.9% 
0.95 3.9% 0.62 5.5% 
0.96 7.1% 0.63 1.0% 
0.97 1.9% 0.72 0.5% 

0.74 0.3% 
0.91 100% 0.56 100% 

Source: US DOE (1993a). 
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Table 5.6: Dishwasher and Clothes Washer Efficiency Distribution Data 

Dishwasher Clothes Washer 

UEC (1) Market Share UEC (2) Market Share 

709.9 0.5% 1672 0.3% 
687.0 1.0% 1558 0.6% 
664.2 22.1% 1482 0.6% 
641.2 9.3% 1406 8.1% 
618.3 10.3% 1330 0.6% 
595.4 14.7% 1254 4.9% 

572.5 8.8% 1178 19.5% 
549.6 17.6% 1102 9.9% 
526.7 9.3% 1026 9.0% 
503.8 6.4% 950 11.9% 

874 16.6% 
798 15.4% 
722 2.6% 

596 100% 1037 100% 

Source: US DOE (1990) 
(1) UEC includes motor, booster heater, dryer and hot water energy, assuming 229 cycleslyr and 
electric water heater with no standby losses (EF=1). 
(2) UEC includes motor and hot water energy, assuming 380 cycles/yr, 2.6 ft3 capacity, and electric water 
heater with no standby losses (EF=l). 

Table 5. 7: Estimated Coefficients of Water Heater Efficiency 
Choice Models 

Generic Technology Variable Parameter 
Estimate 

Electricity 
Purchase Price (b I) -0.0216 
Operating Cost (b2) -0.0195 

Implicit discount rate* 111% 
Gas 

Purchase Price (b1) -0.0719 
Operating Cost (b2) -0.1136 

Implicit discount rate* 63% 
Oil 

Purchase Price (bi) · -0.10 
Operating Cost (b2) -0.05 

Implicit discount rate* 200% 
* Assuming infinite lifetime. 
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Table 5.8: Estimated Coefficients of Dishwasher and Clothes 
Washer Efficiency Choice Models 

End-use Variable Parameter 
Estimate 

Dishwasher 
Purchase Price (bt) -0.2738 
Operating Cost (b2) -0.2463 

Implicit discount rate* 111% 
Clothes washer 

Purchase Price (b1) -0.3811 
Operating Cost (b2) -0.0974 

Implicit discount rate* 391% 
* Assuming infinite lifetime. 

6. LIGHTING MODEL 

This section documents the baseline energy consumption for residential lighting. There has only 
recently been an effort by energy analysts to characterize the lighting end-use in the residential 
sector. Typically lighting 'has been treated as one of the miscellaneous energy uses in residences, 
but recent surveys11 suggest that lighting may represent a more significant use than originally 
thought. We estimate that lighting accounts for approximately 10% of residential electricity 
consumption, and is thus a major end-use. For this reason, we treat lighting separately from the 
miscellaneous end-use category. Our understanding of the lighting end-use, however, only 
encompasses current equipment saturations and usage patterns. Thus, for implementation in 
REEPS we did not have sufficient data to estimate ownership and efficiency choice models, so 
we omit these models from the discussion. Nevertheless, the lighting baseline is quite useful 
because it allows modeling of prescriptive policies and provides a better understanding of 
potential market niches for lighting technologies. 

Residential lighting exhibits a great deal of diversity in usage (hours) and equipment size (lamp 
wattage). This situation is further complicated by the fact that the usage level affects the service 
life of the device. For instance, an incandescent bulb used one hour per day will last 
approximately three years, while the same bulb operated three hours per day will last less than 
one year. The lifetime, in tum, largely determines the cost-effectiveness of energy-efficient 
lighting technologies. For these reasons, we account for the heterogeneity in lighting usage by 
modeling several discrete usage levels as separate end-uses in REEPS. This allows for more 
accurate comparisons between lighting applications of differing usage intensity. 

The fundamental unit of analysis used in this analysis is the individual incandescent light socket. 
However, for modeling in REEPS the baseline UEC is over all light sockets in the house. The 
saturation of each end-use (discrete usage level) is based on the fraction of light bulbs having the 
designated usage level in the average house. Baseline consumption is further disaggregated into 
three housing types: single-family, multifamily and manufactured homes. 

11Such as the PG&E residential lighting survey documented by Kelsey and Richardson (1992) and another survey 
by Grays Harbor PUD (1992). 
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6.1. Baseline Lighting Usage 
. 

We divide the current stock of light sockets into five usage bins: less than 1 hour, 1 to 2, 2 to 3, 
3 to 4, and greater than 4 hours per day. This distribution includes both interior and exterior 
lighting. The fraction of sockets assigned to each bin (Table 6.1) is based on monitored 
residential lighting usage in Washington state (Manclark 1991). Although these data come from 
a limited sample of houses, the usage distribution is similar to another monitoring study in 
Washington state (Grays Harbor PUD 1992) in which the weighted average usage is 2.5 
hours/day. Moreover, the mean usage used here is lower than generally cited in some other 
studies (see Appendix H). 

Table 6.1: Monitored Lighting Usage Characteristics 

Daily Usage Average Fraction of Weighted· 
Usage in Bin Bulbs Average Usage 

__(hours/day) _(hours/day) _{%) (bours/day) 

0-1 0.5 40% 0.20 

1-2 1.5 20% 0.30 

2-3 2.5 10% 0.25 

3-4 3.5 10% 0.35 

>4 5 20% 1.00 

Total 100% 2.10 
Source: Manclark (1991). Measured data from Yakima, W A. Adapted 
from a study of 52 homes. 

We believe that the usage distribution in this study (Table 6.1) is representative of residential 
lighting usage in the US, and any bias it may contain would tend to understate lighting usage. 
There are two significant reasons why earlier studies have overestimated lighting usage. First, 
most studies only concentrate on high-use sockets because these are generally the locations 
where more efficient lighting technologies are most cost-effective. Second, most studies 
estimate hours of usage by surveying the building occupants, but it is difficult for lighting users 
to accurately gauge the average annual usage of each lighting socket. Moreover, the surveys are 
usually conducted in the course of utility programs to identify high-usage sockets and retrofit 
them with compact fluorescent lamps. This gives the building occupants an incentive to 
overestimate usage in order to maximize the number of utility-provided retrofit lamps. In one 
study by the New England Electric Service (NEES), users who kept diaries of lighting usage 
reported 37% lower hours of usage than they originally had estimated for the same sockets 
(Granda 1992). 

6.2. Baseline Installed Wattage 

In this study, we principally consider the consumption of incandescent lamps because they 
comprise the vast majority of lighting in the residential sector. For instance, a comprehensive 
lighting survey in Northern California found that 88% of the existing lamps in residences were 
general service or reflector incandescents (Kelsey and Richardson 1992). Because California's 
residential building code requires fluorescent lighting in kitchens and bathrooms of new houses, 
the fraction of incandescents in California is probably lower than other parts of the US. We take 
this as a lower bound on the fraction of incandescents in houses nationwide. The largest 
saturation of non-incandescent lamps, however, are linear fluorescent tube lamps (four or eight 
feet long). For this reason, we include full-size fluorescent lamps as a separate REEPS end-use, 
but do not differentiate between housing types. In addition, compact fluorescent lamps (CFLs) 
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have a small, but growing, saturation. The PG&E lighting survey found CFLs in approximately 
2% of the light sockets surveyed (one CFL in half the homes) (Kelsey and Richardson 1992). 
Due to this small saturation, we do not treat CFLs separately from the incandescent lighting 
stock in the REEPS lighting model, but rather as a generic technology within the incandescent 
lighting end-uses. In the baseline REEPS model, CFL saturation is assumed to be fixed at the 
cu.rrent level because we have no data with which to estimate an ownership decision model. The 
user can model prescriptive policies by exogenously increasing CFL saturation. 

To disaggregate the stock incandescent lamp wattages we have assumed that all lamps are one of 
the most common wattages- 40, 60, 75, 100, or 150 Watts. We used a survey of homes in New 
York and New Jersey (Robinson 1992) as the basis for the relative frequency of each lamp size. 
The wattage distribution has been modified somewhat by aggregating the smallest and largest 
wattages (e.g., bulbs smaller than 40 watts are added to the 40W bin) as shown in Table 6.2. The 
aggregated distribution retains sufficient detail for forecasting purposes, yet simplifies the 
analysis. 

Table 6.2: Installed Incandescent Wattage Distribution 

Estimated Installed Wattage Aggregated Installed Wattage Distribution 
Distribution (1) Used for this analysis 

Incandescent Average Size Share of Weighted- Average Size Share of Weighted-
Bulb Size for Category Incandescent Average Watts for Category Incandescent Average Watts 
(Watts) (WattS) Bulbs (!Y_attS) Bulbs 

<40 25 9% 2.3 

40 40 16% 6.4 35 25% 8.8 

60 60 37% 22.2 60 37% 22.2 

75 75 20% 15.0 75 20% 15.0 

100 100 12% 12.0 100 12% 12.0 

150 150 5% 7.5 150 6% 9.0 

>150 175 1% 1.8 

Totai/Weighted-Ave~e: 100% 67.1 100% 67.0 
1(1) Source: Robinson 0992) 

6.3. Baseline Energy Consumption 

The baseline lighting UEC is calculated at the level of the individual light socket, and then 
aggregated to estimate a whole-house lighting UEC. Two types of data are needed to calculate 
the baseline lighting consumption: The annual consumption for each socket, and the average 
number of sockets per house. Table 6.3 shows the calculation of socket UECs, based on the 
usage and wattage distributions presented above. Each combination of lamp wattage and daily 
usage leads to a unique annual socket UEC (25 levels, ranging from 6 to 27 4 kWh per year). In 
Table 6.4, these individual UECs are then weighted according to their frequency of occurrence in 
the housing stock (the bulb and wattage fractions in Table 6.4), in order to calculate an average 
socket UEC. Table 6.4 also disaggregates this average socket UEC to indicate which 
wattage/usage combinations are the largest contributors to a house's lighting consumption. 
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Table 6.3: Annual Incandescent Socket UEC 
(cross-tabulation of usage and wattage: annual kilowatt-hours) 

Wattage (Mean Wattage in bin) 

~0 60 75 100 ~150 
35 60 75 100 150 

Daily Usage Mean Usage in 
Unit Energy Consumption (UEC) per socket (hours) Bin 

0-1 0.5 6 11 14 18 27 

1-2 1.5 19 33 41 55 82 

2-3 2.5 32 55 68 91 137 

3-4 3.5 45 77 96 128 192 

>4 5 64 110 137 183 274 
Source: Watta~e- Robinson (1992 ; Usage- Manclark (1991) 

Table 6.4: Fraction of Incandescent Lighting UEC 
(cross-tabulation of usage, wattage, and saturation) 

Wattage(% of Installed Wattage) Total 
~ 60 75 100 ~150 

25% 37% 20% 12% 6% 100% 
Daily Usage Mean Usage Bulb 

Fraction of Average Socket UEC (hours) in Bin Fraction 

0-1 0.5 40% 1% 3% 2% 2% 1%. 10% 

1-2 1.5 20% 2% 5% 3% 3% 2% 14% 

2-3 2.5 10% 2% 4% 3% 2% 2% 12% 

3-4 3.5 10% 2% 6% 4% 3% 2% 17% 

>4 5 20% 6% 16% 11% 9% 6% 48% 

Total: 100% 13% 33% 22% 18% 13% 100% 

A verae:e UEC per socket (kWh/_yd_: 51.4 

Thus far, the data presented have described the usage and wattage of individual lamps; 
multiplying these data by the number of sockets per house yields the whole-house UEC. Starting 
with the average socket UEC calculated in Table 6.4, we use the number of incandescent sockets 
per house as a variable in order to calibrate the incandescent lighting power density (installed 
watts per square foot) to the value found in the PG&E survey (Kelsey and Richardson 1992). 
The calibration accounts for the fact that the floor areas used in this study are different than the 
average floor area in the PG&E survey, and our assumed usage is slightly higher. Table 6.5 
illustrates the calibration process. The resulting number of sockets per house is well within the 
range of several surveys recently conducted, some showing well in excess of thirty sockets per 
(single-family) house (see for example Manclark (1991) and Robinson (1992)). 

In residential lighting analyses, the whole-house lighting UEC is typically used for comparison 
to determine if a survey or calculation is yielding approximately the correct results. We use the 
whole-house lighting UEC in a similar way to assure the accuracy of the aggregate lighting 
consumption. The annual lighting UEC is thought to vary between 750 and 1500 kWh per year, 
depending on the location and type of house. We estimate that the whole-house lighting UEC is 
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1469 kWh/yr (1313 kWhlyr for incandescent and 156 kWhlyr for fluorescent) averaged over all 
housing types. This is approximately 20% higher consumption than PG&E's lighting survey, 
which yielded a whole-house UEC of 1274 kWh per year (Kelsey and Richardson 1992). The 
principal reasons for the higher UEC in this study are larger floor areas and slightly higher hours 
of usage. 

Table 6.5: Calibration of Lighting Intensity (W /sf) to PG&E survey value 

Housing Type 
Parameter PG&E(2) Single- Multifamily Mobile Total 

Family Homes 

%of 1990 households: 69% 26% 6% 100% 

Lighting UEC (kWhlyr) 1,274 - - - -
Fluorescent UEC (kWhlyr) 156 - - - -
Incandescent UEC (kWhlyr) 1,118 - - - -
Floor area (sq ft) 1,400 1,865 928 921 1,569 

Installed incandescent watts 1,552 2,052 964 1,013 1,712 

. Avg. incandescent usage (br/day) 1.94 2.10 2.10 2.10 2.10 

Annual incandescent UEC (kWh/yr) 1,098 1,574 739 777 1,313 

Inc. UEC per socket (kWh/socket/yr) 44.7 51.4 51.4 51.4 51.4 

Sockets/house 25 31 14 15 26 

(1) Source for 1990 housing stock: RECS (EIA 1993) 

(2) Results ofPG&E Lighting Survey are documented in Kelsey & Richardson (1992). 

(3) Lighting UEC in first row includes incandescent and fluorescents together. Incandescent UEC is net of 
tube fluorescent lamps. Fluorescent UEC calculated based on Kelsey & Richardson (1992), 3.2lamps 
per house@ 41.1 Watts/lamp used 3.8 hrs. per day and 5 out of every 6 days during the year. 

(4) PG&E floor area from survey. Floor area by house type from 1990 RECS (EIA 1992). 

(5) Installed wattage based on PG&E survey; 1.25 W/sf for single-family and mobile home, 1.18 W/sf for 
multifamily, reduced by 12% to account for the fact that incandescent lamps are 88% of installed wattage. 

(6)PG&E average usage value based on customer-reported usage; US value from Table 6.1. 

(7) PG&E value for UEC per socket based on survey data; US value from Table 6.4. 

(8) Annual UEC (kWhlyr) equals average usage* installed watts* 365/1000. 

1(9) PG&E value for sockets/house based on survey data; US values= annual UEC + UEC per socket. 

The final step in estimating the lighting baseline is to convert the data presented above into a 
form usable by REEPS. As mentioned previously, we model lighting as several REEPS end-uses 
to reflect the different usage socket levels. In this model formulation, all incandescent sockets 
operated between one and two hours per day are accounted for in their own end-use and have a 
unique saturation in the housing stock. In this case, the end-use saturation is not the fraction of 
houses owning light bulbs, but rather the fraction of bulbs that are operated at a particular usage 
level in the average house. To calculate the annual whole-house UEC, we multiply the annual 
hours of operation for a particular end-use by the average bulb wattage and the number of light 
sockets in each house type. The results of these calculations are shown in Table 6.6. The end
use UECs appear to be qui~ different from the PG&E survey data presented earlier. However, 
the values in Table 6.6 are calculated as if all sockets in the house were operated at the usage 
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level indicated by the end-use. In fact, each end-use actually represents only a portion of the 
total number of bulbs in a house, and the true whole-house UEC is a weighted average of all the 
REEPS end-uses in Table 6.6. 

We have also modeled full-size fluorescent lamps as a separate end-use, but we do not have 
sufficient data to disaggregate fluorescents according to usage or house type. The PG&E survey 
indicates that full-size fluorescents comprise approximately 9% of the installed wattage, or 135 
Watts of fluorescent lamps. Thus the fluorescent stock (and UEC) is small in comparison with 
the incandescent end-uses (due to fluorescents' higher efficacy, however, the lumens provided by 
fluoroescents are a significant fraction of the total delivered lumens). 

Table 6.6 also includes the weighted average UEC for each housing type and usage bin. These 
data are for informational purposes only, since they are not used as input to REEPS. Finally, the 
rightmost column in Table 6.6 (total incandescent lumens) is not an end-use but rather is an input 
to REEPS indicating the level of lighting service demanded by each house type. This 
information will be useful in implementing size and efficiency choice models at a future date. 

Table 6.6: Lighting Model Input Data for REEPS 

Lighting End-uses for REEPS Total Total 
House Type 0-1 Hours 1-2 Hours 2-3 Hours 3-4Hours >4Hours Wtd.Avg. Fluor- Lighting Incand-

UEC UEC UEC UEC UEC Incand. escent UEC escent 
UEC UEC Lumens 

(kWh) (kWh) _{kWh) . (kWh) .(kWI!) (kWh) (kWh) (kWh) 
Saturation: 40% 20% 10% 10% 20% 

Single-Family 379 1137 1895 2653 3790 1668 156 1824 32,369 

Multifamily 171 514 856 1198 1712 753 156 909 14,618 

Manufactured 183 550 917 1284 1834 807 156 963 15,662 
Homes 

W~td.-Av~. 314 943 ' 1571 2200 3142 1383 156 1539 26,836 

(1) UECs calculated assuming all incandescent bulbs in the house are operated at the indicated usage level. 

(2) Weighted-averages calculated using housing type distribution from Table 6.5. 
(3) Weighted-average incandescent UEC (1383 kWh/yr) differs slightly from value in Table 6.5 (1313 kWblyr) 

because the number of incandescent sockets per house has been constrained to an inte~er value. 

The REEPS lighting data presented here are based on an analysis methodology similar to that 
used in LBL's Lighting Policy Analysis (LPA) (Atkinson et al. 1992). The current analysis, 
however, uses updated data on lighting usage and installed wattage from surveys and monitoring 
studies. The general effect of these updates is to increase the number of light sockets and 
decrease the average hours of use per socket, leading to a small increase in annual household 
UEC (1469 kWh/household-year vs. 1294 estimated in the LPA). In essence, the lighting 
characterization presented here includes many low-use sockets that have been left out of previous 
studies. These low-use sockets are not significant for their energy consumption (accounting for 
only about 10% of the household lighting UEC), but rather because they are an important part of 
the lighting stock and lamp market. 

7. COOKING AND MISCELLANEOUS MODELS 

The cooking end-use includes several types of appliances, such as ranges or cooktops, gas or 
electric ovens and microwave ovens. A full technology characterization and cost analysis 
appears in the recent appliance standards analysis (US DOE 1993b) for ranges, ovens and 
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microwave ovens. Due to the recent publication of this source, we have not been able to 
incorporate its fmdings and instead have used the default data for cooking equipment provided 
by Regional Economic Research (McMenamin et al. 1992). This approach aggregates cooking 
equipment into a reduced-form model for each generic technology, which in this case is simply 
by fuel: electric, gas and other. The "other" category for cooking includes miscellaneous minor 
cooking fuels such as oil, LPG and wood. Table 7.1 shows the Unit Energy Consumption for the 
three classes, along with the base year stock and new home market shares. 

Table 7.1: Cooking Model Input Data 
Screens: AM-3a, AM-3f, AM-4e 

Housing Type Stock Shares New Home· UEC 
Shares 

(percent) (percent) 

Electric Cooking kWb/yr 
Single-Family 62 75 617 
Multifamily 45 76 486 
Manufactured Homes 41 60 567 

Gas Cooking kBtulyr 
Single-Family 32 23 5153 
Multifamily 55 24 4256 
Manufactured Homes 29 18 4514 

Other Fuels-Cooking kBtulyr 
Single-Family 6 2 5000 
Multifamily 0 0 N/A 
Manufactured Homes 30 22 4700 

Source: REEPS default input set (McMenamin et al. 1992) 

The miscellaneous end-use encompasses those appliances not covered in the end-uses we have 
outlined thus far. We consider only electric appliances in this category, although it is possible 
that a rather small amount of energy consumption may remain unaccounted for among fuels due 
to outdoor equipment and other fuel-using appliances with low saturations in the current housing 
stock. The miscellaneous category of electricity end-uses actually includes many different minor 
appliances and appears to represent a growing share of electricity consumption, in some cases 
accounting for as much as 20% of total household electricity consumption (Meier et al. 1992, 
Rainer et al. 1990). A few appliances in the miscellaneous category, such as televisions and pool 
heaters, were also covered in the recent appliance standards analysis (US DOE 1993b). Again 
due to the recent release of this document, we rely on the default characterization provided for 
the miscellaneous end-use (McMenamin et al. 1992). Since the REEPS default miscellaneous -
category includes lighting, we subtract the lighting UECs as given in Table 6.6 for each housing 
type. The lighting-adjusted miscellaneous UECs are given in Table 7 .2. The saturations (market 
shares) are 100% because the end-use describes an aggregation of appliances present in the 
typical home, rather than a particular appliance. 
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Table 7.2: Miscellaneous End-Use Input Data 
Screens: AM-4a, AM-4b, AM-4e 

Housing Type Stock Shares New Home REEPS Default Lighting Adjusted 
Shares Misc. UEC UEC (1) Misc. UEC (2) 

(percent)_ (percent) (k:Whlvr) (k:Wh/yr) (kWh/yr) 

Miscellaneous Electric 
Single-Family 100. 100 3085 1824· 1261 
Multifamily 100 100 1525 909 616 
Manufactured Homes 100 100 2:307 963 1344 

Source: REEPS default input set (McMenamin et al. 1992) 
(1) Lighting UEC from Table 6.6. 
(2) Adjusted Miscellaneous UEC = REEPS default UEC - Lighting UEC. 

8. SPECIFIC TECHNOLOGY OPTIONS DATA 

Table 8.1 lists the product classes defined in NAECA. The historic data used in this report (i.e., 
vintage block data) are averages over all product classes. However for new appliances, we 
choose one product class to represent each fuel type in a given end-use. Typically, one or two 
classes dominate sales, making the choice of product class straightforward. For refrigerators, 
"Top mounted auto defrost" was selected to represent the end-use because it accounts for over 
two-thirds of all refrigerator shipments and, as shown in Figure 8.1, its shipment-weighted 
efficiency closely tracks the average efficiency for all refrigerators (AHAM 1991). For freezers, 
"Upright, Manual Defrost" was selected because, as shown in Figure 8.2, its historic average 
efficiency closely tracks that of the average efficiency for all freezers (AHAM 1991). For 
dishwashers, appliance efficiency standards taking effect in 1995 will require that "Standard 
Dishwashers" include water heaters, effectively making them "Water-Heating Dishwashers, 
Standard." Hence, we elected to use water-heating dishwashers rather than the soon-to-be 
eliminated class of standard dishwashers. For clothes washers and dryers, a single product class 
dominates sales in each generic technology. · 

8.1 Specific Technology Efficiency and Cost 

Specific technology design options for each end-use are listed in Appendix Tables B.1 
(refrigerators), C.1 (freezers), D.1, D.2, D.3 (water heaters), E.1 (dishwashers), F.1 (clothes 
washers), G.1 and G.2 (dryers). Each successive option represents a design change that impacts 
the efficiency and/or purchase price of the appliance. For a complete description of the design 
options, see the appropriate DOE Technical Support Document. The option lists begin with 
option "0," which is the base marginal unit in 1987 (US DOE 1989, US DOE 1990) or 1990 (US . 
DOE 1993a). All costs in the TSDs are quoted in base year 1987 (US DOE 1989, US DOE 
1990) or 1990 (US DOE 1993a) dollars. Some designs already exist in models currently on the 
market, and others are still being developed. Arthur D. Little developed the original lists in the 
early 1980s (ADM 1987), and Lawrence Berkeley Laboratory updated and expanded the lists in 
the late 1980s (US DOE 1989). The most efficient options on the lists are currently 
commercially available for some end-uses and exist only as prototypes in other end-uses. In 
some policy forecast cases, restricting our options to these lists may under-predict the potential 
for conservation since it does not account for the innovation of new, more efficient appliance 
options in future years. 
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We inflated the 1987 base-year purchase prices to 1990 dollars using either the Consumer Price 
Index-urban (CPI-urban) for Refrigerators and Freezers, the CPI-urban for Laundry Equipment, 
the CPI-urban for Stoves, Ovens, Dishwashers and Air conditioners, or in the case of water 
heaters; the Producer Price Index (PPI) for Household Equipment, Other. Appendix Tables A.1 
and A.2 give the CPis and PPis for recent years. Another influence on the price of refrigerators 
and freezers is the 1996 CFC ban. Tables B.2 and C.2 show the price effect of the CFC ban (in 
the column labeled "Cost multiplier without CFCs"). 

Table 8.1 NAECA Product Classes 

Refrigerators and RefrigeratorsFreez.ers 
1) Refrigerator:; and Refrigerator-Freezers with manual defrost 
2) Refrigerator-Freezers-partial automatic defrost ' 

3) Refrigerator-Freezers-automatic defrost with: 
a) Top mounted freezer without ice (1) 
b) Side mounted freezer without ice 
c) Bottom mounted freezer without ice 
d) Top mounted freezer with through the door ice service 
e) Side mounted freezer with through the door ice service 

Freezers 
1) Chest, Manual Defrost 
2) Upright, Manual Defrost (1) 
3) Upright, Automatic Defrost 

Water Heaters 
1) Gas-f"~red Storage (1) 
2) Electric-fired Storage (1) 
3) Oil-fired Storage 
4) Gas-fired Instantaneous (2) 

Dishwashers 
1) Compact Dishwasher 
2) Standard Dishwasher 
3) Water-Heating Dishwasher, Compact (115V) 
4) Water-Heating Dishwasher, Standard (115V) (1) 
5) Water-Heating Dishwasher, Compact (220V) 
6) Water-Heating Dishwasher, Standard (220V) 

Clothes Washers 
1) Top-Loading, Compact 
2) Top-Loading, Standard (1) 
3) Top-Loading, Large 
4) Top-Loading, Semi-Automatic 
5) Front Loading 
6) Suds Savers (2) 

Dryers 
1) Electric, Standard (1) 
2) Electric, Compact 120V 
3) Electric, Compact 240V 
4) Gas, Standard (1) 
5) Gas, Compact 

Notes: (1) Product classes in bold type were chosen to represent the 
fuel-specific end-use in the LBL version of REEPS 2.1. 
(2) Not analyzed. 
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Figure 8.1: Shipment Weighted Energy Factors--Refrigerators 
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Source: AHAM Shipment data (AHAM 1991). 
(1) Gaps in data series (after 1975) represented by unconnected points. 

Figure 8.2: Shipment Weighted Energy Factors--Freezers 
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8.2 Specific Technology Market Shares and Availability 

As described in Section 3.2, REEPS is unique in that it can model specific equipment 
technologies and forecast the market share of these options using multinomial logit models. 
While this technique can be quite powerful, it requires comprehensive market data in order to 
specify the logit models. As described in Sections 4 and 5, we did not have access to detailed 
purchase data at the national level and therefore estimated the specific technology efficiency 
choice models using aggregate and average data. These data were sufficient to specify the 
efficiency choice models, but we did not have a second, independent data source for control-year 
market shares to calibrate the efficiency choice models. For this reason, the control-year market 
share data in the Appendices are simply outputs from the efficiency choice models, for use as 
place holders in REEPS. The specific technology market shares shown in Tables B.2, C.2, 0.4, 
0.5, 0.6, E.2, F.2, 0.3, and 0.4 are based on operating costs using 1991 fuel prices and the 
specific technology options available in 1991. REEPS ·uses these market share values to 
calibrate the efficiency choice equations during forecast execution, but the calibration constants 
are assigned near-zero values because the control-year market shares are outputs of the model 
being calibrated. This is admittedly not an effective means of calibrating the efficiency choice 
models, but we are forced to use this method due to the requirements of the REEPS model and a 
lack of sufficiently detailed appliance purchase data. 

In describing specific technology options, REEPS allows the user to restrict the choice of options 
in particular years if it is believed that certain options will not be available for purchase by 
consumers. There are two types of availability parameters: market and legal availability. 
Market availability refers to the maximum market share that can be met by manufacturers. 
Options that are not fully available on the market represent technologies that are produced in 
limited quantity due to manufacturing constraints or because manufacturers target them at niche 
markets. In years when future options are not available on the market (temporary market 
availability of zero), those options are simply ignored in REEPS 2.1 when the efficiency shares 
are calculated. Legal availability refers to technology options that are no longer offered because 
they do not meet minimun;t efficiency standards. In REEPS 2.1, options that are not legally 
available after some year (due to minimum efficiency standards) are then assigned a "legal 
availability" value of zero.t2 Once standards take effect, REEPS 2.1 models the impacts of 
standards by allocating the predicted shares of options not legally available to the next available 
option on the list. 

Legal and Market Availability, Refrigerators. The base 1987 unit (option 0) is more efficient 
than the 1990 NAECA minimum efficiency standards, and is therefore still legally available in 
1990, along with options 2 and 3. We assume that the remaining options require further 
development not completed until1992. The five least efficient options-- 0, 2, 3, 4 and 5 --are 
not available starting in 1993 due to federal efficiency standards taking effect that year. For the 
remaining years, we assume all other options are available on the market. The input data for 
refrigerator legal and market availability are shown in Table B.2. 

Legal and Market Availabiliiy, Freezers. Due to the 1990 minimum efficiency standards, the 
base 1987 unit (option 0) is not available in 1990. We assume that only options 1 and 3 are 
available on the market in 1991. Examination of the 1991 AHAM appliance directory suggests 

12Legal availability is a binary function, in other words partial availability is not possible. In reality, appliance 
models that do not meet the standard may still be available (for a year or two) as dealers' inventories clear. While 
this can be an important effect in particular regions or markets, we ignore this effect on the. national level and 
assume that models not meeting the standard are unavailable in the year the standard becomes effective. 
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that this is a reasonable assumption (AHAM 1992). In 1992, we assume options 4 and 5 become 
available, and thereafter all other options are assumed to be available on the market, except 
options 1 and 3, which are not available starting in 1993 due to minimum efficiency standards 
taking effect that year. The legal and market availability of freezer technology options are shown 
in Table C.2. 

Legal and Market Availability, Water Heaters. Tables D.4, D.5, and D.6 show the availability of 
water heater technology options. Some of the more advanced water heater technology options 
were not available on the market during the period 1990-92 because they required further 
development. For electric water heaters, we assume only options 0, 1, and 2 were available 
during this period. Similarly, we assume option 14 for gas water heaters, and option 4 for oil 
water heaters were not available during the 1990-92 period. 

Legal and Market Availability, Dishwashers, Clothes Washers and Dryers. Minimum efficiency 
standards take effect in 1994 for dishwashers, clothes washers and dryers. For standard water 
heating dishwashers, the standards will eliminate options 0, 1, and 2, as shown in Table E.2. For 
standard clothes washers, the 1994 standards eliminate options 0 and 1, as shown in Table F.2. 
For dryers, the 1994 standards eliminate the first two efficiency options (options 0 and 1) for 
both electric and gas dryers. Generally, the technology for dishwashers, clothes washers and 
dryers is not developing at a rapid rate, thus most specific technology options are available on the 
market at the beginning of the forecast (1990). The only exception is for the clothes washer end
use, in which all technology options more efficient than option 2 are assumed not available in 
significant quantities until 1992. 

9. APPLIANCE STOCK DATA 

Stock Characteristics. To maintain accounts of appliance stocks, REEPS 2.1 requires data on 
efficiency, capacity, and base-year shares, disaggregated by vintage blocks (the year of appliance 
purchase). These appliance stock vintage data are presented in Tables B.3, C.3, D.7, D.8, D.9, 
E.3, F.3, 0.5, and 0.6. In addition, the user specifies stock decay function parameters, described 
below. The average efficiency and capacity data shown in the tables are calculated from AHAM 
shipments data (AHAM 1991). 

9.1 Base-Year Vintage Shares 

Base-year shares by vintage for refrigerators, freezers, water heaters, dishwashers, clothes 
washers and dryers are based on the number of the appliances in each vintage block that survive 
from the year of purchase to the base year 1990, using the decay function described below. 

Decay Function. REEPS 2.1 computes survival and decay rates for appliance vintage blocks 
using a stepwise linear decay function in which 100% of the vintage block survives until a 
minimum lifetime and thereafter decays linearly so that no appliances survive beyond the 
maximum lifetime. To accurately estimate the minimum and maximum lifetimes, we varied 
these lifetime parameters to find the best fit to the following formula: 

Stockt990 = L(Shipmentsvy • SurvivalRatevy, min, max) 

vy 

(9.1) 

where vy is the vintage year, Stock1990 is the 1990 RECS appliance stock, ShipmentsVJ. are the 
AHAM shipments for vintage year vy, and Survival Rate is the fraction of appliances ot vintage 
year vy surviving in 1990, computed from the decay function using lifetime parameters min and 
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max. The resulting best-fit lifetime parameters are shown in Tables B.4, C.4, D.lO, E.4, F.4, and. 
G.7. 

We rely on AHAM shipment data to disaggregate the stock of refrigerators, freezers, water 
heaters, dishwashers, clothes washers and dryers into vintage blocks (AHAM 1991). For vintage 
blocks earlier than the first year in the AHAM data, we assumed the frrst year of shipment data 
holds true for the entire period prior to the first year of shipment data. For example, since 
AHAM shipments data start in 1972, we assumed 1972 shipment levels for the period prior to 
1972. In cases where data were missing for intervening years, we linearly interpolated the 
shipments data. We used refrigerators and freezers as sample end-uses for a cross-check of this 
method, as shown in Figures 9.1 and 9.2. Comparing our results to the 1990 RECS (EIA 1993) 
cross-sectional vintage data on refrigerators and freezers shows that our method approximately 
re-creates the RECS vintage distribution. 

9.2. Base-Year Ownership Shares and UEC 

1990 ownership shares (total saturation for each generic technology) by housing type are from 
the 1990 RECS (EIA 1993). In the case of common water heaters in multi-family buildings, we 
count each housing unit served by a common water heater as a single individual unit for 
saturation purposes. We assume the average UEC (unit energy consumption) is the same for all 
housing types (except for water heaters, due to the strong interaction of housing type and usage 
in water heating). The average UEC is a weighted average of the vintage-block UECs, using the 
1990 vintage-block shares as weights (from Appendix Tables B.3, C.3, D.?, D.8, D.9, E.3, F.3, 
G.5, and G.6). The resulting average UEC values, along with the 1990 ownership shares by 
housing type, are shown in Appendix Tables B.5, C.5, D.11, E.5, F.5, and G.8. 

Figure 9.1: 
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Figure 9.2: Shares of 1990 Stock by Vintage -- Household Freezers 
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9.3. Control-Year Data 
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During forecast execution, REEPS 2.1 adjusts the decision model parameters to fit the values 
specified for the first forecast year, 1991. In order to allow this calibration process, the user must 
provide control-year values for: new home shares (i.e., the saturation of generic technologies in 
new homes), appliance replacement rates (e.g., the fraction of homes choosing to replace a 
decayed appliance), and the marginal size of new equipment. These data are presented in 
Appendix Tables B.6, C.6, D.12, E.6, F.6, and 0.9. 

The new home shares for all end-uses are derived from the 1990 RECS data tapes, and represent 
the shares for homes built during the period 1985 to 1990 (EIA 1993). 

We generally assume that 100% of existing appliances are replaced when retired, except in the 
case of freezers. We estimated freezer replacement rates, RR, by calculating the best fit to the 
following equation: 

aStock1981-1990 = 

87 

~)<NHSharesf0-87 • HStarts~)- (ADecayh • (RR -1))] 

81 
90 

+ L[(NHSharesf8-90 • HStartsL>- (ADecay~ • (RR -1))1 
88 

(9.2) 

The change in stock from 1981 to 1990, AStockJ98J-J990, is calculated from RECS data (EIA 
1983, EIA 1992)). The new home shares for the period 1980 to 1987, NHSharesh80,87, were 
derived from the 1987 RECS data tapes, and represent the shares for new homes built during the 
period 1981 to 1987 (EIA 1989a). The housing starts, HStartsht, are from the Census Bureau 
Current Construction Reports (U.S. Bureau of the Census, various years). Appliance decay 
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totals, ADecayht, are estimated as the difference between the AHAM shipment data (AHAM 
1991) and the RECS appliance stock data (EIA 1983, EIA 1992). Replacement rates, RR, are 
assumed to be constant over time and for all housing types. The results of these estimates are 
shown in Appendix Table C.6. For water heaters, we assume that the overall replacement rate is 
100%, but that some substitution between fuel types may occur at the time of replacement. The 
water heater replacement rates shown in Appendix Table 0.12 account for these fuel-switching 
replacements. These replacement rates are calculated so as to reconcile new home shares with 
historical shipments data. 

The marginal size of new equipment is from AHAM shipment data (AHAM 1991). If these data 
are not available for a particular end-use the marginal size is assumed to be constant (constant 
equipment sizes are normalized to a value of 1). 

10. FUTURE WORK 

The following are ways the REEPS appliance model can be enhanced, given sufficient data 
and/or code changes to the REEPS software. 

Estimate ownership (market share) models. In the current version of the model, we have relied 
upon the REEPS default ownership models for refrigerators, freezers, dishwashers, clothes 
washers and dryers. Although ownership shares forecast with these models are generally 
consistent with historical trends, it would be preferable to re-estimate these models with more 
recent and more detailed data on technologies and market shares._ Cross-sectional as well as 
longitudinal data are necessary for proper estimation. The source of the data would most likely 
be RECS from various years. This is an econometric task, requiring the testing of various mo9el 
specifications in order to determine the most statistically valid model. 

Make relationships endogenous in Water Heater Model. As discussed in Section 5.1.2 and 
shown in Figure 5.3, REEPS is unable to endogenously model four important interactions 
between the water heater model and the dishwasher or clothes washer models. This limitation 
forces the user to undertake a time-consuming, iterative approach to run a forecast. .Making 
these relationships endogenous requires changes to the REEPS computer code. 

Make replacement water heater fuel type conditional on heating fuel type. Currently, we model 
the replacement fuel type as conditional on the old water heater fuel type. Heating fuel type is a 
better indicator of the availability of gas hookup. This task also requires modification of the 
REEPS computer code. 

Vary decay function by product class. This is relevant for those products with multiple fuel types 
or product classes (i.e., water heaters, dryers, lighting). For instance, it is thought that electric 
water heaters have a longer lifetime than gas water heaters, due to, in part, less corrosion. The 
current REEPS code has a single decay function for each product; upgrading to multiple decay 
functions would require software changes to the REEPS code. 

Replace cooking model. The model currently in-place is the REEPS default. A more detailed 
model could be added with specific technology options based on the recently published appliance 
standards analysis (US DOE 1993b). 

Lighting model As better monitored usage data and lighting inventories become available, we 
will incorporate these into the REEPS lighting model. The lighting usage equation should also 
be a function of floor area, to incorporate the effect of changing floor area on the number of 
sockets. We also could define specific efficiency options for the lighting end-uses and estimate 
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an efficiency choice model in order to forecast naturally-occurring improvements to the lighting 
stock. 

Additional models. Other end-uses which might be given a more detailed treatment are 
microwaves and televisions. This will hopefully improve modeling of the miscellaneous 
category of end-uses because televisions and microwaves are currently included in that end-use. 

11. CONCLUSIONS 

Using the REEPS modeling system, we have created an appliance forecasting model with nine 
end uses: refrigerators, freezers, water heaters, dishwashers, clothes washers, dryers, lighting, 
cooking, and miscellaneous. For the first six of these end-uses, we have configured cost and 
efficiency data on specific technologies and estimated models to predict the efficiency choice for 
these technologies. The decision models are based upon the tradeoff between purchase price and 
operating cost. For water heaters, we have also estimated a decision model to predict market 
shares based on fuel type. The other end-uses (except lighting) have ownership models based on 
the REEPS default models. 

This report has described the theoretical basis, methodology and input data used to develop a 
new configuration of the REEPS 2.1 forecasting model. Future reports in this series will 
describe results from the model and use these results to investigate alternative policy scenarios. 
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Building Type 

Control Data 

Decay 

Decision Model 

DOE 

EPAct 

EPRI 

Generic 
Technology 

HVAC 

LogitModel 

Market Share 

MWEF 

NAECA 

RECS 

REEPS 

GLOSSARY 

A class of buildings with similar characteristics, such as the number of 
households living within one building, relationship to neighboring 
buildings, floor area, and construction practices. Typical building types 
include single-family detached, multifamily, manufactured homes, etc. 

Observed data from the first forecast year ( 1991 for the LBL REEPS 
implementation) describing actual characteristics of the appliance stock 
(market shares, sizes, etc.). These data are used to calibrate the REEPS 
model before forecast execution. 

The process by which an appliance reaches the end of its useful life and is 
removed from the appliance stock. 

A mathematical representation of the purchase decisions made in the 
appliance market. Four classes of decision models are available in 
REEPS: a) ownership in new construction, b) decay and replacement 
decisions, c) non-owner acquisition, and d) pre-failure replacement and 
conversion. 

US Department of Energy 

Energy Policy Act of 1992 

Electric Power Research Institute 

A group of appliances distinguished by their product class, fuel type, 
physical configuration, mechanical methods, or general level of efficiency. 
For example, electric and gas water heaters are separate generic 
technologies. 

Heating, Ventilation, and Air Conditioning 

A form of qualitative choice model that estimates the probability of a 
decision-maker selecting a specific option among several discrete choices. 
See Appendix I for a more detailed discussion. 

For a given year, the fraction of units shipped that belong to a Specific 
Technology group. 

Model-Weighted Efficiency Factor= the average efficiency of all models 
offered for sale in a given year. 

National Appliance Energy Conservation Act of 1987 

Residential Energy Consumption Survey, conducted by DOE's Energy 
Information Administration (EIA). · 

Residential End-Use Energy Planning System 
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RER 

Saturation 

Specific 
Technology 

State-Based 
Decision Model 

SWEF 

UEC 

Vintage Block 

Regional Economic Research, Inc. Developers of the REEPS end-use 
forecasting model under contract to EPRI. 
12520 High Bluff Dr., Suite 220 
San Diego, CA 92130-2062 
(619) 481-0081 

The fraction of households owning a particular appliance. 

A narrowly defined equipment category (represented by one efficiency 
level) within a generic technology group. Also called a specific efficiency 
option. 

Models consumer decisions based on the "state" of the decision-maker, 
i.e., the characteristics of the household and their existing appliance 
ownership status. 

Shipment-Weighted Efficiency Factor= the average efficiency for all units 
shipped in a given year, weighted by the relative number of units shipped 
within each efficiency level. 

Unit Energy Consumption. Annual energy consumption for an individual 
appliance unit. 

A group of appliances shipped (or houses built) during a specific time 
period. 
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APPENDICES 

The following appendices provide a complete listing of the REEPS input data generated by this 
analysis. There is one appendix for each residential end-use. Many of the tables of REEPS 
inputs have the caption "Screens:" beneath the table heading, followed by codes such as "AM-
4f." These refer to the specific REEPS appliance model screen(s) in which the data in that table 
would be entered. 

Appendix A documents macroeconomic data (such as consumer price indices) used in this 
analysis, as well as exogenous variables used for appliance forecasting. Appendices B-G present 
REEPS inputs for individual end-uses. The specific efficiency options described in these 
appendices (such as Table B.l) are listed by option number from the appropriate DOE Technical 
Support Document. The option numbers are not necessarily consecutive, but are drawn directly 
from the TSD appliance design lists. Appendix H contains a summary of residential lighting 
usage surveys. Appendix I describes the qualitative choice models used in REEPS, and the 
theory underlying our implementation of the models. 
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APPENDIX A: MACROECONOMIC DATA AND EXOGENOUS VARIABLES 

Table A.l: Consumer Price Indices (1982-84 = 100) 

House Appliances, inc. Major Refrigerators Laundry Stoves, ovens, 
Furnishings electronic Household and home Equipment dishwasher, and 

Year equipment Appliances freezers air conditioners 

1986 102.2 92.8 100.0 104.8 

1987 103.6 91.4 100.5 100.2 104.1 100.6 

1988 105.1 90.2 101.0 101.0 105.1 100.6 

1989 105.5 89.1 101.5 103.0 105.9 99.7 

1990 106.7 87.8 101.2 102.6 107.2 98.5 

1991 107.5 86.0 100.1 101.5 106.2 97.1 .. 
Source: (US Bureau of Labor Statistics various years) 

Table A.2: Producer Price Indices (1982 = 100) 

Finished Major Household Household-
Consumer Household Cooking Other 

Year Goods Appliances 

1986 108.9 100 108.7 109.3 

1987 111.5 99.7 109.3 106.5 

1988 113.8 100.4 107.8 108.6 

1989 117.6 102.9 109.2 111.6 

1990 120.4 105.2 110.7 116.9 

1991 106 110.7 119.1 .. Source: (US Bureau of Labor Statistics vanous years) 
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Table A.3: REEPS Piped Natural Gas Exogenous Variables 

Year Piped Gas Availability Piped Gas Space Heating 
Saturation 

New Existing New Existing 
Construction Homes Construction Homes 

1990 52% 67% 37% 55% 

1991 54% 67% 37% 55% 

1992 55% 66% 36% 54% 

1993 55% 66% 36% 54% 

1994 55% 66% 36% 54% 

1995 55% 66% 36% 53% 

1996 55% 65% 36% 53% 

1997 55% 65% 35% 53% 

1998 55% 65% 35% 53% 

1999 55% 65% 35% 52% 

2000 55% 64% 35% 51% 

2001 55% 64% 35% 51% 

2002 55% 64% 35% 51% 

2003 55% 64% 35% 51% 

2004 55% 63% 35% 51% 

2005 55% 63% 34% 51% 

2006 55% 63% 34% 50% 

2007 55% 62% 34% 50% 

2008 55% 62% 34% 50% 

2009 55% 62% 34% 50% 

2010 55% 62% 34% 50% 
Source: LBL-REM 
(1) These data are forecast by LBL-REM and are used as an exogenous input to 
the REEPS water heater fuel choice module. 
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APPENDIX B: REFRIGERATOR DATA 

Table B.1: Specific Efficiency Data, 
Top Mount Auto Defrost without Through the Door Features with CFCs (1) 
(Adjusted Volume = 20.8 cO 
Screens: AM-4f, AM-5d 

Option Specific Technology Design Unit Energy Purchaser's Cost Efficiency 
Number Consumption(J) 

(kWhlyr) 1987$ 1990 $(2) (cf/k.Whlday) . 

0 Baseline, 1987 947 512.38 524.68 8.02 

2 0 + 4.50 Compressor 841 519.54 532.01 9.03 
3 1 + 5.00 Compressor 787 522.32 534.86 9.65 
4 3 + k=0.11 Foam Insulation 745 528.74 541.43 10.19 

5 4 + 5.30 Compressor 714 540.32 553.29 10.63 
6 5 +2" Door 683 559.21 572.63 11.12 

9 7 + k=0.10 Foam Insulation 615 618.86 633.71 12.34 

10 8 + 2.5" Thick Sides 595 638.33 653.65 12.76 
11 10 + 2.5" Door 582 657.93 673.72 13.04 
12 8 +Evacuated Panels 515 719.54 736.81 14.74 

Notes: (1) (US DOE 1989). 
(2) Inflated using CPI for Refrigerators and Freezers, CPI(1990)/CPI(1987) = 1.028. 
(3) UEC based on DOE test procedure. 

Table B.2 Specific Efficiency Options, Shares and Availability, 
Top Mount Auto Defrost without Through the Door Features, with CFCs 
Screens: AM-4f, AM-5e 

Option Number Control -Year Legal Availability Market Availability Cost Multiplier 
(1991) Shares(l) without CFCs (5) 

(oercent) 
0 33.4 not available after constant 1.04 

1992 (2) 
2 28.0 not available after constant 1.03 

1992 (2) 
3 38.6 not available after constant 1.02 

1992 (2) 
4 0 not available after available after 1990 (3) 1.02 

1992 (2) 
5 0 not available after available after 1990 (3) 1.03 

1992 (2) 
6 0 constant available post-1992 (4) 1.04 
9 0 constant available post-1992 (4) 1.10 

10 0 constant available post-1992 (4) 1.13 
11 0 constant available post-1992 (4) 1.16 
12 0 constant available post-1992 (4) 1.41 

Notes: (1) Predicted by logit efficiency choice equation. 
(2) Below 1993 Federal Standard. Predicted shares are added to share for next available option (6). 
(3) Market availability is "zero" in 1990 so that control year calibration does not set the "desirability 
index" of these options to -100, which would effectively give them zero market share for the entire 
forecast. 
(4) These high-efficiency options are assumed to be unavailable until1993. 
(5) Calculated from data in US DOE (1989). Cost multiplier reflects higher design and production costs 
of models using non-CFC refrigerants. 

51 



Table B.3: Refrigerator Stock Data 
Screens: AM-2d, AM-3c 
Year of Purchase Unit Energy Average Average Share of 1990 

Consumption Efficiency (1) Adjusted Stock(2) 
(kWh/yr) Volume(1) 

(cf/kWh/day) (cO (percent) 
pre-1973 1726 3.84 18.16 14.7 

1973, 1974 1655 4.09 18.55 6.7 
1975, 1976 1561 4.46 19.08 5.7 
1977, 1978 1473 4.86 19.61 8.0 
1979, 1980 1320 5.43 19.63 8.4 
1981, 1982 1191 6.10 19.91 8.0 
1983, 1984 1150 6.48 20.41 10.6 
1985, 1986 1065 6.78 19.79 11.6 
1987, 1988 969 7.53 19.99 13.1 
1989, 1990 925 7.96 20.18 13.1 

Source: (1) AHAM shipment data, 1972-1990, averaged over two-year intervals (AHAM 
1991). Pre-1972 vintages assumed same as 1972. 
(2) Calculated from AHAM shipments data , minimum lifetime of 7 years and 
maximum lifetime of 29 years. Shares are generally consistent with 1990 RECS 
vintage data (EIA 1992). 

Table B.4: Refrigerator Minimum and Maximum 
Lifetimes (years) 
Screen: AM-2b 

Minimum Lifetime 7 
Maximum Lifetime 29 

Notes: (1) Minimum and maximum lifetimes 
calculated to match historical shipment data with 
1990 RECS stock of99.8 million units (AHAM 1991 
EIA 1992). ' 

(2) REEPS assumes a linear decay between the 
minimum and maximum lifetimes. 
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Table B.S: Refrigerator Base-Y ear 1990 Stock Average 
Screens: AM-3a, AM-3f 

Housi~Type Share of 1990 Stock(l) Unit Energy 
Consumption(2) 

(oercent) (kWhlyr) 
Total REF1 REF2 

Single Family 121.6 100 21.6 1273 
Multi-Family 102.5 100 2.5 1273 
Manufactured Homes 103.5 100 3.5 1273 
Source: (1) 1990 RECS (EIA 1993). 

(2) Calculated from AHAM shipments data (AHAM 1991) and vintage shares 
(Table B.3). 

Table B.6: Refrigerator Control -Year 1991 Marginal Shares 
Screens: AM-4a, AM-4b, AM-4e 

Housi~Type New Home Shares(1) Replacement Marginal 
Rates(2) Size(3) 

(percent). (percent). (cO 
Total REF1 REF2 

Single Family 123.5 100 23.5 100 20.45 
Multi-Family 101.6 100 1.6 100 20.45 
Manufactured Homes 102.8 100 2.8 100 20.45 
Source: (1) New home shares are from 1990 RECS for houses built during the period 1985-1990 

(EIA 1993). 
(2) Replacement shares are assumed to be 100% for REF1. Replacement share for REF2 
is described in Table 4.1. 
(3) From 1990 AHAM shipments data (AHAM 1991). cf =cubic feet. 
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APPENDIX C FREEZER DATA 

Table C.l Specific Efficiency Data, Upright Manual Defrost Freezers with CFCs (1) 
(Adjusted Volume = 26.95 ct) 
Screens: AM-4f, AM-5d 

Option Specific Technology Design Unit Energy Purchaser's Cost Efficiency 
Number Consumption (2) 

kWblyr 1987$ 1990$ (3) cflkWblday 

0 Baseline, 1987 777 361.00 369.66 12.66 
1 0 + 4.50 Compressor 704 366.21 375.00 13.97 
3 1 + 5.00 Compressor 606 374.42 383.41 16.23 
4 3 + k=0.11 Foam Insulation 544 381.16 390.31 18.08 
5 4 + 5.30 Compressor 511 392.70 402.12 19.25 
7 5 +2" Door 489 400.04 409.64 20.12 
8 7 + k=0.10 Foam Insulation 453 417.54 427.56 21.71 

10 8 + 2.5" Thick Sides 431 440.55 451.12 22.82 
11 10 + 2.5" Door 416 448.01 458.76 23.65 
12 8 + Evacuated Panels 343 505.05 517.17 28.68 

Source: (1) US OOE (1989) 
(2) UEC based on OOE test procedure. 
(3) Inflated usin~ CPI for Refri~erators and Freezers, CPI(1990)/CPI(1987) = 1.028. 

Table C.2: Specific Efficiency Options, Shares and Availability, Upright Manual Defrost Freezers with 
CFCs 
Screens: AM-4f, AM-5e 

Option Number 

0 

1 

3 

Control -Year 
Shares (1) 
(percent) 

0.0 
(30.66) 
64.39 

(33.73) 
35.6 

~al Availability Market Availability 

not available (2) 

not available after 
1992 (3) 

not available after 
1992 (3) 

constant 

constant 

constant 

Cost Multiplier 
without CFCs (6) 

1.021 

1.021 

1.021 

4 0 constant available by 1992 (4) 1.021 
5 0 constant available by 1992 (4) 1.021 
7 0 constant available by 1993 (5) 1.021 
8 0 constant available by 1993 (5) 1.021 

10 0 constant available by 1993 (5) 1.021 
11 0 constant available by 1993 (5) 1.021 
12 0 constant available by 1993 (5) 1.021 

Notes: (1) Shares adjusted for legal availability of option 0. Numbers in parentheses are actual inputs. 
Because option 0 has a legal availability of "0" in 1991, REEPS calibrates the "actual inputs" (in 
parentheses) to the desired values (values not in parentheses). 
(2) Below 1990 NAECA Standard. Predicted shares after 1990 are added to the share of the next 
available option (Option 1). 
(3) Below 1993 NAECA Standard. Predicted shares after 1992 are added to the share of the next 
available option (Option 4). 
(4) 'Market availability is "zero" in 1990 so that control year calibration does not set the "desirability 
index" of these options to -100, effectively giving them zero market share for the entire forecast 
(5) These high-efficiency options are assumed to be unavailable until1993. 
(6) Calculated from data in US OOE (US DOE 1989) Cost multiplier reflects higher design and 
nroduction costs of models usin~ non-CFC refril!erants. 
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Table C.3: Freezer Stock Data 
Screens: AM-2d, AM-3c 

Year of Purchase Unit Energy Average Average Share of 1990 
Consumption Efficiency (1) Adjusted Stock(2) 

Volume(1) 
(kWh/yr) (cflkWb/day) (cf} (percent}_ 

pre-1973 1461 7.290 29.18 17.7 
1973, 1974 1318 7.911 28.56 12.7 
1975, 1976 1171 8.680 27.85 10.1 
1977, 1978 1011 9.761 27.03 8.9 
1979, 1980 909 10.603 26.41 11.4 
1981, 1982 824 11.212 25.30 7.6 
1983, 1984 807 11.477 25.36 8.1 
1985, 1986 770 11.809 24.92 7.6 
1987, 1988 681 12.920 24.09 8.1 
1989, 1990 597 14.240 23.28 7.8 

Source: (1) AHAM shipment data, 1972-1990 (AHAM 1991). Pre-1972 vintages assumed 
same as 1972 vintage. 
(2) Calculated from AHAM shipment data , minimum lifetime of 11 years and 
maximum lifetime of 31 years. Shares are generally consistent with 1990 RECS 
vintage data (EIA 1992). 

Table C.4: Freezer Minimum and Maximum Lifetimes 
(years) 
Screen: AM-2b 

Minimum Lifetime 11 
Maximum Lifetime 31 

Notes: (1) Minimum and maximum lifetimes 
calculated to match AHAM historical shipment data 
with 1990 RECS stock total of 32.4 million units 
(AHAM 1991, EIA 1992). 
(2) REEPS assumes a linear decay between the 
minimum and maximum lifetimes. 
(3) REEPS constrains lifetimes to integer values. 

55 



Table C.5: Freezer Base-Year 1990 Stock Average 
Screens: AM-3a, AM-3f 

') 

Housing Type Share of 1990 UEC(2) 
Stock(1) 
(percent}_ jk_Wblyr} 

Single Family 44.4 1027 
Multi-Family 9.6 1027 
Manufactured Homes 28.9 1027 
Source: (1) 1990 RECS (EIA 1993) 

(2) Calculated from AHAM shipments data (AHAM 
1991) and vintage shares (Table C.3). 

Table C.6 : Freezer Control-Year 1991 Marginal Shares 
Screens: AM-4a, AM-4b, AM-4e 

Housing Type New Home Replacement Marginal 
Shares(1) Rates(2) Size(3) 
(percent) (percent) (cO 

Single Family 32.4 69 23.31 
Multi-Family 9.8 69 23.31 
Manufactured Homes 26.7 69 23.31 

Source: (1) New home shares are from 1990 RECS for houses built during the 
period 1985-1990 (EIA 1993). 
(2) Replacement shares are calculated to be historically consistent with 
new home shares. Assumed to be constant over period 1982-1990 and 
over all housing types. 
(3) From 1990 AHAM shipments data (AHAM 1991). cf =cubic feet 
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APPENDIX D: WATER HEATER DATA 

Table D.l: Specific Efficiency Data, Electric Storage Water Heater(l) 
Screens: AM-4f, AM-5d 

Option Specific Technology Design Unit Energy Purchaser's Cost Efficiency 
Number Consumption 

(kWhlyr) 1990$ (kWh.thlkWh.e) 

0 Baseline 5096 265.31 0.862 
1 0 + Reduce Heat Leaks 5024 268.00 0.874 
2 1 + Heat Traps 4900 272.16 0.896 
9 2 + R-25 Insulation . 4737 307.35 0.927 

3 2 +Add On Heat Pump 2479 626.67 1.772 
7 3 + R-25 Insulation 2317 659.69 1.896 
5 2 + Integral Heat Pump 1731 1099.62 2.538 

Source: (1) Source: US DOE (1993a) 
(2) kWh.thlkWh.e is the thermal efficiency of the desi_gn. 

Table D.2: Specific Efficiency Data, Gas-fired Stora~e Water Heater(l) 
Screens: AM-4f, AM-5d 

Option Specific Technology Design Unit Energy Purchaser's Cost Efficiency 
Number Consumption (2) 

(MMBtulyr) (1990 $) (B tu.th/B tu.f) 

0 Baseline 27.55 281.60 0.544 
1 0 + Heat Traps 27.22 286.72 0.551 
2 1 + Reduce Heat Leaks 27.07 288.95 0.554 
3 2 + R -16 Insulation 26.31 305.65 0.570 
14 3 + R-25 Insulation 26.02 341.20 0.576 
12 3 + liD w/ Flue Damper 23.37 390.15 0.641 
24 0 + Condense Flue Gases 17.01 1183.4 0.881 

Source: (1) Source: US DOE (1993a) 
(2) Some gas water heater designs also use electricity for the intermittent ignition device (liD), but 
REEPS only considers one fuel for each l:!;eneric technology .. 

Table D.3: Specific Efficiency Data, Oil-fired Storage Water Heater(l) 
Screem: AM-4f, AM-5d 

Option Specific Technology Design Unit Energy Purchasers Cost Efficiency 
Number Consumption (2) 

(MMBtulyr) (1990 $) (Btu.th/Btu.f) 

0 Baseline 28.32 724.66 0.529 
1 0+ 1 in Foam 25.71 738.55 0.583 
4 3 + Reduce Heat Leaks 25.12 745.49 0.597 
? 24.87 758.25 0.603 
5 4+2inFoam 23.78 785.99 0.630 
6 5 + Flue Damper 22.11 857.21 0.678 
7 6 + Multiple Flues 21.39 991.68 0.701 
8 0 + Condensing 19.01 2241.08 0.788 

Source: (1) Source: US DOE (1993a) 
(2) All oil water heater designs also use electricity for the burner ignition , but REEPS only considers 
one fuel for each generic technology .. 
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Table 0.4: Specific Efficiency Options, Shares and Availability, 
Electric Storage Water Heaters 
Screens: AM-4f, AM-Se 

Option Number Control -Year Legal Availability Market Availability 
(1991) Shares (1) 

(percent) 
0 31.80 constant constant 
1 32.80 constant constant 
2 35.81 constant constant 
9 0 constant available by 1993 (2) 
3 0 constant available by 1993 (2) 
7 0 .constant available by 1993 (2) 
5 0 constant available by 1993 (2) 

Source: (1) 1990 RECS (EIA 1993). 
(2) These high-efficiency options are assumed to be unavailable in significant numbers 
until1993. 

Table 0.5: Specific Efficiency Options, Shares and Availability, 
Gas-fired Storage Water Heaters 
Screens: AM-4f, AM-Se 

Option Number Control-Year Legal Availability Market Availability 
(1991) Shares (1) 

(percent) 
0 32.82 constant constant 
1 28.04 constant constant 
2 26.28 constant constant 
3 12.86 constant constant 

14 0 constant available by 1993 (2) 
12 0 constant available by 1993 (2) 
24 0 constant available by 1993 (2) 

Source: (1) 1990 RECS (EIA 1993). 
(2) These high-efficiency options are assumed to be unavailable in significant numbers 
until1993. 

Table 0.6: Specific Efficiency Options, Shares and Availability, 
Oil-tired Storage Water Heaters 
Screens: AM-4f, AM-Se 

Option Number Control-Year Legal Availability Market Availability 
(1991) Shares (1) 

(percent) 
0 60 constant constant 
1 40 constant constant 
4 0 constant available by 1993 (2) 
? 0 constant available by 1993 (2) 
5 0 constant available by 1993 (2) 
6 0 constant available by 1993 (2) 
7 0 constant available by 1993 (2) 
8 0 constant available by 1993 (2) 

Source: (1) 1990 RECS (EIA 1993). 
(2) These high-efficiency options are assumed to be unavailable in significant numbers 
until1993. 
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Table D.7: Electric Storage Water Heater Stock Data 
Screens: AM-2d, AM-3c 
Year of PurchasE Unit Energy Average Average · Share of 1990 

Consumption (1) Efficiency (2) Volume (2) Stock (3) 

(kWh/yr) (kWh.thlkWh.e) (normalized) (percent) 

pre-1973 5508 0.798 1.0 10.5 
1973, 1974 5492 0.800 1.0 5.5 
1975, 1976 5471 0.803 1.0 5.9 
1977, 1978 5451 0.806 1.0 7.5 
1979, 1980 5416 0.811 1.0 7.9 
1981, 1982 5348 0.822 1.0 8.9 
1983, 1984 5274 0.833 1.0 12.4 
1985, 1986 5189 0.847 1.0 13.9 
1987;1988 5101 0.862 1.0 13.9 
1989, 1990 5016 0.876 1.0 13.6 

Source: (1) UEC assumes DOE test procedure hot water usage (64.3 gall day). 
(2) GAMA shipment data (GAMA 1991). Efficiencies from US DOE (US DOE 
1979) and estimated from GAMA directories. 1990 efficiency value from NAECA 
standard (NAECA 1987). 
(3) Calculated from GAMA shipment data, minimum lifetime of 5 years and 
maximum lifetime of 30 years. Shares are generally consistent with 1990 RECS 
vintage data (EIA 1992). 

Table D.8: Gas-fired Storage Water Heater Stock Data 
Screens: AM-2d, AM-3c 
Year of PurchasE Unit Energy Average Average Share of 1990 

Consumption (1 Efficiency (2) Volume (2) Stock (3) 

(MMBtulyr) (Btu.th!Btu.t) (normalized) (percent) 

pre-1973 31.6 0.474 1.0 14.7 
1973, 1974 31.5 0.476 1.0 5.1 
1975, 1976 31.3 0.479 1.0 6.0 
1977, 1978 31.2 0.481 1.0 7.1 
1979, 1980 30.9 0.485 1.0 7.5 
1981, 1982 30.7 0.489 1.0 8.5 
1983, 1984 30.4 0.493 1.0 10.6 
1985, 1986 29.5 0.508 1.0 12.5 
1987, 1988 28.5 0.527 1.0 13.9 
1989,1990 27.5 0.545 1.0 14.1 

Source: (1) UEC assumes DOE test procedure hot water usage (64.3 gall day). 
(2) GAMA shipment data (GAMA 1991) .. Efficiencies from US DOE (US DOE 
1979) and estimated from GAMA directories. 1990 efficiency value from NAECA 
standard (NAECA 1987). 
(3) Calculated from GAMA shipment data, minimum lifetime of 5 years and 
maximum lifetime of 30 years. Shares are generally consistent with 1990 RECS 
vintage data (EIA 1992). 
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Table 0.9: Oil-fired Storage Water Heater Stock Data 
Screens: AM-2d, AM-3c 
Year of Purchase Unit Energy Average Average Share of 1990 

Consumption (1 Efficiency (2) Volume (2) Stock (3) 

(MMBtu/yr) (B tu.th/B tu.t) (normalizedl (percent) 

pre-1973 30.7 0.488 1.0 13.5 
1973, 1974 .30.7 0.488 1.0 5.4 
1975, 1976 30.7 0.488 1.0 5.4 
1977, 1978 30.7 0.488 1.0 5.4 
1979, 1980 30.7 0.488 1.0 5.4 
1981, 1982 30.7 0.489 1.0 11.2 
1983, 1984 30.5 0.491 1.0 11.2 
1985, 1986 30.4 0.493 1.0 12.9 
1987, 1988 30.3 0.495 1.0 14.6 
1989, 1990 30.1 0.498 1.0 15.0 

Source: (1) UEC assumes DOE test procedure bot water usage (64.3 gal/day). 
(2) GAMA shipment data (GAMA 1991) .. Efficiencies from US DOE (US DOE 
1979) and estimated from GAMA directories. 1990 efficiency value from NAECA 
standard (NAECA 1987). 
(3) Calculated from GAMA shipment data, minimum lifetime of 5 years and 
maximum lifetime of 30 years. Shares are generally consistent with 1990 RECS 
vintage data (EIA 1992). 

Table D.lO: AU Water Heaters, Minimum and Maximum 
Lifetimes (years) 
Screen: AM~2b 

Minimum Lifetime 5 
Maximum Lifetime 30 

Notes: (1) Minimum and maximum lifetimes 
calculated to match GAMA historical shipment data 
with 1990 RECS stock total of90.1 million units 
(EIA 1992, GAMA 1991). 
(2) REEPS assumes a linear decay between the 
minimum and maximum lifetimes. 
(3) REEPS constrains lifetimes to inte~er values. 
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Table D.ll Water Heater Base-Year 1990 Stock Average 

Screens: AM-3a, AM-3f 

Housing Type Shares of UEC(2) 
1990 Stock (1) 

(percent) (units) 

Standard Electric Storage Water Heater· kWblyr 

Single Family 36.4 4508 
Multi-Family 33.9 3718 
Manufactured Homes 64.6 4193 

Standard Gas-fired Storage Water Heater MMBtn/yr 

Single Family 58.3 25.66 
Multi-Family 57.1 21.16 
Manufactured Homes 35.2 23.86 

Standard Oil-fired Storage Water Heater MMBtn/yr 

Single Family 4.6 26.07 
Multi-Family 8.8 21.51 
Manufactured Homes 0.2 24.25 

Source: {1) 1990 RECS (EIA 1993). Common units in multi-
family housing modeled as individual storage water 
beaters. 
(2) Calculated from AHAM shipment data (AHAM 
1991) and vintage shares (Tables 0.7-9). 

Table D.12: Water Heater Control-Year 1991 Marginal Shares 

Screens: AM-4a, AM-4b, AM-4e 

New Home Shares(1) Replacement Rates(2) 

Housing Type (percent) Replacement (percent) 
T_}'l)e 

Electric Storage Water Heater 

Single Family 52.3 Electric 95 
Multi-Family 82.0 Gas-frred 5 
Manufactured Homes 73.4 Oil-frred 0 

Gas-frred Storage Water Heater 

Single Family 45.1 Electric 10 
Multi-Family 18.0 Gas-frred 90 
Manufactured Homes 26.6 Oil-fired 0 

Oil-frred Storage Water Heater 

Single Family 2.1 Electric 0 
Multi-Family 0 Gas-frred 0 
Manufactured Homes 0 Oil-fired 100 

Source: (1) New home shares are from 1990 RECS for houses built during the 
period 1985-1990 (EIA 1993). 
(2) Replacement shares are calculated to be historically consistent with 
new home shares. Assumed to be constant over period 1982-1990 and all 
housing types. 
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Table D.13: Water Heater Exogenous Variables 

(Used in Dishwasher and Clothes Washer Efficiency Choice 
Models) 

Stock Average 

Year Electric Water Heater Energy Factor 
Water Heater 

Saturation Electric Gas 

1990 38% 0.83 0.50· 
1991 38% 0.84 0.50 
1992 39% 0.84 0.52 
1993 39% 0.84 0.51 
1994 40% 0.85 0.51 
1995 41% 0.85 0.52 
1996 41% 0.86 0.52 
1997 42% 0.86 0.52 
1998 43% 0.86 0.53 
1999 44% 0.87 0.53 
2000 45% 0.87 0.53 
2001 46% 0.87 0.53 
2002 47% 0.87 0.54 
2003 48% 0.88 0.54 
2004 49% 0.88 0.54 
2005 50% 0.88 0.54 
2006 51% 0.88 0.54 
2007 53% 0.88 0.55 
2008 54% 0.88 0.55 
2009 55% 0.88 0.55 
2010 56% 0.88 0.55 

Source: Preliminary run of REEPS water heater model 
described in this repon. 
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APPENDIX E: DISHWASHER DATA 

Table E.1: Specific Efficiency Data, 
Standard Water Heating Dishwasher {1) 
Screens: AM-4f, AM-Sd 

Option Specific Technology Energy Purchaser's Cost Efficiency Hot Water 
Number Design Consumption [Motor+Dryer+ UEC(4) 

[Motor+ Dryer+ Heater Only] 
Heater Only] (2) 

(kWh/yr) (1987 $) (1990 $) (3) (cycle/kWh) (kWh.elyr) 

0 Baseline 178 320.03 313.35 1.28 539 
1 Reduce Water Use 168 330.81 323.90 1.36 431 
2 1 + Reduce Booster 147 333.71 326.74 1.56 431 

Use 
3 2 + Improved Motor 134 339.90 332.80 1.71 431 
4 3 + Fill Control 134 352.43 345.07 1.71 418 

Source: (1) US DOE (1990). 
(2) Assuming 229 cycles/year. 
(3) Inflated using CPI for stoves, ovens, dishwashers and air conditioners, CPI(1990)/CPI(1987) = 0.98. 
(4) Hot water UEC assumes electric water heater with EF=0.85 and 229 cycles/year. Used in operating cost 
calculations. 

Table E.2: Specific Efficiency Options, Shares and Availability, 
Standard Water Heating Dishwasher 
Screens: AM-4f, AM-Se 

Option Number Control Year (1991) Legal Availability Market Availability 
Shares (1) 
(percent) 

0 64.9 not available after 1994(2) constant 
1 18.8 not available after 1994(2) constant 
2 13.1 not available after 1994(2) constant 
3 3.1 constant constant 
4 0.1 constant constant 

Source: (1) Shares predicted by logit equation. 
(2) Below 1994 NAECA Standard. Predicted shares after 1994 are added to the share of 
the next available option(option 3). ' 
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Table E.3: Dishwasher Stock Data 
Screens: AM-2d, AM-3c 
Year of PurchasE Energy Average Average Share of 1990 

Consumption Efficiency Adjusted Stock (3) 
[Motor+Dryer+ [Motor+ Dryer+ Volume 
Heater Only] (1) Heater Only] (2) 

(kWh/yr) (cycle/kWh) (normalized) (percent)_ 
pre-1973 178 1.285 1.0 6.2 

1973, 1974 178 1.285 1.0 5.5 
1975, 1976 178 1.285 1.0 5.7 
1977, 1978 178 1.285 1.0 8.3 
1979, 1980 178 1.285 1.0 8.4 
1981, 1982 178 1.285 1.0 7.1 
1983, 1984 178 1.285 1.0 11.4 
1985, 1986 178 1.285 1.0 14.3 
1987, 1988 178 1.285 1.0 16.6 
1989, 1990 178 1.285 1.0 16.6 

Source: (1) Assuming 229 cycle/yr. 
(2) 1987 Baseline [Motor+Dryer+Heater] efficiency (US DOE 1990). 
(3) Calculated from AHAM shipment data (AHAM 1991, US DOE 1990), 
minimum lifetime of 0 years and maximum lifetime of 25 years. 

Table E.4: Dishwasher Minimum and Maximum 
Lifetimes (years) 

Screen: AM-2b 

Minimum Lifetime 0 
Maximum Lifetime 25 

Notes: (1) Minimum and maximum lifetimes 
calculated to match AHAM historical shipment data 
with 1990 RECS stock total of 42.7 million 
units(AHAM 1991, EIA 1992). 
(2) REEPS assumes a linear decay between the 
minimum and maximum lifetimes. 
(3) REEPS constrains lifetimes to integer values. 

Table E.5: Dishwasher Base-Year 1990 Stock Average 
Screens: AM-3a, AM-3f 

Housing Type Shares of UEC(2) 
1990 Stock (1) 

(percent) (kWh/yr) 
Single Family 50.6 178 
Multi-Family 37.2 178 
Manufactured Homes 20.1 178 
Source: (1) 1990 RECS (EIA 1993) 

(2) Calculated from AHAM shipment data (AHAM 
1991) and vintage shares (Table E.3). 
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Table E.6: Dishwasher Control-Year 1991 Marginal Shares(1) 
Screens: AM-4a, AM-4b, AM-4e 

Housing Type New Home Acquisition Marginal 
Shares(2) Rates(3) Size(4) 

(percent) (percent) (nonnalized) 

Single Family 84.8 1.2 1.0 
Multi-Family 83.7 0.3 1.0 
Manufactured Homes 31.8 1.5 1.0 
Source: (1) Replacement rates assumed to be 100%. 

(2) New home shares are from 1990 RECS for houses built during the 
period 1985-1990 (EIA 1993) 
(3) REEPS default data set values. 
(4) From 1990 AHAM shipments ruita (AHAM 1991). 

Table E.7: Dishwasher Hot Water Load 
Exogenous Variable; Used in Water 
Heater Usage Equation 

Year Stock Average Hot Water Load 
(kBtulyr) 

1990 505 
1991 495 
1992 487 
1993 479 
1994 473 
1995 467 
1996 454 
1997 442 
1998 432 
1999 423 
2000 416 
2001 409 
2002 403 
2003 399 
2004 394 
2005 391 
2006 388 
2007 385 
2008 382 
2009 379 
2010 377 

Source: Forecast by REEPS baseline dishwasher 
model described in this report. 
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APPENDIX F: CLOTHES WASHER DATA 

Table F.1: Specific Efficiency Data, 
Standard Clothes Washer (1) 
(Capacity= 2.6 cf) 
Screens: AM-4f, AM-Sd 

Option Specific Technology Energy Purchaser's Cost Efficiency Hot Water 
Number Design Consumption of Motor UEC (4) 

ofMotor (2) Only 
(kWhlyr) (1987 $) (1990 $) (3) (cycle/kWh) (kWh.e/yr) 

0 Baseline 5 Settings 102 400.04 409.20 3.72 848 
1 Eliminate Warm/Warm 102 400.04 409.20 3.72 644 

Setting 
2 Eliminate Warm Rinse 102 400.04 409.20 3.72 571 
6 2 + Improved Motor 89 411.53 420.95 4.29 571 
7 6 + Plastic Tub 88 421.07 430.71 4.31 569 
8 7 +Thermal Mix. Valve 89 441.79 451.91 4.29 565 
3 2 + Horizontal Axis 57 570.86 583.93 6.66 205 
4 3 + Plastic Tub 57 580.41 593.70 6.69 204 
5 4 +Thermal Mix. Valve 57 601.14 614.91 6.66 202 

Source: (1) US DOE (1990). 
(2) Assuming 380 cycles/yr. 
(3) Inflated using CPI for Laundry equipment. CPI(1990)/CPI(1987) = 1.023. 
(4) Hot water UEC assumes electric water heater with EF=0.85 and 380 cycles/year. Used in operating cost 
calculations. 

Table F .2: Specific Efficiency Options, Shares and Availability, 
Standard Clothes Washer 
Screens: AM-4f, AM-Se 

Option Number Control Year (1991) Legal Availability Market Availability 
Shares (1) 
(percent) 

0 95.0 not available after 1994 (2) constant 
1 2.5 not available after 1994 (2) constant 
2 2.5 constant constant 
6 0 constant available by 1992 (3) 
7 0 constant available by 1992 (3) 
8 0 constant available by 1992 (3) 
3 0 constant available by 1992 (3) 
4 0 constant available by 1992 (3) 
5 0 constant available by 1992 (3) 

Source: (1) Shares predicted by logit efficiency choice equation using 1991 fuel prices. 
(2) Below 1994 NAECA Standard. Predicted shares after 1994 are added to the share of 
the next available option (option 2). 
(3) These high-efficiency options are assumed to be unavailable in significant quantities 
until1992. 
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Table F .3: Clothes Washer Stock Data 
Screens: AM-2d, AM-3c 
Year of PurchasE Energy Average Average Share of 1990 

Consumption Efficiency Adjusted Stock (3) 
[Motor Only 1 (1) [Motor Only 1 (2 Volume (2) 

(kWh/yr) (cycle/kWh) (normalized) (percent) 
pre-1973 102 3.717 1.0 7.42 

1973, 1974 102 3.717 1.0 5.35 
1975, 1976 102 3.717 1.0 5.41 
1977, 1978 102 3.717 1.0 7.24 
1979, 1980 102 3.717 1.0 8.06 
1981, 1982 102 3.717 1.0 8.20 
1983, 1984 102 3.717 1.0 10.74 
1985, 1986 102 3.717 1.0 13.70 
1987, 1988 102 3.717 1.0 16.58 
1989, 1990 102 3.717 1.0 17.30 

Source: (1) Assuming 380 cycles/yr. 
(2) AHAM shipment data, 1972-1990 (AHAM 1991 ). 
(3) Calculated from AHAM shipment data (AHAM 1991, US DOE 1990), 
minimum lifetime of 2 years and maximum lifetime of 25 years. Shares are 
generally consistent with 1990 RECS vintage data (EIA 1992). 

Table F.4: Clothes Washer Minimum and Maximum 
Lifetimes (years) 
Screen: AM-2b 

Minimum Lifetime 2 
Maximum Lifetime 25 

Notes: (1) Minimum and maximum lifetimes calculated to 
match AHAM historical shipment data with 1990 
RECS stock total of 71.7 million units (AHAM 
1991, EIA 1992). 

(2) REEPS constrains lifetimes to integer values. 

Table F .5: Clothes Washer Base-Y ear 1990 Stock Average 
Screens: AM-3a, AM-3f 

Housing Type Shares of 1990 Energy 
Stock (1) Consumption 

[Motor Only] (2) 
(percent) (kWh/yr) 

Single Family 92.7 102 
Multi-Family 31.9 102 
Manufactured Homes 81.5 102 
Source: (1) 1990 RECS (EIA 1993) 

(2) Calculated from AHAM shipment data (AHAM 
1991), vintage shares (Table F.3) and assuming 380 
cvcleslvr. 
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Table F.6: Clothes Washer Control-Year 1991 Marginal Shares 
Screens: AM-4a, AM-4b, AM-4e 

Housing Type New Home Non-Owner Marginal 
Shares (1) · Acquisition Size 

Rates (2) 
(percent) (percent) (nonnalized) 

Single Family 96.7 0.50 1.0 
Multi-Family 73.2 0.25 1.0 
Manufactured Homes 91.8 0.40 1.0 

Source: (1) New home shares are from 1990 RECS for houses built during the 
period 1985-1990 (EIA 1993). 
(2) Data are REEPS default values. 
(3) Reolacementrate assumed to be 100%. 

Table F.7: Clothes Washer Hot Water Load 
. Exogenous Variable; Used in Water 
Heater Usage Equation 

Year Stock Average Hot Water Load 
(kBtu/yr) 

1990 969 
~91 ~2 
1992 936 
1993 922 
1994 909 
1995 898 
1996 865 
1997 834 
1998 806 
1999 781 
2000 758 
2001 737 
2002 718 
2003 700 
2004 684 
2005 670 

·2006 656 
2007 M3 
2008 631 
2009 620 
2010 610 

Source: Forecast by REEPS baseline clothes washer 
model described in this report 
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APPENDIX G: DRYER DATA 

Table G.1: Specific Efficiency Data, 
Standard Electric Dryer (1) 
(Capacity = 5.9 cf) 
Screens: AM-4f, AM-5d 

Option Specific Technology Design Unit Energy Purchaser's Cost Efficiency 
Number Consumption (2) 

(k.Wblyr) (1988 $) (1990 $) (3) (lblkWh) 

0 Baseline 1023.1 300.03 308.96 2.60 
1 Automatic Termination 901.7 313.01 322.33 2.95 
2 1 +Insulation 883.7 323.72 333.36 3.0I 
3 2 +Recycle Exhaust 828.7 372.34 383.43 3.2I 
4 2 +Microwave 653.6 467.45 481.37 4.07 
5 2+HeatPump 308.9 695.31 716.02 8.6I 

Source: (1) US DOE (I990). 
· (2) Assuming 2660 lbs/yr (=380 cycles/yr x 7lb/cycle). 

(3) Inflated usin~ CPI for Laundry eQuipment. CPI(1990)1CPI(1988)=1.03. 

Table G.2: Specific Efficiency Data, 
Standard Gas Dryer (1) 
(Capacity= 5.9 cf) 
Screens: AM-4f, AM-5d 

Option Specific Technology Design Unit Energy Purchaser's Cost Efficiency 
Number Consumption (2) 

(MMBtu/yr) (1988 $) (1990) $ (3) (lb/kBtu) 

0 Baseline 3.95 340.03 350.16 0.674 
I Automatic Termination 3.48 353.02 363.53 0.765 
2 I +Insulation 3.40 363.72 374.55 0.783 
3 2 +Recycle Exhaust 3.20 4I2.34 424.62 0.832 

Source: (1) US DOE (1990). 
(2) Assuming 2660 lbs/yr (=380 cycles/yr x 7 lb/cycle). 
(3) Inflated usin~ CPI for Laun<i!'Y equipment, CPI(l990)/CPI(1988)=1.03. 

Table G.3: Specific Efficiency Options, Shares and Availability, 
Standard Electric Dryer 
Screens: AM-4f, AM-5e 

Option Number Control -Year Legal Availability Market Availability 
(1991) Shares (1) 

(percent) 
0 55.6 not available after 1994 (2) constant 
1 33.2 not available after 1994 (2) constant 
2 11.2 constant constant 
3 0.1 constant constant 
4 0 constant constant 
5 0 constant constant 

Source: (1) Shares predicted by logit efficiency choice equation using I991 fuel prices. 
(2) Below 1994 NAECA Standard. Predicted shares after 1994 are added to the share of 
the next available QPtion _{option ~-
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Table G.4: Specific Efficiency Options, Shares and Availability, 
Standard Gas Dryer 
Screens: AM-4f, AM-5e 

Option Number Control Year (1991) Legal Availability Market Availability 
Shares (1) 
(percent) 

0 52.2 not available after 1994 (1) constant 
1 30.6 not available after 1994 (1) constant 
2 16.3 constant constant 

3 0.9 constant constant 

Source: (1) Shares predicted by logit efficiency choice equation using 1991 fuel prices. 
(2) Below 1994 NAECA Standard. Predicted shares after 1994 are added to the share of 
the next available option (option 2). 

Table G.S: Standard Electric Dryer Stock Data 
Screens: AM-2d, AM-3c 

Year of Average Average Share of 1990 
Purchase Efficiency (1) Adjusted Stock (3) 

Volume(2) 
(lblkWh) (normalized) (percent) 

pre-1973 2.480 1.0 12.7 
1973, 1974 2.492 1.0 6.6 
1975, 1976 2.510 1.0 5.8 
1977, 1978 2.527 1.0 7.9 
1979, 1980 2.544 1.0 8.2 
1981, 1982 2.561 1.0 7.7 
1983, 1984 2.578 1.0 10.4 
1985, 1986 2.595 1.0 12.7 
1987, 1988 2.612 1.0 14.3 
1989,1990 2.617 1.0 13.6 

Source: (l) AHAM shipment data, 1972-1990 (AHAM 1991). Assumes 
2660 lbs/yr usage (Proctor and Gamble usage data). 
(2) No data available. 
(3) Calculated from AHAM shipment data (AHAM 1991, US 
DOE 1990), minimum lifetime of 9 years and maximum lifetime 
of 30 years. Shares are generally consistent with 1990 RECS 
stock data (EIA 1992). 

70 



Table G.6: Standard Gas Dryer Stock Data 
Screens: AM-2d, AM-3c 

Year of Average Average Share of 1990 
Purchase Efficiency (1) Adjusted Stock (3) 

Volume(2) 
(lblkBtu) (normalized) (percent) 

pre-1973 0.616 1.0 17.2 
1973, 1974 0.638 1.0 6.1 
1975, 1976 0.669 1.0 5.8 
1977, 1978 0.699 1.0 7.1 
1979, 1980 0.728 1.0 7.6 
1981, 1982 0.738 1.0 7.1 
1983, 1984 0.742 1.0 9.1 
1985, 1986 0.746 1.0 12.0 
1987,1988 0.750 1.0 14.1 
1989, 1990 0.750 1.0 13.9 

Source: (1) AHAM shipment data, 1972-1990 (AHAM 1991). Assumes 
2660 lbs/yr usage (Proctor and Gamble usage data). 
(2) No data available. 
(3) Calculated from AHAM shipment data (AHAM 1991, US 
DOE 1990), minimum lifetime of 9 years and maximum lifetime 
of 30 years. Shares are generally consistent with 1990 RECS 
stock data (EIA 1992). 

Table G.7 Dryer Minimum and Maximum Lifetimes 
(years) 
Screen: AM-2b 

Minimum Lifetime 9 
Maximum Lifetime 30 

Notes: {1) Minimum and maximum lifetimes 
calculated to match AHAM historical shipment data 
with 1990 RECS stock total of 64.9 million units 
(AHAM 1991, EIA 1992). 
(2) REEPS constrains lifetimes to inte~er values. 
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Table G.8 Dryer Base-Year 1990 Stock Average 

Screens: AM-3a, AM-3f 

Housing Type Shares of 1990 UEC(2) 
Stock (1) 
(percent) 

Standard Electric Dryer kWh/yr 
Single-Family 64.1 920 

Multifamily 19.3 920 
Manufactured Homes 63.5 920 

Standard Gas Dryer kBtulyr 
Single-Family 21.0 3384 
Multifamily 5.9 3384 
Manufactured Homes 8.3 3384 

Source: (1) 1990 RECS (EIA 1993) · 
(2) Calculated from AHAM shipment data (AHAM 
1991) and vintage shares (Tables G.5 & G.6), assuming 

. 2660 lbs/year usa~e. 

Table G.9: Dryer Control-Year 1991 Marginal Shares 
Screens: AM-4a, AM-4b, AM-4e 

Housing Type New Home Non-Owner Marginal 
Shares (1) Acquisition Size 

Shares (2) 
(percent) (percent) (normalized) 

Standard Electric Dryer 
Single-Family 85.9 1.5 1.0 
Multifamily 40.9 1.0 1.0 
Manufactured Homes 68.6 1.5 1.0 

Standard Gas Dryer 
Single-Family 14.2 0.5 1.0 
Multifamily 1.9 0.3 1.0 

Manufactured Homes 8.5 0.5 .1.0 

Source: (1) New home shares are from 1990 RECS for houses built during the 
period 1985-1990 (EIA 1993). 
(2) REEPS default data set 
(3) Replacement rates assmned to be 100%. 
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APPENDIX H: LIGHTING DATA 

Table H.l: Residential Lighting Usage Studies 

Daily Usage Source Type (1) Notes 

jbour~_ 

3.1 Goett. et al. (1992) M Metered during March (equal to user-reported value for 
same period) 

3.6 Goett. et al. (1992) u Annual average for 18 watt CFL (user-installed) 

3.9 Goett. et al. (1992) u Annual average for 27 watt CFL (user-installed) 

2.75 Gordon (1992) u Range= 0.5 to 6.7 brs./day (calibrated w/ Yakima & Grays 
Harbor metered data) 

2.5 Grays Harbor PUD M 10-17 fixtures metered in 6 houses in Grays Harbor, WA; 
(1992) December-June metering period 

4.5 Hewitt, et al. (1992) u Northeast Utilities post-retrofit survey (user installation) 

5.6 Hewitt, et al. (1992) u Northeast Utilities phone survey of CFL usage (utility 
installation based on minimum usagc)(2) 

3.2 Horowitz & Spada (1992) u Telephone survey of CFL purchasers 

2.1 Manclark (1991) M 2 post-retrofit bulbs metered in 53 houses in Yakima, W A; 
spring/summer metering period 

2.7 Robinson (1992) U User-reported for post-retrofit CFLs. NJ program not 
limited to high-use sockets 

5.3 Robinson (1992) U User-reported for post-retrofit CFLs. NY program --limited 
to hi12:h-use sockets 

Average Usage Reported by Lighting Users= 3.85 hours/day. 

Avera12;e Usage from Metering Studies= 2.57 hours/day. 
Notes: (1) Study types: U =User-reported; M =Metered. The studies collecting user-reported data were nearly 

all for the purpose of identifying high-use sockets for CFL retrofit, and are therefore not representative 
of all residential lighting sockets. 

(2) CFL = Compact Fluorescent Lamp 
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APPENDIX 1: QUALITATIVE CHOICE ANALYSIS 

Qualitative Choice Analysis (QCA) provides the theoretical framework for the appliance 
decision models we adopted in this analysis. In this appendix, we provide a brief overview of 
several key ideas of QCA. The material herein is taken primarily from Train (Train 1986) and 
from notes from a workshop sponsored by the Econometrics Laboratory on theU.C. Berkeley 
campus (McFadden et al. 1992). 

Two of the hallmarks of neo-classical economic analysis are a focus on aggregate-that is, market
level-phenomena and the assumption of continuity (and usually differentiability) of the variables 
under study. The latter assumption is reflected both in the basic theory of consumer choice, 
including the assumption of smooth indifference curves, and in the econometric estimation of 
market demand functions; at the market level, where individual differences are too fine to be 
captured, the modeling assumption of continuity is generally thought to be a good 
approximation to reality. 

It is arguable, however, that 1) phenomena such as aggregate demand, being just the sum of 
many individual decisions, should ideally be studied with methods that explicitly capture 
individual-level behavior, and 2) at the level of the individual, many if not most real-life choices 
have a discrete rather than continuous quality to them. Thus, for example, a consumer buying a 
refrigerator will ultimately choose between, for example, manual defrost and auto defrost, rather 
than some combination of the two. In buying a car, a consumer must ultimately purchase a 
Toyota or a Honda or a Ford or a Chevrolet--not some combination of the four. Qualitative 
choice analysis was devised for the economic analysis of such situations. Train describes QCA as 
"[one of a variety of] methods for examining the behavior of individuals when continuous 
methods are inappropriate." "Methods" here refers to both a theoretical or conceptual approach 
to the choice problem and to the econometric techniques that have been developed for this type 
of analysis. 

Before providing a more technical description of these methods, an informal discussion may be 
helpful. To begin, the individual ("consumer") is seen, as suggested above, as choosing one from 
among a number of discrete alternatives. The individual is conceived of as a decision-making 
"black box:" she evaluates the options in terms of their various features as well as her own 
preferences, and chooses what she considers the best alternative (in economic terms, the one that 
maximizes her utility). So for example, she may be choosing between a manual and an auto
defrost refrigerator; she will (in some manner that is left unspecified) evaluate, for example, the 
purchase prices, operating costs, convenience features, colors, styles, and possibly other features, 
and then choose one in a way that may also depend on such factors as her income or beliefs. 
Several things about this picture deserve emphasis. First, exactly "how" the decision is made--for 
example, the psychological process involved--is essentially ignored by saying that the decision is 
a matter of "maximizing utility." (This approach is, <;>f course, characteristic of economic 
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modeling.) Furthermore, in this way in thinking, the decision-maker is a deterministic black 
box; that is, the output (the decision) is a non-probabilistic function of the inputs (the features of 
the alternatives and her own characteristics). 

As the reader may know, however, QCA models themselves are probabilistic in nature. The idea 
is that the observer cannot possibly see everything that went into the decision, such as "beliefs." 
So the observer can, in principle, predict only imperfectly what decision will be made even 
knowing such things as certain characteristics of the alternatives and the decision-maker. The 
probabilistic elements of QCA arise from this state of partial ignorance of the observer. In 
particular, the aim of QCA models is not to elicit or to study (directly, at least) the form of the 
function transforming inputs into decisions. Rather, it is to derive numerical estimates of the 
probabilities that the decision-maker will make various choices, given certain assumptions about 
(among other things) the form of the decision-maker's utility function, and given observations of 
the decision-maker's actual choices and information about the decision-maker herself. There are 
several interpretations of what concept of "probability" is at work here. One can think, for 
example, of a decision-maker repeatedly facing the same choice; then the probability that a 
particular alternative will be chosen can be interpreted as the limiting proportion of the number 
of times that alternative is in fact chosen as the number of repeats becomes "large." Or, one can 
think of a number of decision-makers with the same observable characteristics being observed, 
sequentially, facing the same choice situation; then the probability can again be interpreted as a 
limiting proportion. The point is, again, that the probabilistic nature of the models is interpreted 
in terms of the relationship between the observer and the decision-maker; QCA models are not 
models of "decision-making under uncertainty" as these are typically defined in economics or 
operations research. 

To begin a more precise description, the technical specification of the decision-maker's situation 
is that the possible alternatives form a finite partition of her universe of choice, that is, the 
alternatives are a) finite in number, b) mutually exclusive, and c) exhaustive (that is, she must 
choose one and only one alternative). It is often possible to adjust the model so that these 
conditions are satisfied in situations in which they are not readily apparent. 

Now suppose one wishes to analyze some such situation, for example, a choice among 
appliances or cars. Following is a description of the generic qualitative choice model (Train's 
notation will be used for the duration). A particular decision-maker will be indicated by the 
index n. Denote the set of alternatives she faces by Jn, the observed (by the researcher) 
characteristics of alternative i as faced by decision-maker n as the vector Z;,, and the observed 
characteristics ofthe decision-maker as the vector sn . Then the probability that decision-maker 
n chooses alternative i is a parametric function of the form 

where the expression "Vj e Jn" means. "for all j in Jn," and f3 is a vector of parameters. This 
equation describes, conceptually, the overall framework of QCA analysis. The details and the 
applications have to do primarily with first specifying the function f and then estimating the 
vector of parameters. 
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The frrst step in implementing this abstract framework is to examine more carefully the relation 
between what the decision-maker is doing and what the observer is seeing, and to introduce 
notation that reflects this distinction between "observable" and "unobservable." We write the 
utility that decision-maker n derives from selecting alternative i as a function of xin, the relevant 
characteristics of the alternative, and rn, the relevant characteristics of the decision-maker; thus, 

for all i in Jn. Here, U is a function·whose form we have yet to describe. We partition xin into 
those characteristics of the alternative that are observed by the researcher, labeled zin as before, 
and those that are not (and are left unlabeled), and we partition rn into characteristics of the 
decision-maker that are observed by the researcher, labeled sn as before, and those that are not 
(and again are left unlabeled). Finally, we break up U(xin,rn) into an observed component that is 
known up to a vector f3 of parameters to be estimated and that we label V(zin•sn,/3), and an 
unknown component which we label ein. Then we can write the utility derived by the decision
maker from alternative i as 

At this point, a more concrete specification can be provided. To apply the general scheme, one 
needs to first view ein as a random variable, and specify a particular form for it, and second to 
specify a particular form for the observable (or "representative") utility V(zin,sn,/3). Different 
qualitative choice models, such as logit or probit, arise from particular specifications of the 
random variable. For our purposes, the model of interest is the logit The log it model is obtained 
by assuming that the error terms ein, where the index i ranges over all alternatives in Jn, are 
independently and identically distributed according to the extreme value (also called "Weibull") 
distribution. (The adjective "multinomial" in this context simply means that more than two 
alternatives are available.) In addition, in our applications (and in many others) it is assumed that 
the observable utility function is linear, that is, we assume that this function is of the form 

where w is a vector function of the observable data and f3 is, as before, a vector of parameters. 
(Note that the expression f3w(zin,sn) is a vector or inner product.) If we suppress the functional 
dependence ofthe function w on the data and simply write is as win, then it can be shown that 
the probabilities take the form 

jeJ. 

(Note that two steps have been combined into one here; the logit probabilities always take this 
form of "exponential divided by sum of exponentials;" the exponents themselves are the 
representative utilities, which in the case just written--but not in general-- are linear.) 
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There are several things to note about this last expression. First, the probabilities defined in this 
way sum to one (as they should). Second, if one graphs Pin as a function of win, the familiar "S
shaped" or logit curve is obtained. (This is also true more generally, that is, it doesn't depend on 
the linearity of representative utility.) Third (actually a corollary of the latter observation), 
probability is a (highly) non-linear function of the data; this is the source of the oft-mentioned 
caution against constructing a model of this form and then plugging averaged data into it 

Another point is worth noting here: the primary reason for the particular stochastic specification 
that gives rise to the logit (that is, independent and identically distributed Weibull) is "analytical 
tractability." The prcibit model is based on the more natural assumption that the error terms have 
a joint multivariate normal distribution with a general variance-covariance matrix. This model, 
however, gives rise to some very difficult integrals in the expressions for the choice probabilities, 
with attendant estimation problems .. (Hausman used a pro bit model in his famous 1979 air 
conditioner choice paper, which is a good example of that type of approach (Hausman 1979)) 

We will now write down how the above formalism looks in an example. Suppose that a 
decision-maker--a household--is to choose between a gas and an electric oven, and that we 
decide that the decision will be made on the basis of (or, "utility depends upon") the purchase 
price and operating cost, which we can observe, and upon the household's view of other 
characteristics of the ovens, such as appearance, quality, and so forth, which we can't observe. If 
we also assume that observed utility is a linear function of these factors, then we can write the 
utility of the two choices, respectively, as 

where the subscripts indicate gas and electric, respectively, PP is purchase price and OC 
operating cost, and the beta's are scalar parameters. If the error terms are distributed Weibull, 
then the probability that the household chooses the gas oven is 

and the probability it chooses electric is analogous. 

The parameters in the logit models are estimated by maximum likelihood methods (given certain 
assumptions on the character of the sampled data). Briefly, these are statistical optimization 
methods in which the maximization of what is called a "(log) likelihood function" yields the 
values of the parameters that give the highest probability that the decision-makers made the 
choices that are actually observed. The log likelihood is also used to construct what is called the 
"likelihood ratio index," which is a measure of goodness-of-fit, and can be used in hypothesis 
testing. In addition, standard hypothesis tests can be performed on individual parameters using 
the t-test 

One important elaboration of the basic logit model that we should mention briefly is the adding 
of constant terms--so-called "alternative-specific constants"--to the linear observable utility 
functions. This has several important func:tions. First, it corrects the (probably false) assumption 
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that the errors have zero mean (which is a feature of the standard Weibull distribution). (In this 
sense, it is like adding intercept terms in a linear regression.) Second, when the parameters are 
estimated, it results in observed proportions in the sample being reproduced exactly in the model. 
Third, it allows up to a certain point for the correction of a central potential flaw in the 
underlying model, which we now discuss. 

One mathematical consequence of the logit model is a property called "the independence of 
irrelevant alternatives (IIA), II which means that according to the model the ratio of the 
probabilities associated with any two choices is independent of any other alternative. 
Conceptually, this property enables one to correctly estimate a model on only a subset of 
observed alternatives, and also, given an estimated model, to predict demand for new 
alternatives. 

There are some situations in which IIA may hold for some pairs of alternatives but not for others, 
or, put another way, there are "nests" of alternatives for which ITA holds. Another qualitative 
choice model, the "GEV" (for "generalized extreme value") or "nested logit" is appropriate in 
these situations. The GEV model is derived from the assumption that the error terms as 
described above--the ein --are distributed in accordance with a generalized extreme value (or 
GEV) distribution. Under this assumption, one can derive expressions for the choice 
probabilities that are analogous to those in the logit (and reduce to them in the case where the 
error terms are uncorrelated) but are more elaborate; we won't write down the general form here. 
GEV models can also be estimated globally by maximum likelihood techniques. More common, 
however, is to perform a "bottom-up" sequential estimation (imagine here the usual upside-down 
"tree" diagram with two levels) starting at the lower or "nest" level; this exploits the fact that 
GEV choice probabilities can be decomposed into conditional and marginal probabilities that are 
logit. 

There are several ways of obtaining aggregate (i.e., population) estimates from QCA models. 
The most straightforward is sample enumeration. Each individual in the sample is given a 
weight wn (where. the subscript n corresponds to the individual) depending on the characteristics 
of the sample, assuming "exogenous" samples, i.e., random or stratified random samples in 
which the strata (if any) are exogenous to the choice being studied. If the sample is random and 

consists of N observations, the weight is YN for each individual; if the sample is stratified, the 

weight varies over strata but is the same for all individuals within strata. In any case, the average 
probability for alternative i is estimated as 

and the number of individuals in the population predicted to choose alternative i is estimated as 
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