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- Magnetic Field Effects in High-Power Batteries

I: The Penetration of an Electric Field into a Cylindrical Conductor

Abstract

The penetration of the axial component of an electric field iﬁto
a cylindrical conductor is described @y an asymptotic solution method
for long and short tiﬁés.' The development. of the respective current
distributions allows for a maﬁhematica1 comparison of the solution
schemes and iﬁdicatésbthat the current initially increases at a rate
proportioﬁal to time until a time of order e/a,'subséqﬁéntly at a

rate proportional to the square root of time, and finally levels off

 exponentially to the steady-state value. Criteria for the proper.

omission of the displacement current are also given.

Introduction

In the 70 .years since'Kapitza1 used an electrochemical system (a
lead-acid.bipolar battery) for delivering short pulses bf high-power,
the design of batteries for this purpose has drawn little attention.

However, the. ever increasing reliance of the business sector on com-

_puter and telecommunication systems has enticed a renewed effort in

[t

research of rapid-discharge, high, back-up power batteries. E. Wil-

lihnganz2 studied the effect of high rates of discharge on the nega-

tive plate of a lead-acid battery. Gibbard3 has designed and tested
a number of high-power'lithidm batteries and has presented an overall

design criterion.a> And LaFollette and Bennion discuss the design



fundamentals of high-power, pulse-discharged lead acid batteries in
. 5 . 6 .

terms of experiments” and modeling. Researchers are now also asking

what is the minimum time required to bring a battery to maximum

power. -

Inductance, used to denote the effect of a rapidly varying elec-
tric field which produces a varying magnetic field which.counters
Qith an opposing ‘electric field, governs the rise .time of the
current. This phenomenon falls under the heading of electrodynamics:
LaFollette and Bénnion5 mention that the rigorous way to incorporate
magnetic field.effects in a battery model is t§ solve Maxwell’s equa-
tions of electromagnetism simultaneously with the egquations th;t

govern the battery performance. Due to the complicated nature of the
equations of-eléctrodynamics and the associated bbundary conditions,
this is something most modelers would like to avoid. LaFollette
et al. did not include the inductancé in their model ;fter démon-
stfating _that their system was small  enough thét the inducténce
effect occurred withiﬁ the first microsecond and that they were more
interested in the 10 to 1000 us range. Methods of simplifying the
equations for handling the inductance whilé not mneglecting it
entirely do exist. McKinney et al.7 include a magnetic field effect
of the circuilt when analyzing the current from a power soﬁrce by
including a,blgmped induétance term in their ci:cuit—theory model.
Cahan et al.8 performed a parametric study of the impedance of a gen-

eric power source as a function of the frequency of the signal. The

power source was approximated as a modified, semi-infinite, strip-



line. Indﬁctance was included by méans of a skin-effect. The skin-
depth is a measure of the deéth of penetrétion of a sinusoidal signal
and is .a func;ion of the frequency and conductivity. (For a
sinusoidai signal, 95 percent of the'signal is limited to 3 skin-
depfhs from the surface.) The skin-depth analysis is applicable for
a sinusoidal signal; héwever, an analogous treatment for_a stepped 
current has not yet been presenéedi Moreover, these techniques only
provide for an adjustment of ﬁhe total current as a function of time;
they do not provide a description of the instantaneous current dis-
tribution. The currenﬁ distribution can play an.impoftant role in
battery design. if a large battery is required for high currents and

only a fraction is utilized.

In part I of our study, we shall demonstrate the manner in which

an electric field penetrates a cyliﬁdrical conductor when the conduc-

-tor is instantaneously subjected to a constant electric field at its

surface. This work provides a first approximation to the instantane-

ous current distribution in a bipolar battery,_the typical battery

. desigh chosen for delivering high power. In part II, the cylindrical

conductor is included 1in a radial circuit. A transmission-line
analysis is used inxéonjunétion wiﬁh the above ﬁreatment to.determine
the time constaﬁt of the complete éystem. The importance of addfesé-
ing the complete cifcuit lies in the fact tﬁaf the electromagnetic
field distribution is not a localized éntity bht is évfunction of the

entire circuit geometry.



The Electromagnetic System

The transition of an electfical signal from one amplitude and
frequency to another begihs at the source of the distﬁrbance and‘pro;
pagates to the rest of the electrical configuration. The new form of
the signal'traveis at ‘the speed of light between the electrical con-
ductors used to difect the electricél power from the source to the
intended load. During the‘ initial 'stages of the transition, ﬁhe
‘charge on the' conductors distributes itself such that the potential

around the circuit is consistent with Ohm’'s law. (Further comments

s s ' . 9
on the initial stages of current start-up are provided by Rosser™ and .

Heald.lo)

For conductors of finitev éonductivity,. the eiectric field
penetrates  the conductors to within a few skin aepfhs,'for an alter-
nating signal, and throughout the conductors, for a direct’signal.
The rate at which the new signal can penetrate the‘conduétors deter-
mines the rate to a periodic or steady state. Using Maxwell’s equa-
tions, it is the purpose of this paper ﬁo describé the'penetration of

the axial electric field into an electrically conducting medium.

It is well-known that Maxwell's four coupled equations of elec-
tromagnetism reduce to two, noncoupled modified wave equations in a

linear, homogeneous, conducting medium:

V'E = pe—F + po— } (1)



. 2. .
VZB = peé—é + paéé. . ' (2)
6t2 at :

The éolutién to théséreqpations for'the transient electric field dis-
tribution in the conductors and"éurroﬁndingv medium for a finite
geometry with a load and source is difficultvto obtain. éince we are "
interested here in the.time‘it takes for the penetration of the
electrical signal into the power source, we shall -address the
‘specific problem of a step in an electrical signal propagating down’
an infinitely long coaxial cable. The radial component of the
electrical signal propagates.betweeh the two conductors at the speed
of light wﬁiie the axial component propagétesirédially into the'innér
and outer éonductorsﬁv With thi§ configuration, the problem of deter-

mining the penetration of the electric field into the transmission

line is virtually reduced to the mathematically one-dimensional prob-

lem of the penetration of an axial electric field component into an

infinitely long cylindrical conductor.

From phis analysiévwe éhall aséume ﬁhat the bipolar bapﬁery con-
figurétion can be éﬁﬁroximated by the propefties of the central wife
of the coaxial—cable, the return current of the'circuiﬁ Being lqcated‘
in an outer -cylindrical' can. ‘In a bipolar battery, a circular
cathoae and'anode are separated by a circular ionically ﬁondutting
separator to form a cell. A number of these cells are then stacked
togéther and séparated by cylindriéal electronic conductors, such as

steel plates, to form the battery, which resembles the Volta pile.

’Althouglx a cylindricql wife is -a reasonable approximation of the



bipolar battery geometry, it does not account for the details of the
battery. The solid wire obviously lacks the multiple regions of
various conductivities, surfaces of capacitance, eiectromotive force,
and chemical reactions, and possible concentration variations found
in a battery. However, as a first approximation, the infinite-wire
ahalysis will allow us to predict the rate and the manner in which an
electric field penetrates a cénductor; And although this falls well.
short of a complete analysis; a considerable amount of information

can still be inferred about the magnetic field effects.

0

Solutions have been derived for thevelectric field distribution
inside and outside of an infinite Qire maintained at a fixed current.
A, Marcus11 provided the field distriﬁution of the infihite wiré sur-
roﬁnded by an axially symmetric, perfectly cbnducting, outer
cylinder. Sommerfeld12 described the field distribution of»a steady
current in an infinite wire in free space. And D. Maféusel3 gavé the
general solution to the electric field distribution of an infinite
wire carrying a steédy current; the partiéular soiution being‘a func-

tion of the rest of the circuit configuration.

Solutions to the steady-periodic electric field distributions in
media of high but finite conductivity also exist. Maxwell14 ;olved-
for the self inductance of a pe;iodic electric field in a‘cylindrical
conductor. Jackson15 showed the elecﬁric field aistribution'of a

periodic electric field penetrating a slab.

The problem that has been solved that closest resembles the

problem we address here is that of a“"linearly increasing current-in



an infinite .conductor. This problem was ‘addressed by Shakurl6 and

furthered by Cherve’nak.].'7 However, these analyses assume that the

: . . o 2 .
current is uniform through the conductor; Heald™ raised some further

questions of the results.

Typically, when solving the Maxwell equations in electrically

conducting media, the first ‘term on the right of equations 1 and 2,

: ' ' . : . . 6 19
referred to as the "displacement current," is omitted. , 7, 18, ,

20 -In this analysis, this term'is retained in what we shall call the
“full solution" and in the "inner solution" and neglected in the .

"diffusion solution." The development of these solutions will -eluci-

date the effect the displacement current plays in the ‘initial stages

~

of the field penetration and provide criteria for cases. when its

omission is justified, greatly simplifying the equations.

The fuli solutién maintains all the physics and is -applicable
for all times; hoﬁever its open form requires a large number of terms
to investigate the short time regimé.» vIo ‘probe the ‘short Atimé
effects the préblem is divided into the three regimes depicted in

figure 1. Region I is the inner reéegime.  The solution obtained for
} ) i

" this regime highlights the effects of the initial penetration of the

electric field traveling at the speed of iight into the conductor.

Region II is the diffusion<regime. After a time of (0 e¢/0) the field

penetrates parabolically into the conductor. Region II1I is the outer

regime. This is a long time regime in which the field penetrates to
the center of the conductor at the speed of light, but with an essen-

tially negiigiBle magnitude. We shall not refer to this fégime



again.

Full Solution

For the geometry described above, the characteristic length is
thé ra&ius of the inner conductor, r,. Defining the electric dif-
fusivity of the propagéting elecﬁric field as fhe reciprocal of the
electric conductivity~timeé the permeability, 1/upo, a characteristic
time' is developed as the radius of the wire équared divided By the
electric diffusivity; Thus, substitution of the dimensionless param-

eters
‘5 =r/r and 7 = t/rzya
_ o o
into equation 1 gives it the form

3
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where §-= l/paroJ;;. § c#n be interpfeted as the ratio of the dis-
placement current to the conductiqn current. To simplify mattéfs, we
assume that initially.the electric field is zero in the wire; then,
at time 0O, a step change in the electric fieldeith_axial component
of magnitude EO at a-certain position z and r, is,imposed. This sig-
nal, as it proceeds along the coaxial line, will be felt initiaily
only on»the inner wall of the outer conductor and outer wall of the
inner condpctor. If the outer conductor is a perfect conductor, as
in this example, the rate of propagation of the electric field

throughout the inner conductor will be the limiting effect to steady



state. Thus, in tbis investigation we shall treat only the propaga-
tion of the field into the inmer conductor. .The. conditions are
described in mathgmatical.terms as:
béundary cénditiqns

E is well-behaved = at ¢ = 0;

E=E cat | £ =1;

initial conditions

= =0 “at r =0.

The Laplace transformed solution of equation 3 is

2, S)%El

E(s) ) :
= , . (4)
'Eo s Io[<6252 + s)%]

Io[(625

where Ip(x) is the modified Bessel function of the first kind, of
order p. This solution can then be inverted by the method of resi-

dues.

Regardless_of the solution scheme used, the radial penetration
: : - _ N
of the axial electric field compoment is given by
éinh(w T)

1:; cosh(w,7) +
| k 25%

27 (A8

A Jl(A

_ exp(-r/262) %, (5)
k=1 "k

£
E_ _
k

where w, = [1—(2Ak6)2]%/262, Jp(x) is the Bessel function of the

*
When 2X,6 > 1, w

‘becomes a pure imaginary number. Equation 5
continues to apply. o '

k
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4

first Kind of order p, and Ak is the kth zero of Jo(x). Although

this solution is mathematically correct, it is not of a beneficial
form for investigating short-time results. We say this because more
and more terms of the summation are required- for an accurate»nuﬁeri-
cal solution at shorter and shorter times. With this in mind, we
shall_reapproach the problém using aﬁ asymptotic solution scheme to
develop/a long-time and a short-time solution. As will be shown, the
long-time or diffusion sblu;ion/is that which is felt throughout the
conductqr for times-proportionél to riuo (for a 10-cm-thick lead wire
this is = 60 ms), whereas, the shoff-time 6r inner solution is that
~which is feltljust at the outer edge of the conductor at a time scale
proportional to ¢/¢ (for the same lead wire this is = 1x10_-18 s).
This approach will allow us to describe the development of the elec-
‘tric field for all time regimes. Since the first term on the right
of equation 3 is usually neglected, § was chosen as the stretching

parameter.

Diffusion Solution ' , ’

The variables in equation 3 have been made dimensionless such
that they are of 0(1l) in the_diffusion region. Itrfollows that, as a
’first approximation, the first term on the'right of equation 3 can be
negiected for 82 << 1. The quation reduces to the fprm of the trén-

sient diffusion equation in cylindrical coordinates found in the

mass-transfer literature,



3 = 3.0 ’ : (6)

This is a major simplification; the highest derivative with respect
to time is omitted. However, the equation takes a more manageable
form, and one that we are familiar solving.' We shall address the

implications of this mathematical simplification, shortly.

Equation 6 is solved by separation of variables with the boun-
dary and first of the initial conditions listed above equation 4 to

rd

yield

© 2J (A8

Ji (X))

- 3 1- exp(-Air) . (7
k=1 "k "1k

£

Eo

- Equation 7 is.plotted as a function of € for different fractions

of the time 'anstant_ in figure 2. The currépt distribution is
directiy related to the electric fiéld distribuﬁion'througﬁ Ohm's
law, i = oE. -Other than the absence of’thé hyperbolic cosines and
.sinés and w's of the full solution, this solu;ion does not‘aﬁpear to
be m;ch df‘ah improvement over the'"full,solutioﬁ", equation 5, since
it too is of open for@. Nevertheless, from this solution  it is

apparent that the time constant for the exponential decay of the

long-time solution is

(8)

‘This is the same time regime that is approximated by a the lumped-
inductance analysis where the current approaches the steady-state

current exponentially as the time over the inductive time constant
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L/R. Thus, L/R is equél to 7
We now solve for the short-time solution of the diffusion region
to determine how the field increases with time for relatively short
times (and for future comparison with the long-time solution of the
inner region.) Solving equation 6 by Laplace transforms,

L, bk
E(s) N I,(s7°€)
22 -

PR (9
o s o(s )
expahding this solution for large s, and then inverting it, we obtain

the short-time solution of the diffusion region,

2 3 .
1 _ 57 36757~ .1 ~ 1€ ‘
=3 1 2 + A 0(—g) erfc - (10)

3 32¢ 2048¢ £ Jur

£
E
o

‘where 7 << 1. One should note that fewer terms of this solutibn are
needed as € — 1 and r — 0. Thus, at short times the'électric field
penetrates as the erfc of distance from the edge of‘the conductor
divided by the square root of time. We thus define a penét;étion
depth, which is analogous-to.the skin-depth of a sinusoidal signal,

as

dp = Jt/uo. (11)

The solutions developed in this, the diffusion regime, contain
.all the physics of equation 1 that 6ccﬁr>on the time frame of T, We
should now like to investigate the conséquences. of dropping the
second order time derivative that provided these results and to elu-

cidate the physics that occur immediately following the application



13
of the eleéfric field.

Inner Solution

To obtain the short-time ‘or inner solution, we shall firgt
define the 'variéble €' =1 - ¢, a dimensionless distance from the.
edge‘of thevconductqf, and then defiﬁe.ﬁew indepéndent variables By
strgtching f' and r by fowers of §. That-is,vlet

:E = 1-¢ and : ==,
. 50
Setting m =2 and n = 1, substituting them into equatiop 3, and keep-
ing terﬁs mulfiplied by the smallest powers of §, we obtain the equa-
tion

2 2

3E 8°E | 3E ' ..
— =+, ’ (12)
‘ 622 6;2 ar
with boundéry conditions,
E = Eo 3 at .§ =0 ;
E is 'well behaved, as E — ©
and initial conditions,vb
E=0, at 7 =0 ;
: Q% =0 , at T =0
* - ar

(Note the absence of the 1/¢ term on the left of equation 12, imply-
ing that the curvature of the wire has little effect in this time
regime.) These equations were solved by the Laplace-transform tech- -

nique to give
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F(s) = E exp[-(s> + s) A ' (13)
(o] 4 .

Applying the complex inversion formula to this solution while
integrating around the branch cut betwéen O and -1, we get the solu-

tion

E=FE |1 -
o

3 {2

.} e—XTsin[jtf||1—xl £] dx|u(r-8), (14)
0 o ‘

where u(r—€) is the Heaviside function.21v We extract more informa-
tion froﬁ this time regime by expanding equation 13 for large.and
small vélues of s to obtain the short and long time solutions,

‘respectively. Exﬁanding 13 for large values of s and taking the

inverse Laplace transform to get the short-time solution of the inner

region gives

| = - - = - ~ =2
E=£e %1+ g - B0 7p)? , S22 ) <r—s>§
(15)

+ 0ETH| u-o).

This solution indicates that the electric field initially penetrates
the conductof essentially as a front, traveling at the speed of
light, with a magnitude that is exponentially.damped with distance
from the surface. The characteristic length of penetration is 2r;6._

Beyond the distance of 7 = £ the field is zero.

Allowing s to approach O in equation 13 and inverting to obtain

the long-time solution of the inner region gives



W
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£ = erre| S|, (16)
o (41)

Thus after an initial period of e¢/o the field penetrates as the erfc

of the distance divided by the square root of time. This is of the

same form as the solution obtained as the short-time solution in the

diffusion region, equation 11.
'To summarize, when an electric field with an axial component of
magnitude Eo is applied to the surface of a conductor at time O, the

field penetrates the conductor at the speed of light with a magnitude

that is dramatically damped within in a distance of 6ro. This occurs

‘within the time 0+ and 62r2y0 = ¢/o. This is a very- short time

frame. For comparison, the time it takes'light to reach the center
: ' . 2 . s sk < .
of the conductor is Sropa. ‘After this initial period, the field

penetrates the conductor 'as the erfc of the distance from the surface

‘divided by the square root of fdur times the time divided by ripa.

Finally, as t approaches rgpo, the field'approaches the uniform,

steady-state field distribution.
From this analysis, we shall develop the solutions of the total
current as a function of time.
Current

'~ From the expressions given for the electric field, one can.

‘determine the instantaneous total current. This value is derived

from Ohm's law and integration of i over the cross-sectional area,
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2 1 |
I=2xro [ E ¢d¢. : : 17
° 0

Solving for the instantaneous current allows us to compare the
results of the above cases more readily by eliminating the indepen-
dent variable §. The instantaneous current for the full solution and

diffusion solution are, accordingly,

® sinh(w,7) r v
Full —2— =1 - ) J% cosh(w,7) + ————E—E—— exp 72 , (18)
nr oE k=1 X 26w 25 ’
o o k k
I - 2
Diffusion ——— =1- ) — exp(=ALr). (19)
2 .2 k
wrano k=1 Ak )

Another appréach t§ the full solution isvfirst to integrate the
Laplace transform of the electric field,‘equation 4, wifh respect to
€ from O to 1. Using the method of residués, we obtaiﬁ the above
solution;'but‘expanding this equation fér large s and inverﬁing gives

a. solution useful at short times,

2
-7/26
S = 281 _(s/26%) + I,(r/26%))
nr oF
o o0
2 : —1/62.- .726;1/282 2 - 2,
- [r=-6A~-e V) = T I (7/267) + I,(7/267)]
| 2 2
st -2t T s esta - ) (20)
2
3 —-7/26
-2 285 [Iz(r/262) + 13(1/252)} + 0(73)

for 7 << 1. Allowing s to get very large provides the.vefy-short-
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time solution,

—L 2.5, (1)

wrian

In the diffusion regioﬁ, if we stért with the transformed solu-

;ion of the electric field, équation 10, integrate over the cross-
.sectionél area of the condﬁctor,“take.the limit‘as s geté very large,
and invert it, we get the Shortftime‘.solutiOn- to the diffﬁsion

region,

- ) a
.hrzaE T o :
o o
For the inner region, we shall first integrate equation 13 with
respect_tovz from O to « and then take the inverse Laplace transform.

Here, the current is given as

I

‘Inner = 257e"/2[10(7/2) + 11(7/2)]. (23)

nrano
Since 7 = 1/82, we see that the fir§t term of-tﬁe expanaed full solu-
pion, equation 20, is equivalent to tHe short;time_solﬁtion given-
here. The rest of the termsiéf equation.ZO are corréctive terms for
large 7 which tend to bend the #olutiOn down to the long-time solu-
tion. If we take the limit of the Laplace transformed sélution of
the innér region, equation 13; for 'very small s, and again integrate
wiﬁh respect to Z from 0 to =, wevget the long-time solution of the.

: 3
inner region,
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" SR L (24)

wrzaE.
o o

and for very large s, we get the short-time solution of the inner

v

region,

—L— - 267,

ﬂrano (25)

From this anéiysis of the current distribution, we see that ét
short times (t<e¢/o) the current is pfoportiénal to time ﬁo the first
power and at long times (t>e/o) is proportional to time to the one
half power until ¢ is of'order ripd_where it appfoaches the steady-
state value (see figuré 3). in the former case, the short-time solu-
tion of the inner region overlaps the very-ghort-time solution of the
full solution. In the latter case, thé long-time solution of the
ihner region overlaps thg short-time solution of the diffusion
region. We can conclude that the‘"displacementicurrent," whichvis
responsible for this difference in'solutions; is important only for
T = 1/62 < 0(1) whereya2 << 1. One further note, figure 2 shows that
the currént-approaches the final stéady-state asymptotically with an
exponenﬁial time constant .of ripa. This is as predicted by the

lumped-inductance analysis — the only thing in this work predicted

by the lumped-inductance analysis.

Summary

This analysis describes the penetration of a steadily applied

electric field into a cylindrical conductor from the initial time to
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steady state. This is recognized as a crude first approximation to

the current distribution in a bipolar battery. The solution scheme

‘used introduced two distinct time regimes referred to as the inner

and diffusion solutions. 4 long-time and sﬁortjtime'éolution of the
electric field distribution were determined in each regime and then
confirmed as consistent by direct ¢omparison and éomparison of the
instantaneous current distributions.  The | current initially
penetrétes'the wire at a rate proportionallto time up to a time of
the order of €¢/0 and then at a rate proportibnal to the séuare root

of time. "It is this same order of time after which the omission of

~the displacement current is justified. . The lumped inductance

s s . . 2
-analysis is appropriate for times on the order of r_po.

¥

It part II 'we shall include the cylindrical wire in a radial
circuit. That analysis will describe the interactions of the fields
in ‘the conductor with the rest of the circuit in terms of the time

constant of the complete system.

(It should be noted that all calculations in this paper have
been performed assuming that o, €, and g are independent of time;

i.e., the conductor is nondispersive.)
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Roman

Greek .

List of Symbols

penetration depth, m

axial electric field component, V/m

magnitude of axial electric field component at the

outer edge of conductor, V/m
total current, A

v . 2
current density, A/m
inductance, V-s/A
distance from center of wire, m
radius of wire, m
resistance, Q
. -1
Laplace transform variable, s
time, s

variable of integration

dimensionless stretching parameter
2, 2 '

permittivity, C/N-m

k;h zero of Bessel function Jo(x)

pefmeability, N/A2

3.14159265358979

electric conductivity, S/m

dimensionless time

dimensionless time constant

20



o

S

S : ' : ' 21

stretched dimensionless time

I3 dimensionless distance from center
. ~
B stretched dimensionless distance from edge
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Figure Captions:
Figure 1. Solution regimes in the space-time coordinate.

Figure 2. Axial electric field distribution divided by the magnitude of
the electric field at the surface versus the dimensionless distance from

the center of a cylindrical conductor.

Figure 3. Dimensionless current versus dimensionless time for

5 = 1x10‘9.
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