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Magnetic Field Effects in High-Power Batteries 

I: The Penetration of an Electric Field into a Cylindrical Conductor 

Abstract 

The penetration of the axial component of an electric field into 

a cylindrical conductor is described by an asymptotic solution method 

for long and short times. The development of the respective current 

distributions allows for a mathematical comparison of the solution 

schemes and indicates that the current initially increases at a rate 

proportional to time until a time of order ejo, subsequently at a 

rate proportional to the square root of time, and finally levels off 

exponentially to the steady-state value. Criteria for the proper . 

omission of the displacement current are also given. 

Introduction 

. 1 
In the 70 years since Kapitza used an electrochemical system (a 

lead-acid bipolar battery) for delivering short pulses of high-power, 

the design of batteries for this purpose has drawn little attention. 

However, the ever increasing reliance of the business sector on com-

puter and telecommunication systems has enticed a rene~ved effort in 

research of rapid-discharge, high, back-up power batteries. E. Wil­

lihnganz2 Studied the effect of high rates.of discharge on the nega­

tive plate of a lead-acid battery. Gibbard3 has designed and tested 

a number of high-power.lithium batteries and has presented an overall 

d 
. . . 4 es1.gn cr1. ter1.on. And LaFollette and Bennion discuss the design 
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fundamentals of high-power, pulse-discharged lead acid batteries in 

terms of experiments
5 

and modeling.
6 

Researchers are now also asking 

what is ·the minimum time required ·to bring a battery to maximum 

power. 

Inductance, used to denote the effect of a rapidly varying elec-

tric field which produces a varying magnetic field which counters 

with an opposing electric field, governs the rise time of the 

current. This phenomenon falls under the heading of electrodynamics. 

LaFollette and Bennion
5 

mention that the rigorous way to incorporate 

magnetic field effects in a battery model is to solve Maxwell's equa-

tions of electromagnetism simultaneously . with the equations that 

govern the battery performance. Due to the complicated nature of the 

equations of electrodynamics and the associated boundary conditions, 

this is something most modelers would like to avoid. LaFollette 

et al. did not include the inductance in their model after demon-

strating that their system was small enough that the inductance 

effect occurred within the first microsecond and that they were more 

interested in ·the 10 to 1000 J.LS range. Methods of simplifying the 

equations for handling the inductance while not neglecting it 

entirely do exist. McKinney et a1. 7 
include a magnetic field effect 

of the circuit when analyzing the current from a power source by 

including a lumped inductance term in their circuit-theory model. 

8 
Cahan et al. performed a parametric study of the impedance of a gen-

eric power source as a function of the frequency of the signal. The 

power source was approximated as a modified, semi- infinite, strip-
II 
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line. Inductance was included by means of a skin-effect. The skin-

depth is a measure of the depth of penetration of a sinusoidal signal 

and is a function of the frequency and conductivity. (For a 

sinusoidal signal, 95 percent of the signal is limited to 3 skin­

depths from the surface.) The skin-depth analysis is applicable for 

a sinusoidal signal; however, an analogous treatment for a stepped · 

current has not yet been presented. Moreover, these techniques only 

provide for an adjustment of the total .current as a function of time; 

they do not provide a description of the instantaneous current dis­

tribution. The current distribution can play an important role in 

battery design. if a large battery is required for hi,gh currents and 

only a fraction is ~tilized. 

In part I of our study, we shall demonstrate the manner in which 

an electric field penetrates a cylindrical conductor when the conduc­

tor is instantaneously subjected to a constant electric field at its 

surface. This work provides a first approximation to the instantane­

ous current distribution in a bipolar battery, the typical battery 

design chosen for delivering high power. In part II, the cylindrical 

conductor is included in a radial -circuit. A transmission-line 

analysis is used in conjunction with the above treatment to determine 

the time constant of the complete system. The importance of address­

ing the complete circuit lies in the fact that the electromagnetic 

field distribution is not a localized entity but is a function of the 

entire circuit geometry . 
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The Electromagnetic System 

The transition of an electrical signal from one amplitude and 

frequency to another begins at the source of the disturbance and pro-

pagates to the rest of the electrical configuration. The new form of 

the signal travels at the speed of light between the electrical con-

ductors used to direct the electrical power from the source to the 

intended load. During the initial stages of the transition, the 

charge on the· conductors distributes itself such that the potential 

around the circuit is consistent with Ohm's law. (Further comments 

9 
on the initial stages of current start-up are provided by Rosser and 

10 
Heald. ) 

For conductors of finite conductivity,. the electric field 

penetrates the conductors to within a few skin depths, for an alter-

/ 

nating signal, and throughout the conductors, for a direct signal. 

The rate at which the new signal can penetrate the conductors deter-

mines the. rate to a periodic or steady state. Using Maxwell's equa-

tions, it is the purpose of this paper to describe the penetration of 

the axial electric field into an electrically conducting medium. 

It is well-known that Maxwell's four coupled equations of elec-

tromagnetism reduce to two, noncoupled modified wave equations in a 

linear, homogeneous, conducting medium: 

(1) 
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(2) 
. ., 

The solution to these.equations for the transient electric field dis-

tribution in the conductors and -surrounding medium for a finite 

geometry with a load and source is difficult to obtain. Since we are. 

interested here in the time it takes for the penetration of the 

electrical signal into the power source, we shall ·address the 

specific problem of a step in .an electrical signal propagating down 

an infinitely long coaxial cable. The radial . component of the 

electrical signal propagates between the two conductors at the speed 

of light while the axial component propagates. radially into the inner 

and outer conductors. With this configuration, the problem of deter-

mining the penetration of the electric field into the transmission 

line is virtually reduced to the mathematically one-dimensional prob-

lem of the penetration of an axial electric field component into an 

infinitely long cylindrical conductor. 

From this analysis we shall assume that the bipolar battery con~ 

figuration can be approximated by the properties of the central wire 

of the coaxial· cable, the return current of the circuit being located 

in an outer cylindrical can. In .a bipolar battery, a circular 

cathode and anode are separated by a circular ionically conducting 

separator to form a cell. A number of these cells are then stacked 

together and separated by cylindrical electronic conductors, such as 

steel plates, to form the battery, which resembles the Volta· pile. 

I\) ·Although a cylindrical wire is a reasonable approximation of the 



6 

bipo·lar battery geometry, it does not account for the details of the 

battery. The solid wire obviously lacks the multiple regions of· 

various conductivities, surfaces of capacitance, electromotive force, 

and chemical reactions, and possible concentration variations found 

in a battery. However, as a first approximation, the infinite-wire 

analysis will allow us to predict the rate and the manner in which an 

eiectric field penetrates a conductor. And although this falls well 

short of a complete analysis, a considerable amount of information 

can still be inferred about the magnetic field effects. 

Solutions have been derived for the electric field distribution 

inside and outside of an infinite wire maintained at a fixed current. 

A. Marcus
11 

provided the field distribution of the infinite wire sur-

rounded by an axially symmetric, perfectly conducting, outer 

cylinder. Sommerfeld
12 

described the field distribution of a steady 

. 13 
current in an infinite wire in free space. And D. Marcuse gave the 

general solution to the electric field distribution of an infinite 

wire carry-ing a steady current; the particular solution being a func-

tion of the rest of the circuit configuration. 

Solutions to the steady-periodic electric field distributions·. in 

14 
media of high but finite conductivity also exist. Maxwell solved 

for the self inductance of a periodic electric field in a cylindrical 

15 
conductor. Jackson showed the electric field distribution of a 

periodic electric field penetrating a slab. 

The problem that has been solved that closest resembles the 

problem we address here is that of a ··linearly increasing current in 

,j 
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an infinite conductor. 
16 

This problem was addressed by Shakur and 

17 furthered by Cherve·nak. However, these analyses assume that the 

current is uniform through the conductor; Heald
2 

raised some further 

questions of the results. 

Typically, when solving the Maxwell equations in electrically 

conducting media, the first ·term on the right of equations 1 and 2, 

referred to as the "displacement current," is· omitted.
6

, 
7 18 19 

20 
In this analysis, this term is retained in what we shall call the 

"full solution" and in the "inner solution" and neglected in the 

"diffusion solution." The development of these ~olutions will eluci-

date the effect the displacement current plays in the initial stages 

of the field penetration and provide criteria for cases when its 

omission is justified, greatly simplifying the equations. 

The full solution maintains all the physics and is· applicable 

for all times; however its open form requires a large number of terms 

to investigate the short time regime.. To probe the ·short time 

effects the problem is divided into the three regimes depicted in 

figure 1. Region I is the inner regime. The solution obtained for 
\ 

this regime highlights the effects of the initial penetration of the 

electric field traveling at the speed of light into the conductor. 

Region II is the diffusion regime. After a time of (0 €/a) the field 

penetrate~ parabolically into the conductor. Region III is the outer 

regime. This is a long time regime in whi'ch the fteld penetrates _to 

the center of the conductor at the speed of light, but with an essen-
' . . 

tially negligible magnitude. We shall not refer to this regime 
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again. 

Full Solution 

For the geometry described above, the characteristic length is 

the radius of the inner conductor, r . Defining the electric dif­
o 

fusivity of the propagating electric field as the reciprocal of the 

electric conductivity times the permeability, 1/~a, a characteristic 

time is developed as the radius of the wire squared divided by the 

electric diffusivity. Thus, substitution of the dimensionless param-

eters 

into equation 1 gives 

where o·= 1/~ar j~E. 
0 

2 
r/r and 7 = t/r ~a, 

0 0 

it the form 

82E 18E 2 82E 8E 

8e
2 + e8e 

0- + 87' 87 2 
(3) 

o can be interpreted as the ratio of the dis-

placement current to the conduction current. To simplify matters, we 

assume that initially the electric field is zero in the wire; then, 

at time 0, a step change in the electric: field with axial component 

of magnitude E at a certain position z and r is imposed. This sig-o 0 . 

nal, as it proceeds along the coaxial line, will be felt initially 

only on the inner wall of the outer conductor and outer wall of the 

inner conductor. If the outer conductor is a perfect conductor, as 

in this example, the rate of propagation of the electric field 

throughout the inner conductor will be the limiting effect to steady 

\_ 
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state. Thus, in this investigation we shall treat only the propaga-

tion of the field into the inner conductor. The conditions are 

described in mathematical terms as: 

boundary conditions 

E is well-behaved 

at e = 1; 

initial conditions 

E = 0 

aE = 0 ar 

at r = 0; 

at r = 0. 

at e O· 
' 

The Laplace transformed solution of equation 3 is 

E(s) 
E 

0 

(4) 

where I (x) is the modified Bessel function of the first kind, of 
p 

order p. This solution can then be inverted by the method of resi-

dues. 

Regardless of the solution scheme used, the radial pene.tration 

* of the axial electric field component is given by 

E 
E 

0 

* 

J (x) is th~ Bessel function of the 
p 

When 2Ako > 1, wk becomes a pure imaginary number. Equation 5 
continues to apply. 
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first kind of order p, and >..k is the kth zero of J 
0 
(x). Although 

this solution is mathematically correct, it is not of a beneficial 

form for investigating short-time results. We say this because more 

and more terms of the summation are requiredc for an accurate nurneri-

cal solution at shorter and shorter times. With this in mind, we 

shall reapproach the problem using an asymptotic solution scheme to 

develop a long-time and a short-time solution. As will be shown, the 

long-time or diffusion solution/ is that which is felt throughout the 

conductor for times- proportion~! to r2~a (for a 10-cm-thick lead wire 
0 

this is ::::::: 60 ms), whereas, the short-time or inner solution is that 

which is felt just at the outer edge of the conductor at a time scale 

proportional to £/a (for the same lead wire this is ::::::: lxl0-
18 

s). 

This approach will allow us to describe the development of the elec-

tric field for all time regimes. Since the first term on the right 

of equation 3 is usually neglected, 8 was chosen as the stretching 

parameter. 

Diffusion Solution 

The variables in equation 3 have been made dimensionless such 

that they are of 0(1) in the diffusion region. It follows that, as a 

first approximation, the first term on the right of equation 3 can be 

neglected for 82 << 1. The equation reduces to the form of the tran-

sient diffusion equation in cylindrical coordinates found in the 

.mass-transfer literature, 
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(6) 

This is a major simplification; the highest derivative with respect 

to time is omitted. However, the equation takes a more manageable 

form, and one that we are familiar solving. We shall address the 

implications of this mathematical simplification, shortly. 

Equation 6 is solved by separation of variables with the boun-

dary and first of the initial conditions listed above equation 4 to 

yield 

E 
E 

0 
I (7) 

k=l 

Equation 7 is plotted as a function of E for different fractions 

of the time constant in figure 2. The current distribution is 

directly related to the electric field distribution through Ohm's 

law, i = oE. ·Other than the absence of the hyperbolic cosines and 

sines and w' s of the full solution, this solution does not appear to 

be much of an improvement over the "full .solution", equation 5, since 

it too is of open form. Nevertheless, from this solution it is 

apparent that the time constant for the exponential decay of the 

long-time solution is 

T 
0 

(8) 

This is the same time regime that is approximated by a the lumped-

inductance analysis where the current approaches the steady-state 

current exponentially as the time over the inductive time constant 



L/R. Thus, L/R is equal tor . 
0 
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We now solve for the short-time solution of the diffusion region 

to determine how the field increases with time for relatively short 

times (and for future comparison with the long-time solution of the 

inner region.) Solving equation 6 by Laplace transforms, 

E(s) 
E 

0 

I (s\) 
0 

1,.,: ' 
s I (s 

2
) 

0 

(9) 

expanding this solution for large s, and then inverting it, we obtain 

the short-time solution of the diffusion region, 

E 1 [1 9r 367Sr
2 

0(~:) l . 1-{ 
(10) 

E Yz - 32e 2 + 
2o4se

4 
erfc 

D e )4r 

where r << 1. One should note that fewer terms of this solution are 

needed as e ~ 1 and T ~ 0. Thus, at short times the.electric field 

penetrates as the erfc of distance from the edge of the conductor 

. . 
divided by the square root of time. We thus define a penet~ation 

depth, which is analogous to the skin-depth of a sinusoidal signal, 

as 

d 
p 

)t/p.a. (11) 

The solutions developed in this, the diffusion regime, contain 

all the physics of equation 1 that occur on the time frame of T • 
0 

We 

should now like to investigate the consequences of dropping the 

second order time derivative that provided these results and to elu-

cidate the physics that occur immediately following the application 
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of the electric field. 

Inner Solution 

To obtain the short-time or inner solution, we shall first 

define the variable e, = 1 - e·, a dimensionless distance from the 

edge of the conductor, and then define new independent variables by 

stretching e· and T by powers of o. That is, let 

and 

Setting m- 2 and n = 1, substituting them into equation 3, and keep-

ing terms multiplied by the smallest powers of o, we obtain the equa-

tion 

with boundary conditions, 

E=E 
0 

at e = 0 

E is ·well behaved, 

and initial conditions, 

E = 0 , 

oE 
= 0 ' 

at r 0 

at r = 0. 

-2 ar 

as e - CX) 

(12) 

(Note the absence of the 1/e term on the left of equation 12, imply-

ing that the curvature of the wire has little effect in this time 

regime.) These equations were solved by the Laplace-transform tech-

nique to give 

' 



E(s) E 
0 

exp[-(s2 + s)~ g] 
s 

14 

(13) 

Applying the complex inversion formula to this solution while 

integrating around the branch cut between 0 and -1, we get the solu-

tion 

E E 
[
1 -

1 Jl e-x-;sinrJixl .11-xl {l ]·--

.
dx u(r-0, 

0 11' O X 
(14) 

h ( ~) . h H .. d f . 21 
w ere u r-~ 1s t e eav1s1 e unct1on. We extract more informa-

tion from this time regime by expanding equation 13 for large and 

small values of s to obtain the short and long time solutions, 

respectively. Expanding 13 for large values of s and taking the 

inverse Laplace transform to get the short-time solution of the inner 

region gives 

E ~ E
0
e-Z12[1 

+ o<F4ll U(>-0. 

(15) 

This solution indicates that tpe electric field initially penetrates 

the conductor essentially as a front, traveling at the speed of 

light, with a magnitude that is exponentially damped with distance 

from the surface. The characteristic length of penetration is 2r· 6. 
0 

Beyond the distance of T = e the field is zero. 

Allowing s to approach 0 in equation 13 and inverting to obtain 

the long-time solution of the inner region gives 
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(16) 

Thus after an initial period of f/~ the field penetrates as the erfc 

of the distance divided by the square root of time. This is of the 

same form as the solution obtained as the short-time solution in the 

diffu•ion region, equation 11. 

·To summarize, when an electric field with an axial component of 

magnitude E is applied to the surface of a conductor at time 0, the 
0 . . 

field penetrates the conductor at the speed of light with a magnitude 

that is dramatically damped within in a distance of or . This occurs 
0 

·within the 2 2 time 0+ and o r /.La 
0 

This is a very short time 

frame. For comparison, th~ · time it takes light to reach the center 

. 2 
of the conductor is or /.La. 

0 
After this initial period, the field 

penetrates the conductor ·as the erfc of the distance from the surface 

, divided by the square root of four times the time divided by r 2 
/.La. 

0 

Finally, 2 as t approaches r /.La, 
0 

the field approaches the uniform, 

steady-state field distribution. 

From this analysis, we shall develop the solutions of the total 

current as a function of time. 

Current 

From the expressions given for the electric field, one can 

determine the instantaneous total current. This value is derived· 

from Ohm's law and integration of i over the cross-sectional area, 
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(17) 

Solving for the instantaneous current allows us to compare the 

results of the above cases more readily by eliminating the indepen-

dent variable e. The instantaneous current for the full solution and 

diffusion solution are, accordingly, 

Full 
I 

2 
1rr oE 

0 0 

Diffusion 

co 

1- I .it. 
k=l .A

2 
k 

(18) 

(19) 

Another approach to the full solution is first to integrate the 

Laplace transform of the electric field, equation 4, with respect to 

e from 0 to 1. Using the method of residues, we obtain the above 

solution; but expanding this equation for large s and inverting gives 

a. solution useful at short times, 

I 
2 

1rr oE 
0 0 

2 
1 2 2o 2r(2 + 65

4
(1 -r/S 

8 [r - + e ) 

2 
5 

3 -r/2S 
2 

+ I
3

(r/2S
2

)] 
r e 

485 [I
2

(r/2S ) 

2 
e-r/S )] (20) 

+ 0( r
3

) 

for r << 1. Allowing s to get very large provides the_ very-short-
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time solution, 

I 2r/o. (21) 

In the diffusion region, if we start with the transformed solu-

tion of the electric field, equation 10, integrate over the cross-

sectional area of the conductor, take the limit as s gets very large, 

and invert it, we get the short-time solution to the diffusion 

region, 

(22) 

For the inner region, we shall first integrate equation 13 with 

respect to { from 0 to ~ and then take the inverse Laplace transform. 

Here, the current is given as 

'Inner I 
(23) 

Since .r 
2 r/o , we see that the first term of the expanded full solu-

tion, equation 20, is equivalent to the short-time solution given 

here. The rest of the terms of equation 20 are c.orrective terms for 

large T which tend to bend the solution down to the long-time solu-

tion. If we take the limit of the ·Laplace transformed solution of 

the inner region, equation 13, for ·very small s, and again integrate 

with respect to e from 0 to ~. we get the long-time solution of the 

~ 

inner region, 



-~I-= 5 
2 1rr oE 
0 0 
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(24) 

and for very large s, we get the short-time solution of the inner 

region, 

I 
2 ' 

1rr oE 
0 0 

25r. (25) 

From this analysis of the current distribution, we see that at 

short times (t<E/o) the current is proportional to time to the first 

power and at long times (t>E/o) is proportional to time to the one 

half power until t is of order r2~Jo where it approaches the steady­
o 

state value (see figure 3). In the former case, the short-time solu-

tion of the inner region overlaps the very-short-time solution of the 

full solution. In the latter case, the long- time solution of the 

inner region overlaps the short-time solution of the diffusion 

region. We .can conclude that the "displacement current, " which is 

responsible for this difference in solutions, is important only for 

2 2 
T = r/5 ~ 0(1) where 5 << 1. One further note, ~~gure 2 shows that 

the current approaches the final steady-state asymptotically with an 

exponential time constant 

lumped- inductance analysis 

2 
of r 0~Jo. This is as predicted by the 

the only thing in this work predicted 

by the lumped-inductance analysis. 

Summary 

This analysis describes the penetration of a steadily applied 

electric field into a cylindrical conductor from the initial time to 

• 

·~ 
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~teady state. This is recognized as a crude first approximation to 

the current distribution in a bipolar battery. The solution scheme 

used introduced two distinct time regimes referred to as the inner 

and diffusion solutions. A long-time and short-time solution of the 

electric field distribution were determined in each regime and then 

confirmed as consistent by direct comparison and comparison of the 

instantaneo.us current distributions. The c·urrent initially 

penetrates the wire at a rate proportional to time up to a time of 

the order of f/a and then at a rate proportional to the square root 

of time. ·It is this same order of time after which the omission of 

the displacement current is justified. The lumped inductance 

2 
analysis is appropriate for times on the order of r0~a. 

It part II we shall include the cylindrical wire in a radial 

circuit. That analysis will describe the interactions of the fields 

in the conductor with the rest of the circuit in terms of the time 

constant of the complete system. 

(It should be noted that all calculations in this paper have 

been performed assuming that a, f, and ~ are independent of time; 

i.e., the conductor is nondispersive.) 
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List of Symbols 

Roman 

d 
p 

penetration depth, m 

E axial electric field component, V/m 

E magnitude of axial electric field component at the 
0 

outer edge of conductor, V/m 

I total current, A 

i current density, A/m2 

L inductance, V-s/A 

r distance from center of wire, m 

r radius of wire, m 
0 

R resistance, 0 

s Laplace transform variable, s -1 

t time, s 

x variable of integration 

Greek 

E: 

dimensionless stretching param~ter 

permittivity, c2;N-m2 

T 
0 

th 
k zero of Bessel function J (x) 

0 

permeability, N/A2 

3.14159265358979 

electric conductivity, S/m 

dimensionless time 

dimensionless time constant 

20 

•· 



r 

21 

T stretched dimensionless time 

e dimensionless distance from center 

e stretched dimensionless distance from edge 
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Figure Captions: 

Figure 1. Solution regimes in the space-time coordinate. 

Figure 2. Axial electric field distribution divided by the magnitude of 

the electric field at the surface versus the dimensionless distance from 

the center of a cylindrical conductor. 

Figure 3. 

o = lxl0-9 . 

Dimensionless current versus dimensionless time for 
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