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Magnetic Field Effects in High-Power Battéries

II: Time Constant of a Radial Circuit Terminated by a Cylindrical Cell

with Inductance

Abstract

The time constant.to steady-state of an electric sigﬁal'applie&
to the outer boundary of a radial circuit that propagatéé to a cen-
trally lo¢aﬁed cylindricaliconducto¥ i§ deterﬁined rigorously by a
tfansmissipn-iiﬁe analysis. Two cases are reported: the perfect
radial conductor and a radial conductor with a finite resisténce.

I3

The time constant is featured as a function of ‘the ratio of the
‘ radius of tbe raéial conduétivé leads to the radiﬁs of the ihnevaSn;
duptor. As the rétio is increased; ﬁhe time coﬁstant departs from
that of an electric field penetrating a cylindrical coﬁductor and
approaches the induc;ive time constant of the leads. An anéljtiq
approximation of the time constant of the system is also providea.
This analysis shéuld assist in the development of higﬁ-power circui-

try design when the discharge time is on the order of the inductive

time constant.

Introduction

The, intent of this research is to determine the inductive time

constant of a circuit that contains a* battery. As discussed by

-~

1 . . . L s .
Rosser,” the rate at which the current rises in one portion of a cir-



cuit is a function of the configuration and properties of the rest of
the circuit. Therefore, this problem cannot be solved in parts. The
rigorous method for handling the inductance effects is to solve
Maxwell’s equations of electromagnetism throughout the entire circuit
apd surrounding medium, simultaneously with the equations that govern
battery performance. This would require an enormous effort. As
sﬁch, we direct our investigation to the simpler case ofvdetermining
rigorously the rate of discharge of a radial}ciréuit.with an induc-
tive, coaxial, cylindrical core. Appiying thé same argumenés as
found in part I, the cylindrical'cofe is assumed to approximate.the
behavior of a bipeclar battery. Furthermore, the electromotive force

is assumed rooted at some radial distance, ro, away'.

In part I we developed the_solutipn.to the rate at which_aﬁ
electric fieid penetratés a cylindrical conductor. As discussed, a
solid conductor is a poor approximation of tﬁe inner workings of a
battery. . However, that analysis provided an adequate first approxi-
mation of the induétive behavior of the battery. In this éecﬁioﬁ, we
shall 'usé a trénsmissionoliné. analysis in conjunction with the
preceding work to determine the time constant of the-total circult
' configuration.” The soluﬁion'to this full problem may suggest where
thé limitation to instantaneous discharge resides and may then be
used for design criteria for systems intéﬁded to be discharged at

high rates.



Analytic Approach

An analytic .approach is -possible if a simplified .cir;uit
geometry is proéosed. The following coﬁfiguration is cﬁnsidered: a
~cylindrical conductor Of'finite length d,vconductivityv&i; and.radius
ri sandwiched between two circulaf piates bf radius ro; where fo > r;
(see figure 1.) The.system is initially-at open-circuit, énd the
potential is iero everywhere. A constantv vpltage source is then
applied at time zerd at r = ro. Wg wish to determine the'time it
takes the system to reach steady-state. A transmission-line analysis
shall be used to characterize the propagatioﬁ of the signalvalong_the
radial conductofs.to the inner cylindrical conductor. The solutign
derived in part I section for the penetration of an eiectric field
inu? a conductor shall be converted intova boundary condition at
r = ri,v_The problem is éolvea using.Laplace transforms. ‘Two cases
are cohsidered: the fir;t is where the outer radial conductors‘are
assumed to have an infinite cqnductivity; ahd the second is wheré
they have a finitejconductivitf. Before proceeding ﬁo the solution,
we sﬁall first develop, through the elementéry.laws of stati;é and

"electrodynamics, the transmission-line equations.

Transmission-Line Analysis

A measure of the ease by which charge ¢ migrates through av
medium_is’qharac§erized bx’its resistivity, p.  This pafaméter is
low¢St for conductors, of moderate value bfor semiconductors, énd
highest for insulétors. The total registance of a bar of a conduct-

ing material of length I and area A is



. _ Ll .
R="5. (1)
Thus the resistance is defined by two parameters: the physical

geometry and resistivity.

According to Gauss's law, an electric field outside of a conduc-

tor acting perpendicular to the conductor is given by

s - i .

En = —. (2)
The potential is defined as

-Vé = E. (3)

For two parallel plates of equal and opposite charge and distance d

apart we. obtain

_gd - »

. ? - €A’ (4
or

q = C3, | | (5)

i
where C is the capacitance. The capacitance, like the resistance, is
a function of the physical geometry and a parameter, e, that
describes the medium separating the- conductive material. For the.

parallel plates, capacitance per unit area is defined as

¢

c==Z

=-e/d. (6)
Current is defined as the amount of charge that passes a particular

point per unit of time. In differential form

r=%2_.8 | (7)

at at

for a capacitive current.



Ampere’s law shows that with the passing of any current there is-
. |

an associated magnetic field,
UxB = pi. - - (8)
For a current flowing in a wire, the magnetic field is proportional

to the amount of current and inversely proportional to the square of

the distance from the center of the wire, .

B a uz-/f2.- : (9)

L g

- The magnetic flux, ¢, is the sum of the magnetic fields of current-
carrying elements from different positions in the conductor. The

magnetic linkage, A, is the sum of the total'magnetic flux in the-

system. The magnetic linkage is proportional to the current,

. A f LIL. A » (10)
L, the self-inductance, is a proportionality constant between the
flux linkage and the current and again is a function of the physical
geometry and g, a parameter describing the surrounding medium. For a

parallel-plate - configuration, it can be shown that the self-

inductance is

L=ypd. o ' (11)
.To relate the flux linkage back to a potential, we turn to Faraday's

law, )

UXE = - <2 | (12)
which mathematically states that a magnetié field that is wvarying in

time has associated with it an electric field. ' These definitions



ultimately lead to the expression

-vo = L?—t‘ | (13)
at’

We can now discuss thé transmission of a signal in the radial
direction between two conducting plates. If the conductors ére "per-
fect,” i.e. have a resistivity of zero, charge travelsvbetween the
plates on the surfaces'and is referred to as the skin current. If
the‘plates have. a finite resistance, the current penetrates within
the plates and it can be integratéd over the thickness £. In either
case, the current density.will‘have units of A/cm. Charge flowing in
the radial direction behaves as a purely inductive current, iL’ if
the platesvare perfect, and will contain an ohmic term 1if they'are
not. Sbme §f the charge goes to chargipg the plates and is referred
to as the capacitive current,'ic; with- units of‘A/cm2. A shell bal-
ance of the cﬁrrent traveling in the radial Airection along a.plate

with no resistance entering the shell at r and leaving at r+Ar

_appears as

ZwrlL]r = 2"r1L|r~¥Ar + ZWrA?lc' ' | (14)
Dividing through by rAr and taking the limit as Ar approaches zero

gives the differential form

a(ri : '
1200y - _i (15)
r Or c’ ,

Differentiation of equation 15 with respect to time and the subse-

quent substitution of the previously derived current-potential rela-

tionships,



ai ' :
: §$=_Ll - (16)
- dr T adt :
and ‘
. 8%
i, = cat, (17)

gives the transmission-line equation for a radial circuit of infinite

conductivity,
10(88) . 3%
s R T o u®

If the conductor maintains a finite resistivity, the equation

_g¢ =‘Lfi'+ L . ©(19)

ar at ol’ ' .
(0, the conductivity, is equal to>l/p.) which contains an additional
‘term for the ohmic drop, is substituted into equation 15 in the place
of equation 16. This substitution gives the transmission-line equa-

‘tion for a radial circuit with finite conductivity,

: . 2 ; .
13(.88) . 8% . cad |
rar[rar] =Lle 5 Y olac ‘ (20
at _ :
Case 1:

. Outer Conductors of Infinite Conductivity,

As shown above, the following transmission-line equation for the ,

potential applies to radial conductors of infinite conductivity:

a2 2
9 + = ch—g

" dr ’ atz.

Substitution of the dimensionless variables,

o

()
Al L
@l
&

(21)



. 2 o .
£ = r/ri, T = t/ripiai, and ¢ = @/Qo, (22)

leads to the equation

2 2
s 10 _ 25" 23
pe? €98 0,2

N\
' — , 2
where 6o = riJLc/riuiai.

We shall solve this equation by means of ‘a Laplace transforma-
tion. ~ The Laplace transform of equation 23 is
2- 183 :
8¢, 188 _ 2% - S6(+0) — ¢7 (+0). (24)
352 £3d¢ :

The following is a list of the initial and boundary conditions.

-

Initial Conditions

6=0 at r =0, ' o ' ) (25)
%% =0 at 7=0. ‘ (26)

The first condition mathematicélly states that the potential is zero
everywhefe at time zero. The second condition states that the change
of the_pbtential with respect tovtime at time zero is also zero.
This implies that somé type of "inertia" or inductance must be over-

come before the potential will change at time zero.
Boundary Conditions
6 =1 at £ =1r /r., (27)

2ﬂJ~iirdr =.2Wriio' at £ = lf i (28)

The first boundary condition states that at r = r, the potential is



. instantaneously set to éo. . The second condition is interpreted as
the integral of the current density over the area in the inner con-
ductor is equal to the line integral of the skin-current density that

enters the inner conductor at r = ri.

The Laplace tranéformation of-equatioﬁ 27 is
¢ =1/s at € = ro/ri.’ - | (29)

- The Laplace transformation of equation 28, carried out in the

Appendix, is
2+S)2‘-i ‘ 7

(5552 + s);izo('szsz + syt

- 2
-¢Ii(8is

0 jps
P

at & =1, (30)

Y
£l

Solution

-Solution of equation 24 with the cdnditions of 25, 26, 29, and

37 is
$= AL (E,58) + BK (5,50) | (3D)
r
1_ g [55—]
N o i : .
4= R - (32)
I s =2 ‘ »
[o] o r.
i - 1
and
I (a)Y(s) - cI.(a). , - N
B 2 - ,(33)

T ST BT (@) =K (I (B)T7(s) = ¢ [K (BT (&) =K (@) (B)]

where



10

a = 803, b = Sdsro/ri, c = 5oui/Ld, ;34)

and

N

11(6.52 + s)k

Y(s) = - (35)

R Lad

2.2 2 2 e
(Sis + s) Io(éis + s)

Inversion of thisvsplution to position and time coordinates is

formidable.  The transformation may be performed by the method of

residues, application of which requires the poles of the equation.-

The poles are also equal to the negative of the time constants.

Time Constants

Since our primary concern in this investigation is the rate at
which a conductor in a circuit can be brought to full current, we
sha111f6cuévouf efforts on deriving the time constant of the above
solution. The poles of the solution are the roots of the denominator
of B. Tp emphasize the effect of circuit size on the time constént,
we rearrange the denominator of B to |

Ko(b)Io(a)-Ko(a)Io(b) 1

X (5T, (@) ~K (@1 _(Byie sy [

e[K (DY) (a) +K ()T_(b)]¥(s)

The'term on the lefﬁ within the brackets, from here onvreferred to as
K, is a function of s, the properties of tﬁe radial part of the cir-
cuit, and ro/ri._ The term on the right vithin the brackets is a
function of s an& the properties of the inner conductor. A plot of
both terms within the brackets is provided in figure 2, where the
ratio of ro/ri is a parametéf. K éppears as a straight line with a

slope which becomes more negative as ro/ri is increased. Y(s) 1is
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unaltered by changes in the radius.ratio} The root of equation 43 is
the value of s where the two terms in the brackets are equal (the
point of intersection in figure 2). As the size ratio approaches
infinity, one sees in figure 2 that the point of intersection
approaches zero, and, thus, the time constant approacHés infinity.
Figure 2 further shows that 1/Y(s) interseéts the abscissa at the
' 2 2 2 C X
value of s = s where 6.s° - s =27, X 1is the first zero of J ,
o i“o o ‘o o o
. . . . 2
the Bessel function of the first kind, of order O. Ai = 5.783186.
K intersects the ~abscissa at s =0.  The time ' constant,

7' = -1/root = —l/sf, is therefore bound between —1/so'énd infinity, .

and is a function of the size ratio ro/ri,

We now wish to develop an approximate analytic expression of the
time constant as a function of the size ratio. The limit of K as s |

approaches zero is

’ 550~' r, :
limKk = - —1In—. 37
c r,
- s—0 i
(c is defined in equation 34.) An approximation of 1/¥(s) for small
s is 3
1 s| o
lim = 211 - =—|. - (38)
s—*OY(S) %o

.Combination of the abové equations leads to

|s le, r , _
1 + ——52——1n;f.. (39)
. | P o

!

Y

i

2
mlom

o r -

This approximation of the time constant as' a function of the size

- ratio is plotted in figure 3 along with the roots of equation 43.
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This figure shows that the time constant increases without bound as
the ratio of the radius of the perfectly conducting outer leads to

the radius of the inner conductor is increased.

Case 2:

Outer Conductors of Finite Conductivity.

The radial circuit geometry is again used here; however, this
time the circuit maintains a finite conductivity. -The transmission-
line equation for a radial conductor with a finité.conductivity is

2 2
3
ar at

as derived earlier. Substituting into'the'above equation the previ-

o
@
o
o)
mlm
O

(40)

ol
+
K-
mlm
N e
]
H
(9]

+

-ously defined dimensionless parameters from equation 22 gives

52 2, '
SRR R
65 ar ' ' '
where
2” v
PO | %5 ~ 42)
B UOBL : . ‘ (

The self-indﬁctancé of the iﬁher conductor 1s proportional to 1its
permeability,_pi. The reéisténce of the inner cohductbr_is inversély,
propqrtional to the radius squared and the conductiVity, 1/r§ai.
Likewise, the resistance of the outervconductor is inversely propor-
tional to . the conductivity and the thickness of the platés, 1/200

Thus, B can be thought of as the ratio of the inductive time con-

stants, L/R, of the inner conductor and outer radial leads.
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The Lapléce transform of equation 23 is

2__ -—
8¢, 188 _ 52 (5% — s4(+0) = 47(+0) + B(sF ~ $(+0)]. . (43)
'652 £ 3¢ o ’ o

The same initial and boundary conditions apply as in case 1; however,
io obeys the equation from the transmission-line analysis for a con-
ductor of finite conductivity, equation 19, which is rewritten here

as

k4 o,z (44)

The dimensionless Laplace transform form of this equation is

_Q_E Ls 1 |+ |
, € + . (45)

r2 o
i*i%;

Following the same argumentsiaé developed in the appendix with the
appropriate substitution of equation 45 provides the boundary condi-

tion

2 . (62.52 +8) |
(s + B)Ld 3¢ 2 2 55 L% at £=1. (46)

(5 s +s8) I (5 s +5)

Solution

Solution of eduation_43_with the derived initial.and boﬁndary .
conditions 1in equations 25, 26, 29, and 46 gives the Laplace

" transform solution

AT 0 2. N 2 5
¢ = AI_[6 (s + ps) €] + BKO.[So(s + Bs)€]. (47)
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']—' — BKX (b)
a5~ o7 (48)
()
2 y(s) T (a) = I,(a)
SOcs o o,a .

B=

| XK (0)I (a)~K (a)I_(b) -(49)
sY(S)[Ko(b)Il(a)+K1(a)Io(b)]{ o [o) o o Y(];_>}

5,05 K ()T (@) +Ky ()T (B) ™

2 %! 2 e’ ‘fi (50)
a = 50(5 + Bs)", b= SO(s + Bs) ro/ri, c soLd’ _
and Y(s) is the same as in case 1, equation 35.
As in the first case, inversion of this solution to time coordi-
' nates is difficulti we shall again focus on obtaining the time con-

stant of the problem.

Time Constants

We show in figure 4, as we did,in figure 2, a plot of the fwo
terms within the large brackets of equatiqn 58 for severﬁl values of
B and a ro/ri ratiévof 16/1. VWhen B isvset to ze?o, we recover the
analysis in Case 1. As B is increased, the K line'ffom the original
ahalysis is offset to the left by B. Again, the-poles of the solu-
tion are thése valueé of s where the twé curves intersect. The shift
of K by variations iﬁ B precludes the time constant from approaching -
infinity even as the size of the circuit approaches this limit. We.
see that as B8 is increaséd, the time constant, which is the inverse
éf the absolute wvalue of the rootﬁ, decreases. The dimensionless
time constant of a circuit of finite conductivity is constrained

between the two limits —-1/8 and —1/so.
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Again we search for an analytic expression of the time constant.’
Taking the limit of the left term in the large brackets of equation

58 as s—0 gives

2 r, (s+p8)s  r, .
lim XK = In—= ———1In—. (51)
§ cs r, c

T,
s—0 o i, v 1

The approximation of 1/Y(s) for small s was derived in case 1, equa-
“ tion 38. Combination of the two limiting forms provides an analytic

approximation of the time constant

'

1--221p-2
,r s, 2c r
;; = ;;.‘ 550 . \ (52),

The time constants derived from the roots of equation 49 and those
satisfying the above approximation are plotted versus the size of the

system in figure 5 for two values of B: one > s, and the other < S 5

Discussion

'SoAand'ﬁi are both typically much less thanil and were set equal
to each other apd to lx].O_5 in all of the figures. Oﬁlyvfor very
' short times, s on the order of 1/62, does the exact vglue of § play a
-sigﬁificgnt role. In ﬁhe time frame of intéfe;t, which is the long
time referfed to in chapter 1, s is 0(1). The above equations can,
therefore, all be simplified by setting the 6?s to zero. This
approxima;ion has little effect on the present "long-time" results
and explains‘whyivalues Qf»éhe 6fs-a%e imflicitly.eliminated froﬁ the

anélytic approximations of the time constant derived in cases 1 and
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As mentioned, B\is the ratio of the inductive time constants of
the inner conductor_t§ the outer r;dial leads. 1In case 1, where the
leads are of infinite conductivity or zero resistance, the inductive
'timeicoﬁstant of tﬁe leads is infinite, and B is zero. VSetting.ﬂ to

zero in case 2 reduces the solutions to those of case 1.

For the systém with infinitely cbnductive leads, the fime con-
stant is_proﬁortional to thé }ogarithm of the ratio of the size of
the leads to the size of ﬁhe innef conductor. On the other hand, the
system with leads of finite‘éonductiyify has a time constant that-is‘
bourid between thé time constant.of the innér conducté; and that of
the leads. 1In géneral, the time constant of the system may either .
increase or decrease with the size ratio- ofv the system, but it
becomés independent of the size of the syétem. as the size ratio

approaches infinity.

The problem we have just addressed is analogous to the problem
of determining the time constant of a circuit with two inductors in

series. In that situation, the inductances are added, and the resis-

. ' . e . 3
tances are added. The time constant for the circuit is then

L+ Li -
"R TR, 3
o i
Some rearrangement gives
o 1 +'LO/L.
2 (54)

Li/Ri _1 + R'O/Ri

which is anélogous to the analytic approximation provided in equation
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52. This inveStigation demonstrates that the present method of
adding inductances to determine the overall time constant, is an
approximation (see figures 3 and 5) and that the approximation.is

less accurate for the smaller size ratios (1nrb/ri = 0(1)).

Conclusions

A rigorous investigation_has been undertaken to determine the
time constant of a radial circuit with and.without,resistance. The
circuit with an infinite conductivity has a time constant that is
proportional_té the 1og;rithm‘of thé.size-of the'systeﬁ: as the size
approacﬁés infinity, so does thé time constant. For a circuit with
finite conductivity, the time ;ohstant.ig'Bound_between_two limits
aﬁd is independent of size ratié for large systems. AnAanalytic
approximation to the time constant is provided for ;omparison with

the rigorous evaluation and shows that the approximation, which is

used in most texts of circuit analysis, is less accurate for smaller

systems — circuits where the leads are approximately as wide as the
cell of interest. This analysis is a first approximation to the time
constant of a circuit containing an electrochemical power source and

is an applicable”design tool for rapidly discharging systems.

Appendix
On the right side of equation _28, iO’ -the skin-current density,

defined in equation 16, is
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r.uoc.d®
df = —2+ 110 ¢dd, (a-1)
L 53¢

(o]
il
Otsrt
Q’lQ’
LELS]

The Laplace transformation of this equation is

- __Ti#%% 108 | (A-2)
o L s 3¢’ '

Ohm'’s law gives the relation for current density in the central con-

ductor in térms of a component of electric field

ii = aiE. (A-3)

We have shown in part I that inside. a cylindrical conductor .the
Laplace transform of the axial component of the electric field dis-
tribution due to a steady field of unit magnitude applied at the sur-

face is

23 T (3% + 9% '
E =~ =2 = | (A-4)
sIo[(Sis + s) 7] '

Io is the modified Bessel function of the first kind, of order 0.4
Duhamel’s Duhamel’s superposition formula,4 an integration of the
solution to the linear equations applicable to the system, is used to-

describe the current in the conductor

T ’ , - ’
i, =0, JEGE,r-ryBEL D g (A-5)
The Laplace transform of this equation is equal to the product of the
Laplace transform of its parts.4 The Laplace transform ofAE(§,f—r’)

is given in equation A-4. The Laplace transform of  the derivative of

E with respect to 7 is
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.Q__Eg‘ (6)
Ep SE. » _ _ )

.Taking the Laplace transform of equation 34 and,substitqting into it

equations 33 and 35 gives

2 + s)kg] . 2ﬁr2#l 5 o].;g -
9 =1 se &7

27rr20 .91 51 [(5f
3 0 1(522
1

3
+ s)°
After integrating and some rearrangement, we get the boundary condi-

tion,

22
2'2¢I (;s +2s; 5~ %%g? e £=1. a9
(65" + )7 I (675" + 8)°
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List of Symbols

Roman
(o4 . o capacitance, C/V
. -2
c : - : capacitance per area, C/V-cm
d - K N distance between radial conductors, cm
E o "~ electric field, V/cm
E

Laplace transform of E, V/cm



Greek

subscripts
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current density in inner conductor, A/cm2
current density in outer leads, A/cm
Laplace tr;nsform of iO ~

thickness of radiél leads, cm

inductance, V—sz/C-—cm2

radial coordinate, cm

radius of inner.conductor, cm

radius of outer leadsf cm

resisfancé, Q

Laplace transform of dimensionless time, 7

time, s

ratio of the inductive time constants
dimensionless parameter

permeability, V—sz/C—cm

dimensionless radial coordinate

conductivity, S/cm
dimensionless time
dimensionless potential
Laplace transform of ¢

potential, V

property of inner conductor

property of outer leads
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Figure Captions:

Figure 1. Radial circuit of radius T, containing a cylindrical conduc-

‘

tor of radius ri.

Figure 2. 1/Y aﬁd' K versué s for three wvalues of r /ri.

»O
§ =6. = 1><10‘5.
o] 1

Figure 3. The time constant and an analytic approximation of the cir-

cuit of infinite conductivity versus the logarithm of the size ratio.

Figure 4. 1/Y and K versus s for different values of S. ro/ri = 10.

Figure 5. Time constants versus size for two values ofbﬁ. The dashed

curves are the analytic approximations.
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