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Abstract 

A high order vortex method is described for solving the two dimen­

sional incompressible Euler equation in the case where the flow field 

can be represented by patches of constant vorticity. It is a continua­

tion of Buttke's adaptive vortex method [ J. Comput. Phys. 89, 161 

(1990)]. In our method, each patch is approximated by a polygon plus 

a residual part. Through the introduction of an explicit formula for the 

·velocity induced by a triangle, and the approximation of the residual 

part by vortex sheets, the fluid velocity is obtained with third order 

accuracy. Numerical cancellation is carefully avoided. Two numerical 

simulations are carried out. In the problem of two circular patches 

initially separated 'by a d.istance of half their radius, we stl.J·dy the cur­

vature of boundary near the point which was previously obseryed as 

a cusp. Our numerical experiments show that the curvature there is 

finite. 
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Introduction 

Introduced here is a method for investigating the two dimensional evolution 

of a piecewise constant vorticity distribution in an inviscid, incompressible 

and unbounded :fluid. 

When finite difference methods are used to simulate these flows, a high 

mesh resolution is required to avoid introducing grid scale dissipation and 

dispersion errors. To overcome these difficulties, Chorin [l)proposed vortex 

methods which advect vortex blobs according to the fluid velocity calcu-

- lated from the existing vorticity distribution. The methods were designed 

to simulate the dynamics of arbitrary vorticity distributions in two or three 

dimensions. For the particular problem of patches of constant vorticity, it 

is uneconomical to apply this general meth~d directly, therefore a special 

method should be sought. 

Zabusky, Hughes and Roberts [2] prese~ted a contour dynamics method 

in which fluid velocity is determined by integrating an appropriate kernel 

function along the boundaries of the patches. Contour dynamics can yield 

high resolution results with only a moderate amount of computation if the 

boundaries of patches are relatively simple. However, for contours which 

become stretched, numerical cancellation may cause a loss of accuracy. 

4 



.. 

-... 

Buttke [3] presented an adaptive vortex method for patches of constant 

vorticity in two dimensions. In his method, cells of multiple scales are ·used 

to represent the patches so that the number of cells needed to approximate 

a patch is proportional to the length of the boundary of the patch, and 

inversely proportional to the width of the smallest cell used. This method 

does eliminate the numerical cancellation and works well even if the patches 

become stretched and deformed severely. There are three sources of error in 

this method. The total error takes the following form: 

where .6.t is the time step, .6.s is the maximum distance between adja-

cent nodes and .6.~ is the width of the smallest square cell employed in the 

method. Usually, the do~nant part of the error is C1 .6.~ which comes from 

approximating a polygon by square cells. 

Based on Buttke's idea, we now develop a high order vortex method 

for patches of constant vorticity. In order to get high order accuracy in 

space, we describe a patch more accurately than taking it as a polygon. In 

our method, the numerical nodes along the boundary of a patch are linked 

sequentially to form a polygon. The polygon is then cut into triangles. The 

difference between the patch and the polygon is called the residual part. 
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It consists of many lens-shaped areas. We calculate the velocity at a point 
i 

Q = (x 0 , y0) by integrating the kernel function (which is the velocity induced 

by a unit point vortex at (x, y)) 

(u,v)= ..!._ [ . (Y-Yo) -(x-xo) ] 
21r (x- xo)2 + (y- Yo) 2 ' (x- Xo)2 + (y- YoF 

on the polygon and the residual part. We derive explicit formulas for the 

velocity induced by a triangle and discuss the way to avoid numerical cancel-

lation. While the integral of the kernel on the polygon is calculated exactly 

\ 
by summing the contributions of all triangles, the residual part itself cannot 

be fully determined by a finite number of nodes, so its contribution has to be 

obtained approximately. Fortunately, the contribution of the residual part 

is so small ("" O(l:J.s)2
) that to obtain a third order method, we only need 

its first qrder approximation. We approximate each lens-shaped vortex area 

in the residual part by a vortex sheet. The integral on the residual part is 

evaluated by summing the contributions of these vortex sheets. 

In the first section, we derive the formula for the velocity induced by a 

triangle. In the second section, we point out the numerical singularities in 

the formula and discuss how to avoid them. In the third section, we describe 

a method for calculating the fluid velocity and a principle for adding and 

removing numerical points during calculation. In the fourth section, we 

i 
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·discuss the error of the method. In the fifth section, we give two numerical 

examples. In the second numerical example, we study the curvature of 

boundary in the region where the possibility offorming a singularity in finite 
( 

time was discussed in [4, 5, 6, 7]. Our observation is that the curvature of 

boundary in that region converges numerically to a finite value as we refine 

·the time step and the space step. 

1 The velocity induced by a triangle 

. Euler's equation in two dimensions is [8) 

J 

oa c- )- vP -+ U·\J u= --ot P 
(1) 

where i1 = ( u, v) is the velocity of the fluid, t is the time, pis the pressure 

and p is the density of the fluid. 

In h . "bl h - . ou ov t e mcompreSSJ e case W ere \J · U ::: OX + oy = 0, 

ow c- ) at+ U·\lW=O 

h . . ov ou . h . . . f h fl. "d w ere w = ~ - ~ 1s t e vortJaty o t e w . 
vX vy · 

(1) becomes 

(2) 

(2) indicates that the vorticity is advected with the fluid. For the prob-

lem of vortex patches, it implies that during the evolution, a patch will 

always retain same constant vorticity even though it may deform severely. 
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To solve the problem of vortex patches, we only need to follow the bound-

aries of these patches. 

The incompressibility allows us to define the flux function 'lj; as 

(3) 

Combining the definition of vorticity and {3), we find 

'lj;:rr + 'lf;yy = -w . (4) 

From ( 3) and ( 4), we can express the fi uid velocity i1 = ( u, v) as 

1 l (y- Yo)w(x, y, t) 
u(xo, Yo, t) = -2 ( )2 ( )2dxdy 

1r R2 x - x o + Y - Yo 
(5) 

. 1 1 -(x- x0 )w(x, y, t) 
v(xo, Yo, t) = -2 . ( )2 ( )2dxdy 

1r R2 x - x o + Y - Yo 
(6) 

Since w(x, y, t) is a piece~wise constant function, (5) and (6) become 

1 ~ 1 (y- Yo) 
u(xo,Yo,t) = -2 ·L-w; ( )2 ( ) 2 dxdy 

7r i=l n;(t) x - Xo + y- Yo . 
(7) 

1 ~ 1 . -:-(x-~o) 
v(xo,Yo,t) = -2· L-w; ( )2 ( )2dxdy 

· 7r i=l n;(t) x - Xo + y - Yo 
(8) 

where k is the number of patches, fl;(t) is the region of the ith patch and w; 

is the vorticity of the ith patch. As noted above, w; will remain unchanged 

during the evolution. 

A patch can be approximated by a polygon which can be cut into trian-

gles. Therefore we take the triangle as the basic element for approximating 
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a patch. In order to calculate the integrals on Hi(t) in (7) and (8), we now 

derive the formula for the velocity induced by a triangle. 

We translate and rotate the coordinate system, so that the triangle is 

in the position as in Fig.l. Three vertices of the triangle are Q1 = ( -c, 0), 

Q2 = (c,O) and Q3 =(a, b). At the beginning, we assume that the point 

Q = (x 0 , y0 ) is outside the triangle. The induced velocity is given by 

W 1 (Y-Yo) def W 
u(xo, Yo)= -2 ( )2 + ( . )2dxdy = -2 I(xo, Yo) 

1r 6 x - Xo Y- Yo 7r 
(9) 

· w 1 · -(x,..-xo) def w 
v(xo,Yo)= -2 ( )2 ( )2dxdy = -2 J(xo,Yo) 

1r 6 x - Xo + Y - Yo 7r 
(10) 

we· now calculate J and I 

1
6 

1
c+(a-c)yf6 -(x _ Xo) 

J = dy dx 
o -c+(a+c)y/6 (x- Xo) 2 + (y- Yo)2 

= l dy {-~log [(x- x0 )
2 + (y- y0 )

2
] 

z=c+(a-c)y/6 
} (11) 

z=-c+(a+c)yfb 

Integration by parts gives 

(12) 

9 



where 

a-c 
Yo+ -b-(xo- c) 

(31 = (a- c)2 
1 + b2 

a+c 
Yo+ -b-(xo +c) 

(32 = (a+ c)2 
1 + b2 

Similarly for I, we have 

(a- c)Yo - (xo- c) 
"' - b /1- (a- c)2 

1 + b2 

(13) 

(a+ c)T- (x 0 +c) 
' "/2 = (a + c )2 

1 + b2 

(14) 

(15) 

(12) and (i5) are v~lid only for a point (x 0 , y0 ) which is outside the triangle 

and satisfies 71 =I 0 and 72 =I 0. 

What happens to a point (x0 , y0 ) inside the triangle? When a numerical 

node is inside the triangle,it certainly is inside the polygon containing the 

triangle. Approximately, we assume it is inside the vortex patch. This means 

that either two patches overlap, or two parts of a patch overlap. Neither 

of these two cases is allowed in fluid dynamics. In order to get the correct 

solution, we should prevent these cases from happening. Hence we do not 

consider the situation where the point ( x 0 , y0) is inside the triangle. 

10 



If ')'1 = 0 or i'2 = 0, we can calculate J and I with 

J(xo, Yo)= lim J(x, y) 
(r,y)-+(ro,Yo) 

I(xo,Yo) = lim I(x,y) 
(r,y)-+(ro,Yo) 

Although J(x,y) and I(x,y) have limits as (x,y)-+ (x0 ,yo), it does not 

guarantee that each term in (12) and (15) will have a finite limit. We will 

discuss these limits in the next section. 

Now we introduce some new quantities and simplify (12) an~ (15). 

c
1 
d~ /31 = (a- c)(x0 - c)+ by0 

" b b2 +(a-c)2 (18) 

~ d.:.f {32 _ (a+c)(xo+c)+byo (19) 
2 

- b - b2 + (a + c )2 

c di:J(/31-b)='" _ 1 =(a-c)(xo-a)+b(yo-b) . (20) 
"

3 
b "

1 
· b2 + (a - c )2 

defi1 (a-c)yo-b(xo-c). 
T/1 = b = b2 + (a - c )2 · ( 22) 

def 12 (a+ c)Yo- b(xo +c) (
23

) 
T/2 = b = b2 +(a+ c)2 

r. 
11 



de! 1'1 (a- c)(Yo- b)- b(xo- a) 
113 = b = b2 + (a - c )2 (24) 

def 1'2 (a+ c)(Yo- b)- b(xo- a) 
114 = b = b2 + (a + c )2 . (25) 

def d ( 2 2) ( )2 2 r1 = 2 {2 + 1/2 = Xo + c + Yo (26) 

de/ d ( 2 2) ( )2 2 r2 = 1 {I + 1/1 = Xo - c + Yo (27) 

(28) 

Theoretically (22) and (24) are equivalent. 1/I = 1J3 = ~x thedistance 

from point Q to line Q2Q3 • Here we point out that they are two different 

formulas in the numerical computation. If Q = (x 0 , y0 ) is near Q2 , (22) is 

the better way for calculating 1/I· However, in the case where Q is close to 

Q3 , we have to use (24). For (23) and (25), we have a similar situation. 

With these notations, (12) and (15) can be written as 

(29) 

{ 
1/1 r3 1/2 r3 I= b -log-- -log-
2 r 2 2 r 1 

12 
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(30) 

(29) and (30) are the mathematical formulas for the velocity induced by 

a triangle. In the case where they behave well numerically, we use them 

directly in the calculation. In the other cases, numerical cancellation may 

cause a loss of accuracy and we have to change them into forms which have 

good numerical performance. We discuss this in the next section. 

2 Numerical singularity and the way to avoid it 
1 

Now let us examine J 1 in (29) and / 3 in (30) in the limit Q -+ Q3 • 

The fact that J 1 and / 3 have a singularity at Q3 does not necessarily 

imply that J and I have a singularity at Q3 • In fact, as we will find later in 

'>, 
this section, J(xo,Yo) and I(x0 ,yo) do have finite limits as Q ~ (x 0 ,y0 ) ~ 

Q3 • The singularity of J 1 and 13 at Q3 tells us that the numerical expression 

13 
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for J and I should take a form other than (29) and (30) if Q = (x 0 , y0 ) is 

close to Q3 . The purpose is to avoid numerical cancellation. The situation 

here is very similar to the following example. 

Suppose we calculate f( x) with the following two expressions. 

f(x) = v'x + x2 - x (31) 

and (32) 

When x is positively large, to get a numerical result with small relative error, 

we have to use (32). However, if :X is negatively large, (31) is preferred. 

In this section, we will write (29) and (30) in different forms. Mathe-

matically, all these forms are equivalent. Numerically, different forms are 

used for different situations. For each situation, we choose a suitable form 

such that no term in that form has a singularity. As explained in Section 1, 

we always assume Q = (x 0 , y0 ) is not inside the triangle. 

We use (29) and (30) for J and I respectively. 

In the limit Q ._ Q2 , J1. J3 , I 1 and I 3 all go to zero. 

14 



, has a singularity as Q = (xo, Yo) -t Q2 

The same statement holds as Q = (xo, Yo)- Q1. 

As Q = (xo,Yo) -t Q3, we have T/1- 0, TJ2- 0, {1- 1, 6- 1. 

lim / 3 does not exist, lim / 4 does not exist 
Q-Q3 . Q-Q3 

where L(QQ 11 QQ2 ) is the angle spanned by vector QQ1 and vector QQ2 , 

which falls in [0, 1r]. 

If\ we first calculate / 3 and / 4 , then add them together, the large errors 

occurred in the calculations of / 3 and / 4 will destroy the accuracy of (13+14 ). 

To evaluate / 3 + /4 numerically, we write it in the following form 

15 
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Hence, in this case, we use the following expression for I. 

(33) 

def · ' = b {Is + I6 + I1 + Is + I9} 

For J, we use 

(34) 

We checked the behavior of every term in (33) and (34). No term has a 

singularity as Q = (xo, Yo)--+ Q3. 

Case 3: )x6 + y5 > 6c. 

First let us point out the problem (29) has when x6 + yg is large. 

When y0 = 0 and x 0 --+ oo, we have 

16 



.. lim 
zo=O 

!lo-oo 

. b2 
J 2 = b2 . ( )2 # 0 + a+c 

lim J 
-(a-c)2 

40 s = b2 ( )2 r zo=O + a- C 

lim J - (a + c )2 # 0 
zo=O 

4 
- b2 + (a + c )2 

!lo-oo 

There is no singularity in Jb J 2, J 3 and J4. However, while Jh J 2 , J 3 and 

J4 all tend to nonzero values in the limit Q -+ oo, their sum goes to zero: 

lim J = 
zo=O 

!lo..:..oo 

lim b { J1 + J2 + Js + J4} = 0 
zo=O 

!lo-oo 

Generally speaking, if J is computed using (29), the magnitude of the ab-

solute error in J is about the same order as those in Jb J 2 ; J3 and J4. 

Consequently the absolute error in J will not tend to zero while J itself goes 

to zero. This leads to a large relative er.ror for J. To calculate the velocity 

at points far from the triangle, we need to change (29) into a form in which 

every term vanishes as Q-+ oo. · 

As r = y'xg + yg-+ oo, J is of the order O(r- 1
). We now find a form 

for J such that all terms in it behave like 0 ( r- 1 ). 

17 



where the functions F and G are defined as 

F( s) = log g ~ ; ~ + 2s (36) 

G(s) = arctan(s)- s · (37) 

A _ 11i - ~i + ~1 
1 

- c~i + 11r- 6 + 1/2)(~i + 11D 
A _ TJi - ~i + ~2 . 

. 
2 

- (~~ + 11~- 6 + 1/2)(~~ + TJ?) 

B - 6ITJd 
1

- C11r + ~r- 6)(~r + 11D 
B _ . 6l112l 

2
- <11~ + ~~- 6)(~~ + 11n 

18 



For I, we have 

I = b {~ [F (~f + ~~ = ~:~ 112) + A1] 

- ~2 [F (~~ + ~~ = ~:~ 1/2) +,A2] 

+6sign(7JI) (c (7Jf ~~~~~- !J +B1] 

-~2sign(712) (c ( 71~ +~~~~- ~J + B2]} 

d~ b {I1o +In+ I12 + l1a} 

(38) 

Although all terms in (35) and (38) tend to zero as x6 + yg -+ co, we 

may still suffer from numerical cancellation when calculating F and G. To 

avoid loss of accuracy, we expand F and G into power series: 

(39) 

G(s) = arctan(s)- s 

= -sa - + L __:;.._s2i + £2( s) (
1 

8 
( 1); ) 

3 i=l 2z + 3 
(40) 

l£2(s)l < 10-16 when lsi< 0.15 

. As r = -/x5 + y~-+ co, the functions F and G are of the order O(r-3 ), 

and A1 , A2, B 1 and B2 are of the order 0( r-2). It follows immediately that 

all terms in (35) and (38) are of the order O(r-1). 

19 



Finally, it should be pointed out that, in programming, I and J are not 

difficult to calculate. 

3 The numerical method 

To obtain the fluid velocity, we do two things: 

1. Approximate the boundary curve of each patch ni by interpolation. 

2. Evaluate the integrals of the kernel on ll; in (7) and (8). 

In our method, the boundary of each patch is numerically represented 

by the nodes distributed along it. The curves between adjacent nodes are 

approximately determined with the second-order interpolation. Suppose Q; 

and Qi+ 1 are two adjacent nodes. To approximate the curve between Q; 

and Qi+1 , we establish a local coordinate system, taking the line Q;Qi+1 as 

x-axis and the perpendicular bisector of QiQi+1 as y-axis. For the simplicity 

of the interpolation here and the integration later, we let the interpolation 

curve be a parabola with y-axis as its line of symmetry. The equation for 

the parabola is 

20 
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where l; is one half of the distance between Q; and Qi+b and h; is the 

height of the parabola which is determined by the points Q;-1! Q;, Q;+t 

and Qi+2 with the following formulas. 

a· 
h; = l; 1 

1 + y'1- a] 

Suppose n is the region enclosed by these interpolation curves. Then n 
is a third order approximation of the real patch region S1 if the boundary of 

S1 is smooth. Although we can describe the boundary more accurately by 

using higher-order interpolation, it will not reduce the total numerical error 

if we cannot evaluate the integrals on n in (7) and (8) to the same high 

order accuracy. 

A patch n has two parts n = P +fl. P is the polygon with the numerical 

nodes as its vertices. R is the residual part. Thus the integrals on ni in {7) 

and (8) can be written as 

(41) 

21 



We then cut the polygon P;(t) into triangles. In Section 1 and 2, we derived 

and discussed the numerical formula for the velocity induced by a triangle. 

The integrals on P;(t) in (41) can be easily obtained by summing the contri-

butions of all triangles. Ri(t) consists of a lot oflens-shaped areas. Each one 

is an area enclosed by a parabola and a straight line. R;(t) has a very small 

area and the integrals on R;(t) in (41) are of the order (- 0(6s)2). To 

obtain third-order accuracy in space dimensions, we only need a first-order. 

approximation ofthe velocity induced by R;(t). 

We approximate a lens-shaped vortex area by a vortex sheet, i.e. we 

imagine that the vorticity in a lens-shaped area is concentrated along it~ 

bottom. The distribution of vorticity along the sheet is given by 

e;(x) = wh; [1- W '] for - 1· < x < 1· J - - J 

The velocity induced by a vortex sheet of this kind is given b;y 

22 



where 

Xo 
O'o = T' 

Yo 
To= T 

A little algebra shows that 

.. . (C1o-1)2 +Tg 
- R = 2To + Toeiolog ( · )2. 2 

· O'o + 1 + T0 

2 7r O'o To -
( 

. 2 + 2 1) 
+ [(Cio- 1)(C1o + 1)- T0 ] 2- arctan 

2
To 

(42) 

(43) 

Similar to . the situation in section 2, here we must change the numerical 

formulas, (42) and (43), into a different form when 0'5 + Tg is large. Again 

the purpose is to avoid numerical cancellation. 

For J 0'5 + T6 > 6, we use the following expressions for L and ](. 

(44) 
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where F and G are the same functions as defined by {36) and (37). As 

r = Ju5 + r6 -+ oo, the functions F and G are of the order O(r-3
). Con­

sequently all terms in (44) and (45) are of the order O(r-1). This conforms 

to the fact that the velocity is of the order O(r- 1). Hence (44) and (45) are 

the appropriate formulas for numerical calculation when u5 + r~ is large. 

Summing the contributions of these vortex sheets, we get a first-order 

approximation ofthe integrals on.R;(t)in (41). Therefore, ln.' the left hand 

side of ( 41 ), can be evaluated with third-order accuracy. 

Finally, summing the contributions of all vortex patches yields the total 

fluid velocity it(x0 , y0 , t) = [u(xo, Yo, t), v(xo, Yo, t)]. 

Once we know the total fluid velocity, we integrate in time using a fourth-

order Runge-Kutta method [9]. 

Initially, we distribute numeriCal nodes along the boundaries of the 

patches according to the following rules: 

L The distance between adjacent nodes is less than a specified Lls : 

2. Twice the angle between vector QiQi+! and vector Qi+!Qi+1 is less 

than a specified Ll() : 

24 



3. Either IQiQi+II > l.!ls or 2IL(QiQi+!,Qi+!Qi+t)l > l~9, or 

both of them are satisfied. 

Here Q i+! is the vertex of the interpolation parabola between Q i and Q i +1· 

In the above three rules, rule 1 prevents a loss of information about the 

curve between adjacent nodes, rule 2 provides a fine local representation 

where the boundary has large curvature, and rule 3 guarantees that we do 

not have redundant nodes. 

During the evolving of the patches, some parts of the boundaries will be 

stretched and the curvature of some parts will increase. In order to maintain 

the resolution.ofthe boundaries and keep the method efficient, it is necessary 

tq add and delete nodes. 

When IQiQi+tl > V'2.!ls or 2IL(QiQi+!,Qi+!Qi+t)l > V'2.!l9, we add 

Qi+! as a new node between Qi and Qi+l· 

When IQi-tQi+tl < .!ls and 2IL(Qi-tQ;, Q;Qi+t)l < .!lO, we simply 

drop the node Q i. 

In our method, a patch with n numerical nodes along it, is approximated 

by n lens-shaped areas and an n-sided polygon which is then decomposed 

into ( n - 2) triangles. The total number of the elements (triangles and lens­

shaped areas) is less than 2N, where N is the total number of the nodes 

25 



along all patches. The amount of work required to advance the patches for 

a single time step is of the order O(N2 ) which is generic for vortex methods 

if fast summation is not used. In the next section, we show that the method 

is third order accurate in space dimensions. 

4 Error analysis 

Now we discuss the numerical error ofthe method. There are two sources of 

error in the method: the error associated with the approximation of the fluid 

velocity, and the error associated with the time integration. The error from 

the fourth order Runge-Kutta time integration should be fourth-order and 

we will not discuss it here. The error from the approximation ofthe velocity 

can be broken into two parts. The first part of the error is due to the fact 

that a patch n is represented by· a finite number of nodes. The boundary 

of the patch can not be fully recovered from these finite nodes. The new 

patch n, formed by the interpolation curves, is used to approximate the real 

patch fl. Geometrically, n is a third order approximation of fl. Later, we 

will show that the difference between the velocities induced by n and n can 

be bounded by 0((.6.s?!log.6.sl). The approximate patch f2 is the union 

of a polygon and a residual part. The second part of the error is due to 
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the fact that we do not have an exact velocity formula for the residual part. 

Instead, we approximate each lens-shaped vortex area in the residual part 

by a vortex sheet. This error is also bounded by O((~s)3llog~sl). 

In fact, the numerical error also depends on the stability of the physical 

problem. Since such stability is a very complicated issue, we are not going 

to say anything about it. Here we only give an estimate of the numerical 

error in a single time step. 

Suppose U(x 0 , y0 ) is the velocity induced by the patch!!, U1(x 0 , y0 ) is the 

velocity induced '?Y the approximate patch n, and U2( Xo, Yo) is the velocity 

induced by the polygon plus the vortex sheets which are used to approximate 

n. We see that U(x 0 ,y0 ) is the exaci velocity and U2 (xo,y0 ) is the velocity 

we use in the numerical method. The spatial error E. is 

Now we try to bound IU(x0 , Yo)..., U2(xcr, Yo)l. First we have 

and (46) 

where r = ...j(x- x0 )2 + (y- y0 )2, and ~n = (f!\Q)u(Q\f!) is the difference 

between n and n. Assume that the patch n is contained in B(O, R) which 
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is the ball centered at the origin with radius R, and that its boundary an 

is smooth enough. It follows that b.n can be covered by a strip along the 

boundary an 

D.n c s = { (x, y) IJ<x- ~)2 + (y -1])2 < ~ for some(~, TJ) E an} 

where d f'V 0(.6.s)3 • 

If ( x0 , Yo) is inside B(O, 2R), we find 

. 11 IU(xo, Yo)- Ul(xo, Yo)l ::; cl -dxdy 
s r 

{1 1 1 1 } < cl . -dxdy + -dxdy 
- B((xo,Yo),d) T S\B((xo,Yo),d) T 

1
3R 1 

::; C2 · d + C1 -dA(r) 
d r 

(47) 

where A(r) is the area of S n B((x0 ,y0 ),r). Integrating by parts, we get 

{3R _!dA(r) = A(3R)- A( d)+ {3R A(r)..!._dr 
Jd r 3R d Jd r2 (48) 

We further assume that the length of the intersection of an and a ball can 

be bounded by a constant times the radius of the ball. That is, there exists 

a constant M such that for any point a = (X, y) and any number r > 0, 

Length of an n B( a, r) < M · r. With this assumption, we have 

A(r) < 2Mrd (49) 
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Combining Eqn(49), Eqn(48) and Eqn(47), we get 

11 . 13R2Md -dxdy < C3d + --dr 
s r d. r 

If (x 0 , y0 ) is outside B(O, 2R), f !dxdy can be easily bounded by the . Js r . 
area of the strip s : 

f !dxdy < Rl Area(S) < 2Md Js r . 

In both cases, we have 

IU(xo,Yo)- UI(xo,Yo)i $ Cd(l+ llogdl} 
i 

With the above assumptions, it is also true that 

Thus we obtain . 

In the above, the smoothness of an is only used to determine the width of 

.6.fl. We have not made any use of the particular shape of .6.fl. Eqn(46) 

is also a very rough estimate. Based on the analy'sis in some very simple 
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cases, we believe that the real bound for IU(xo, Yo)- U2(xo, Yo)l should be 

0( Lls?, but we are not able to prove it here. 

We expect the total numerical error to be of the form 

Error~ C(Lls? + D(Llt)4 (50) 

To demonstrate the validity of Eqn(50) numerically, we compare the exact 

solution for an elliptical patch given by Lamb [10] with the numerical solu­

tions obtained by our method. Consider an ellipse with a= 2, b = 1, where 

a and b are the lengths of the semi-major and semi-minor axes of the ellipse, 

respectively. The numerical experiments were carried out with w = 1. The 

Error is defined as the maximum difference between the exact solution and 

the numerical solution. We find that the Error satisfies Eqn(50) approxi­

mately with C = 0.063T and D = 0.0008T, where Tis the time. Of course,. 

this is a simple problein in which the vortex patch, while rotating, always 

remains of the same elliptical shape. For- the general problem, we believe 

Eqn(50) is still true, but the coefficients C and D may not depend linearly 

on the time T. 
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5 Numerical experiments 

In this section, we will display some numerical results obtained using the 

method described above. 

Example 1: 

As shown in Fig.2, initially two circular vortex patches with unit radius are 

located along y-axis and are separated by a distance of 0.1. The patch at 

top has vorticity of 2.0 and the patch at bottom has vorticity of 1.0 [3]. 

Th • al • . • d • h A 21i' Ae· 211" d e numenc computations were carne out Wit L.J.S = -
6 

, L.J. = -
6 

an 
4 . 4 

~t = 0.2. At t = 0 we distribute 128 nodes uniformly to approximate the 

boundaries of two patches, 64 nodes for each patch. At t = 14.0, there are 

427+327=754 numerical nodes approximating the boundaries. Fig.2-Fig.4 

. show the configurations of the patches at different times. The whole cal~ 

culation took about 30 hours on a SUN 3/50. We choose this p~oblem to 

show the generic structures which evolve in patches of constant vorticity. 

The long narrow structures in Fig.4 are typical of the structures in vortex 

patch problems. With its sides approaching each other, the long thin arm in 
. \ 

Fig.4 contains a very small fraction of the total area of the patch, whereas 

it contains a large fraction of the perimeter of the patch. In our method, 

the fluid velocity is calculated by integrating a kernel on the region of the 
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patches, instead· of along the boundaries. Although the kernel is singular, 

its integral on each element (triangle or sheet) is not. Thus our method can · 

resolve the long and thin features without loss of accuracy. Our computa­

tion can be continued up to t = 16.0. At that time, the thin structure is 

so narrow that the two polylines along its two sides intersect each other. 

Linking the numerical nodes sequentially no longer forms a regular polygon_. 

We can reduce D.s to continue the calculation. 

Exa~ple 2: 

Initially two identical circular vortex patches are located along y-axis. They 

are circles of radius 1.0 and are separated by a distance of 0.5. Both of the 

patches have vorticity equal to 1.0 [4]. At the beginning, we did the numer­

ical simulation with ~s = !: , ~0 = !: and At = 0.1. · Fig.5 shows the 

configuration of the patches at T=24.0. From the numerical result, we see 

that, along the boundary of each patch, there is a region with large positive 

curvature, while the curvature remains negative and small on either side of 

the region. We call it Region A . Previously, whether or not there is a 

singularity was discussed in [4, 5, 6, 7]. Since a lot of numerical nodes are 

added by second order interpolation du.ring the calculation, it ·may intro­

duce some smoothing in our method. In order to investigate whether there 
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is a singularity, we,make sure that we are not smoothing the boundaries 

artificially. We carry out the simulations in the following way. First we run 

the calculation and .find out the Lagrangian coordinate of Region A (initial 

arclength from a reference point to Region A ). Then we carry out the 

calculation again. During this calculation, we write down the Lagrangian 

coordinates of the numerical nodes that have ever been added near Re~on 

A , and we do not delete any nqde near Region A . Once we know their 

Lagrangian coordinates, we distribute these nodes initially (at t = 0) along 

the bound~ry and do the calculation the third time. The purpose is to make 

sure that there is no need to add new nodes near Region A in the third 

calculation. Comparing the numerical results obtained by the first run and 

the third run, we find that they are almost identical. This indicates that, 

in fact, the second order interpolation for adding new points introduces no 

. artificial smoothing. Fig.6 shows the fine details of the boundary near Re-

gion A. Now it seems to us that Region A is a region with large curvature 

instead of a singularity. To determine whether Region A is a singularity 

or not, we study the behavior of the curvature near Region A in the limit 

b.t -+ 0 and b.s-+ 0. Fig. 7 shows the curvature near Region A for b.t = 0.1, 

b.t = 0.05 and b.t = 0.025 with b.s = 
2
6

7r. Fig.8 shows the curvature near 
' 4 
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211" 211" 211" . 
Region A for l:::.s = 

64
, l:::.s = 

128 
and l:::.s = 

256 
w1th l:::.t = 0.1. Our 

method has a third order accuracy for the positions of the numerical nodes 

along the boundaries. Generally, we can only expect a first order accuracy 

for the curvature obtained from the numerical solution, since the curvature 

involves the second order derivatives of the boundary curve. For a second 

' 
order method, it will not be easy to calculate the curvature from the numer-

ical solution. In Fig. 7, the variation of curvature for different l:::..t's is less 

than 0.05%, which is not distinguishable. In Fig.8, the difference between 

211" 211" 
curvatures for l:::.s = 

64 
and l:::.s = 

128 
is less than 4%, and the differ-

211" 211" . 
ence between curvatures for l:::.s = 

128 
and l:::.s = 

256 
IS less than 0.02%. 

Based on these facts, we believe that the curvature in Region A converges 

as l:::.t - 0 and l:::.s - 0, and it converges to a finite value. The maximum 

curvature in Region A is 22.50. 

Conclusion 

We have presented a high order numerical method for simulating the evolu-

tion of patches of constant vorticity. It has a third-order accuracy in space 

dimensions when the boundary curves are smooth. Because of its high-order 

accuracy, we are able to get numerical solutions of higher resolution with 
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fewer numerical nodes. Since the cost is proportional to the square of the 

number of numerical nodes, our method has the advantage when we want 

a very accurate numerical solution, espeCially when we want to study the 

details of the boundaries. Also in our method, numerical cancellation has 

been carefully avoided, so accuracy does not degrade as the boundaries are 

stretched and long thin finger structures form. As an example, we studied 

the pr~blem of two identical circular vortex patches initially separated by a 

distance ~f half their radius. We showed numerically that, as we refine b.t 

and b.s, the numerical representation of the boundary does converge and 

converges to a smooth curve. 
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List of figure captions 

Fig.1 A triangle in an appropriate coordinate system. 

Fig.2 The configuration of the patches in Problem 1 at T = 0.0. 

Fig.3 The configuration of the patches in Problem 1 at T = 8.0. 

Fig.4 The configuration of the patches in Problem 1 at T = 14.0. 

Fig.5 The configuration of the patches in Problem 2 at T = 24.0. 

Fig.6 The details of Region A magnified by 35 times. 

Fig. 7 The curvature near Region A for different 6.t. 

Fig.8 The curvature near Region A for different 6.s. 
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