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Abstract

A high order vortex method is described for solving the two dimeﬁ—
sional inéo‘nipr&ssible Euler equation in the case where the flow field
can be represented by patches of constant voftiqity. It is a continua-
tion of Buttke’s adaptive vortex method [ J. Comput. Phys. 89, 161
(1990)]. In our ?neﬁhod, éach patch is approximated byb a polygon plus

aresidual part. Through the introduction of an explicit formula for the

‘velocity induced by a triangle, and the approximation of the residual

part by vortex sheets, the fluid velocity is obtained with third order
accuracy. Numerical cancellation is carefully avoided. Two numerical

simulations are carried out. In the problem of two circular patches

’initially separated by a distance of half their radius, we study the cur-

vature of boundary near the point which was previously observed as
a cusp. Our numerical experiments show that the curvature there is

finite.



Introduction

Introduced here is a method for investigating the two dimensional evolution

of a piecewise constant vorticity distribution in aﬁ ,im_'iscid, incompréssible
and unbounded ﬂuid.

When ﬁnite. diﬁ'erence methéds are used to simqlate these flows, a high
mesh resolution is required to avoid introducing grid scale dissipation and
dispersion errors. To overcome these difficulties, Cho.rin (1] proposed vortex
methods which advect vortex blobs according to the fluid velocity calcu-
lated from the existing vorticity distribution. The mefhods were designed
to simulate the dynamics of arbitrary vorticity distributions in two or three
dimensi;ans. For the particular problem of pétches of constaﬁt vorticity, it
is uneconomical to apply this general method directly, therefore a special
mealod should be sough'g.

Zabusky, Hughes and Roberts [2] pfesepted a contour dynamics method
in which fluid velocity is determined by ihtegrating an appropriate kernel
function along the boundaries of the pafches. Coﬁtour dynamics can yield
high resolution results with only a moderate amount of c_omi)utation ‘if “the
boundaries of patches are relatively simple. However, for contours which

<"

become stretched, numerical cancellation may cause a loss of accuracy.
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Buttl;e (3] présented an adaptive vortex method for patches pf constant
vofticjty in t§v0 dimensions. In his method, cells of multiple scales are 'uéed
tp represent the‘ patches so that the number of cells nee'ded to approximate
a patch is proportiphal to the length of the boundary of the patch, and

inversely proportional to the width of the smallest cell used. This method

does eliminate th.e numerical cancellation and works well even if the patches

become stretched and deformed severely. There are three sources of error in

this method. The total error takes the following form:
Error =~ C1 A€ + Co(As)? + Ca(At)*

where At is the time step, As is 'the'ma.ximum distance between adja-

.cent nodes and A is the width of the smallest square cell employed in the

method. Usually, the dominant part of the error is C; A€ which comes from

- approximating a polygon by square cells.

Based on Buttke’s idea, we now develop a high order vortex method
for patches of constant vorticity. In order to gevt high order accuracy in
space, we describe a patch more accurately than takihg it as a polygon. In

our method, the numerical nodes along the boundary of a patch are linked

'~ sequentially to form a polygon. The polygon is then cut into triangles. The

difference between the patch and the p_olygqnv is called the residual part.
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It consists of many lens-shaped areas. We ca.léulate the velocity at a point
@ = (2, yo) by integrating the kernel function (which is the velocity induced

by a unit point vortex at (z,y)) '

(u’v) =

. w-w) —(z-z0) ]
27 [(z - 202+ (¥=%)* * (2~ 20)2+ (y - %)

on the polygon and the residual part. We derive éxplicit formulas for the

velocity induced by a triangle and discuss the way to avoid numerical cancel-

lation. While the integral of the kernel on the polygon is calculated exactly.

by summing the contributions of all triangles, the residual part itself cannot -

be fully determined by a finite number of nodes, so its contribution has to be
obtained approximately. Fortunately, the contribution of the residual part

is so small (~ O(As)?) that to obtain a third order method, we oniy need

its first order approximation. We approximate each lens-shaped vortex area

in the residual part by a vortex sheet. The integral on the residual part is
evaluated by summing ’phe contributions of these vortex sheets.

In the first section, we derive the formula for the velocity induced by a
triangle. In _tﬁe second section, we point out the numerical singularities in
the formula and discuss how to avoid them. In the third section, we describe
a method for calculating the fluid velo;:ity and a principle for adding and

removing numerical points during calculation. In the fourth section, we

6
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“discuss theverro'r of the method. In the fifth section, we give two numerical

examples. In the second numerical example, we study the curvature of
boundary in the région where the possibility of forming a singularity in finite
time was discussed in [4, 5, 6, 7]. Our observation is that the curvature of

boundary in that fegion converges numerically to a finite value as we refine

‘the time step and the space step.

1 The velocity induced by a triangle

_ Euler’s equation in two dimensions is [8]

ot }A-_ ve . .
E*‘(U‘V)u—‘"p— 1)

where % = (u,v) is the velocity of the fluid, t is the time, pis the pressure

and p is the density of the fluid.
’ " Ou v

In the incompressible case Where V- 4= -+ = =0, (1)becomes
o Jr Oy -
dw ._, ' v
§+(u-v)w—0 (2)
where w = _(9_11 _?_u is the vorticity of the fluid.
‘ dz 0dy - ST _

(2) indicates that the vorticity is advected with the fluid. For the prob-
lem of vortex patches, it implies that during the evolution, a patch will

always retain same constant vorticity even though it may deform severely.
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To solve the problem of vortex patches, we only need to follow the bound-
aries of these patches.

The incompressibility allows us to define the flux function 9 as

u=1ty , v=—%; . _ (3)
Combining the definition of vorticity and (3), we find

";bzz + "pyy =—w . - | (4) .

From (3) and (4), we can express the fluid velocity @ = (u,v) as

1 (v wo)w(z, )
u(Zo, Yo, 1) .— o1 Jr2 (z — 20)? + (¥ — vyo)zd.xdy (5)
’U(Io, yo,t) =_l_ _(-'l' - zo)w(z, Y, t) dl'dy (6)

-2 JRa (2~ 20)? + (¥ — %0)?

Since w(z,y,t) is a piece-wise constant function, (5) and (6) bec_omé

o1 (v = %) »
U0 v0,) _ 2n ;w,- ‘/9-‘(1) (z = 20)?+ (y— 10)? dedy (™)

1< . =(z = zp) :
'v(:z:o', Yo, 1) = o ‘z:;wi./m(t) (z—20)? + (¥ — %0)? dzdy (8)

where k ié thé numBer of patches, ;(t) is the region of the ith patch and w;
is the vorticity of the ith patch. As noted above, w; will remain unchanged
during the evolution.

| A patch can be a,ppfoximated by a polygon which can be cut into trian-

gles. Therefore we take the triangle as the basic element for approximating

8



a patch. In orde-r to calculate the integrals on Q;(t) in (7) and _(8), we now
derive the formula for the velocity‘ induced by a tﬁangle.

We translate and rotate the (;oordinate syét_em, so that the triangle is
in the position as in Fig.l.. Three vertices of the triangle are Q; = (—¢,0),
Q2 = (c,0) and Q3 = (a,b). At the beginnix}g, we assume that the point
Q = (0, ¥o) is outside the triangle. ‘The induced velocity is given b&

_w (¥ = %) odef W
i“(xO, yO) = 2 A (:C_— 2:0)2-{- (y_ yo)zdxdy - 271,1(3073/0) (9)

L w - —(z — zp) def W '
”(-’Fo, yO) - or A ((C _ IO)2 + (y_ yo)zdxdy - 271_‘]("':0’ :l!o) (10)

We now ca.lculate Jand I

c+(a-c)!//b —(z —
J / / (:c 1‘0) dr

c+(a+c)y/b z—20)? 4+ (y — %)? .
mmetla-awl } (11)

s=—ct(ately/d

- /; dy {—%log [(z - z0)* + (¥ - %)’]

Integration by parts gives |
b1 a2 z=ct(a-c/s |
J = / Zvd {log [(z — 20)” + (v — %0)7] ,
0 v z=—c+(a+e)y/d .

- /0” y'{ (v Eyﬂ:)fl-z 7 (y (yﬂ:)le 3 } 2

C_ B (=B +]] [(b - B2)% + 3]
=T m 2 it B3+ 73
: T 71 + ,52 bB;
ol (5 - arean 2503 )
2 2 _ :
Al (12[ — ‘arctan l&i’.ﬂz_bﬂ}_) (12)

bl7a|



where

yo+ab (zo—c). (a“C)%—(zo—C) :
ﬂl— (a_é)z y M= (a_c)z (13)
1+ 1+ |
Yo+ a+c(zo+C) (a+ c)@ —.(-’Eo + ¢)
2 = I()a_*_c)z s T2 = b(a_*_c)z (14)
14— 1+ ,

b b2
Similarly for I, we have '
s (6=-B)P+7] * [(b— B2)* + 73]
I = =log ~—rt—ts — —1]
2 T HHT 2 B
. ™ 7+ 6; — 551)
Z —arctan i1 1
+0sign(71) (2 arc an b
3 +5 - bﬂz)
bl

—Basign(72) (g — arctan (15)

(12) and (15) are valid only for a point (zg, y) which is outside the triangle
" and satisfies v; # 0 and. 42 # 0. |

What happens to a point (o, yo) inside fhe triangle? When a numerical
node is inside the triangle, it certainly is inside the polygon éontahﬁng the
triangle. Approximately, we assume it is inside the vortex patch.. This means
~ that either two patches overlap, or two parts of a patch overlap. Neither'
of these two cases is allowed in fluid dynamics. In order to get the correct
" solution, we should prevent these cases from happéning. Henqe we do not

consider the situation where the point (zo,yo) is inside the triangle.

10



Ify, =0or v, =0, we can c_éa.lcuiate J and I with

J(:BO’ yO) - (.’L‘, y)

(= y)—‘l(xﬂl-'o yo)

‘ I(zo,30) = (z’y)l_i}gmyo) I(z,y)
Although J(z,y) and I(z,y) have limits as (z,y) — (%o, %), it :does not
guafantee that each téfm in (12) z;nd (15) wili have a finite ﬁmit. We will
discuss these limits in the nextvse'ction_i‘ |

* -~ Now we introduce some new quantities and simplify (12) and (15).

o (c—ay?4p2 (16)

de.f (c+a)2+62 : : ) . | (17)

def By - (a—-rc)(l‘o-—C)ﬁ-byo | . (18) :

i S © N P

cuk_lrdetdsn . -
A e ]
.4 aes (B2 —b) (ﬁz b e _i= (4 + c)gjfiF —(.2):;2@0 -5 (2;)
n¥ =t "b?i“(; 52 @
i 2o (et ieet o )

b2+ (a+¢)? - .

1



des M1 _ (a—¢)(yo—b)— b(zo— a)

e S N PR | (24)
0t 2o (4o e @)
r  dy (el + )= @0+ + 4} | (26)
rs E di(€ + 1) = (20~ ¢ + 43 (27)

re ¥ di(E 4 78) = o€+ 1) = (zo- 0 + (W -0 (28)

Tineore‘ticaﬁy (22) and (24) are equivalent. 7, = 73 = 7—1‘1_:x the distance
from point @ to line Q.Q3. Here we point out that they are two diﬁ’e'rent
formulas in the numerical co‘mputa,tjon.v If @ = (20, ¥0) is near @, (22) is
the better way for calculating 7,. Howéver, in the case where Q is close to

Q3, we have to use (24). For (23) and (25), we have a similar situation.

With these notations, (12) and (15) can be written as

& r3 &, T3
J_b{ Igr2 —logrl

2 2
. T 4+ & - &
| =|m| (5 farctan ———'—m-l-—-—)
T_ s+ -&
+an|( arctan ol )} (29)

‘ "é’b{J1+J2+J3+J4}

I=b{ lg3 ’Z;Igr—1

12



/o 2 g2
+&;sign(n;) (f — arctan Z’—‘—i——fl—-—§i> '
‘ 2 [m]

2 2 _
—£,sign(n,) (E — arctan QZ+_§2__§_2)} (30)
o 2 - nal :
Co{l+ L+1s+ L}
(29) and (30) are the mathematical formulas for the vel'ocilty‘ induced by
a triangle. In the case where they behave well numerically, we use them
directly in‘.the calculation. In the other cases, numerical cancellation may

cause a loss of accuracy and we have to change them into forms which have

good numerical performance. We discuss this in the next section.

2 Numerical singularity and the way to avoid it

Now let us examine J; in (29) and I3 in (30) in the limit Q — Q3 .

As Q = (zo,yo) — 3, Wwe hé,ve r3—0,m — 0, .7'2 —dy, & — 1;

; . T3
m J, = lim —=log— =
Q—'n}?:s lv T Q—Qs 2 8 T2 , 0

ﬁ+g-§

) ~ does not exist
|7_71 |

T
g, 5= Jim, Eato) (5 - rctan

‘The fact that J; and I3 have i singularity at ()3 does not necéssarily :
imply that'J and I have a singularity at Q3. In fact, as we will find later in -
this section, J(zo,%o) and I(zo, %) do have finite limits as Q = (zo, Y0) =
Q3. The singularity.of Jl\ and I at )3 tells us tha1; the numerical e;fpression

13



for J and I should take a form other than (29) and (30) if Q = (2o, %) is
close to Q3. The purpose is to avoid numerical cancellation. The situation
here is very similar to the following example.

Suppose we calculate f(z) with the following two expressions.

f@)=Vz+z2-2z - (31)

and f(z)= (32)

z
Vitai+z
When z is positively large, to get a numerical result wit_h small relative error, '
we have '\to use (32). However, if X is negatively large, (31) is preferred. |
In this section, we wi]l Wr‘ité (29) and (30) in different forms. Mathe-
matically, all these forms are equivalent. Numerically, different 'fo'rms are
used for different si;cuations. For each situation, we choose a suit#ble form
suchv that no term in that form has a singularity. As lexplained in Section 1,

we always assume Q = (2o, o) is not inside the triangle.

Case 1: r3 > 1min{d,,d,} and \/zZ+ 4 < 6¢.
We use (29) and (30) for J and I respectively.

In the limit Q@ — Q., Jy, J3, I; and I3 all go to zero.

I ST
Ql'l"anz i —Qh-'néa 2 log To =0

nl"+£¥-£1)=b

Im|

T
lim Jys= lim - (—-—a.rctan
Q—Q2 3 Q—Q2 l"hl 2 :

14



1im Il— hm logﬁzo

Q—Q:z Q— 2

4 hm I3— hm flslgn(m) (2 arctan |771

As a matter of fact, none of J1, Iz, I3, J4 in (29) and Il, I, I3, I, in (30)

has a smgu_lanty as @ = (z9,%) — Q2

The same statement holds as Q = (zo, %) — Q.

Case 2: r; < %min{dl,dz} .

As Q = (z0,%) = @3, wehaven; - 0,7, = 0,§ — 1, 6 — 1.

lim I; does not exist, lim I, does not exist
Q—@s §Q—Qs

lim (Is + I,) = —©
oz (e + 1)

L(QQI,QQQ) if Q and Q5 are on the same side of Q,Q,
0O = : , .

—L(QQI,QQz) if @ and Q3 are on different sides of Q,Q,

where L(QQI,QQ ) is the angle spanned by vector QQ; and vector QQz, .
which falls in [0, 7). ( ’
If, we first <_:a.lculate I and I, then add them together, the largg errors

occurred in the calculations of I; and I, will destroy the accuracy of (I3+1y).-

To evaluate I3 + I, numerically, we writevit in the following form

: . 2 4. g2
I+ 1, = Essign(ns) (E — arctan B 83 & &t&s )
' ' \2 ' |7al '
) o
—€4Sign(n4) (E — arctan M) -0
2 |74}

15



Hence, in this case, we use the following expression for I.

™0™~ Mioe TS
I—b{2logr 2logr1

2

: 2 g2
+£3sign(ns) (E — arctan M)
2 |7al

2 2 '
- eaiga(n) (5 - arctan U—Ii—lii) - e} (33)

= b{Is+ Is +4I7 + Is+ I} _

For J, we use

2

2 2 To
_Insl (_ -— arctan M)
, 7] »
m+ﬁ+&>}
+ (~ - arctan ——————— 34
2 e (34)
dé’,b{Js+J$+J7+Js+Jg} -

We checked the behavior of every term in (33) and (34). No term has a
singularity as @ = (zq, %) — @3-

Case 3: /23 + y¢ > 6c.

First let us point out the problem (29) has when z2 + y2 is large.

When y = 0 and z; — oo, we have

RV : & -b’ '
li = 1 ————
om0 Ji zlf,r=no 2 og r, b2+ (a—r¢)? #0
Yo—o0 . Yo—+00 : e

16



‘ Cp2
im J,= b

Tom0 -b2+(a+c)2 #0
Yo—oo '
R e
Im =i 7
. Yo—o© :
.. _ (a4e® -
b Sl ey s R
Yoo o

. There is no singularity in J,, J,, J3 and J,. However, while Jl, J2, J3 and

J4 2ll tend to nonzero values in the limit Q — oo, their sum goes to zero:

zo=0 . zo=0

lim J= lim b{Ji+Jo+Js+Js} =0
Yo—00 Yyo—oo ‘ ‘ '

Generally speakin'g, if J is computed using '(29), the rﬁagnitude of the ab;
solute error in J is about the same order as those in J;, J3," J3 and J4.
Consequently the absolute error in J will not tend fo zero while J itself goes
to zero. This leads to a large‘rela_,tive error for J. To' calculate the velocity
é,t points far from the triangle, we need to chaﬁge (29) into a form in whicﬂ
' every term vanishes as ¢ — oo.

Asr = \/m‘—e o0, J is of the order O(r~1). We nc;I\;v‘ find a form

for J such that all terms in it behave like o(r~1).

_plb Sy, T
J—b{2.ogrz 2logr1

(T : "If'*'ff“ﬁl)
- — — arctan —————
i (3 ™
2 2 __ £\

|9
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| el[ A-&P+n2 | 26 ]
= b{— lo . +

2 [ T g+ TE+m

52[ (1=-&)?2+ 752 252]

—==llo +

2 [T g+ E+m

|m| __|ml ]

+&-& E+n

[n2| [72] ]}
: arctan -
””[ Bt8-6 G+7m

= {$ [F(grormerim) +4)
Gk
=|ml [G (n—leZ_;i’l——?) + Bl]
O S |
Yy {Jio + Jug + Jiz + Jia} B ' '

—|m| [a.rctan
U

where the functions F’ and G are defined as

F(;_) = log 8 :L ‘3 +2s | - (36)

G(s) = arctan(s) — s : @37

and A;, Ay, By and B, are

U?‘f?'*‘&

A T -6+ I RET T
A, = 2 —-€6+6 '
(G- +1/2)(E+n3)
L= fllml
(m+ € - &)E+n?)
B &l
2

T Wt E-6)E+n)

18



~ For I, we have

= (3 (i) 4]
2l et

+&1sign(m) [G (5’;’—:'%'—?) + Bl}

~xsign(m) |G (@‘lg_lfg) + Bz]} @)

= {ho+ I+ 1+ I3}

Although all terms in (35) and (38) tend to zero as z2 + yZ — oo, we
may still suffer from numerical cancellation when calculating F' and G. To .

avoid loss of accuracy, we expand F and G into power series:

F(s)—-log 84_33 +2s

. 1 1‘1 2 '
= —25° ‘(§+§2i+3s +€1(8)) . (39)

lex(s)] < 107®  when |s| < 0.15

G(s) = arctan(s) - s

( = 20 + s e (s)) : “o

i=1

lea(s)] < 107 when |s| < 0.15

. As r = /1% + y2 — oo, the functions F aﬁd G are of the order 0(r"3),
an;i A,, A,, B; and B, are of the order O(r~2). It fo]low; immediately that
all terms in (35) and (38) are of the order O(r~?).

19



Finally, it should be pointed out that, in programming, I and J are not

difficult to calculate.

3 The numerical method
To obtain the fluid velocity, we do two things:
1. Approximate the boundary curve of each patch §; by interp‘ola.tion.
| 2. Evé.luate the integrals of the kernel on €; in (7) and (8).

In our method, the boundary of each patch is numeriéally represented
by the nodes distributed along 1t The curves between adjacent nodes are
approximately detefmined with the second-order interpolation. Suppose Q;
and Q,4, are two adjacent nodes. To appr’oﬁmate the curve between @,
and Q;41, we establish a local coordinate systgm, taking the line Q,-QJ-.H as
x-axis and fhe p'erpendiculaf bisector of Q;Q;+, as y-axis. For the sirhplicity _

~of the interpolation here and the integration latér, we let the interpolation
curve be a parabola with y—axis as its line of symmetry. The equation for

the parabola is

20



where /; is one half of the distance between Q; and @41, and h; is the
height of the parabola which is determined by the points Q,-_l, Qi Qi+

and Q;4+2 with the following formulas.

lj = -2-\/221'.4_1 - zj)z + (yj+1 - yj)z

Pi+i = Q:‘QJ’+1 = '27[(-"3:'+1 - z;), (Yj+1 — yj)]
_ ; .

go by b o
T L+ TR T

' 1, . "
@ =3 lpit1 — le
h; =1; %
C141-a
Suppdse Q is the region enclosed by these interpqlation curves. Then
is a third ordér approxima;tion of tﬁe real patch region 2 if the boundary of
Qs .s'mooth. Althéugh we can describe the boundary more accurately by v
using higher-ordef interpolation, it wili not reduce the total numerical error
if v:ve cannot. evaluate the integrals on © in (7) and (8) to the ;arﬁe' high -
order accuracy. | ..
A patch £ has two parts = P+R. Pisthe polygon with thé nume_rica.l‘
nodes as its vertices. R is the residual .part. Thus the integralsbn Q; in (7)

and (8) can be written as

Lo hothe (41)
1:(t) §() Ri(t) )

21



We then cut the‘};olygon P,(t) into triangles. In Section 1 and 2, we derived
and discussed the numerical formula for the velqcity induced by a triangle.
The integrals on Pi(2) in (41) can be easily obtained by sumining the contri-
butions of all triangles. R;(t) consists of a lot of lens-shé.ped areas. Each one
is an area enclosed by a parabola and a straight line. R;(t) has a very small
area and the integrals on R;(t) in (41) are of the order (~ O(As)?). To
A obtain third-order accuracy in space d.imenéions, we only need a first-order.
approximation of the velocity induced by R;(t).
We approximate a lens-shaped vortex area by a; vbrtex sheet, i.e. we
imagine that the vorticity in a lens-shaped area is concentrated along its

bottom. The distribution of vorticity along the sheet is given by

2\ 2
e;(z) = wh; [1— (7—) ] for =l <z<

J

 The ‘velocity induced by a vortex sheet of this kind is given by

_ 1 [ -
u(Zo, Yo) = Er-/)e(x)————&—-——dz

(z—20)+ 3.
w 1 2 “ _TO dif Wh =
- 27rh/_1(1 ’ )(a—ao)2+1'2da =5k
ez 2 g
’U(-’Eo’yo) = )m z

o2 (00— 0) dgf‘:’_h
h/ (1- )(a a)2+1‘2da— oL
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where

A little algebra shows that

(Go=1)(00+1) =72

| (05— 1)+ 72
=2

L=2os 2 8 Gy F 1P+ 70 . |

e oi+12-1 '
—20,79 (5 — arctan T) (42)

(00 1)+ 72
-~ K —27’0+T00‘010 ZW |
2 4 22

+ [(00 = 1)(00 + 1) — 7¢] (% — arctan ﬁ’-—%}——l> (43)

Similar to the situation in section 2, here we must change the numerical
formulas, (42) and (43), into a diﬁer_erit form when o + 7¢ is large. Again
the purpose is to avoid numerical cancellation.

or \/oZ + ¢ > 6, we use the following expressions for L and K.

4‘70(00 - 7'0 - 1)
(‘70 + To + 1)("0 +718—1)

(]
2o [0 (=) N
 an@er-n
T (o472 +;1)(03+T3—1) . -
+%%[Fﬁ—f%ﬁﬁﬂ W

et o ()
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where F and G are the same functions as dreﬁned by (36) and (37). As
r = \Joi + 7¢ — oo, the functions F and G are of the order O(r'a); Con-
sequently all terms in (44) and (45) are of the orde;' O(r~1). This conforms
to the fact that the velocity is of the order O(r~'). Hence (44) and (45) are
the appropriate formulas for numerical calculation when o2 + 7¢ is large.

Summing thg contributions of these vortex sheets, v.ve get a first-order
approximation of the integrals onR,-(t)vin (41). Therefore, /n E the left hand
side of (41), can be evaluated with third-order accuracy.

Finally; éufnming the contributions of all vortex patches yields the total
fluid velocitj #(Zo, Yo, 1) = [u(zo, ¥o, 1), v(Z0, Yo, t)]-

Once we kﬁow the total fluid veloci.ty, we integrate in tifne using a fourth-
order Runge-Kutta method [9].

‘Initially, we distribute numerical nodes aléng the boundaries of the

patches according to the following rules:

1. The distance between adjacent nodes is less than a specified As : B
1Q;Qj+1] < As

2. Twice the angle between vector Q_,-Q-‘H,% and vector Q,-.{_;QJ-.H is less

than a specified A0 :  2|4(QjQj41,Qs43Qj+1)l < A8
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3. Either |Q4-Q_,~+1| > 34s o 214Q;Qj41,Q;41Q5+1) > 346, or

both of t.hem are satisfied.

Here Q;,1 is the vertek of the interpolation parabola between Q; and Q;4;.
In the above three rules, rule 1 -vprevents a loss of information about the
curve betfveen édjacent nodes, rule 2 pro;rides a fine local representation
where the ‘boundary has large curvature, and rule 3 guarantees that we do
not have redundant nodes.

During the evolving of the patches, some parts of _the Boundaries will be
stretched and the curvature of some parts will increaée. In order to maintain
the resolution of the boimdafies and keep the method efficient, it is necessary.
td add and ‘delete nédes.

~ When |Qij+1l > v2As or 2|/-(Q1Qj+§’le+%Qj+1)| > \/(ZAO{WG add
Qj4r asa new node betweeﬁ Q; and Q; 4. | |

When [Q;-1Qj4| < As and 214(Q;-1Q5,@:Q41)] < A8, we simply
drop the node Q;. |

In our method, a patch with n numerical riodes along it‘, is approximated

- by n lens-shaped areas and an n-sided.po'lygdn which is then decomposéd
into (n—2) tri;ﬁgles. The total. number of the elements (tﬁanglés and leﬁs- |

shaped areas) is less than 2N, where N is the total number of the nodes
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along all patches. The amount of work required to advance the patches for
a single time step is of the order O(N?) which is generic for vortex methods
if fast summation is not used. In the next section, we show that the method

is third order accurate in space dimensions.

4 Error analysis

Now \.wve discuss the m_imerica.l error of the method. There are two sources of
error iﬁ ‘the method: the error associated with the approximation of the fluid
velocity, and the en;or associated with the time inﬁegration. The error from
the fourth order RungeiKutfa t.ime integration sh_oﬁld be fqurth-order and
we will not diséuss it here. The error from the a.pp‘_roximation..of thé velocity
can be broken into two parts. The first part of the error is due to the fact
that a patch §2 is represented by-a finite number of nodes.. The boundary
of the patch can not be fully recovered from these finite nodes. The new
patch §, forméd }')y the interpolation curves, is used to app‘roximate the real
- patch Q. Geometrically, € is a third order approximatién of Q. Later, we

will show that the difference between the velocities indu(.:ed by € and Q caﬁ
. be bounded by O((As)?|log As|).. The approximate patch  is the union

of a polygon and a residué.lvpart. The second part of the error is due to
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the fact :that we do not ifavé an exact velocity formula for the residual part.
Instead, we approximate ea,ch_ lens-shaped vortex area in the residual part
by a vortex sheet. This error is also bounded by O((As)?|log As|).

In fact, the numerical err?)r also”depends on the stabi_lity of the physical
pfobléﬁ. Sinc'e such stability is a very complicated issue, we are not going
to say anything about it. | Here we only givg an estimate of the numerica;l
efror in a ’sinéle time step. |

Sﬁppose U(zo,%0)is ;he velocity induced by t.he patch fi, Ul(zq, yoj is the
velocity induced by the approximate patch ©, and Uy(2o, 1o) is the velocity
induced by the pqugon plgs the vortei sheets which are used to approximate
). We see that U(zo,yo) is the exact velocity and U,(zo,yo) is the velocity-

we use in the numerical method. The spatial error E, is

¢

E, = (Izn%f) [U(z0,¥0) = Uz2(Z0, ¥o)|
Now we try to bound |U(zo, %) — Us(Zs,%0)|- First we have

|U_(1'o, Yo) - Ua(zo, yo)l < [U(Z0, %0) — Ur(Zo, ¥o)| + |Ur(Z0, %0) ~ Ua(zo, yo)l

and _ |U(l'o, yo)" U1(-’L‘o, yo)l <G /z.m ;dxdy (46)

where r = \/(Z — 20)? + (¥ — %)%, and AQ = (Q\Q)U(Q\Q) is the difference
between  and . Assume that the patch Q is contained in B(0, R) which
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is the ball centered at the origin with radius R, and that its boundary 9§
is smooth enough. It follows that AQ can be covered by a strip along the

boundary 9

a0cs= {(z,y)

\/(:z: -8+ (y—n)< g for some(£,7m) € _39}

where d ~ O(As)3.

If (zo,yo) is inside B(0,2R), we find

) 1
|U(z0,0) — Ur(Zo, o)l < Cl/s ;dzdy

<C { / L dedy + / ldxdy}
_ B((zo,y0),d) T S\B((zo.y0),d) T

3R 1 :
<Cod+Ci [ da) | (47)
) _

where A(r) is the area of § N B({(zg, %), 7). Integrating by parts, we get

3R | 3R | |

We further assume that the length of the intersection of 9§ and a ball can
be bounded by a constant times the radius of the ball. That is, there exists
a constant M such that for any point @ = (z,y) and any number r > 0,

Length of QN B(a,r) < M -r. With this assumption, we have

A(r) < 2Mrd - , (49)
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Combinihg Eqn(49), Eqn(48) and Eqn(47), we get

: 3R
/ Lazdy < Cod + / 2Md
sT _ d T

= C,4d(1+ |logd])

If (z0,¥0) is outside B(0,2R), / %dzdy can be easily bounded by the

area of the strip S :
1, ., 1
: / ~dzdy < —Area(S) < 2Md
sT R . :
In both cases, we have

|U(z0,%0) — Ur(Zo,%0)| £ C’d(l'-l-/_,l log d|)

= 0(Ls)(|log As|)
With the abové _éLssufnptions, it is also tr;lé that |
0o 0~ Ut = O(Ls)(log Asl)
Thus we obta.in, |
|U(Z0, %0) — U2(%0, o) = O(IAs)a(“OgASI_)

In the above, the smoothness of 92 is only ﬁsed to determine t_he width of
AQ. We have not made any use of the particular shape of AQ. Eqn(46)

is also a very rough estimate. Based on the analysis in some very simple
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cases, we believe that the real bound for |U(z0s90) — Uaz(z0, 30)| should be
O(As)?, but we are not able to prove it here.

We expect the total numerical error to be of the form
Error ~ C(As)® + D(At)* (50)

To derrionstrate the validity of Eqn(50) numeriéally, we compare the exact
solution for aﬁ elliptical pé.tch givén’ by Lamb [10] with the nuﬁerical solu-
tions obtained >by our method. Consider an ellipse with a = 2, b = 1, where
a and b are the lengths of the semi-major and semi-minor axes of tile ellipse,
fespectively. .The numerical experiments were carried out 'w_ith w = 1. The
Error is defined as the maximum difference between the exact solution and
the ngmerica.l solution. We find that the Error satis.ﬁes Eqn(50) approxi-
mately with C = 0.063T and D = 0.0008T, where T is the time. Of course,.
v this‘is a simple problem in which the vortex patch, while rotating, always
remains of the same elliptical shape. For the general problem, we believe
Eqn(50')v is still true, but the coéﬁiéieﬁts C and D may not depend linearly

on the time 7.
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5 Numerical experiments

In this section, we will display some numerical results obtained using the

method described above. ’

Example 1:

As shown in Fig.z, initially two .circular vortex patches with qnit radius are
'iocated along y-axis and are sepérated by a distance 6f 0‘_.1. The patch at
top has vorticity of 2‘.0 and the patch at bottom has vorticity of 1.0 [3].
The numerical computations wefe carried out with As = %471, AQ = 2—2 and
At = 0.2. At t = 0 we distribute 128 nodes 1_1niform1y to approximate t\he_
Boﬁnd;ries of two patciles, 64 nodes for each patch. At ¢ =' 14.0, there are
427+327=754 numerical nodes approximating the boundaries. Fig.2-Fig.4
' .vshow the configurations k'of' the patches -at.differ'ent t>imes. The whole cal-
culation took about 30 hoﬁré on a SUN 3/50. We choose this p'rob'lem‘ to
show the generic structures whi<.:h evalve in‘patch.es‘ of constant v_orticity;
Thg long narrow structures in Fig.4 are typical of the structures in vortex
patch problems. With it§ sicies approa;:hirlig ea_Lch qther, the long thin arm in
Fig.4 confa,in_s a very small fraction of the total area of the patch, whereas

it contains a large fraction of the perimeter of the patch. In our method,

the fluid velocity .is calculated by integrating a kernel on the region of the
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patches, instea.d' of along the boundaries. Alfhough the kernel is singular,
its ibntegral_ron each element (triangie or sheet) is Anot. Thus ouf method can
resolve the long and thin features without loss of accuracy.v Our computa-
tion can be continued up vto t=16.0. At that time., the thin .structure is
o) ﬁarrow that the two polylines along its two sides intersect each other.
Linking tile numerical nodes sequentially no longer forms a regular ;;olygon..

We can reduce As to continue the calculation.

Exan\;lple 2:

Initially two identical circular vortex batches are located along y-axis. They
are circies of radius 1.0 and are sepérated by a distance of 0.5. Both of the
patches have vorticity equal to 1.0 [4]. At the beginning, we did the numer-
ical simulation with As = ?S_Z’ Al = -z% and At = 0.1.- Fig.5 shows the
configuration of the patches at T=24.0. From thé numerical result, we see
that, along the boundary of each patch, there is a region with large. positive
cﬁrvature, while thér cﬁrvature remains negative and small on either side of
the region. We call it Region A . Previously, whether or not there is a
singularity was discussed in f4, 5, 6, 7). Since a lot of numerical nodes are

added by second order interpolation during the calculation, it ‘may intro-

duce some smoothing in our method. In order to investigate whether there
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is a singularity,‘ we.make sure that we are not smoothing the boundaries
artificially. We carry out the simﬁlations in‘ the following way. First we run
th¢ calcula‘?ion and :ﬁnd out, thelLagrangia.n coordinate of Region A (initial
arclength from a reference point to .Reg'ion A ). Then we carry out the
calculation again. During thlS calculation, we wrife down the Lagrangian
coordinates .of the numerical nodes vthat have ever bee;l added near Re'gibn .
A , and v;e do not delete any node near Regi(;;n. A . Once wevknow their
Lagrangian coordinatés, x.ve &istfibute these nodes initially (at t = 0) along
the boﬁndgry and do the calculation the third time. The purpose is to make
sure that fhere is no need to add new nodes near Region A in the third
calculation. Compar&ng the numerical results obtained by the first xl-un and
the third run, we find thatvthéy are almost identical. This indicates that,
in fact, the second order’ixllterpolation for adding new points introduces no
.‘artiﬁ.cial smoothing. Fig.6 shows the fine details of the boundé.ry near Re-
gion A. Now it. seems to ﬁs that Region A is a r'egipn with large curvature
instead of a singu’lva,rit:y. Té determine whether Region A is a singularity
or nbt, we étudy the behévior of the curvafure near Regio'n.A in the limit

At — 0and As — 0. Fig.7 shows the curvatﬁre near Region A for At = 0.1,

2r

o1 Fig.8. shows the curvature near

At = 0.05 and At = 0.025 with As =
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, 2n 2 o |
Region A for As = e As = 128 and As = 556 with At = 0.1. Our

method has a third order accuracy for the positions of the numerical nodes
along the boundaries. Genera.]ly,v'we can only expect a first order accuracy

for the curvature obtained from the numerical solution, since the curvature

involves the second order derivatives of the boundary curve. For a second

5 - ’ .

order method, it will not be easy to calculate the curvature from the numer-
ical solution. In Fig.?,'the variation of curvature for different At’s is less

than 0.05%, which is not distinguishable. In Fig.8, the difference between

2
curvatures for As = z—z and As = 1—271-8— is less than 4%, and the differ-
between curvatures for As = 2n and As = 27 is less than 0.02%
ence between ures =128 = 5zg IS less than 0.02%.

Based on these facts, we believe that the curvature in Region A converges
as At — 0 and As — 0, and it converges to a finite value. The maximum

curvature in Region 4 is 22.50.

Conclusion

We have presented a high order numerical method for simulating the evolu-
tion of patches of constant vorticity. It has a third-order accuracy in space
dimensions when the boundary curves are smooth. Because of its high-order

accuracy, we are able to get numerical solutions of higher resolution with
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fefver m‘1merical'nodes. Since the cost is proportiona.l to the square 6f the
number of numerical nodes, our method has the advantage when we Want
a very accurate numerical solution, especially §vh§n we want to study the‘
déta.ils of the boi;nda;-ies. Also in our method, numerical cancellation hés
beén carefully ’a,v‘oide.d, $0 accuracy does not degradeas the boundaries are
stretched and long thin finger structures fdrm. As én example, we studied
the problem of two identical circular vortex patch'esv initia.ll.)"separated by a
di_stancé-qf half their radius. We §howed numerically that, as .we refine At
and As,'_the pumetical representation of the boundary does converge énd

converges to a smooth curve.
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Fig.5
Fig.6
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Fig.8

A triangle in an appropriate coordinate system.

The configuration of the patches in Problem 1 at T = 0.0.

The configuration of the patches in Problem 1 at T.= 8.0.

The configuration of the patches in Problem 1 at T = 14.0.
The configuration of the patches in Problem 2 at T = 24.0.
The details of Rggion A magnified by 35 times.
The curvature neaf Regioﬁ A for different At.

The curvature near Region A for different As.
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